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Abstract

This paper proposes the rst model-based clustering algdnm for multivariate func-
tional data. After introducing multivariate functional pr incipal components analysis
(MFPCA), a parametric mixture model, based on the assumptio of normality of the
principal components, is de ned and estimated by an EM-likalgorithm. The main ad-
vantage of the proposed model is its ability to take into acemt the dependence among
curves. Results on simulated and real datasets show the eemcy of the proposed
method.

Keywords: Multivariate functional data, density approximation, model-based
clustering, multivariate functional principal componentanalysis, EM algorithm.

1. Introduction

Functional data analysis or \data analysis with curves" is a active topic in statistics
with a wide range of applications. New technologies allow tecord data with accuracy
and at high frequency (in time or other dimension), generatg large volume of data.
In medicine one has growth curves of children and patient'dage evolution, in clima-
tology one records weather parameters over decades, chermtiu curves are analysed
in chemistry and physics (spectroscopy) and special attean is paid to the evolution
of indicators coming from economy and nance. See Ramsay aBdverman (2005) for
more details.

The statistical model underlying data represented by cungis a stochastic process
with continuous time, X = fX (t)gi20;r;- Most of the approaches dealing with func-
tional data consider the univariate case, i.eX (t) 2 R, 8t 2 [0; T], a path of X being
represented by a single curve. Despite its evident interegshe multidimensional case,

X = X ()Gupr; with X (1) =(X(t);:: 0 XP(@A)°2 R p o 2
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is rarely considered in literature. In this case a path oX is represented by a set op
curves. The dependency between thegemeasures provides the structure oK . One
nds in Ramsay and Silverman (2005) a brief example of bivaate functional data,

X (1) = (X(1); X?(t))°2 R?, as a model for gait data (knee and hip measures) used
in the context of functional principal component analysis EPCA) as an extension of
the univariate case. For a more theoretical framework, we ratigo back to the pioneer
works of Besse (1979) on random variables in a general Hilbepace. Saporta (1981)
provides a complete analysis of multivariate functional da from the point of view of
factorial methods (principal components and canonical ahgsis).

In this paper we consider the problem of clustering multivaate functional data.
Cluster analysis aims to identify homogeneous groups of @atwithout using any prior
knowledge on the group labels of data. When clustering funohal data, the main dif-
culty is due to in nite dimensional space that data belong to. Consequently, most
of clustering algorithms for functional data consists of arst step of transforming the
in nite dimensional problem into a nite dimensional one ard a second step using a clus-
tering method designed for nite dimensional data. Recenf] several new approaches
considers the k-means algorithm applied to 8-spline tting (Abraham et al., 2003),
to de ned principal points of curves (Tarpey and Kinateder,2003) or to a truncation
of the Karhunen-Loeve expansion (Chiou and Li, 2007). Sarlgat al. (2010) also use
a k-means algorithm to cluster misaligned curves. As in thenite dimensional set-
ting, where Gaussian model-based clustering generalizés tk-means algorithm, some
other works introduce more sophisticated model-based tethjues: James and Sugar
(2003) de ne an approach particularly e ective for sparsgl sampled functional data,
Ray and Mallick (2006) propose a nonparametric Bayes wavel@odel for curves clus-
tering based on a mixture of Dirichlet processes, Frahwilt-Schnatter and Kaufmann
(2008) build a specic clustering algorithm based on parantéc time series models,
Bouveyron and Jacques (2011) extend the high-dimensionatd clustering algorithm
(HDDC, Bouveyron et al. (2007)) to the functional case and Jaques and Preda (2012)
build a model-based clustering based on an approximation tife notion of functional
variable density.

The case of multivariate functional data is more rarely comdered in literature: Sing-
hal and Seborg (2005) and leva et al. (2011) use a k-means alipon based on specic
distances between multivariate functional data, whereas &yano et al. (2010) consider
Self-Organizing Maps based on the coe cients of multivarige curves into orthonormal-
ized Gaussian basis expansions. Tokushige et al. (2007)exad crisp and fuzzy k-means
algorithms for multivariate functional data by considerirg speci c distance between
functions, but applied their algorithms only on univariatefunctional data.

In the nite dimensional setting, model-based clustering lgorithms consider that
data is sampled from a mixture of probability densities. Tts is not directly applicable
to functional data since the notion of probability density gnerally does not exist for func-
tional random variable (Delaigle and Hall, 2010). Consequo#ly, model-based clustering



algorithms assume a parametric distribution on some niteet of coe cients character-
izing the curves. In Jacques and Preda (2012), the authorsaushe density surrogate
de ned in Delaigle and Hall (2010) to build a model-based cttering for univariate
functional data. This density surrogate, based on the truration of the Karhunen-Loeve
expansion, relies on the probability density of the princigl components of the curves
(Ramsay and Silverman, 2005), which is assumed to be Gaussia

In this paper we propose an extension of Jacques and Preda 12p approach to mul-
tivariate functional data. For this, we rstly introduce pr incipal component analysis
for multivariate functional data and assume a cluster-spec Gaussian distribution for
the principal component scores. The elements derived fronPEA are estimated using
approximation of the multivariate curves into a nite dimensional functional space. The
number of principal components used in the density surrogats well as the computation
of the principal component scores are cluster speci c.

The main advantage of our model is its ability to take into acount dependency
between thep curves of the multidimensional data, thanks to the principhcomponent
analysis for multivariate functional data.

The paper is organized as follows. Section 2 introduces pripal components analysis
for multivariate functional data. Estimation and approximation details are provided and
the task of normalizing the curves is discussed. Section 3 ks an approximation of
the probability density for multivariate functional random variable. The model-based
clustering approach and parameter estimationia an EM-like algorithm are presented
in Section 4. Comparisons with existing methods on simuladeand real datasets are
presented in Section 5, and a discussion concludes the pape&ection 6.

2. Principal component analysis for multivariate function al data (MFPCA)

Principal component analysis for multivariate functionaldata has already been sug-
gested in Ramsay and Silverman (2005) and Berrendero et a20{1). In Ramsay and
Silverman (2005) the authors propose to concatenate the @gations of the functions
on a ne grid of points (or the coe cients in a suitable basis &pansion) into a single
vector and then to perform a standard principal component aysis (PCA) on these
concatenated vectors. When a basis expansion is used, thisthod forces to consider
only orthonormal basis since the metric induced by the scalaroduct between the basis
functions is not taken into account. In Berrendero et al. (201), the authors propose
to summarize the curves with functional principal compondas instead of scalar ones as
in usual FPCA. For this purpose, they carry out classical PCAfor each value of the
domain on which the functions are observed and suggest anearnpolation method to
build the functional principal components.

Our approach is closely related to Ramsay and Silverman (2Z)0but in addition, we
take into account the possible use of non orthonormal basig particular, our method
allows to use di erent basis for each dimension of the multariate curves.

3



set of n p-variate curves, calledmultivariate functional data.

From this set of multivariate curves, one can be interestedhioptimal representation of
curves in a function space of reduced dimension (principabmponent analysis), or in
clustering, by determining an optimal partition of the obseved curves with respect to
some distance or homogeneity criterion. In order to addressese two questions in a

stochastic process:

8t2[0;T] JimE kX (t+h) X (t)k? = lim_ i E (X (t+h) X (1)2 dt=0:
=1

Notice that L ,-continuity of X implies L,-continuity of each component ofX , i.e. X

is a L,-continuous stochastic process for all= 1;:::;p. The L,-continuity is a quite
general hypothesis, as most of the real data applicationstisaes this one.
Let - =f (t) = E[X(t)]gi2j0:r] denotes the mean function oK (1 ~ p) and

=( 40 MP= EX];

denotes the mean function oKX .
The covariance operatoV of X :

Vi Lo([0; TP ! Lz([O;E])p
fo7vvif= TV(;t)f (t)dt;
0

is an integral operator with kernelV de ned by:
V(sit)= E[(X(s) () (X () ()] sit2[0T]

where is the tensor product onRP. Thus, for anys;t 2 [0;T], V(s;t)isap p matrix
with elements

V(s;t[; 1= Cou(XI(s); X (1); Ji~ =1;::0p

2.1. Principal components analysis oK

Under the hypothesis osz-clgntinuity, V is an Hilbert-Schmidt operator, i.e com-
pact, self-adjoint and such that ; , 12 < +1 . The spectral analysis oV provides
a countable set of positive eigenvaluels ;g ; associated to an orthonormal basis of

i (1)



Zrxe
with ;  , :::and f; (Of;o(t)dt = 1 if j = j°and O otherwise.
0 4
The principal componentsC; of X are zero-mean random variables de ned as the pro-
jections of X on the eigenfunctions of:
o Lre
C = hX (t) (t);f (Diredt = (X (1) (t)f; (Hdt:
0 0 -

Similar to the univariate setting, the principal componens f C;g; 1 are zero-mean un-
correlated random variables with variance j, j 1.
Saporta (1981) shows that the following Karhunen-Loeve ea&psion holds in multidi-
mensional context:

X

X@®= O+ Gf (), t2[0T] 2)

j 1
Principal components and principal factors of MFPCA have te same interpretation
as in the functional univariate case. The truncation of (2) athe rst q terms pro-
vides a reduced dimensional space where classical toolsgt#ring, regression, ...) from
multivariate analysis can be used to describX .

2.2. Computational methods for MFPCA

The estimators for (t) and V(s;t), for s;t 2 [0; T], are:

1 X 1 X

M=o o) and O(sin= o (9 M) (M) M)

i=1 i=1
In Deville (1974) it has been shown that “and ¥ converges to andV in L,-norm with
convergences rate od(n 12).
Often in practice, data are observed at discrete time pointand with some noise. In
order to get the functional feature of data, smoothing and terpolation methods are
used considering the true curve belongs to a nite dimensiahspace spanned by some
basis of functions. This approximation also reduces the eig-analysis problem (1) to
the one in nite dimensional setting.

Let assume that each curve;; (1 i n,1 °  p)can be expressed as a linear
combination of basis functiond lg,- =1:m-"
x()= &y (), t2[0TL 3)

j=1
This can be written with the matrix formulation

Xi(t)= ( ta

5



expansion coe cients, and

OO N o o 1
(1= 0 :@:: O 1(t) :::“.‘2“2(t) 0 o 0 §:
0 S 0 At) i p(b)

P
Let A be then P m--matrix, whose rows are the vectors;aand M(t) the n p
matrix with values x; (t) of functionsx;, attimest2 [0;T](L i n,1 ° p). With
these notations, we have

M(t) = A qt): (4)

Under the basis expansion assumption (3), the estimatd* of V, for all s;t 2 [0; T], is
given by:

O(sin= M9 MY M)= T (9AR T

where M(s) "qs) means that the row vector s) is subtracted to each row of M§),
and A=(1l, 1,(1=n;:::;1=n))A wherel, and 1, are respectively the identityn n-
matrix and the unit column vector of sizen.

From (1) and (5), each principal factorf ; belongs to the linear space spanned by the
basis :

£, = ( 0pf (6)

Using the estimation¥ of V, the eigen problem (1) becomes

z T
V(s:t)f j(dt= f(s);
0

which, by replacing¥ (s;t) and f i (s) by their expressions given in (5) and (6), is equiv-
alent to

Z
0 n_ll( DA% A0)f °()ds= ; ( s)bY; (7)
, n—ll( 9AR o) ( Hdth? = | ( )b’ (8)
|2 {\5 }



R P
Where W = OT qt) ( t)dt is dened as the symmetric block-diagonal P, m:
P_, m--matrix of the inner products between the basis functions.
Since (8) is true for alls, we have:

L A%WbO= b
no1 T an
By de ning u; = b; W%, the multivariate functional principal component analyss is
reduced to the usual PCA of the matrixs2—=AW 2

1 1=204 0aVA7 122, 0 — 0.
The coecient by, j 1, of the principal factorsf ; are obtained by = (W 1=2(} Tud,
and the principal component scores, are given by

C =AWb{ j L

Note that the principal components scores Care also the solutions of the eigenvalues
problem:
1

——AWA C = G:

2.3. Normed principal component analysis

When the X 's components ofX (1 ° p) are of dierent natures (di erent
measure units for example), the question of normalizing datoccurs naturally. It is
well known that the principal components are de ned as maximing the variance with
respect to the total varianceTrace(V) =, ; ;. Since,

Z 1y _
Traceg(V) = Var (X! (t))dt;
0 j=1

it is clear that componentsX! with large variances plays an important role in de ning
the principal components. This source of variability is in gneral not interesting and
hides more interesting features of the data structure. Forhis reason, except in partic-
ular situations (same scale for alX!'s, for example), normalization is suitable. As in
the classical framework of PCA, this is done by introducingone metrics.

One way to introduce a metric in MFPCA is to consider it as a camnical analysis
(Saporta, 1981), in which the principal components are deed as solutions of the fol-
lowing eigen problem:

Zy
. Pt(Cj)dt: jCj; j 1 (9)



where P, is the orthogonal projection operator associated witlX de ned as

P(Cj) =< X (1);[V(;1)] *E[X (1)Cj]>re : (20)
Combining (10) and (9) one obtains
Z
C = ' < X (t) (1); (1) >re dt (12)

0

wheref ; is the solution of the eigenvector problem
Z

T[\/(s,; 9] V(s;0f  (dt= f (s): (12)
0

Clearly, [V(s;s)] * must exist for eachs 2 [0; T]. Under this hypothesis, the principal
factors of the normalized MFPCA are the eigenfunctions of #hintegral operator with
kernel [V (s;s)] 1V(s;t) as in (12). The Karhunen-Loeve expansion of becomes

X
XM= O+ GG,
j=1
where the principal components  de ned by (11), have zero mean and variance; .

Normalization in practice. Observe that ifR(t; t) is the square root of the matrixV (t; t),
ie. V(t;t) = R(t;t)R(t; 1) then the MFPCA of X with metric V (t;t) is equivalent to
the MFPCA of Y de ned by

Y () = R(t;t) X (b);

r> 1, thenY is dened from X as
Y (t) = R(ti;t) X (t); i=1;::5r

and approximation and estimation methodology in Section 2.is applied toY .

3. Approximation of the density for multivariate functiona | data

As the notion of probability density is not well de ned for functional data (Delaigle
and Hall, 2010), we can use an approximation of the density sad on the Karhunen-
Loeve expansion (2). Considering the principal componenitsdexed upon the descend-

ing order of the eigenvalues (; , 11, and denotingX (@ as the approximation of
X by truncating (2) at the q rstterms, q 1, we have
Xa
X@= @+  Gf () (13)

j=1

8



Then, X (@ js the best approximation ofX , under the mean square criterion, among all
the approximations of the same type (linear combination af deterministic functions of
t with random coe cients, Saporta (1981)).

Based on the approximationX (¥ of X , Delaigle and Hall (2010) shows that, in the
casep = 1, the probability of X belonging to a ball of radiush centred atx 2 L,([0; T])P
can be written as

Xa
logP (kX xk h)= logfc (cj(x))+ (h;q(h))+ o(q(h)); (14)

j=1

wheref ¢, is the probability density of G and g (x) is the j th principal component score
of X, g (x) =< f ;X >,qo:r)r- The functionsgand are such thatq grows to in nity
when h tends to zero and depends only orh and q(h).

The equality (14) suggests the use of the multivariate prolmlity density of the

W
FOx)=  fe (g(x)): (15)
j=1

Jacques and Preda (2012) use successfully a similar densityrogate for the clustering
of univariate functional data.

4. A model based-clustering for multivariate functional da ta

The aim of model-based clustering is to identify homogenesgroups of data sampled
from a mixture density model. In this section, we build a mixire model based on the
surrogate (15) for the density ofX .

Let us consider that there exists a latent group variable Z,f& categories K groups),

belongs to the clusterg, 1 g K, and Z8 = 0 otherwise. For eachi = 1;:::;n, let Z;
be the group indicator corresponding toX ;.

In the following we suppose thatX jz-; is such that eachX ‘jzgzl iS a zero-mean
stochastic process (1 = p). The number K of groups is assumed to be known. In
the contrary case, an approximation of the BIC criterion (Sawarz, 1978), based on the
approximated likelihood (17), could be used to seledt .

4.1. The mixture model
Let assume that each coupleX i;Z), i = 1;:::;n, is an independent realization
of the random vector X ;Z) where X has a density surrogate depending on its group
belonging:
Yo

(gg) . — .
fX jgzgzl (X’ 9) - ijjzg:1 (Cj?g (X)’ jig)
j=1



whereq, is the number of principal components retained in the appramation (15) for
the group g, G4 (X) is the j th principal component score o jz-; for X = X, fcjjzg=1
its probability density and 4 the diagonal matrix of the principal components variances

principal component ofX is assumed to be the univariate Gaussian density with zero
mean (the principal component are centred) and variance;q. This assumption is in
particular satis ed when X jze-1 iS a Gaussian process.

Remark (Data generation) For a given clusterg, 1 g K, provided that theg
eigenfunctionsf ; and eigenvalues ; of the covariance operator oX jz.=; are known,

then, generating an approximatiorX j(ggg):l of X jzs=1 reduces to generating a real random
variablesC; according to centred Gaussian distributions with variance; (1 ] q).
Of course, that does not generate the truX jz.-;. However, the main structure of

clusters is assumed to be characterized by this type of apgrations.

The vector Z = (Z%;:::;Z¢) is assumed to have one-opgler multinomial distribution
M( 150055 k), with 151115  the mixing proportions ( :zl g = 1). Under this
model we can deduce a surrogate for the unconditional densif X :

(a) X o
fx (X5 )= g ijngzl (Cig (X); jig) (16)
g=1 j=1
where = f( g 197775 gug)1 g kGgandqg=(a;:::;%). From this density surrogate,
we deduce the pseudo likelihood:
X Ye C2. (X
@)= o pm—ep o) an
i=1 g=1 j=1 2 g ig

where G4 (X i) is the jth principal score of the curveX ; for the group g and X =

Remark (ldenti ability) . When the approximation orders are di erent, identi ability
of the mixture model (16) is straightforward. When all the gpoximation orders are
equal, the identi ability of model (16) deduces directly &im the identi ability of mixture
of multivariate Gaussian (Titterington et al., 1985).

4.2. Parameter estimation

In the unsupervised context the estimation of the mixture mdel parameters is not so
straightforward as in the supervised context since the gr@s indicators Z are unknown.
On one hand, we need to use an iterative algorithm which alteates the estimation
of the group indicators, the estimation of the PCA scores foeach group and then
the estimation of the mixture model parameters. On the othehand, the parameter

10



the number of components in usual PCA.

A classical way to maximise a mixture model likelihood whenata are missing (here
the clusters indicators Z) is to use the iterative EM algorithm (Dempster et al., 1977,
McLachlan and Peel, 2000). In this work we use an EM-like algthm including, between
the standard E and M steps, a rst step in which the principal omponents scores of each
group are updated and a second one in which the approximatiarder q are selected.
Our EM-like algorithm consists in maximizing the pseudo copleted log-likelihood

|

XX X
LO(;X;2) = Z} log 4+ |ngijzg:1 (Cijig (X0); jig)
i=1 g=1 j=1 '
where Z= (Z 1;:::;Z,). Let (™ contains the current values of the estimated parameters

atsteph, h 1.

E step. As the group indicators 2's are unknown, the E step consists in computing the
conditional expectation of the pseudo completed log-likebod:

0 1
(h) () i XX X
Q(; )= E (h)[ch (X520 X =x]= tig @|09 gt Iongjjzg:l (Cijig (Xi) g )A
i=1 g=1 j=1 '
where ¢;q4 (X;) is the value of the random variable G4 (X ;) for X; = X;, tig is the

probability for the multidimensional curve X ; to belong to the groupg conditionally to
Cijig (X'i) = Cijig (Xi):
Q
) 9 J'qil fCszgzl (Cijig (Xi); j:g)
tig = E m[ZX = x]" P Qe ;
. d o fe o (Ci (X))
=1 I j=1 CJJ.Z=:1 il i)y gl

(18)

The approximation in (18) is due to the use of the surrogate fdhe density of X given
by (15).

Principal score updating step.The computation of the principal component scores has
been described in Section 2.2. Here, the principal componhetores G;q of the mul-
tidimensional curve X ; in the group g is updated according to the current conditional
probability t;; computed in the previous E step. This computation is carriedut by
weighting the importance of each curve in the constructionfahe principal components
with the t;.4's. Consequently, the rst step consists in centring the cwe X ; within the
group g by subtracting the mean curve computed using thé;.4's: the basis expansion
coe cients matrix A becomes Ay = (1,  1n(tyg;:::;thg))A. The jth principal compo-

11



Group speci ¢ dimensiong, estimation step. The estimation of the group specic di-
mensiong is an open problem. In this work we propose to use, once the gpospeci ¢
FPCA have been computed at the previous step, the scree-test Cattell (1966) in
order to select each group specic dimensiogy. The advantage of using this test is
that one hyperparameter (the threshold of the Cattell scregest) allows to estimateK
approximation orders.

M step. The M step consists of computing the mixture model parametsr ("*Y which
maximizesQ( ; (M) according to . It leads simply to the following estimators

ey - 1

9
n i=1

tig; and "V = g 1) oy
where ;4 is the variance of thej th principal component of the clusterg computed in
the principal score updating step.

Convergence and numerical considerationsihe proposed estimation algorithm is not
a proper EM algorithm, since the growth of the pseudo likelinod is not guaranteed
between two steps. The main reason is the use of a pseudo Ihkebd built on an ap-
proximation of the notion of density. Indeed, since only a rte number of principal
components are used, and since these principal components eomputed with di erent
weights at each iteration of the algorithm (thet;4's), the ‘data’ on which the pseudo
likelihood is computed,i.e. the principal components scores, are not the same at each
step. To avoid this phenomenon, all principal components shld be used, which is gen-
erally not applicable for functional data since they form arn nite set. Thus, the values
of the likelihood can not be directly compared between twoetations. The properties of
the EM algorithm, which guarantee the convergence to a localaxima of the likelihood
in the classical framework does not work any more. Moreovehe approximation orders
@, 1 g K, are updated at each iteration, and this can also induce an tacial
increase or decrease of the pseudo likelihood.

In practice, we adopt the following empirical strategy whik allows us to perform nu-
merical applications:

the algorithm is launched several times with random initiakations for a small
number of iterations, and the best reached solution is used @he initialization
point for a longer algorithm (Biernacki, 2004). Typically, 10 small runs with 10
iterations are used in the following experiments.

the values ofqy are initialized to 1, and they are only allowed to increase.

the number S of iterations is set as follows: for a giver§ (200 for instance),
the algorithm is executed 20 times, and is considered to be large enough if the
maximum of the pseudo likelihood has been achieved befor8=3 iterations for
the 20 executions.
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Anticipating the application results, Figure 4 and Figure 6illustrate the trajectories of
the pseudo likelihood and the approximation orders on simated and real datasets.

5. Numerical experiments

This section is devoted to compare our approach, which we Widall Funclust {
as in univariate case (Jacques and Preda, 2012){ with othexisting methods. The
evaluation of a clustering algorithm is always a di cult and subjective task. Following
Guyon et al. (2009), three evaluations strategies are codsred in this paper. First,
Funclust is compared to other clustering methods for univaate functional data using
three classi cation benchmark datasets. Second, a simuiah study allows to compare
Funclust with another clustering method for multivariate functional data based on k-
means. Third, a real clustering application on a climatologdataset is carried out. The
clusters obtained by Funclust and the k-means based methodeathen compared from
the interpretation point of view.

Remark (Data registration). When working with functional data, a curve registration
step is often needed to remove the amplitude and phase vasiaof curves (Ramsay and
Silverman, 2005, Chap. 7). In our opinion, in the clusteringcontext, the amplitude
and phase variability of curves are interesting elements tie ne clusters. For instance,
in the Canadian weather example which will be analysed in theguel, the geographical
interpretation of the clusters is mainly due to amplitude vability. Similarly, for the
Growth dataset, it is shown in Liu and Yang (2009) that perfoning registration before
or simultaneously with clustering failed in retrieving thegender of subjects, probably
because the main gender di erence is due to a time wrappingeet. For this reason, we
do not perform data registration in this work before our cldusring study.

The R code for Funclust is available on request from the authors.

5.1. Benchmark study in the case of univariate functional ¢t&a

The data. Three real datasets are considered: thneading Growth, and ECG datasets.
These three datasets, already studied in Jacques and Pred?012), are plotted on Fig-
ure 1. The rst dataset (Kneading) comes from Danone Vitap@ Paris Research Center
and concerns the quality of cookies and the relationship vitthe our kneading pro-
cess. The kneading dataset is described in detail in Levedsral. (2004). There are 115
di erent ours for which the dough resistance is measured ding the kneading process
for 480 seconds. One obtains 115 kneading curves observe@4it equispaced instants
of time in the interval [0;480]. The 115 ours produce cookies of di erent quality: 50
of them have produced cookies @ood quality, 25 producedmedium quality and 40 low
quality. This data has been already studied in a supervisedassi cation context (Lev-
eder et al., 2004; Preda et al., 2007). This data is known to bd®rd to discriminate,
even for supervised classi ers, partly because of the metiwclass. The second dataset
(Growth) comes from the Berkeley growth study (Tuddenham ash Snyder, 1954) and is
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Figure 1: Kneading, Growth and ECG datasets.

available in thefda package of the softwardR . In this dataset, the heights of 54 girls and
39 boys were measured at 31 stages, from 1 to 18 years. The go#td cluster the growth

curves and to determine whether the resulting clusters rea gender di erences. The
last dataset (ECG) is taken from theUCR Time Series Classi cation and Clustering
websiteé'. This dataset consists of 200 curves from 2 groups sampledo&ttime instants,

and has already been studied in Olszewski (2001).

Experimental set-up.For each dataset, the labels indicating the group memberghf
observations are available. These labels have been proddy human experts (Kneading
and ECG datasets) or simply by the nature of the individuals gender for the Growth
dataset). In order to compare the ability of the clustering mthods to retrieve the
class labels, we choose to use the correct classi cation gafCCR) which measures
the adequacy of the resulting clusters with the known partibn. This measure varies
between 0 and 1, and larger the CCR, better the correspondenbetween the clustering
and the known partition. In order to deal with the labelling problem, all the possible
permutations are tested to label thek groups, and the best CCR is retained.

In this benchmark study, Funclust is compared to three chadihgers dedicated to the
clustering of univariate functional data: FunHDDC (Bouveyon and Jacques, 2011) and
k-centres (kCFC, Chiou and Li (2007)) which are the closest rtteods andfclust (James
and Sugar, 2003) which is known to be a good challenger. Noteat since no code is
available for kCFC (to the best of our knowledge), only the goparison on the Growth
dataset is possible, thanks to the classi cation results psented in Chiou and Li (2007).
The number of iterations and the initialization are set as gained in Section 4.2. The
threshold of the Cattell scree test allowing to select the ggpoximation order ¢ is xed
to 0.05. With this experimental set-up, Funclust estimatio is obtained in about 30
seconds for each dataset, on a laptop (2.80GHz CPU) and withcade inR software.

thttp://www.cs.ucr.edu/  eamonn/time _series data/
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Results. The estimated approximation ordersy, for Funclust are the following: Knead-
ing(h=2; =1; g=3), Growth (p =2;  =3), ECG (qh =9; p =4). These
qy's are relatively close (or slightly greater) to the numbersy's of principal components
retained by the Cattell scree test (with the same thresholdfd).05) when carrying out
FPCA on the true classes: Kneadinggg =1; ¢, =1; ¢ =2), Growth (g, =1; ¢, = 1),
ECG (qp =4; ¢, =5).

The correct classi cation rates (CCR) according to the know partitions are given in
Table 1. Funclust performs better than the other methods onwo datasets among
three (Kneading and ECG). On the last dataset, the results @& relatively poor (6989%
whereas some method are about 97%), but they can be greatlyciaased (9570%) if
the dimensionsgy are xed to 2. This dataset illustrates that the choice of theapprox-
imation order is a very important question, and that further works have to be carried
out in this direction.

method Kneading | Growth | ECG
Funclust 66.96 69.89 | 84
FunHDDC 62.61 96.77 75
fclust 64 69.89 | 74.5
kCFC - 93.55 -

Table 1: Correct classi cation rates (CCR) in percentage fa Funclust, FunHDDC (best model according
BIC), fclust and kCFC on the Kneading, Growth and ECG datasets.

5.2. Simulation study in the case of multivariate functionladata

The data. In this simulation study, the number of clusters is assumedtbe known: K=2.
A sample ofn = 50 curves are simulated according to the following model spired by
Ferraty and Vieu (2003) and Preda (2007): fot 2 [1; 21],

Class 1 : Xi(t)= 5+ t=2+ Ushs(t) + Ushy(t) + pﬁ (1);

X(t) = 5+ t=2+ Uthy(t) + Uzha(t) + Ushg(t) + ~ 05 (1);
Class 2 : Xi(t) = Ushy(t)+ 10 (t);

Xo(t) = Uthy(t) + Ushg(t) + = 05 (1);

where Uy N (0:51=12), U, N (0;1=12) and U3 N (0;2=3) are independent
Gaussian variables and (t) is a white noise, independent olJ;'s and of unit vari-
ance. The functionh;, h, and h; (plotted on Figure 2) are de ned, fort 2 [1;21],
by hy(t)=(6 j t 11j). where (). mean the positive part,h,(t)=(6 j t 7). and
hy(t) =(6 j t 15).. The mixing proportions ;'s are chosen to be equal, and the
curves are observed in 1001 equidistant point$ € 1;1:02:::;21). Figure 3 plots the
simulated curves.
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Figure 2: Function hy(t)=(6 jt 11j)+,h(t)=(6 jt 7))+ andhs(t)=(6 j t 15). fort2 [1;21].

m <

Figure 3: Bi-dimensional simulated curves for class 1 (top)and class 2 (bottom).

Experimental set-up. Funclust is compared to the multivariate functional data clistering
methods described in leva et al. (2011), based on k-means hed with the following

16



distances:

x £
(XA YA 2dt
0

x 21
(Xj() Yi(t)2dt and d(X;Y)=
0

<
<

di(X;Y)=
i=1 i=1
where X Xt) is the derivative of X;(t). A discussion on these distances in the case of
univariate functional data can be found in Ferraty and Vieu 2003). Since no public
implementation is available for this method, we built our ow implementation in the R
software. In particular, the distanced, was computed using the packagkla.
In addition to these methods, quoted withkmeansd; and kmeansed, in the sequel,
we consider usual k-means applied on the values of the fumetis at each observation
pointst = 1;1:02:::;21 (quoted askmeans-pointg and on the coe cients resulting
from a linear spline smoothing with 30 equidistant knotskmeans-spling. Linear spline
smoothing has also been used by Funclust, with initializatn and iterations number
xed following Section 4.2, and with a Cattell scree test theshold xed to 0.05. Since
both componentsX ; and X, have similar covariance structure, the curves have not been
normalized.

Figure 4. Convergence of the pseudo EM algorithm (top: pseual likelihood evolution, bottom: ap-
proximation orders evolutions). The red part in the pseudo ikelihood stops when the maximum is
achieved.

Results. The convergence of Funclust is illustrated by Figure 4. Tabl 2 presents the
mean and standard deviation of the correct classi cation tas (CCR), for 100 simula-
tions. The results con rm the good behaviour of Funclust thawe have already noticed
for univariate functional data.
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method Funclust | kmeansd; | kmeansd, | kmeans-points| kmeans-spline
Mean CCR| 86.80 86.32 85.76 80.60 86.14
Std CCR 14.51 16.30 10.28 14.94 15.80

Table 2: Mean and standard deviation (for 100 simulations) @ correct classi cation rates (CCR) in
percentage for Funclust, kmeansd;, kmeansd, and k-means applied on observations points and spline
Ccoe cients.

5.3. Canadian temperature and precipitation

In this last application, the Canadian temperature and preipitation data (available
in the R packagefda and presented in detail in Ramsay and Silverman (2005)) aresed
to compared Funclust with leva et al. (2011)'s method (kmeasid; and kmeansd,). The
dataset consists in the daily temperature and precipitatio at 35 di erent locations in
Canada averaged over 1960 to 1994. The goal is to provide astéring into 4 groups,
and to give a geographical interpretation of the resultinglasters.

Since the units of both curves are di erent (Celsius degreesd millimetres), the data

are normalized following methodology presented at the end &ection 2.3. Figure 5
plots original and reduced curves. The curve has been smoethusing Fourier basis
with 65 knots, as in Ramsay and Silverman (2005).

Funclust, kmeansd; and kmeansd, are applied on this dataset. For Funclust, the
initialization and the iterations number has been chosen lowing Section 4.2 and the
threshold of the Cattell scree test has been xed to 0.2. Theoavergence of Funclust is
illustrated by Figure 6. Figure 7 presents the clustering to 4 groups of the Canadian
weather stations using Funclust. We can observe four disthgroups of stations. The

green group is mostly made of northern continental stationsvhereas Atlantic stations

and southern continental stations are mostly gathered in # red group. The blue
group mostly contains Paci c stations and the last group (kdck) contains only the

northernmost station Resolute (N.W.T.). We recall that all these results have been
obtained without using the geographical positions of the ations.

In comparison, Figure 8 shows the clustering witkmeansd,; and kmeanse, methods,
using the same normalized curves and the same basis appraiion. This clustering
seems less pertinent than Funclust clustering since the lgliand red group contains both
Atlantic and Paci c stations. Nevertheless, the black grop mainly contains continental
stations whereas in Funclust clustering, continental and #antic stations are gathered
together. This last fact is probably due to the Resolute stadn which is so di erent from
the others (the temperature and precipitation are the loweysthat Funclust clusters this
station alone apart in a group.

6. Discussion

In this paper we propose a clustering procedure for multiveate functional data based
on an approximation of the notion of density for multivariale random function. We
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