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1 Introduction1

Differential Equations are a standard mathematical framework for modeling dynamics in physics, chem-2

istry, biology, engineering sciences, etc and have proved their efficiency in describing the real world. A3

classical model is the Ordinary Differential Equation defined for t ∈ [0, 1],4

ẋ(t) = f (t, x(t), θ) (1.1)

where dot indicates derivative with respect to time. f is a time-dependent vector field from X ⊂ Rd
5

to Rd which is parametrized by a parameter θ ∈ Θ ⊂ Rp, d, p ≥ 1. An important task is then the6

estimation of the parameter θ from real data. [21] proposed a significant improvement to this statistical7

problem, and gave motivations for further statistical studies. We are interested in the definition and in8

the optimality of a statistical procedure for the estimation of the parameter θ from noisy observations9

y1, . . . , yn ∈ Rd of a solution at times t1 < · · · < tn.10

Most works deal with Initial Value Problems (IVP), i.e. with ODE models having a given (possibly11

unknown) initial value x(0) = x0. There exists then a unique solution φ(·, x0, θ) of (1.1) defined on the12

interval [0, 1], that depends smoothly on x0 and θ. The estimation of θ is a classical problem of nonlinear13

regression, where we regress y on the time t. If x0 is known, the Nonlinear Least Square Estimator θ̂NLS
14

(NLSE) is obtained by minimizing15

QLS
n (θ) =

n∑

i=1

|yi − φ(ti, x0, θ)|2 (1.2)

where |·| is the classical Euclidean norm. The NLSE, Maximum Likelihood Estimator or more general16

M-estimators [23] are commonly used because of their good statistical properties (root-n consistency,17

asymptotic efficiency), but they come with important computational difficulties (repeated ODE inte-18

grations and presence of multiple local minima) that can decrease their interest. We refer to [21] for a19

detailed overview of the previous works in this field and of some of the problems encountered in estimat-20

ing ODE. Global optimization methods are then often used, such as simulated annealing, evolutionary21

algorithms ([15] for a comparison of such methods). Other classical estimators are obtained by inter-22

preting noisy ODEs as state-space models: filtering and smoothing technics can be used for parameter23
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inference [5], which can provide estimates with reduced computational complexity [20, 11, 10].1

Nevertheless, the difficulty of the optimization problem is the outward sign of the illposedness of the2

inverse problem of ODE parameter estimation, [6]. Hence some improvements on classical estimation3

have been proposed by regularizing the statistical inference in an appropriate way. Starting from different4

methods used for solving ODEs, different estimators can be developed based on a mixture of nonpara-5

metric estimation and collocation approximation. This gives rise to Gradient Matching (or Two-Step)6

estimators that consists in approximating the solution φ with a basis expansion, such as cubic splines.7

The rationale is to estimate nonparametrically the solution φ by φ̂ =
∑L

k=1 ĉkBk so that we can also8

estimate the derivative
˙̂
φ. An estimator of θ can be obtained by looking for the parameter that makes9

φ̂ satisfy the differential equation (1.1) in the best possible manner. Two different methods have been10

proposed, based on a L2 distance between
˙̂
φ and f(t, φ̂, θ): The first one, called the two-step method, was11

originally proposed by [25], and has been particularly developed in (bio)chemical engineering [13, 26, 18].12

It avoids the numerical integration of the ODE and usually gives rise to simple optimization program13

and fast procedures that usually performs well in practice. The statistical properties of this two stage14

estimator (and several variants) have been studied in order to understand the influence of nonparametric15

technics to estimate a finite dimensional parameter [4, 12, 8, 27]. While keeping the same kind of numer-16

ical approximation of the solution, [21] proposed a second method based on the generalized smoothing17

approach for determining at the same time the parameter θ and the nonparametric estimation φ̂. The18

essential difference between these two approaches is that the nonparametric estimator in the generalized19

smoothing approach is computed adaptively with respect to the parametric model, whereas two-step20

estimators are “model-free smoothing”.21

We introduce here a new estimator that can be seen as an improvement of the previous two-step22

estimators. It uses also a nonparametric proxy φ̂, but we modify the criterion used to identify the23

ODE parameter (i.e. the second step). The initial motivation is to get a closed-form expression for24

the asymptotic variance and confidence sets. The most notable feature of the proposed method is the25

use of a variational characterization of the solution of the differential equations instead of the classical26

point-wise one. This characterization is general and can cover a greater number of situations. Thanks to27

its computational tractability, we can give a precise description of the asymptotics and give the bias and28
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variance of the estimator. We also give a way to ameliorate adaptively our estimator and to compute1

asymptotic confidence intervals.2

First, we give the ODE model and main assumptions, we introduce our estimator, and show its3

consistency. Then, we provide a detailed description of the asymptotics, by proving its root-n consistency4

and asymptotic normality. Based on the asymptotic approximation, we give a closed-form expression of5

the asymptotic variance, and we address the problem of obtaining the best variance through the choice6

of an appropriate weighting matrix. Finally, we provide some insights into the practical behavior of the7

estimator through simulations. The objective of the experiments part is to show its interest with respect8

to the nonlinear least squares and classical gradient matching estimators.9

2 Differential Equation Model and Gradient Matching10

2.1 ODE models and Gradient Matching11

For ease of readability, we focus on a two-dimensional system of ODEs. In our case, as there is no12

computational and theoretical differences between the situation d = 2 and d > 2, there is no lack13

of generality by this assumption. We consider noisy observations Y1, . . . , Yn ∈ R2 of the function φ∗
14

measured at random times t1 < · · · < tn ∈ [0, 1]:15

Yi = φ∗(ti) + ǫi (2.1)

where ǫ1, . . . , ǫn are i.i.d with E(ǫi) = 0 and V (ǫi) = σ2I2. We suppose that the regression function16

φ∗ belongs to the Sobolev space H1 = {u ∈ L2([0, 1]) |u̇ ∈ L2([0, 1])}, and φ∗ is a (Caratheodory or17

generalized) solution to the parametrized Ordinary Differential Equation (1.1), i.e. there exists a true18

parameter θ∗ ∈ Θ ⊂ Rp such that for t ∈ [0, 1] almost everywhere (a.e.)19

φ̇∗(t) = f (t, φ∗(t), θ∗) (2.2)

where f = (f1, f2) is a vector field from [0, 1] × X × Θ to R2, where X ⊂ R2. The classical Cauchy-20

Lipschitz theory of Initial Value Problem (IVP) can be extended to rougher vector field in time t (see21
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theorem 3.4 in [17]) under the following assumptions1

IVP (a) f is L2-Caratheodory, i.e. x 7→ f (t, x, θ) is continuous for t a.e in [0, 1], x 7→ f(t, x, θ) is2

measurable for all x ∈ X and ∀c > 0, ∃hc(·, θ) ∈ L2\ |x| ≤ c =⇒ |f(t, x, θ)| ≤ hc(t, θ),3

IVP (b) f is L2-Lipschitz, i.e. ∃ a(·, θ) ∈ L2/ ∀x, x′ ∈ X , |f (t, x, θ)− f(t, x′, θ)| ≤ a(t, θ) |x− x′|.4

In that case, for each θ ∈ Θ and x0 ∈ X , we can guarantee that there exists a unique solution in H1 to5

the IVP6 



ẋ(t) = f(t, x(t), θ)

x(0) = x0

(2.3)

As a generalized solution is in H1 and satisfies the ODE only almost everywhere, it motivates the7

use of weak derivative, that give a neat way to express the notion of a.e solution. Moreover, weak8

derivatives have been proved to be a very convenient way to solve differential equation models as it9

permits to introduce quite naturally variational formulation, in particular for Boundary Value Problems10

and Partial Differential Equations (a typical example is Galerkin approximation, [3]). If we denote the11

inner product of L2 as ∀ϕ, ψ ∈ L2 ([0, 1]) , 〈ϕ, ψ〉 =
´ 1

0
ϕ(t)ψ(t)dt, the weak derivative of the function g12

in H1 is not defined point-wise but as the function ġ ∈ L2 satisfying 〈ġ, ψ〉 = −
〈
g, ψ̇

〉
, for all function13

ϕ in C1 with support included in ]0, 1[ (denoted C1
C (]0, 1[)). Of course, if t 7→ φ (t, x0, θ) is a C1 function14

on ]0, 1[, the classical derivative φ̇ is also the weak derivative.15

We introduce then the weak form or variational formulation of the ODE (2.3). A weak solution g to16

(2.3) is a function in H1 such that ∀ϕ ∈ C1
C (]0, 1[)17

ˆ 1

0

f (t, g(t), θ)ϕ(t)dt+

ˆ 1

0

g(t)ϕ̇(t)dt = 0 (2.4)

In our case, a generalized solution is a weak solution and we know that there exists at least one weak18

solution to (2.4). For the statistical inference task, we use only the variational formulation as a necessary19

condition.20
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2.2 Definition1

We define a new gradient matching estimator based on (2.4): starting from a nonparametric estimator2

φ̂, computed from the observations (ti, yi), i = 1, . . . , n, we want to find the parameter θ that minimizes3

the discrepancy between the parametric derivative t 7→ f
(
t, φ̂(t), θ

)
and a nonparametric estimate of4

the derivative, e.g.
˙̂
φ. A classical discrepancy measure is the L2 distance, that gives rise to the two-step5

estimator θ̂TS defined as θ̂TS = argminθ∈ΘRn,w(θ) where6

Rn,w(θ) =

ˆ 1

0

| ˙̂φ(t)− f
(
t, φ̂(t), θ

)
|2w(t)dt. (2.5)

This estimator is consistent for several usual nonparametric estimators [4, 12, 8], but the use of a7

positive weight function w vanishing at the boundaries (w(0) = w(1) = 0) is needed to get the classical8

parametric root-n rate. This approach has the computational advantage of decoupling each equation9

and enables to have simple estimation procedures. For this reason and ease of readability, we consider10

only the estimation of the parameter θ1 when f can be written f (t, x, θ) = (f1(t, x, θ1), f2(t, x, θ2))
⊤ and11

θ = (θ1, θ2)
⊤ (θi ∈ Rpi and p1 + p2 = p). The joint estimation of θ = (θ1, θ2)

⊤ can be done by stacking12

the observations into a single column: there is no consequence on the asymptotics, but the estimator13

covariance matrix has to be slightly modified in order to take into account the correlations between the14

two equations f1 and f2. Having said that, we write simply f = f1 and θ = θ1 and we consider only one15

equation ẋ1 = f(t, x, θ). We use a nonparametric estimator φ̂ = (φ̂1, φ̂2) of φ∗ : [0, 1] → R2.16

Starting from (2.4), a reasonable estimator θ̂ should satisfy the weak formulation17

∀ϕ ∈ C1
C (]0, 1[) ,

ˆ 1

0

f
(
t, φ̂(t), θ̂

)
ϕ(t)dt+

ˆ 1

0

φ̂1(t)ϕ̇(t)dt = 0. (2.6)

The vector space C1
C (]0, 1[) is not tractable for variational formulation, and one prefers Hilbert space18

with a structure related to L2. In our case, we use H1
0 = {h ∈ H1|h(0) = h(1) = 0} which has a simple19

description within L2: an orthonormal basis is given by the sine functions t 7→
√
2 sin(ℓπt), ℓ ≥ 1 and20

we have21

H1
0 =

{ ∞∑

ℓ=1

aℓ
√
2 sin (ℓπt)

∣∣∣∣∣

∞∑

ℓ=1

ℓ2a2ℓ <∞
}

(2.7)
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Hence, it suffices to consider a countable number of orthogonal conditions (2.6) defined, for instance,1

with the test functions ϕℓ =
√
2 sin(ℓπt), ∀ℓ ≥ 1:2

Cℓ(θ) :
ˆ 1

0

f
(
t, φ̂(t), θ̂

)
ϕℓ(t)dt+

ˆ 1

0

φ̂(t)ϕ̇ℓ(t)dt = 0. (2.8)

More generally, we consider a family of orthonormal functions ϕℓ ∈ H1
0 , with ℓ ≥ 1, and we introduce3

the vector space F = span{ϕℓ, ℓ ≥ 1}. The vector space F may not be necessarily dense in H1
0 , as4

the functions ϕℓ could be chosen for computational tractability or because of a natural interpretation5

(for instance B-splines, polynomials, wavelets, ad-hoc functions, . . . ). For this reason, we introduce the6

orthogonal decomposition of H1
0 = F ⊕ F⊥ where we can have F 6= H1

0 . In general, an estimator θ̂7

satisfying Cℓ(θ̂) for ℓ ≥ 1 also approximately satisfies (2.6). However in practice, we will use a finite set8

of orthogonal constraints defined by L test functions (L > p).9

In order to discuss the influence of the choice of F and of finite dimensional subspace spanned by10

ϕ1, . . . , ϕL we introduce the nonlinear operator E : (g, θ) 7→ E (g, θ), such that t 7→ E (g, θ) (t) =11

f (t, g(t), θ).12

For all θ in Θ and g in H1, the Fourier coefficients of E(g, θ)− ġ in the basis (ϕℓ)ℓ≥1 are eℓ (g, θ) =13

〈E(g, θ)− ġ, ϕℓ〉 = 〈E(g, θ), ϕℓ〉 + 〈g, ϕ̇ℓ〉, and we introduce the vectors in RL eL(g, θ) = (eℓ(g, θ))ℓ=1..L14

and e∗
L(θ) = (eℓ(φ

∗, θ))ℓ=1..L. Finally, our estimator is defined by the minimization of the quadratic form15

Qn,L(θ) =
∣∣∣eL(φ̂, θ)

∣∣∣
2

:16

θ̂n,L = argmin
θ∈Θ

Qn,L(θ). (2.9)

θ̂n,L is the parameter that “almost” vanishes the first L Fourier coefficients in the orthogonal decompo-17

sition of H1
0 = F ⊕ F⊥:18

E(g, θ)− ġ = EL(g, θ) +RL(g, θ) +E⊥
F (g, θ)

with EL(g, θ) =
∑L

ℓ=1 eℓ (g, θ)ϕℓ, RL(g, θ) =
∑

ℓ>L eℓ (g, θ)ϕℓ and E⊥
F (g, θ) ∈ F⊥.19

The function E⊥
F (φ∗, θ) represents the behavior of E(g, θ) − ġ at the boundaries of the interval20

[0, 1]. As φ̂ approaches φ∗ asymptotically in supremum norm, the objective function Qn,L(θ) is close21

to Q∗
L(θ) = ‖EL(φ

∗, θ)‖2L2 . The discriminative power of Q∗
L(θ) can be analyzed locally around θ̂, as22
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it behaves approximately as the quadratic form Q∗
L(θ) ≈ (θ − θ∗)⊤ J

∗⊤
θ,LJ

∗
θ,L (θ − θ∗) where J

∗
θ,L is the1

matrix in RL×p with entries
´ 1

0
fθj(t, φ

∗(t), θ∗)ϕℓ(t)dt, for j = 1, . . . , p, ℓ = 1, . . . , L.2

3 Consistency of the Orthogonal Conditions estimator3

In order to obtain precise results with closed-form expression for the bias and variance estimators,4

we consider series estimators, i.e. estimators expressed as φ̂j =
∑K

k=1 ĉk,jpkK = ĉjp
K , where pK =5

(p1K , . . . , pkK) is a vector of approximating functions and the coefficients ĉj = (ĉk,j)k=1..K are computed6

by least squares. For notational simplicity, we use the same functions (and the same number K) for7

estimating φ∗
1 and φ∗

2. We denote PK = (pkK(ti))1≤i,k≤n,K the design matrix and Yj = (yi,j)i=1..n the8

vectors of observations. Hence, the estimated coefficients ĉj =
(
PK⊤PK

)†
PK⊤

Yj (where † denotes a9

generalized inverse) gives rise to the so-called hat matrix H = PK
(
PK⊤PK

)†
PK⊤ and the vector of10

smoothed observations is φ̂j = HYj, j = 1, 2. One can typically think of regression splines, [22]. We11

introduce now the conditions required for the definition and consistency of our estimator.12

Condition C1 (a) Θ is a compact set of Rp and θ* is an interior point of Θ, X is an open subset of13

R2 ; (b) (t, x) 7→ f(t, x, θ∗) is L2-Lipschitz and L2-Caratheodory.14

Condition C2 (a) (Yi, ti) are i.i.d. with variance V (Y |T = t) = Σǫ = σ2I2 ; (b) For every K, there15

is a nonsingular constant matrix B such that for PK = BK
p (t); (i) the smallest eigenvalue of16

E
[
PK(T )PK(T )⊤

]
is bounded away from zero uniformly in K and (ii) there is a sequence of17

constants ζ0(K) satisfying supt

∣∣PK(t)
∣∣ ≤ ζ0(K) and K = K(n) such that ζ0(K)2K/n −→ 0 as18

n −→ ∞ ; (c) There are α, c1,K, c2,K such that
∥∥φ∗

j − pKcj,K
∥∥
∞ = sup[0,1]

∣∣φ∗
j (t)− pK(t)⊤cj,K

∣∣ =19

O(K−α).20

Condition C3 There exists D > 0, such that the D-neighborhood of the solution range D = {x ∈ R2|21

∃t ∈ [0, 1], |x − φ∗(t)| < D} is included in X and f is C2 in (x, θ) on D × Θ for t in [0, 1] a.e.22

Moreover, the derivatives of f w.r.t x and θ (with obvious notations) fx, fθ, fxx, fxθ and fθθ are23

L2 uniformly bounded on D ×Θ by L2 functions h̄x, h̄θ, h̄xθ,h̄xx and h̄θθ (respectively).24

Condition C4 Let (ϕℓ)ℓ≥1 be an orthonormal sequence of functions in H1
0 .25
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Condition C5 θ∗ is the unique global minimizer of Q∗
F and inf |θ−θ∗|>ǫQ

∗
F(θ) > 0.1

Condition C6 There exists L0 such that for L ≥ L0, Jθ,L (g, θ) is full rank in a neighborhood of (φ∗, θ∗).2

Condition C1 gives the existence and uniqueness of a solution φ∗ in H1 to the IVP for θ = θ∗ and3

x(0) = φ∗(0). If f is continuous in t and x, then the derivative φ̇∗(t) = f (t, φ∗(t), θ∗) can be defined on4

]0, 1[ and is also continuous.5

6

Under condition C2 (satisfied among others by regression splines with ζ0(K) =
√
K), it is known7

that the series estimator φ̂j are consistent estimators of φ∗
j for usual norms, in particular

∥∥∥φ̂j − φ∗
j

∥∥∥
∞

=8

OP

(
ζ0(K)

(√
K/n +K−α

))
(theorem 1, [16]). If φ∗ is Cs and we use splines then α = s and

∥∥∥φ̂− φ∗
∥∥∥
∞

=9

OP

(
K/√n +K1/2−s

)
.10

11

Condition C3 is here to control the continuity and regularity of the function E involved in the inverse12

problem. Moreover, it provides uniform control needed for stochastic convergence.13

14

Condition C4 is a sufficient condition for deriving independent conditions Cℓ(θ), and normalization15

is useful only to avoid giving implicitly more weight to a condition w.r.t. the other conditions. A prin-16

cipled choice of weights and orthogonal functions will be discussed in section 4.4.17

18

Condition C5 is standard in M-estimation [24], but can be hard to check in practice. Indeed, the19

parametric identifiability of ODE models can be hard to show, even for small systems [14]. Moreover,20

the natural criterion for estimating θ and for identifiability analysis is21

Q∗(θ) = ‖E (φ∗, θ)− E (φ∗, θ∗)‖2L2

but
∥∥E⊥

F (φ∗, θ)
∥∥2

L2 is withdrawn and we use the quadratic form Q∗
F(θ) in order to avoid boundary effects.22

This is needed in order to get a parametric rate of convergence, as in the original two-step criterion (2.5).23

As a consequence, we lose a piece of information brought by the trajectory t 7→ φ∗(t) and we have to be24

sure that the parameter θ has a low influence on
∥∥E⊥

F (φ∗, θ)
∥∥2

L2. A favorable case is that it is almost25
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constant on Θ, so that Q∗ and Q∗
F are essentially the same functions, with the same global minimum1

and the same discriminating power.2

Finally, Condition C6 is about the influence of the truncation. We use only the first L Fourier coeffi-3

cients of E(g, θ)− ġ to identify the parameter θ, but this might not be sufficient to discriminate between4

two parameters θ and θ′. In a way, we perform dimension reduction but we need to be sure that we5

have an exact recovery when L goes to infinity. More precisely, we expect that the minimum of |e∗L(θ)|26

found under condition C5 is also a minima of Q∗
F (θ) = ‖EF (φ∗, θ)‖2L2. We have to be sure that θ∗ is a7

global and isolated minima of Q∗
F(θ). More generally, we can introduce the Jacobian matrices Jθ,L (g, θ)8

in RL×p with entries
´ 1

0
fθj(t, g(t), θ)ϕℓ(t)dt and Jx,L (g, θ) in RL×d with entries

´ 1

0
fxi

(t, g(t), θ)ϕℓ(t)dt.9

For this reason, we suppose that J∗
θ,L is full rank, so that Q∗

L(θ) is locally strictly convex, with a unique10

local minimum θ∗.11

12

Theorem 1. If conditions C1 to C6 are satisfied, then13

θ̂n,L − (θ∗ + rL) = OP (1)

and the bias rL tends to zero as L→ ∞. If we use the sine basis and if E (φ∗, θ) is in H1 for all θ, then14

rL = o
(
1
L

)
.15

4 Asymptotics16

We give a precise description of the asymptotics of θ̂n,L (rate, variance and normality), by exploiting the17

well-known properties of series estimators. We consider the linear case, then we extend the obtained18

results to general nonlinear ODEs. We show in a preliminary step that the asymptotics of θ̂n,L − θ∗L are19

directly related to the behavior of eL(φ̂, θ
∗), which is a classical feature of Moment Estimators.20
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4.1 Asymptotic representation for θ̂n − θ1

From the definition (2.9) of θ̂n,L and differentiability of f , the first order optimality condition is2

Jθ,L

(
φ̂, θ̂n,L

)⊤
eL

(
φ̂, θ̂n,L

)
= 0 (4.1)

from which we derive an asymptotic representation for θ̂n,L, by linearizing eL

(
φ̂, θ̂n,L

)
around θ∗L. We3

need to introduce the matrix-valued function defined onD×θ such that ML(g, θ) =
[
Jθ,L (g, θ)

⊤
Jθ,L (g, θ)

]−1

4

Jθ,L (g, θ)
⊤, and proposition 2 shows that ML(φ̂, θ̂n,L) is also a consistent estimator of M ∗

L.5

Proposition 2. If conditions C1-C6 are satisfied, then6

[
Jθ,L

(
φ̂, θ̂n,L

)⊤
J̃L

]−1

Jθ,L

(
φ̂, θ̂n,L

)⊤ P−→ M ∗
L =

[
J
∗⊤
θ,LJ

∗
θ,L

]−1
J
∗⊤
θ,L (4.2)

where The matrix J̃L is the Jacobian Jθ,L evaluated at a point θ̃ between θ∗ and θ̂n,L. Moreover, we have7

θ̂n,L − θ∗L = −M ∗
LeL(φ̂, θ

∗) + oP (1). (4.3)

4.2 Linear differential equations8

We consider the parametrized linear ODE defined as9





ẋ1 = a(t, θ1)x1 + b(t, θ1)x2

ẋ2 = c(t, θ2)x1 + d(t, θ2)x2

(4.4)

Since the ODE is linear, conditions IVP(a) and IVP(b) are satisfied as soon as the functions a(·, θ∗),10

b(·, θ∗), c(·, θ∗), d(·, θ∗) are in L2, regardless of the initial conditions, [17]. We focus only on the estimation11

of the parameter θ = θ1 involved in the first equation ẋ1 = a(t, θ)x1 + b(t, θ)x2 and we suppose that12

we have two series estimators φ̂1 = p⊤
K ĉ1 and φ̂2 = p⊤

K ĉ2 satisfying condition C2. The orthogonal13

conditions are simple linear functionals of the estimators eℓ(φ̂, θ) =
〈
φ̂1, ϕ̇ℓ + a(·, θ)ϕℓ

〉
+
〈
φ̂2, b(·, θ)ϕℓ

〉
.14

Hence the asymptotic behavior of the empirical orthogonal conditions relies on the plug-in properties15

of φ̂1 and φ̂2 into the linear forms Tρ : x 7→
´ 1

0
ρ(t)x(t)dt where ρ is a smooth function. Moreover, the16

11



linearity of series estimator makes the orthogonal conditions eL(φ̂, θ) easy to compute as1

eL(φ̂, θ) = A(θ)ĉ1 +B(θ)ĉ2 (4.5)

where A(θ) and B(θ) are matrices in RL×K with entries Aℓ,k(θ) =
´ 1

0
(a(t, θ)ϕℓ(t) + ϕ̇ℓ(t)) pkK(t)dt2

and Bℓ,k(θ) =
´ 1

0
(b(t, θ)ϕℓ(t)) pkK(t)dt. The gradient of eL(φ̂, θ) is Jθ,L

(
φ̂, θ

)
= ∂θA(θ)ĉ1 + ∂θB(θ)ĉ23

where ∂θA(θ) and ∂θB(θ) are straightforwardly computed by permuting differentiation and integration.4

Although eL(φ̂, θ) depends linearly on the observations, we have to take care of the asymptotics as we5

are in a nonparametric framework and K grows with n. The behavior of linear functionals Tρ(φ̂) for6

several nonparametric estimators (kernel regression, series estimators, orthogonal series) is well known7

[1, 2, 7, 16], and in generality it can be shown that such linear forms can be estimated with the classical8

root-n rate and that they are asymptotically normal under quite general conditions. In the particular9

case of series estimators, we rely on theorem 3 of [16] that ensures the root-n consistency and the10

asymptotic normality of the plugged-in estimators Tρ(φ̂j), j = 1, 2 under almost minimal conditions.11

We will give in the next section the precise assumptions required for root-n consistency of linear and12

nonlinear functional of the series estimator. Moreover, the variance of θ̂n,L has a remarkable expression13

Ve,L(θ) = V
(
eL(φ̂, θ)

)
= A(θ)V (ĉ1)A(θ)⊤ +B(θ)V (ĉ2)B(θ)⊤. (4.6)

We remark that there is no covariance term between ĉ1 and ĉ2 since we assume that V (Y |T = t) is14

diagonal (assumption C2), but in all generality, we should add 2A(θ)cov(ĉ1, ĉ2)B(θ)⊤. We can use the15

classical estimates of the variance of ĉ1 and ĉ2 to compute an estimate of Ve,L(θ)16

V̂e,L(θ) = A(θ)V̂ (ĉ1)A(θ)⊤ +B(θ)V̂ (ĉ2)B(θ)⊤ (4.7)

Thanks to proposition 2, we can estimate the asymptotic variance of the estimator θ̂n,L with the con-17

sistent estimator M̂L = ML(φ̂, θ̂n,L) and we estimate V
(
θ̂n,L

)
by

̂
V
(
θ̂n,L

)
= M̂L

̂
V
(
eL(φ̂, θ̂n,L)

)
M̂

⊤
L .18

From the asymptotic normality of the plug-in estimate, we can derive confidence balls or confidence19

12



with level 1− α. For instance, for each parameter θi, i = 1, . . . , p:1

IC(θi; 1− α) =

[(
θ̂n,L

)
i
± q1−α

2

̂
V
(
θ̂n,L

)1/2

ii

]

where q1−α/2 is the quantile of order 1− α
2

of a standard Gaussian distribution. Nevertheless, we recall2

that these confidence intervals might be affected by the bias of θ̂n,L depending on L.3

4

4.3 Nonlinear differential equations5

We give here general results for the asymptotics of eℓ(φ̂, θ) when the functional is linear or not in φ̂.6

In [16], the root-n consistency and asymptotic normality is obtained if the functional g 7→ eℓ(g, θ) has7

a continuous Fréchet derivative Deℓ(g, θ) with respect to the norm ‖·‖∞. If x 7→ f (t, x, θ) is twice8

continuously differentiable for t ∈ [0, 1] a.e. in x and θ in Θ, then we can compute easily its Fréchet9

derivative for g ∈ H1 in the uniform ball ‖g − φ∗‖∞ ≤ D . For all h ∈ H1 such ‖g + h− φ∗‖∞ ≤ D, we10

have11

eℓ(g + h, θ)− eℓ(g, θ) = 〈fx (·, g, θ)h, ϕℓ〉+ 〈h, ϕ̇〉+
〈
h⊤fxx (·, g̃, θ)h, ϕℓ

〉

by a Taylor expansion around g. As in the linear case, we introduce the tangent linear operator12

Ag(θ) : u 7→ u̇ − ag(t, θ)u with ag(t, θ) = fx1(t, g(t), θ) and the function bg(t, θ) = fx2(t, g(t), θ).13

For all θ, the Fréchet derivative of eℓ(g, θ) (w.r.t to the uniform norm) is the linear operator h =14

(h1, h2) 7→Deℓ(g, θ).h = 〈h1, ϕ̇ℓ + ag(t, θ)ϕℓ〉+ 〈h2, bg(·, θ)ϕℓ〉 and satisfies for all θ ∈ Θ15

|eℓ(g + h, θ)− eℓ(g, θ)−Deℓ(g, θ).h| ≤ C ‖h‖2∞

because fxx is uniformly dominated on D × Θ. Moreover, for all ǫ (with 0 < ǫ < D), for all g, g′ such16

that ‖g − φ∗‖∞ , ‖g′ − φ∗‖∞ ≤ ǫ, we have17

|Deℓ(g, θ).h−Deℓ(g
′, θ).h| ≤

ˆ 1

0

h(t)⊤fxx (t, g̃(t), θ) (g(t)− g′(t))ϕℓ(t)dt

≤ C ‖h‖∞ ‖g − g′‖∞

13



with C, a constant independent of θ, ǫ and g, g′ (because fxx is uniformly dominated).1

As in the linear case, we need to evaluate Deℓ(g, θ) on the basis pK . We denote A(g, θ) and B(g, θ)2

the matrices in RL×K with entries
´ 1

0
ag(t, θ)ϕℓ(t)pkKdt and

´ 1

0
bg(t, θ)ϕℓ(t)pkKdt (respectively) and we3

have the approximation4

eL(φ̂, θ) = eL(φ
∗, θ) +A(φ∗, θ)ĉ1 +B(φ∗, θ)ĉ2 +O

(
‖h‖2∞

)
. (4.8)

We can derive the asymptotic variance of eL(φ̂, θ) from (4.8)5

Ve,L(θ) = A(φ∗, θ)V (ĉ1)A(φ∗, θ)⊤ +B(φ∗, θ)V (ĉ2)B(φ∗, θ)⊤ (4.9)

and we can get an estimate V̂e,L(θ) from the data as in the linear case. We need the two additional6

conditions for deriving the root-n rate, that comes from [16] (Condition C8 is essential for root-n rate):7

Condition C7 (a) The times T1, . . . , Tn have a density π w.r.t. Lebesgue measure such 0 < c < π <8

C <∞ ; (b) E [ǫ4] <∞.9

Condition C8 There exists β̃K in RK with ET

[∣∣∣fx (T, φ∗(T ), θ)ϕℓ(T )− β̃⊤
Kp

K(T )
∣∣∣
2
]
−→ 0.10

Theorem 3. Under conditions C1 to C8 and if f is a linear ODE or, f is a nonlinear ODE and11

ζ0(K)4K2

n
−→ 0 then for all θ ∈ Θ,

√
n
(
eL(φ̂, θ)− eL(φ

∗, θ)
)
 N (0, Ve,L(θ)) with Ve,L(θ) given by12

(4.9), and we denote V
∗
e,L = Ve,L (θ

∗). Moreover, θ̂n,L is such that13

√
n
(
θ̂n,L − θ∗L

)
 N(0,V∗

L) (4.10)

with14

V
∗
L = M

∗
LV

∗
e,LM

∗⊤
L . (4.11)

The asymptotic variance can be estimated as M̂L
̂

Ve,L(θ̂n,L)M̂
⊤
L

P−→ V
∗
L. In particular, if we use re-15

gression splines and t 7→ f(t, φ∗(t), θ) is Cs on [0, 1] with s ≥ 3, then (4.10) holds with K such that16

√
nK−s → 0 and n−1K4 → 0.17

14



Theorem 3 is a direct application of theorem 3 in [16] that claims the root-n consistency and asymptotic1

normality of general (nonlinear) plug-in estimators.2

4.4 From optimal optimal weighting to a practical estimation algorithm3

Theorem (3) is of practical interest as it provides a closed-form expression for the asymptotic variance4

of θ̂n,L for general ODE. We can make a parallel between the orthogonal condition estimator and the5

weighted nonlinear least-squares:6

θ̂WLS
c = argmin

n∑

i=1

w(ti)|yi − φ(ti, θc)|2

where w(·) is a (positive) weight function and θc = (x0, θ). θ̂
WLS
c is consistent and

√
n
(
θ̂WLS
c − θ∗c

)
 7

N
(
0,VAWLS

)
under classical regularity assumptions on f , see [19]. The asymptotic variance V

AWLS is8

directly computed from the sensitivity equations, and the optimal weight function w(·) is proportional9

to the variance function σ2(·), meaning that the unweighted least-squares estimator is optimal in the10

homoscedastic case. It is clear that V
∗
L 6= V

AWLS, which means that we are sure that the orthogonal11

condition estimator is not an efficient estimator (at least in the Gaussian case, because NLS and MLE12

are the same in that case). A striking difference between V
∗
L and V

AWLS is that the least squares13

involves the Jacobian of the solution w.r.t. the initial values and parameters, whereas the orthogonal14

conditions involve the Jacobian of the vector field. It is then hard to compare these two matrices in15

generality and to evaluate the loss of efficiency. Nevertheless, we can compare the influence of a weight16

matrix for the minimization of the orthogonal conditions. Indeed, if we introduce a positive definite17

matrix W in RL×L, we can define the weighted criterion18

QW
n,L(θ) = eL(φ̂, θ)

⊤WeL(φ̂, θ)

and the corresponding estimator19

θ̂Wn,L = argmin
θ∈Θ

QW
n,L(θ).

15



The results of theorems 1 and 3 are then still true under straightforward adaptations. In particular,1

θ̂Wn,L is consistent and asymptotically normal with asymptotic variance M ∗
W,LV

∗
e,LM

∗⊤
W,L where M ∗

W,L =2

[
J
∗⊤
L WJ

∗
L

]−1
J
∗⊤
L W . Eventually, we can then ask for the best weighting matrix W giving the smallest3

asymptotic variance. This is a classical result for Generalized Moment Estimators that we recall in the4

following proposition (see for instance section 3.6 in [9]):5

Proposition 4. Optimal weighting matrix6

The minimal asymptotic variance for θ̂Wn,L is obtained with W opt = V
∗−1
e,L and7

V
opt
L (θ∗) =

(
J
∗⊤
θ,LV

∗−1
e,L J

∗
θ,L

)−1
(4.12)

Even if we have an homoscedastic model, we have an interest in using a weighted estimator. Inter-8

estingly, the problem of choosing the best weighting matrix is directly related to the choice of the best9

set of test functions ϕ1, . . . , ϕL. Indeed, the diagonalization of V∗
e,L = UΛU⊤ permits the introduction10

of the eigenvalues Λ = diag (λ1, . . . , λL) (with λ1 ≥ · · · ≥ λL ≥ 0) and U = (u1| . . . |uL) is an orthogonal11

matrix. If Λ is nonsingular, Qopt
n,L(θ)

.
= QW opt

n,L (θ) = ẽL(φ̂, θ)
⊤Λ−1ẽL(φ̂, θ), with ẽL(φ̂, θ) = U⊤eL(φ̂, θ).12

By linearity, the new orthogonal conditions ẽL(φ̂, θ) can be written as orthogonal conditions with the13

test functions ψ1, . . . , ψL derived from the eigenvectors of V∗
e,L as ψℓ =

∑L
k=1 ukℓϕk. The use of the opti-14

mal weighting matrix is then equivalent to choose the best test functions in FL and the diagonalization15

show that some care must be taken (typically L have to be reasonably small to avoid λL ≈ 0).16

Finally, as the optimal weight W opt depends on the true unknown parameter, the practical use of17

the previous analysis is hard to apply. We suggest to approximate V
∗−1
e,L by computing a sequence of18

weighted estimates, as described in Algorithm 1.19

This is known as iterated Generalized Method of Moments (GMM), and consists in successive re-20

weighting, by using the consistent estimator of the variance
̂

Ve,L(θ̂n,L), [9]. There is no theoretical21

guarantee for the (numerical) convergence of this algorithm but if the model is correct, this sequence of22

iterations tends to ameliorate the quality of the GMM estimator. Possibly, during this stage, it could23

be necessary to select appropriately L, as
̂

Ve,L(θ̂
(k)
n,L) can be close to be nonsingular at an iteration k.24

16



Algorithm 1 Iteratively Reweighted Orthogonal Conditions

Require: φ̂, θinit ∈ Θ, ǫ > 0,
Compute the unweighted estimator

θ̂
(0)
n,L = argmin

θ
Qn,L(θ).

Compute the asymptotic covariance of eL(φ̂, θ̂
(0)
n,L) with equation (4.7).

while |θ̂(k)n,L − θ̂
(k−1)
n,L | > ǫ do





W (k) =

(
̂

Ve,L(θ̂
(k)
n,L)

)−1

θ̂
(k+1)
n,L = argminθQ

W (k)

n,L (θ)

. (4.13)

end while

5 Experiments1

We apply the Orthogonal Condition (OC) estimators to first order ODEs linear and nonlinear in state.2

We consider situations where the Orthogonal Conditions estimator has a closed-form, or when the3

classical NLS estimator or Two-Step estimator may collapse. We compare systematically the NLS4

estimator θ̂NLS and Two-Step Estimator (TS) θ̂TS to the OC estimator θ̂n,L and the weighted OC5

estimator θ̂Wn,L for varying sample sizes (n = 400, 200, 50) and varying noise level (high and small). This6

gives a reasonable picture of the robustness, sensitivity and efficiency of the different estimators. For7

the NLS estimator, we compute a one-step ameliorated estimator by using θ̂Wn,L as a starting point. The8

estimator obtained should be efficient and should give an indication about the best attainable variance,9

and the efficiency loss of the Gradient Matching methods.10

Indeed, we consider a Gaussian and homoscedastic noise, such that the NLS should be nearly effi-11

cient. This optimality is asymptotic and the case n = 200 or n = 400 should give indications on the12

efficiency loss, whereas the small size case (n = 50) gives some relevant information on the complex13

small sample case, where the asymptotic approximation cannot be assessed. In particular, the NLS does14

not necessarily provide the best estimator.15

The nonparametric estimate for the gradient matching estimators (TS and OC) is the same regression16

spline, decomposed on B-splines with a uniform knot sequence ξk, k = 1, . . . , K. For each dataset (and17

each dimension), the number of knots is selected by minimizing the GCV criterion, [22]. For the plain18

17



TS estimator, we use the same weight function as in [4], and we consider two variations for the OC1

estimator depending on the weight matrix: a uniform weight matrix W = IL, and the optimal weighting2

matrix W opt computed as described in Algorithm 1. The Orthogonal Conditions are defined with the3

sine basis and the default number of conditions is L = 2× p× d.4

Finally, we compute the bias and variance of the different estimators, the confidence intervals and5

their coverage probabilities by Monte Carlo simulations (based on NMC = 100 independent draws).6

5.1 Linear ODE7

The classical linear constant ODE can be written as ẋ = Ax + h(t) with constant coefficients A with8

A⊤ = (A1| . . . |Ad) and h = (h1(t), . . . , hd(t)). For each i, ẋi =
∑d

k=1 aikxk + hi = A⊤
i x+ hi. The weak9

form gives rise to a linear matrix equality for i = 1, . . . , d as Y
ϕ
i = XϕAi +H

ϕ
i : the matrix involved is10

Xϕ is d × L with entries 〈xk, ϕℓ〉, Y ϕ
i and the vectors H

ϕ
i are in RL with respectively entries equal to11

−〈xi, ϕ̇ℓ〉 and 〈hi, ϕℓ〉. For illustration, we consider the α-pinene (biochemical) network used in [15] for12

the comparison of several global optimization algorithms:13





ẋ1 = −(θ1 + θ2)x1

ẋ2 = θ1x1

ẋ3 = θ2x1 − (θ3 + θ4)x3 + θ6x5

ẋ4 = θ3x3

ẋ5 = θ4x3 + θ5x5

(5.1)

The initial condition is x0 = (100, 0, 0, 0, 0) and is considered unknown. In that case, the system14

converges to a stationary point. The global quality can be analyzed from the Mean Square Errors in15

table (5.1): with large sample case and small noise the estimators are equivalent (with error around16

0.1), but in the small sample case (n = 50), the best estimators are TS and OCopt, and the worst is17

NLS. NLS and OC are roughly equivalent, and from this example, it is clear that there is a benefit in18

using relevant weight W in the OC conditions. Despite the truncation, the optimal weighting enables to19

recover some information with respect to TS, as it identifies the most relevant directions (conditions) to20

use for measuring the model discrepancy. We do not detail the mean and variance for each parameter,21

18



(n; σ) θ̂TS θ̂OC θ̂OCopt θ̂NLS

(400; 50) 0.1055 0.0851 0.0907 0.1171

(400; 100) 0.1325 0.2170 0.1372 0.2443

(200; 50) 0.1139 0.2021 0.1183 0.1964

(200; 100) 0.1655 0.3553 0.2615 0.3515

(50; 50) 0.2034 0.5684 0.3698 0.4494

(50; 100) 0.5289 0.7130 0.5473 0.8042

Table 5.1: Mean Square Error for θ for Alpha-Pinene ODE (5.1)

θ1 θ2 θ3
(n; σ) OC OCopt NLS OC OCopt NLS OC OCopt NLS

(400; 50) 0.9600 0.9700 0.9588 0.9900 1.0000 0.9278 0.9600 0.9600 0.9691

(400; 100) 0.9700 0.9796 0.9072 0.9800 0.9898 0.8866 0.9700 0.9694 0.9381

(200; 50) 0.9800 0.9800 0.8866 1.0000 1.0000 0.9175 0.9600 0.9600 0.9278

(200; 100) 0.9381 0.9579 0.9333 0.9897 0.9789 0.8889 0.9691 0.9684 0.9444

(50; 50) 0.9474 0.9579 0.8795 0.9684 0.9789 0.8434 0.9579 0.9579 0.9398

(50; 100) 0.8681 0.9176 0.7571 0.9341 0.9647 0.8286 0.8462 0.8824 0.8143

Table 5.2: Coverage Probability of 95% Asymptotic Confidence Interval for Alpha-Pinene ODE (5.1)

but we consider only the coverage probabilities of the the confidence intervals given in tables (5.2, 5.3).1

We see that the asymptotic approximation obtained for the parameters of is really good for θ1, θ2, θ3,2

and are degraded for θ4, θ5, θ6. Finally, we see that the behavior of OCopt is similar to NLS, and better3

than simple OC.4

5

6

θ4 θ5 θ6
(n; σ) OC OCopt NLS OC OCopt NLS OC OCopt NLS

(400; 50) 0.7800 0.8400 0.9278 0.7700 0.8400 0.9072 0.8200 0.8500 0.9175

(400; 100) 0.6300 0.6939 0.8763 0.6400 0.7245 0.8866 0.6600 0.7449 0.8763

(200; 50) 0.6800 0.7500 0.9278 0.6700 0.7500 0.9278 0.7000 0.7800 0.9278

(200; 100) 0.5464 0.6526 0.8889 0.5773 0.6842 0.8889 0.7113 0.8000 0.8778

(50; 50) 0.5474 0.6737 0.8795 0.7263 0.8632 0.8795 0.7158 0.7895 0.9036

(50; 100) 0.6154 0.7294 0.7714 0.8352 0.9765 0.8143 0.6813 0.7412 0.7857

Table 5.3: Coverage Probability of 95% Asymptotic Confidence Interval for Alpha-Pinene ODE (5.1)
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5.2 Nonlinear ODEs1

5.2.1 Ricatti equation2

Ricatti ODE is a family of quadratic ODE that arises commonly in Control Theory. In this example,3

we consider the simple constant coefficient Ricatti equation4

ẋ = ax2 + b
√
t (5.2)

with a = 0.12, b = 0.2 and x0 = −1, for t ∈ [0, 5]. Because of the squared term x2, the solution can5

explode on [0, 5], typically if a is too big. This is a problem for NLS, because the parameter optimization6

can give rise to irrelevant parameter candidate with diverging solution before T = 5. This problem does7

not appear for OC estimator, because we use only the weak form: ∀ϕ ∈ C1
C (]0, 1[),8

〈x, ϕ̇〉+ a
〈
x2, ϕ

〉
+ b

〈√
t, ϕ

〉
= 0. (5.3)

As the Ricatti equation is linear in the parameter, the OC estimator is computed by solving a similar9

linear system as in the previous linear example. The essential difference is that the matrix Xϕ involves10

nonlinear functionals of φ̂. The Mean Square Errors show that NLS and TS provide better estimation11

than OC and OC opt. For all the estimators, the bias is similar (and b is notably harder to estimate12

than a), but the estimated asymptotic variance is smaller for NLS, and is smaller than for OC and OC13

opt. As a consequence, the coverage probability are better for OC and OCopt than NLS (in particular14

for b, see tables 5.6, 5.7). This is classical short-come of NLS to give overoptimistic variance estimators.15

(n;σ) âTS âOC âOCopt âNLS

(400; 0.2) 0.0007 0.0061 0.0060 0.0007

(400; 0.4) 0.0028 0.0119 0.0115 0.0029

(200; 0.2) 0.0015 0.0105 0.0106 0.0016

(200; 0.4) 0.0047 0.1215 0.0646 0.0055

(50; 0.2) 0.0062 0.0350 0.0349 0.0077

(50; 0.4) 0.0213 0.1755 0.0831 0.0310

Table 5.4: Mean Square Error estimated by Monte Carlo for a∗ = 0.12 for Ricatti ODE (5.2)

16
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(n;σ) b̂TS b̂OC b̂OCopt b̂NLS

(400; 0.2) 0.0000 0.0001 0.0001 0.0000

(400; 0.4) 0.0000 0.0001 0.0001 0.0000

(200; 0.2) 0.0000 0.0001 0.0001 0.0000

(200; 0.4) 0.0001 0.0011 0.0007 0.0001

(50; 0.2) 0.0001 0.0003 0.0003 0.0001

(50; 0.4) 0.0003 0.0025 0.0011 0.0004

Table 5.5: Mean Square Error estimated by Monte Carlo for b∗ = 0.2 for Ricatti ODE (5.2)

1

(n;σ)
Estimated Asymptotic Variance Coverage Probability (95%)

V̂ (âOC) V̂ (âOCopt) V̂ (âNLS) OC OC opt NLS

(400; 0.2) 0.0047 0.0047 0.0007 0.95 0.93 0.89

(400; 0.4) 0.0147 0.0145 0.0028 0.95 0.97 0.90

(200; 0.2) 0.0120 0.0120 0.0014 0.94 0.93 0.80

(200; 0.4) 0.6987 0.0797 0.0054 0.93 0.93 0.90

(50; 0.2) 0.0658 0.2945 0.0150 0.89 0.87 0.80

(50; 0.4) 2.9971 0.1584 0.0231 0.89 0.84 0.85

Table 5.6: Estimated Variance and Coverage Probabilities for a, for Ricatti ODE (5.2) with a∗ = 0.12.

2

(n;σ)
Estimated Asymptotic Variance Coverage Probability (95%)

V̂
(
b̂OC

)
V̂
(
b̂OCopt

)
V̂
(
b̂NLS

)
OC OC opt NLS

(400; 0.2) 0.0001 0.0001 0.0000 0.96 0.97 0.82

(400; 0.4) 0.0002 0.0002 0.0000 0.97 0.98 0.89

(200; 0.2) 0.0001 0.0001 0.0000 0.97 0.97 0.84

(200; 0.4) 0.0058 0.0009 0.0001 0.97 0.97 0.89

(50; 0.2) 0.0006 0.0032 0.0106 0.96 0.96 0.82

(50; 0.4) 0.0363 0.0020 0.0004 0.95 0.95 0.88

Table 5.7: Estimated Variance and Coverage Probabilities for a, for ODE (5.2) with b∗ = 0.2

3

5.2.2 FitzHugh-Nagumo4

The FitzHugh-Nagumo is a nonlinear two-dimensional ODE introduced for modeling neurons. For well-5

chosen sets of parameters and initial conditions, it exhibits a periodic behavior, with typical oscillations6
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corresponding to a limit cycle1 



V̇ = c
(
V − V 3

3
+R

)

Ṙ = −1
c
(V − a + bR)

(5.4)

The true parameters are a∗ = b∗ = 0.2 and c∗ = 3 and x0 = (V0, R0) = (−1, 1), and are taken from2

[21] where it was introduced as a benchmark for parameter estimation in ODEs. The noise levels we3

consider are σ = 0.15, 0.3 . In all the settings we consider (large or small sample size), the NLS provides4

the smallest MSE, and it is clear that OC improves on TS, and that the optimal weight provides an5

even better estimator OCopt, see table 5.8.6

The detailed analysis of the bias show that the NLS have the smallest bias, and that the parameter7

c is the hardest to estimate. The most essential feature is that in most of the case, the asymptotic8

variance computed by the NLS is smaller than for OC, which gives significant differences between the9

coverage probabilities for a, b, c in particular in the small sample case. The confidence sets obtained10

by OC are rather credible, with coverage probability around 90% in almost any case (except in table11

5.11). As the choice of the optimal weighted estimator tends to reduce the variance, we get narrower12

confidence sets with lower coverage probability.13

×10−3 a b c
(n; σ) TS OC OCopt NLS TS OC OCopt NLS TS OC OCopt NLS

(400; 0.15) 0.1 0.1 0.1 0.0 0.8 3.2 1.3 0.5 32.4 13.2 4.7 0.2

(400; 0.3) 0.3 0.6 0.4 0.1 4.1 23.5 14.2 1.6 236.1 41.6 18.2 0.3

(200; 0.15) 0.2 0.4 0.2 0.0 2.0 23.7 2.4 0.9 110.4 29.2 9.1 0.5

(200; 0.3) 0.6 1.0 0.6 0.2 5.8 26.4 9.1 3.7 519.1 82.0 34.0 1.8

(50; 0.15) 0.3 0.6 0.3 0.1 3.1 36.7 9.0 1.6 228.4 97.1 35.1 1.3

(50; 0.3) 1.3 1.6 1.0 0.3 12.4 51.1 44.1 7.4 893.0 796.9 404.8 3.8

Table 5.8: Mean Square Error computed by Monte Carlo for FitzHugh-Nagumo ODE (5.4).
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(n;σ)
Estimated Asymptotic Variance Coverage Probability

V̂ (âOC) V̂ (âOCopt) V̂ (âNLS) OC OC opt NLS

(400; 0.15) 0.0001 0.0001 0.0000 0.9600 0.9200 0.7600

(400; 0.3) 0.0011 0.0002 0.0000 0.9394 0.8750 0.7292

(200; 0.15) 0.0004 0.0001 0.0000 0.8800 0.8163 0.7551

(200; 0.3) 0.0063 0.0004 0.0001 0.9375 0.8780 0.6098

(50; 0.15) 0.0577 0.0002 0.0000 0.9400 0.8876 0.6180

(50; 0.3) 0.7871 0.0008 0.0002 0.9043 0.9143 0.6377

Table 5.9: Estimated Variance and Coverage Probabilities for a, for FitzHugh-Nagumo ODE (5.4)

(n;σ)
Estimated Asymptotic Variance Coverage Probability

V̂
(
b̂OC

)
V̂
(
b̂OCopt

)
V̂
(
b̂NLS

)
OC OC opt NLS

(400; 0.15) 0.0039 0.0007 0.0002 0.9500 0.9000 0.6400

(400; 0.3) 0.1516 0.0058 0.0008 0.8889 0.8333 0.5521

(200; 0.15) 0.0568 0.0018 0.0003 0.9400 0.8980 0.5408

(200; 0.3) 2.6567 0.0088 0.0012 0.8958 0.9146 0.5000

(50; 0.15) 39.2617 0.0048 0.0006 0.9000 0.8315 0.6180

(50; 0.3) 116.2820 0.0299 0.0024 0.8936 0.8857 0.4928

Table 5.10: Estimated Variance and Coverage Probabilities for b, for FitzHugh-Nagumo ODE (5.4)

6 Discussion1

The experiments done in the previous section show that the Orthogonal Conditions estimator is a2

reliable estimator that can compete with nonlinear least squares. Indeed, the OC estimators are used as3

starting point for NLS, so that the NLS improved estimator must be better than OC. When we consider4

the MSE, it is often the case (except for alpha-pinene), which justifies the common practice of using5

Gradient Matching for determining interesting initial values for NLS. Nevertheless, one can note that6

this improvement is rather limited with respect to OC (or OCopt). In particular, this shows that the7

projection and the use of limited number L of test functions ϕℓ is sufficient for estimating parameters,8

and that the bias rL introduced in theorem 1 is in fact quite small. When performing simulations, it is9

not easy to identify the influence of the quality of the nonparametric proxy in the global quality of a10

Gradient Matching Estimator (typically OC), in particular when the sample size is small. Hence, some11

additional work should be done for the construction of good (or the best) nonparametric proxy to use12

in a Gradient Matching approach in order to control the influence of this step in estimation.13

Moreover, the asymptotic variance and the Gaussian approximation have proved to be effective14
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(n;σ)
Estimated Asymptotic Variance Coverage Probability

V̂ (ĉOC) V̂ (ĉOCopt) V̂ (ĉNLS) OC OC opt NLS

(400; 0.15) 0.0122 0.0012 0.0000 0.9300 0.7300 0.6100

(400; 0.3) 0.0827 0.0058 0.0002 0.9495 0.7500 0.7083

(200; 0.15) 0.0401 0.0024 0.0001 0.9500 0.6531 0.6735

(200; 0.3) 0.5445 0.0122 0.0003 0.7812 0.7195 0.5488

(50; 0.15) 15.8363 0.0060 0.0002 0.8300 0.5730 0.6067

(50; 0.3) 3.1898 0.1295 0.0008 0.6809 0.8000 0.6667

Table 5.11: Estimated Variance and Coverage Probabilities for c, for FitzHugh-Nagumo (5.4)

for quantifying the uncertainty about the OC parameters, through classical confidence which is often1

delicate for Gradient Matching estimators. From the simulation, it is clear that these estimation are over-2

optimistic, which gives too narrow confidence sets: this is a classical problem for nonlinear regression,3

where NLS tends also to give unreliable small confidence sets. As the variance V ∗
L is a bit bigger,4

we can have wider and possibly more relevant confidence sets. Conversely, the OC estimator does not5

use errors-in-variables technics as in [12], that can provide huge variances and confidence sets. Hence,6

the question of the “best” set estimation in ODEs is still hard to close, as the classical linearization7

approaches used for asymptotic approximation can be limited in Differential Equations.8

It should be noticed that the use of an optimal weight in OC can significantly improve the estimator9

(by reducing the bias and the variance); but some care must be taken in the iterations as the estimated10

variance V (eL) can be singular. A simple device to avoid numerical divergence is to reduce the number11

of orthogonal conditions.12

We have shown that there is a real interest in defining more elaborated criterion in Gradient Matching13

estimators for statistical tractability. In particular, variational characterization is quite new in statis-14

tical estimation, and gives computationally and statistically relevant estimators with a broad field of15

applicability that still needs to be explored.16
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A Proofs1

Theorem 12

The classical proof for the consistency of an M-estimator θ̂n,L = argminθ∈ΘQn,L(θ) such as the orthog-3

onal conditions estimator relies basically on two stages: the uniform convergence of Qn,L(θ) towards4

Q∗
L(θ) =

∑L
ℓ=1 |eℓ (φ∗, θ)|2 for θ in Θ, and the fact that the true parameter θ̂n,L is a unique isolated5

global maximum (by theorem 5.7 in [24]). In a first step, we assume that Q∗
L(θ) has a unique global6

minimum denoted θ∗L, and we will show that this is indeed the case, and that θ∗L is not very far from7

the true parameter θ∗.8

We have to show that supθ |Qn,L(θ)−Q∗
L(θ)| −→ 0 as n→ ∞. From the simple additive expression9

of Qn,L(θ), we see that it suffices to show the uniform convergence of
∣∣∣eℓ

(
φ̂, θ

)∣∣∣
2

to |eℓ (φ∗, θ)|2. From10

the inequality |a2 − b2| ≤ |a− b| (|a|+ |b|), we have11

∣∣∣∣
∣∣∣eℓ

(
φ̂, θ

)∣∣∣
2

− |eℓ (φ∗, θ)|2
∣∣∣∣ ≤

∣∣∣eℓ
(
φ̂, θ

)
− eℓ (φ

∗, θ)
∣∣∣
(∣∣∣eℓ

(
φ̂, θ

)∣∣∣+ |eℓ (φ∗, θ)|
)
.

As φ̂ is such that for j = 1, 2 we have
∥∥∥φ̂j − φ∗

j

∥∥∥
∞

= OP

(
ζ0(K)

(√
K/n +K−α

))
this means that12

φ̂(t) ∈ D = {x ∈ R2 |∃t ∈ [0, 1] , |x− φ∗(t)| ≤ D} with a probability tending to 1. This shows that13

with a probability tending to 1, we have
∣∣∣f

(
t, φ̂(t), θ

)∣∣∣ ≤ h(t, θ) ≤ H(t) (because f is uniformly L2-14

Caratheodory), moreover φ̂ is also bounded by M + D > 0 (because φ∗ is bounded as a continuous15

function on [0, 1]) and16

∣∣∣eℓ
(
φ̂, θ

)∣∣∣ + |eℓ (φ∗, θ)| ≤
∣∣∣
〈
E(φ̂, θ), ϕℓ

〉∣∣∣+
∣∣∣
〈
φ̂, ϕ̇ℓ

〉∣∣∣+ |〈E(φ∗, θ), ϕℓ〉|+ |〈φ∗, ϕ̇ℓ〉|

≤ 2 ‖H‖L2 + ‖ϕ̇ℓ‖L2 (2M +D)

Hence
∣∣∣eℓ

(
φ̂, θ

)∣∣∣ + |eℓ (φ∗, θ)| is uniformly bounded in probability, so that the uniform convergence of17

the criterion boils down to the uniform convergence of
∣∣∣eℓ

(
φ̂, θ

)
− eℓ (φ

∗, θ)
∣∣∣.18

We can re-write eℓ

(
φ̂, θ

)
− eℓ (φ

∗, θ) =
〈
E(φ̂, θ)− E(φ∗, θ), ϕℓ

〉
+

〈
φ̂− φ∗, ϕ̇ℓ

〉
and it is clear that19

the second right-hand side term converges uniformly to zero in probability for all ℓ ≥ 1. Consequently,20

we just have to check that E(φ̂, θ)− E(φ∗, θ) converges uniformly in θ to 0 in probability.21
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First of all, we remark that g 7→ 〈E(g, θ), ϕℓ〉 is a continuous function from B∞(φ∗, D) = {g ∈1

C ([0, 1]) | ‖g − φ∗‖∞ ≤ D} to R (w.r.t the sup-norm), because2

|〈E(g, θ), ϕℓ〉 − 〈E(g′, θ), ϕℓ〉| ≤ 〈a(·, θ) |g − g′| , ϕℓ〉

≤ 〈a(·, θ), ϕℓ〉 ‖g − g′‖

with a(·, θ) ∈ L2 for all θ, as the vector field is L2-Lipschitz. By the continuous mapping theorem,3

we get the point-wise convergence of
〈
E(φ̂, θ)− E(φ∗, θ), ϕℓ

〉
, and the hard part consist in the uniform4

convergence. This can be proven by controlling the oscillations in θ of the process E = (E(θ))θ∈Θ =5

(〈
E(φ̂, θ)− E(φ∗, θ), ϕℓ

〉)
θ∈Θ

and by using theorem 18.11 in [24], as convergence in probability towards6

a constant is equivalent to weak convergence. In order to show that the process E converges weakly to7

0 in the space C(Θ) of continuous functions on Θ equipped with the supremum norm, we have to check8

that for all k and all θ1, . . . , θk in Θ9

(E(θ1), . . . ,E(θk)) (0 . . . 0) (A.1)

and that for all ǫ, α > 0 there exists a partition of Θ1, . . . ,ΘK of Θ such that10

lim sup
n→∞

P

(
sup
k

sup
θ,θ′∈Θk

|E(θ)− E(θ′)| ≥ α

)
≤ ǫ. (A.2)

The first condition (A.1) is a direct consequence of the point-wise convergence in probability of E(θ) in11

Θ. Concerning the second condition, from we have for t in [0, 1] a.e.12

∣∣∣f
(
t, φ̂(t), θ

)
− f

(
t, φ̂(t), θ′

)∣∣∣ ≤
p∑

i=1

∣∣∣fθi
(
t, φ̂(t), θ̃n(t)

)∣∣∣
∣∣∣θi − θ

′

i

∣∣∣

� ā′(t)
∣∣∣θ − θ

′

∣∣∣

with a probability tending to 1 (θ̃n(t) being a parameter between θ and θ′). As a consequence the13

26



following inequality1

|E(θ)− E(θ′)| �
〈
ā′
∣∣∣θ − θ

′

∣∣∣ , |ϕℓ|
〉
�

∣∣∣θ − θ
′

∣∣∣

is true with a probability tending to 1. Since Θ is a compact set, it is possible to find a finite partition2

Θ1, . . . ,ΘK of Θ such that the diameter of Θi is smaller than an arbitrary α independently of n. This3

ensures that condition (A.2) is also satisfied and the uniform convergence of Qn,L(θ) to Q∗
L(θ) can be4

claimed. Finally, from lemma 5, we see that there exists an isolated global minimum θ∗L of Q∗
L(θ), i.e.5

such that for every ǫ > 06

inf
θ/|θ−θ∗|≥ǫ

Q∗
L(θ) > Q∗

L(θ
∗
L)

As a consequence, θ̂n,L converges to θ∗L in probability. Moreover, lemma 5 asserts that the bias between7

θ∗L and θ∗ is of order rL, which is the (uniform) approximation error for the set of function (E(φ∗, θ))θ∈Θ.8

If the envelope function is sufficiently regular (in H1), and we use the sine basis we get that the uniform9

approximation error is o( 1
L
).10

Lemma 5. Under condition C1 et C5, there exists L0 such that for all L > L0, Q
∗
L has a local minimum11

θ∗L such that for all ǫ > 0, inf|θ−θ∗
L|>ǫQ

∗
L(θ) > 0. Moreover, for all ǫ′ > 0, there exists L

′

0 > L0 such that12

for all L > L
′

013

|θ∗L − θ∗| ≤ ǫ′.

In particular, if h̄θθ is in H1 and (ϕℓ)ℓ≥1 is the sine basis, then θ∗L − θ∗ = o
(
1
L

)
.14

Proof. The first step is to show that Q∗
L(θ) has a local isolated minimum θ∗L close to θ∗, and that this15

distance can be made arbitrarily small. We introduce first some useful notations. Since (ϕℓ)ℓ≥1 is an or-16

thonormal basis in L2 (]0, 1[), we have EF (φ∗, θ) =
∑

ℓ≥1 eℓ (φ
∗, θ)ϕℓ and ∂θEF (φ∗, θ) =

∑
ℓ≥1 ∂θeℓ (φ

∗, θ)ϕℓ17

where for j = 1, . . . , p,18

∂θjeℓ (φ
∗, θ) =

〈
∂θjE(φ∗, θ), ϕℓ

〉
=

〈
fθj (·, φ∗, θ), ϕℓ

〉

because we can differentiate under the integral sum (f is uniformly L2-Lipschitz in D × Θ) and we19

have also the Hessian matrix defined element wise as ∂θiθjEF (φ∗, θ) =
∑

ℓ≥1 ∂θiθjeℓ (φ
∗, θ)ϕℓ with20

∂θiθjeℓ (φ
∗, θ) =

〈
fθiθj (·, φ∗, θ), ϕℓ

〉
, because fθ(t, x, θ) is also uniformly L2-Lipschitz in D × Θ. First21
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of all, we remark that E(φ∗, θ) is bounded by h̄ ∈ L2 (uniformly in θ, condition C2), which implies that1

‖EL(φ
∗, θ)‖2L2 converges also uniformly to ‖EF(φ

∗, θ)‖2L2 . Let ǫ′ > 0, since θ∗ is a local strict minimum2

of QF , there exists L0 such that for all L > L0, Q
∗
L has a strict local minima such that |θ∗L − θ∗| ≤ ǫ′.3

Moreover, by uniform convergence, we have also that inf|θ−θ∗
L|>ǫQ

∗
L(θ) > 0.4

Now, we relate θ∗L − θ∗ to the approximation quality of EF(φ
∗, θ) by the basis (φℓ)ℓ≥1. We remark5

first that we have |EF(φ
∗, θ)| ≤ 2h̄(t): this implies that for all ℓ, and all θ we have |e∗ℓ(θ)| ≤ 2h̄ℓ with6

h̄ℓ =
〈
h̄, ϕℓ

〉
. The global rate of convergence of the series

∑
ℓ e

∗2
ℓ (θ) is controlled uniformly by the rate7

of
∑

ℓ≥1H
2
ℓ , denoted r2L =

∑
ℓ>LH

2
ℓ . By orthogonality, we can write8

‖EF(φ
∗, θ)‖2L2 = ‖EL(φ

∗, θ)‖2L2 + ‖RL(φ
∗, θ)‖2L2

which means that is ‖EL(φ
∗, θ)‖2L2 is a perturbation of the function θ 7→ ‖EF(φ

∗, θ)‖2L2 by the function9

θ 7→ −‖RL(φ
∗, θ)‖2L2. This perturbation ‖RL(φ

∗, θ)‖2L2 is uniformly dominated by rL, hence it becomes10

possible to relate the two minima.11

From assumption C5, we know ‖RL(φ
∗, θ)‖2L2 is differentiable and we compute a series decomposition12

of its gradient thanks to ∂θRL(φ
∗, θ) =

∑
ℓ>L ∂θeℓ (φ

∗, θ)ϕℓ:13

∂θ ‖RL(φ
∗, θ)‖2L2 = 2RL(φ

∗, θ)∂θRL(φ
∗, θ).

and we recall that RL(φ
∗, θ) converges uniformly to 0 and ∂θRL(φ

∗, θ) is uniformly bounded in θ on Θ14

(as a continuous function on the compact set Θ). Starting from this last remark, we use the Implicit15

Function Theorem to the continuously differentiable functionG(ǫ, θ) = ∂θ ‖EF(φ
∗, θ)‖2L2−2ǫ∂θRL(φ

∗, θ),16

in order to get a Taylor expansion. We denote θǫ the solution to G(ǫ, θǫ), and we remark that in particular17

G(0, θ∗) = 0. Thus, there exists ǫ0, δ0 > 0 and a function ψ : ]−ǫ0, ǫ0[ → B(θ∗, δ0) such that ψ(ǫ) = θǫ18

(i.e. G(ǫ, ψ(ǫ)) = 0). We can also compute the first order variation of ψ: ψ(ǫ) = ψ(0) + ǫψ′(0) + o(ǫ)19

where20

ψ′(0) = −2
(
∂θθ ‖EF(φ

∗, θ)‖2L2

)−1
∂θRL(φ

∗, θ∗).

Since RL(φ
∗, θ) converges uniformly to 0, there exists L0 > 0, such that for L > L0, |RL(φ

∗, θ)| ≤ ǫ021

so that we can apply the linearization above to G(RL(φ
∗, θ), θ) = ∂θ ‖EF(φ

∗, θ)‖2L2 − ∂θ ‖RL(φ
∗, θ)‖2L2 .22
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We obtain that the minima θ∗L and θ∗ are such that1

θ∗L = θ∗ +RL(φ
∗, θ)2

(
∂θθ ‖EF (φ

∗, θ)‖2L2

)−1
∂θRL(φ

∗, θ∗) + o(rL).

This implies that |θ∗L − θ∗| = O(rL). If we use the sine basis, this means that PFH =
∑

ℓ h̄ℓ

√
2 sin(πℓt)2

but it is also in H1
0 (as it is in H1), then we have

∑
ℓ≥1 ℓ

2
h̄
2
ℓ and r2L = o

(
1
L2

)
.3

Proposition 34

If conditions C1-C6 are satisfied, then5

[
JL

(
φ̂, θ̂n,L

)⊤
J̃L

]−1

JL

(
φ̂, θ̂n,L

)⊤ P−→ M
∗
L =

[
J
∗⊤
θ,LJ

∗
θ,L

]−1
J
∗⊤
θ,L (A.3)

and we have6

θ̂n,L − θ∗L = −M
∗
LeL(φ̂, θ

∗) + oP(1). (A.4)

The first order condition implies that θ̂n,L satisfies (4.1). We develop a Taylor expansion of f(t, φ̂(t), θ)7

around θ∗ of order 1 for t a.e. in [0, 1]: eℓ(φ̂, θ) as eℓ(φ̂, θ
∗) +

〈
fθ

(
·, φ̂, θ̃

)
, ϕℓ

〉
where θ̃ is on straight8

line between θ∗ and θ̂n,L. We can write it in vector form9

eL

(
φ̂, θ̂n,L

)
= eL(φ̂, θ

∗) + J̃θ,L(θ̂n,L − θ∗L). (A.5)

J̃θ,L is a matrix RL×p with entries
〈
fθi

(
·, φ̂, θ̃

)
, ϕℓ

〉
. Thus, if we premultiply (A.5) by Jθ,L

(
φ̂, θ̂n,L

)⊤
,10

we get the asymptotic expansion11

0 = Jθ,L

(
φ̂, θ̂n,L

)⊤
eL(φ̂, θ

∗) + Jθ,L

(
φ̂, θ̂n,L

)⊤
J̃θ,L(θ̂n,L − θ∗L). (A.6)

This shows that the key results for relating the behavior of (θ̂n,L − θ∗L) to the behavior of eL(φ̂, θ
∗) is12

the convergence in probability of Jθ,L

(
φ̂, θ̂n,L

)⊤
. Indeed, if of to prove the convergence of true since the13
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matrix J
∗⊤
L J

∗
L is nonsingular and1

[
Jθ,L

(
φ̂, θ̂n,L

)⊤
J̃L

]−1

Jn,L(θ̂n,L)
⊤

converges in probability to [J∗
J
∗]−1

J
∗⊤ = M. Indeed, Jn,L(θ) converges uniformly to JL(θ) because the2

functions ∂
∂θi
f are uniformly Lipschitz, thus this implies that θ̂n,L − θ∗L = −MLen,L(θ

∗) + oP(1).3
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