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1 Ordinary Di�erential Equations

Cauchy-Lipschitz theory for non-autonomous ODE. If the vector (t, x) 7→ f(t, x, θ) satis�es the following
conditions on [0, 1]×X :

(a) f is L2-Caratheodory, i.e. x 7→ f(t, x, θ) is continuous for t a.e in [0, 1], t 7→ f(t, x, θ) is measurable for
all x ∈ X and ∀c > 0, ∃hc(·, θ) ∈ L2\ |x| ≤ c =⇒ |f(t, x, θ)| ≤ hc(t, θ),

(b) f is L2-Lipschitz, i.e. ∃ a(·, θ) ∈ L2/ ∀x, x′ ∈ X , |f(t, x, θ)− f(t, x′, θ)| ≤ a(t, θ) |x− x′|.

Then, there exists a unique solution to the Initial Value Problem (theorem 3.4 in [4]){
φ̇(t) = f(t, φ(t), θ)
φ(0) = φ0

(1)

2 Assumptions

Condition C1 (a) Θ is a compact set of Rp and θ* is an interior point of Θ, X is an open subset of R2 ; (b)
(t, x) 7→ f(t, x, θ∗) is L2-Lipschitz and L2-Caratheodory.

Condition C2 (a) (Yi, ti) are i.i.d. with variance V (Y |T = t) = Σε = σ2I2 ; (b) For every K, there is a non-
singular constant matrix B such that for PK = BKp (t); (i) the smallest eigenvalue of E

[
PK(T )PK(T )>

]
is bounded away from zero uniformly in K and (ii) there is a sequence of constants ζ0(K) satisfying
supt

∣∣PK(t)
∣∣ ≤ ζ0(K) and K = K(n) such that ζ0(K)2K/n −→ 0 as n −→∞ ; (c) There are α, c1,K , c2,K

such that
∥∥φ∗j − pKcj,K

∥∥
∞ = sup[0,1]

∣∣φ∗j (t)− pK(t)>cj,K
∣∣ = O(K−α).

Condition C3 There exists D > 0, such that the D-neighborhood of the solution range D = {x ∈ R2|
∃t ∈ [0, 1], |x−φ∗(t)| < D} is included in X and f is C2 in (x, θ) on D×Θ for t in [0, 1] a.e. Moreover, the
derivatives of f w.r.t x and θ (with obvious notations) fx, fθ, fxx, fxθ and fθθ are L

2 uniformly bounded
on D ×Θ by L2 functions h̄x, h̄θ, h̄xθ,h̄xx and h̄θθ (respectively).

Condition C4 Let (ϕ`)`≥1 be an orthonormal sequence of C1 functions in H1
0 .

Condition C5 θ∗ is the unique global minimizer of Q∗F and inf |θ−θ∗|>εQ
∗
F (θ) > 0.
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Condition C6 There exists L0 such that for L ≥ L0, Jθ,L (g, θ) is full rank in a neighborhood of (φ∗, θ∗).

Condition C7 (a) The times T1, . . . , Tn have a density π w.r.t. Lebesgue measure such 0 < c < π < C <∞;
(b) E

[
ε4
]
<∞.

Condition C8 For ` = 1, . . . , L, θ ∈ Θ, there exists β̃K`
in RK` with ‖ fx(·,φ∗,θ)ϕ`+ϕ̇`

π − β̃>K`
pK`‖L2 −→ 0.

Condition C9 (a) The series estimator is a regression spline with a uniform knot sequence (τ1,K , . . . , τNK ,K)
de�ning the spline basis pK satis�es maxi |τi+1,K − τi,K | −→ 0 as K −→ 0 ; (b) For all θ ∈ Θ, for

` = 1 . . . L, v` : t 7→ fx(t,φ∗(t),θ)ϕ`(t)+ϕ̇`(t)
π(t) is C1.

3 Consistency

Theorem 3.1. If conditions C1 to C6 are satis�ed, then

θ̂n,L − θ∗L = OP (1)

and the bias BL = θ∗L − θ∗ tends to zero as L→∞.
In particular, if we use the sine basis and if E (φ∗, θ) is in H1 for all θ, then BL = o

(
1
L

)
.

Proof. The classical proof for the consistency of an M -estimator θ̂n,L = arg minθ∈ΘQn,L(θ) such as the or-
thogonal conditions estimator relies basically on two stages: the uniform convergence of Qn,L(θ) towards

Q∗L(θ) =
∑L
`=1 |e` (φ∗, θ)|2 for θ in Θ, and the fact that the true parameter θ̂n,L is a unique isolated global

maximum (by theorem 5.7 in [6]). In a �rst step, we assume that Q∗L(θ) has a unique global minimum de-
noted θ∗L, and we will show that this is indeed the case, and that θ∗L is not very far from the true parameter
θ∗. We have to show that supθ |Qn,L(θ)−Q∗L(θ)| −→ 0 as n → ∞. From the simple additive expression

of Qn,L(θ), we see that it su�ces to show the uniform convergence of
∣∣∣e` (φ̂, θ)∣∣∣2to |e` (φ∗, θ)|2. From the

inequality
∣∣a2 − b2

∣∣ ≤ |a− b| (|a|+ |b|), we have∣∣∣∣∣∣∣e` (φ̂, θ)∣∣∣2 − |e` (φ∗, θ)|2
∣∣∣∣ ≤ ∣∣∣e` (φ̂, θ)− e` (φ∗, θ)

∣∣∣ (∣∣∣e` (φ̂, θ)∣∣∣+ |e` (φ∗, θ)|
)
.

As φ̂ is such that for j = 1, 2 we have
∥∥∥φ̂j − φ∗j∥∥∥∞ = OP

(
ζ0(K)

(√
K/n +K−α

))
this means that φ̂(t) ∈

D =
{
x ∈ R2 |∃t ∈ [0, 1] , |x− φ∗(t)| ≤ D

}
with a probability tending to 1. This shows that with a probability

tending to 1, we have
∣∣∣f (t, φ̂(t), θ

)∣∣∣ ≤ h(t, θ) ≤ H(t) (because f is uniformly L2-Caratheodory), moreover φ̂ is

also bounded by M +D > 0 (because φ∗ is bounded as a continuous function on [0, 1]) and∣∣∣e` (φ̂, θ)∣∣∣+ |e` (φ∗, θ)| ≤
∣∣∣〈E(φ̂, θ), ϕ`

〉∣∣∣+
∣∣∣〈φ̂, ϕ̇`〉∣∣∣+ |〈E(φ∗, θ), ϕ`〉|+ |〈φ∗, ϕ̇`〉|

≤ 2 ‖H‖L2 + ‖ϕ̇`‖L2 (2M +D)

Hence
∣∣∣e` (φ̂, θ)∣∣∣ + |e` (φ∗, θ)| is uniformly bounded in probability, so that the uniform convergence of the

criterion boils down to the uniform convergence of
∣∣∣e` (φ̂, θ)− e` (φ∗, θ)

∣∣∣. We can re-write e`

(
φ̂, θ
)
−e` (φ∗, θ) =〈

E(φ̂, θ)− E(φ∗, θ), ϕ`

〉
+
〈
φ̂− φ∗, ϕ̇`

〉
and it is clear that the second right-hand side term converges uniformly

to zero in probability for all ` ≥ 1. Consequently, we just have to check that E(φ̂, θ) − E(φ∗, θ) converges
uniformly in θ to 0 in probability. First of all, we remark that g 7→ 〈E(g, θ), ϕ`〉 is a continuous function from
B∞(φ∗, D) = {g ∈ C ([0, 1]) | ‖g − φ∗‖∞ ≤ D} to R (w.r.t the sup-norm), because

|〈E(g, θ), ϕ`〉 − 〈E(g′, θ), ϕ`〉| ≤ 〈a(·, θ) |g − g′| , ϕ`〉
≤ 〈a(·, θ), ϕ`〉 ‖g − g′‖

with a(·, θ) ∈ L2 for all θ, as the vector �eld is L2-Lipschitz. By the continuous mapping theorem, we get the

point-wise convergence of
〈
E(φ̂, θ)− E(φ∗, θ), ϕ`

〉
, and the hard part consist in the uniform convergence. This
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can be proven by controlling the oscillations in θ of the process E = (E(θ))θ∈Θ =
(〈
E(φ̂, θ)− E(φ∗, θ), ϕ`

〉)
θ∈Θ

and by using theorem 18.11 in [6], as convergence in probability towards a constant is equivalent to weak
convergence. In order to show that the process E converges weakly to 0 in the space C(Θ) of continuous
functions on Θ equipped with the supremum norm, we have to check that for all k and all θ1, . . . , θk in Θ

(E(θ1), . . . ,E(θk)) (0 . . . 0) (2)

and that for all ε, α > 0 there exists a partition of Θ1, . . . ,ΘK of Θ such that

lim sup
n→∞

P

(
sup
k

sup
θ,θ′∈Θk

|E(θ)− E(θ′)| ≥ α

)
≤ ε. (3)

The �rst condition (2) is a direct consequence of the point-wise convergence in probability of E(θ) in Θ.
Concerning the second condition, from we have for t in [0, 1] a.e.∣∣∣f (t, φ̂(t), θ

)
− f

(
t, φ̂(t), θ′

)∣∣∣ ≤ p∑
i=1

∣∣∣fθi (t, φ̂(t), θ̃n(t)
)∣∣∣ ∣∣∣θi − θ′i∣∣∣

� ā′(t)
∣∣∣θ − θ′∣∣∣

with a probability tending to 1 (θ̃n(t) being a parameter between θ and θ′). As a consequence the following
inequality

|E(θ)− E(θ′)| �
〈
ā′
∣∣∣θ − θ′ ∣∣∣ , |ϕ`|〉 � ∣∣∣θ − θ′ ∣∣∣

is true with a probability tending to 1. Since Θ is a compact set, it is possible to �nd a �nite partition Θ1, . . . ,ΘK

of Θ such that the diameter of Θi is smaller than an arbitrary α independently of n. This ensures that condition
(3) is also satis�ed and the uniform convergence of Qn,L(θ) to Q∗L(θ) can be claimed. Now, we relate θ∗L− θ∗ to
the approximation quality of EF (φ∗, θ) by the basis (φ`)`≥1. We remark �rst that we have |EF (φ∗, θ)| ≤ 2h̄(t):

this implies that for all `, and all θ we have |e∗` (θ)| ≤ 2h̄` with h̄` =
〈
h̄, ϕ`

〉
. The global rate of convergence of

the series
∑
` e
∗2
` (θ) is controlled uniformly by the rate of

∑
`≥1H

2
` , denoted r

2
L =

∑
`>LH

2
` . By orthogonality,

we can write
‖EF (φ∗, θ)‖2L2 = ‖EL(φ∗, θ)‖2L2 + ‖RL(φ∗, θ)‖2L2

which means that is ‖EL(φ∗, θ)‖2L2 is a perturbation of the function θ 7→ ‖EF (φ∗, θ)‖2L2 by the function

θ 7→ −‖RL(φ∗, θ)‖2L2 . This perturbation ‖RL(φ∗, θ)‖2L2 is uniformly dominated by rL, hence it becomes possible

to relate the two minima. From assumption C5, we know ‖RL(φ∗, θ)‖2L2 is di�erentiable and we compute a
series decomposition of its gradient thanks to ∂θRL(φ∗, θ) =

∑
`>L ∂θe` (φ∗, θ)ϕ`:

∂θ ‖RL(φ∗, θ)‖2L2 = 2RL(φ∗, θ)∂θRL(φ∗, θ).

and we recall that RL(φ∗, θ) converges uniformly to 0 and ∂θRL(φ∗, θ) is uniformly bounded in θ on Θ (as
a continuous function on the compact set Θ). Starting from this last remark, we use the Implicit Function

Theorem to the continuously di�erentiable function G(ε, θ) = ∂θ ‖EF (φ∗, θ)‖2L2 −2ε∂θRL(φ∗, θ), in order to get
a Taylor expansion. We denote θε the solution to G(ε, θε), and we remark that in particular G(0, θ∗) = 0. Thus,
there exists ε0, δ0 > 0 and a function ψ : ]−ε0, ε0[→ B(θ∗, δ0) such that ψ(ε) = θε (i.e. G(ε, ψ(ε)) = 0). We can
also compute the �rst order variation of ψ: ψ(ε) = ψ(0) + εψ′(0) + o(ε) where

ψ′(0) = −2
(
∂θθ ‖EF (φ∗, θ)‖2L2

)−1

∂θRL(φ∗, θ∗).

Since RL(φ∗, θ) converges uniformly to 0, there exists L0 > 0, such that for L > L0, |RL(φ∗, θ)| ≤ ε0 so that we

can apply the linearization above to G(RL(φ∗, θ), θ) = ∂θ ‖EF (φ∗, θ)‖2L2 − ∂θ ‖RL(φ∗, θ)‖2L2 . We obtain that
the minima θ∗L and θ∗ are such that

θ∗L = θ∗ + RL(φ∗, θ)2
(
∂θθ ‖EF (φ∗, θ)‖2L2

)−1

∂θRL(φ∗, θ∗) + o(rL).

This implies that |θ∗L − θ∗| = O(rL). If we use the sine basis, this means that PFH =
∑
` h̄`
√

2 sin(π`t) but it
is also in H1

0 (as it is in H1), then we have
∑
`≥1 `

2h̄2
` and r

2
L = o

(
1
L2

)
.
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4 Asymptotics

The asymptotics of the estimators θ̂n,L are obtained by two (successive) linearizations of the orthogonal condi-

tions eL

(
φ̂, θ̂n,L

)
around (φ∗, θ∗). We detail the proof of proposition 4.1 and theorem 4.1.

Section 4.1: Proofs

Proposition 4.1. If conditions C1-C6 are satis�ed, then[
Jθ,L

(
φ̂, θ̂n,L

)>
J̃θ,L

]−1

Jθ,L

(
φ̂, θ̂n,L

)> P−→M∗
L =

[
J∗>θ,LJ

∗
θ,L

]−1
J∗>θ,L (4)

where the matrix J̃θ,L is the Jacobian Jθ,L evaluated at a point θ̃ between θ∗ and θ̂n,L. Moreover, we have

θ̂n,L − θ∗L = −M∗
LeL(φ̂, θ∗L) + oP (1). (5)

Proof. If conditions C1-C6 are satis�ed, then[
Jθ,L

(
φ̂, θ̂n,L

)>
J̃θ,L

]−1

Jθ,L

(
φ̂, θ̂n,L

)> P−→M∗L =
[
J∗>θ,LJ

∗
θ,L

]−1
J∗>θ,L (6)

and we have
θ̂n,L − θ∗L = −M∗LeL(φ̂, θ∗) + oP(1). (7)

The �rst order condition implies that θ̂n,L satis�es

Jθ,L

(
φ̂, θ̂n,L

)>
eL

(
φ̂, θ̂n,L

)
= 0. (8)

We develop a Taylor expansion of f(t, φ̂(t), θ) around θ∗ of order 1 for t a.e. in [0, 1]: the orthogonal condition

e`(φ̂, θ) can be decomposed as e`(φ̂, θ
∗) +

〈
fθ

(
·, φ̂, θ̃

)
, ϕ`

〉
where θ̃ is on straight line between θ∗ and θ̂n,L. We

can write it in vector form
eL

(
φ̂, θ̂n,L

)
= eL(φ̂, θ∗) + J̃θ,L(θ̂n,L − θ∗L). (9)

J̃θ,L is a matrix RL×p with entries
〈
fθi

(
·, φ̂, θ̃

)
, ϕ`

〉
. Thus, if we premultiply (9) by Jθ,L

(
φ̂, θ̂n,L

)>
, we get

the asymptotic expansion

0 = Jθ,L

(
φ̂, θ̂n,L

)>
eL(φ̂, θ∗L) + Jθ,L

(
φ̂, θ̂n,L

)>
J̃θ,L(θ̂n,L − θ∗L). (10)

This shows that the key result for relating the behavior of (θ̂n,L − θ∗L) to the behavior of eL(φ̂, θ∗) is the

convergence in probability of Jθ,L

(
φ̂, θ̂n,L

)>
. This is indeed the case because the matrix value function (g, θ) 7→

Jθ,L(g, θ) is continuous w.r.t the uniform norm on D×Θ (because functions ∂
∂θi
f are uniformly Lipschitz) and(

φ̂, ˆθn,L

)
converges in probability to (φ∗, θ∗). Finally, since the matrix J∗>θ,LJ

∗
θ,L is nonsingular, by the continuous

mapping theorem, we see that [
Jθ,L

(
φ̂, θ̂n,L

)>
J̃L

]−1

Jn,L(θ̂n,L)>

converges in probability to
[
J∗θ,LJ

∗
θ,L

]−1

J∗>θ,L = M∗L. Thus, this implies that θ̂n,L−θ∗L = −M∗Len,L(θ∗)+oP (1).
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section 4.3: Proofs

For ease of reading, we restate theorem 4.1, and we give a sketch of the proof that relies essentially on the
properties of plug-in estimators for series estimators obtained in [3]. First, we give a preliminary result about

the asymptotics of the Orthogonal Conditions eL

(
φ̂, θ
)
− eL (φ∗, θ) for all θ ∈ Θ.

Proposition 4.2 - Asymptotic Normality of Orthogonal Conditions for general series estimators.
Under conditions C1-C3, C7 and C8 and if K is taken such that

√
nK−α −→ 0 and

1. f is linear (in state x),

2. OR, f is nonlinear (in state x) and ζ(K)4K2

n −→ 0,

then for all θ ∈ Θ, √
n
(
eL

(
φ̂, θ
)
− eL (φ∗, θ)

)
 N (0, Ve,L(θ))

Moreover, the asymptotic variance can be estimated by V̂e,L(θ) = A(φ∗, θ)V̂ (ĉ1)A(φ∗, θ)>+B(φ∗, θ)V̂ (ĉ2)B(φ∗, θ)>.

Proof. We have to show a kind of �delta method� result. Hence we need to compute the Fréchet derivative of
the functional g 7→ eL(g, θ) around φ∗ for each θ. For simplicity, we consider the scalar functional e`(g, θ). From
section 4.3, we know that the Fréchet derivative for the sup norm in D =

{
x ∈ R2|∃t ∈ [0, 1] , |x− φ∗(t)| < D

}
is given, for all h ∈ L2

De`(g, θ).h =

ˆ 1

0

{fx (t, g(t), θ)ϕ(t) + ϕ̇(t)}h(t)dt.

Hence, the Fréchet derivative can be represented as a scalar product with a gradient vector v(g), w.r.t. the
L2inner product with respect to the distribution π of times T (bounded away from 0, see condition C7), i.e

De`(g, θ).h =

ˆ 1

0

{fx (t, g(t), θ)ϕ(t) + ϕ̇(t)}
π(t)

h(t)π(t)dt

= 〈v(g), h〉L2(π)

with v(g)(t) = {fx(t,g(t),θ)ϕ(t)+ϕ̇(t)}
π(t) . Moreover, this gradient is in L2(π), because fx is dominated, ϕ, ϕ̇ and π−1

are bounded above.
It is possible to derive a central limit theorem if the gradient function v(φ∗) can be itself approximated

by a series expansion in the same basis pkK , k = 1, . . . ,K as the function φ∗. We need to be sure that the
approximation is still valid under a random design, which is immediate, as π is equivalent to Lebesgue measure
c ≤ π ≤ C . Indeed, let ṽK = β>Kp

K being an approximation of v (according to condition C8), then we have

ˆ T

0

(v(t)− ṽK(t))
2
π(t)dt ≤ C

ˆ T

0

(v(t)− ṽK(t))
2
dt −→ 0

In section 4.3, we have checked that the Fréchet derivative satis�es the following properties (thanks to the
regularity of the vector �eld, condition C3):

1. θ ∈ Θ, |e`(g + h, θ)− e`(g, θ)−De`(g, θ).h| ≤ C ‖h‖2∞, and

2. |De`(g, θ).h−De`(g′, θ).h| ≤ C ‖h‖∞ ‖g − g′‖∞ with C, a constant independent of θ, ε and g, g′.

The same conditions are satis�ed for the vector of conditions eL(φ̂, θ), so conditions of theorem 3 in [3] are
satis�ed, and we can claim that even for a nonlinear functional, we have a root-n rate. Let vL(θ) be the Jacobian

of the vector of orthogonal conditions eL(g, θ) evaluated at φ∗ , with entries v`(θ) = fx(·,φ∗,θ)ϕ`+ϕ̇`

π . Then, we
can claim that √

n
(
eL

(
φ̂, θ
)
− eL (φ∗, θ)

)
 N (0, Ve,L(θ))

and the asymptotic variance is given by Ve,L(θ) = E
[
vL(θ)vL(θ)>σ2

]
. Moreover, the asymptotic variance

can be estimated by the plugin estimate as described in section 4.3 i.e V̂e,L(θ) = A(φ∗, θ)V̂ (ĉ1)A(φ∗, θ)> +

B(φ∗, θ)V̂ (ĉ2)B(φ∗, θ)>.
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When splines with a uniform sequence of knots on [0, 1] are used for estimating φ∗, it is possible to replace
condition C8 by an easier condition to check based on classical regularity assumptions. Indeed, splines are good
universal approximating space for smooth functions: typically, if the meshsize δK of the knots of the splines

basis pK is such that δK −→ 0 and the function v` : t 7→ fx(t,φ∗(t),θ)ϕ`(t)+ϕ̇`(t)
π(t) is C1, then one can �nd a

sequence of splines sK` such that
∥∥v` − sK` ∥∥L2 −→ 0 as K −→ ∞, see theorem 7.3 in [1]. In that case, we can

replace condition C8 by condition C9.

Proposition 4.3 - Asymptotic Normality of Orthogonal Conditions for splines. We suppose that the
function φ∗ is Cs with s ≥ 3 and that conditions C1, C2(a), C3, C7 and C9 are satis�ed, then if

√
nK−s −→ 0

and

1. f is linear (in state x) and K2

n −→ 0,

2. OR, f is nonlinear (in state x) and K4

n −→ 0

then for all θ ∈ Θ, √
n
(
eL

(
φ̂, θ
)
− eL (φ∗, θ)

)
 N (0, Ve,L(θ))

and the asymptotic variance can be estimated by V̂e,L(θ) = A(φ∗, θ)V̂ (ĉ1)A(φ∗, θ)> + B(φ∗, θ)V̂ (ĉ2)B(φ∗, θ)>.

Proof. This proposition is an application of proposition 4.2 to splines with uniform knots. It corresponds also
to theorem 9 in [3], which is a general theorem for root-n consistency estimation of functional estimated with
(uniform) splines. With this series estimators, conditions C2 is satis�ed, as the condition C8 (with condition
C9).

With propositions 4.1, 4.2 and 4.3, the proof of the theorem 4.1 is rather straightforward as it follows the
lines of classical proof for Generalized Moments Estimators.

Theorem 4.1 - Root-n consistency & asymptotic normality of OC Estimators. If either the following
conditions are satis�ed:

pK is a general series estimators Under conditions C1-C8 and if f is a linear vector �eld or, f is a non-

linear vector �eld and K is chosen such that ζ0(K)4K2

n −→ 0

pK is a uniform knot splines Under conditions C1-C2(a),C3-C7,C9 and if f is a linear vector �eld and
K2

n −→ 0, or f is a nonlinear vector �eld and K4

n −→ 0

Then θ̂n,L is such that
√
n
(
θ̂n,L − θ∗L

)
 N(0,V∗L) (11)

with
V∗L = M∗LV

∗
e,LM

∗>
L . (12)

where V∗e,L = Ve,L (θ∗L). The asymptotic variance can be estimated by M̂L
̂Ve,L(θ̂n,L)M̂

>
L

P−→ V∗L. In particular,
if we use regression splines and t 7→ f(t, φ∗(t), θ) is Cs on [0, 1] with s ≥ 3, then (11) holds with K such
that

√
nK−s → 0 and n−1K4 → 0. Moreover, if L = L(n) −→ ∞, n −→ ∞ is chosen such that the bias

BL(n) = O(n−1/2), then we have

θ̂n,L(n) − θ∗ = OP (n−1/2) (13)

In particular, this is the case when the test functions ϕ` are the sine basis, and L(n) = O(nα) with α > 1/2.

Proof. We start with the asymptotic representation given in proposition 4.1:

θ̂n,L − θ∗L = −M∗
LeL(φ̂, θ∗L) + oP (1)

As the parameter θ∗L is the global minima of θ 7→ Q∗L(θ) = ‖eL (φ∗, θ)‖22, the �rst order condition implies that

Jθ,L (φ∗, θ∗L)
>
eL (φ∗, θ∗L) = 0. By de�nition of M∗

L, we obtain that M∗
LeL (φ∗, θ∗L) = 0 and we can write(

θ̂n,L − θ∗L
)

= −M∗
L

(
eL(φ̂, θ∗L)− eL (φ∗, θ∗L)

)
+ oP (1)
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and the application of proposition 4.3 gives directly the root-n consistency and normality of θ̂n,L and the asymp-

totic variance limn
√
nV (θ̂n,L) is directly derived from the asymptotic variance of the orthogonal conditions i.e it

equals M∗
LVe,L(θ∗L)M∗>

L . The latter can be estimated by the plugin estimates ̂Ve,L(θ̂n,L) and M∗
L is estimated

by using the observed Jacobian matrix Jθ,L(φ̂, θ̂n,L) (following the estimator of proposition 4.2).
Finally, we can include the bias rL = θ∗L − θ∗, given in theorem 1, in the asymptotics by assuming that we

can chose L = L(n) such that rn = o(n−1/2). From lemma 5 (and theorem 1), we can have an estimate of the
bias due to the truncation of the Fourier expansion and rL = o( 1

L ) i.e rn = o(n−1/2). Then, the in�uence of the
bias is negligible as

θ̂n,L(n) − θ∗ = θ̂n,L(n) − θ∗L(n) + θ∗L(n) − θ
∗

= OP (n−1/2) + o(n−1/2)

= OP (n−1/2)

and asymptotic behavior (13) can hold.

5 From optimal Weighting to a practical algorithm

Theorem 4.1 is of practical interest as it provides a closed-form expression for the asymptotic variance of θ̂n,L for
general ODE. We can make a parallel between the orthogonal condition estimator and the weighted nonlinear
least-squares:

θ̂WLS
c = arg min

n∑
i=1

w(ti)|yi − φ(ti, θc)|2

where w(·) is a (positive) weight function and θc = (φ0, θ). θ̂WLS
c is consistent and

√
n
(
θ̂WLS
c − θ∗c

)
 

N
(
0,VAWLS

)
under classical regularity assumptions on f , see [5]. The asymptotic variance VAWLS is directly

computed from the sensitivity equations, and the optimal weight function w(·) is proportional to the variance
function σ2(·), meaning that the unweighted least-squares estimator is optimal in the homoscedastic case. It
is clear that V∗L 6= VAWLS , which means that we are sure that the orthogonal condition estimator is not an
e�cient estimator (at least in the Gaussian case, because NLS and MLE are the same in that case). A striking
di�erence between V∗L and VAWLS is that the least squares involves the Jacobian of the solution w.r.t. the
initial values and parameters, whereas the orthogonal conditions involve the Jacobian of the vector �eld. It is
then hard to compare these two matrices in generality and to evaluate the loss of e�ciency. Nevertheless, we
can compare the in�uence of a weight matrix for the minimization of the orthogonal conditions. Indeed, if we
introduce a positive de�nite matrix W in RL×L, we can de�ne the weighted criterion

QWn,L(θ) = eL(φ̂, θ)>WeL(φ̂, θ)

and the corresponding estimator
θ̂Wn,L = arg min

θ∈Θ
QWn,L(θ).

The results of theorems 3 and 4 are then still true under straightforward adaptations. In particular, θ̂Wn,L is consis-

tent and asymptotically normal with asymptotic varianceM∗
W,LV

∗
e,LM

∗>
W,L whereM∗

W,L =
[
J∗>L WJ∗L

]−1
J∗>L W .

Eventually, we can then ask for the best weighting matrix W giving the smallest asymptotic variance. This is a
classical result for Generalized Moment Estimators that we recall in the following proposition (see for instance
section 3.6 in [2]):

Proposition 5.1. Optimal weighting matrix
The minimal asymptotic variance for θ̂Wn,L is obtained with W opt = V∗−1

e,L and

Vopt
L (θ∗) =

(
J∗>θ,LV

∗−1
e,L J∗θ,L

)−1

(14)

Even if we have an homoscedastic model, we have an interest in using a weighted estimator. Interestingly,
the problem of choosing the best weighting matrix is directly related to the choice of the best set of test
functions ϕ1, . . . , ϕL. Indeed, the diagonalization of V∗e,L = UΛU> permits the introduction of the eigenvalues

7



Λ = diag (λ1, . . . , λL) (with λ1 ≥ · · · ≥ λL ≥ 0) and U = (u1| . . . |uL) is an orthogonal matrix. If Λ is

nonsingular, Qoptn,L(θ)
.
= QW

opt

n,L (θ) = ẽL(φ̂, θ)>Λ−1ẽL(φ̂, θ), with ẽL(φ̂, θ) = U>eL(φ̂, θ). By linearity, the new

orthogonal conditions ẽL(φ̂, θ) can be written as orthogonal conditions with the test functions ψ1, . . . , ψL derived

from the eigenvectors of V∗e,L as ψ` =
∑L
k=1 uk`ϕk. The use of the optimal weighting matrix is then equivalent

to choose the best test functions in FL and the diagonalization show that some care must be taken (typically
L have to be reasonably small to avoid λL ≈ 0).

The optimal weighting matrix W opt given in proposition 4.2 is depends on the true unknown parameter:
obviously, this makes this result is hard to use in practice. We suggest to approximate V∗−1

e,L by computing a
sequence of weighted estimates, as described in Algorithm 1.

Algorithm 1 Iteratively Reweighted Orthogonal Conditions - IRWOC

Require: φ̂, θinit ∈ Θ, ε > 0,
Compute the unweighted estimator

θ̂
(0)
n,L = arg min

θ
Qn,L(θ).

Compute the asymptotic covariance of eL(φ̂, θ̂
(0)
n,L) with equation in Proposition 4.3.

while |θ̂(k)
n,L − θ̂

(k−1)
n,L | > ε do  W (k) =

(
̂

Ve,L(θ̂
(k)
n,L)

)−1

θ̂
(k+1)
n,L = arg minθ Q

W (k)

n,L (θ)

. (15)

end while

This is known as iterated Generalized Method of Moments (GMM), and consists in successive re-weighting,

by using the consistent estimator of the variance ̂Ve,L(θ̂n,L), [2]. There is no theoretical guarantee for the
(numerical) convergence of this algorithm but if the model is correct, this sequence of iterations tends to
ameliorate the quality of the GMM estimator. Possibly, during this stage, it could be necessary to select

appropriately L, as
̂

Ve,L(θ̂
(k)
n,L) can be close to be nonsingular at an iteration k.

References

[1] R.A. DeVore and G.G. Lorentz. Constructive Approximation, volume 303 of Grundlehren der mathematis-
chen Wissenschaften. Springer-Verlag, 1993.

[2] A.R. Hall. Generalized Method of Moments. Oxford University Press, 2005.

[3] W. K. Newey. Convergence rates and asymptotic normality for series estimators. Journal of Econometrics,
79:147�168, 1997.

[4] D. O'Regan. Existence theory for nonlinear ordinary di�erential equations. Mathematics and its applications.
Kluwer, 1997.

[5] L. Pronzato. Optimal experimental design and some related control problems. Automatica, 44:303�325,
2008.

[6] A.W. van der Vaart. Asymptotic Statistics. Cambridge Series in Statistical and Probabilities Mathematics.
Cambridge University Press, 1998.

8


