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Abstract

This paper proposes the �rst model-based clustering algorithm for multivariate func-
tional data. After introducing multivariate functional pr incipal components analysis
(MFPCA), a parametric mixture model, based on the assumption of normality of the
principal components, is de�ned and estimated by an EM-likealgorithm. The main ad-
vantage of the proposed model is its ability to take into account the dependence among
curves. Results on simulated and real datasets show the e�ciency of the proposed
method.

Keywords: Multivariate functional data, density approximation, model-based
clustering, multivariate functional principal componentanalysis, EM algorithm.

1. Introduction

Functional data analysis or \data analysis with curves" is an active topic in statistics
with a wide range of applications. New technologies allow torecord data with accuracy
and at high frequency (in time or other dimension), generating large volume of data.
In medicine one has growth curves of children and patient's state evolution, in clima-
tology one records weather parameters over decades, chemometric curves are analysed
in chemistry and physics (spectroscopy) and special attention is paid to the evolution
of indicators coming from economy and �nance. See Ramsay andSilverman (2005) for
more details.

The statistical model underlying data represented by curves is a stochastic process
with continuous time, X = f X (t)gt2 [0;T ]. Most of the approaches dealing with func-
tional data consider the univariate case, i.e.X (t) 2 R, 8t 2 [0; T], a path of X being
represented by a single curve. Despite its evident interest, the multidimensional case,

X = f X (t)gt2 [0;T ] with X (t) = ( X 1(t); : : : ; X p(t))0 2 Rp; p � 2
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is rarely considered in literature. In this case a path ofX is represented by a set ofp
curves. The dependency between thesep measures provides the structure ofX . One
�nds in Ramsay and Silverman (2005) a brief example of bivariate functional data,
X (t) = ( X 1(t); X 2(t))0 2 R2, as a model for gait data (knee and hip measures) used
in the context of functional principal component analysis (FPCA) as an extension of
the univariate case. For a more theoretical framework, we must go back to the pioneer
works of Besse (1979) on random variables in a general Hilbert space. Saporta (1981)
provides a complete analysis of multivariate functional data from the point of view of
factorial methods (principal components and canonical analysis).

In this paper we consider the problem of clustering multivariate functional data.
Cluster analysis aims to identify homogeneous groups of data without using any prior
knowledge on the group labels of data. When clustering functional data, the main dif-
�culty is due to in�nite dimensional space that data belong to. Consequently, most
of clustering algorithms for functional data consists of a �rst step of transforming the
in�nite dimensional problem into a �nite dimensional one and a second step using a clus-
tering method designed for �nite dimensional data. Recently, several new approaches
considers the k-means algorithm applied to aB-spline �tting (Abraham et al., 2003),
to de�ned principal points of curves (Tarpey and Kinateder,2003) or to a truncation
of the Karhunen-Loeve expansion (Chiou and Li, 2007). Sangalli et al. (2010) also use
a k-means algorithm to cluster misaligned curves. As in the �nite dimensional set-
ting, where Gaussian model-based clustering generalizes the k-means algorithm, some
other works introduce more sophisticated model-based techniques: James and Sugar
(2003) de�ne an approach particularly e�ective for sparsely sampled functional data,
Ray and Mallick (2006) propose a nonparametric Bayes wavelet model for curves clus-
tering based on a mixture of Dirichlet processes, Fr•uhwirth-Schnatter and Kaufmann
(2008) build a speci�c clustering algorithm based on parametric time series models,
Bouveyron and Jacques (2011) extend the high-dimensional data clustering algorithm
(HDDC, Bouveyron et al. (2007)) to the functional case and Jacques and Preda (2012)
build a model-based clustering based on an approximation ofthe notion of functional
variable density.

The case of multivariate functional data is more rarely considered in literature: Sing-
hal and Seborg (2005) and Ieva et al. (2011) use a k-means algorithm based on speci�c
distances between multivariate functional data, whereas Kayano et al. (2010) consider
Self-Organizing Maps based on the coe�cients of multivariate curves into orthonormal-
ized Gaussian basis expansions. Tokushige et al. (2007) extend crisp and fuzzy k-means
algorithms for multivariate functional data by considering speci�c distance between
functions, but applied their algorithms only on univariatefunctional data.

In the �nite dimensional setting, model-based clustering algorithms consider that
data is sampled from a mixture of probability densities. This is not directly applicable
to functional data since the notion of probability density generally does not exist for func-
tional random variable (Delaigle and Hall, 2010). Consequently, model-based clustering
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algorithms assume a parametric distribution on some �nite set of coe�cients character-
izing the curves. In Jacques and Preda (2012), the authors use the density surrogate
de�ned in Delaigle and Hall (2010) to build a model-based clustering for univariate
functional data. This density surrogate, based on the truncation of the Karhunen-Loeve
expansion, relies on the probability density of the principal components of the curves
(Ramsay and Silverman, 2005), which is assumed to be Gaussian.
In this paper we propose an extension of Jacques and Preda (2012) approach to mul-
tivariate functional data. For this, we �rstly introduce pr incipal component analysis
for multivariate functional data and assume a cluster-speci�c Gaussian distribution for
the principal component scores. The elements derived from FPCA are estimated using
approximation of the multivariate curves into a �nite dimensional functional space. The
number of principal components used in the density surrogate as well as the computation
of the principal component scores are cluster speci�c.

The main advantage of our model is its ability to take into account dependency
between thep curves of the multidimensional data, thanks to the principal component
analysis for multivariate functional data.

The paper is organized as follows. Section 2 introduces principal components analysis
for multivariate functional data. Estimation and approximation details are provided and
the task of normalizing the curves is discussed. Section 3 de�nes an approximation of
the probability density for multivariate functional random variable. The model-based
clustering approach and parameter estimationvia an EM-like algorithm are presented
in Section 4. Comparisons with existing methods on simulated and real datasets are
presented in Section 5, and a discussion concludes the paperin Section 6.

2. Principal component analysis for multivariate function al data (MFPCA)

Principal component analysis for multivariate functionaldata has already been sug-
gested in Ramsay and Silverman (2005) and Berrendero et al. (2011). In Ramsay and
Silverman (2005) the authors propose to concatenate the observations of the functions
on a �ne grid of points (or the coe�cients in a suitable basis expansion) into a single
vector and then to perform a standard principal component analysis (PCA) on these
concatenated vectors. When a basis expansion is used, this method forces to consider
only orthonormal basis since the metric induced by the scalar product between the basis
functions is not taken into account. In Berrendero et al. (2011), the authors propose
to summarize the curves with functional principal components instead of scalar ones as
in usual FPCA. For this purpose, they carry out classical PCAfor each value of the
domain on which the functions are observed and suggest an interpolation method to
build the functional principal components.
Our approach is closely related to Ramsay and Silverman (2005) but in addition, we
take into account the possible use of non orthonormal basis.In particular, our method
allows to use di�erent basis for each dimension of the multivariate curves.
Let X 1; : : : ; X n be an i.i.d. sample ofX . The observation ofX 1; : : : ; X n provides a

3



set of n p-variate curves, calledmultivariate functional data.
From this set of multivariate curves, one can be interested in optimal representation of
curves in a function space of reduced dimension (principal component analysis), or in
clustering, by determining an optimal partition of the observed curves with respect to
some distance or homogeneity criterion. In order to addressthese two questions in a
formal way, we need the hypothesis that considersX = ( X 1; : : : ; X p)0as aL2 continuous
stochastic process:

8t 2 [0; T]; lim
h! 0

E
�
kX (t + h) � X (t)k2

�
= lim

h! 0

Z T

0

pX

`=1

E
�
(X ` (t + h) � X ` (t))2

�
dt = 0:

Notice that L2-continuity of X implies L2-continuity of each component ofX , i.e. X `

is a L2-continuous stochastic process for all̀ = 1; : : : ; p. The L2-continuity is a quite
general hypothesis, as most of the real data applications satis�es this one.
Let � ` = f � ` (t) = E[X ` (t)]gt2 [0;T ] denotes the mean function ofX ` (1 � ` � p) and

� = ( � 1; : : : � p)0 = E[X ];

denotes the mean function ofX .
The covariance operatorV of X :

V : L2([0; T])p ! L2([0; T])p

f V7�! V f =
Z T

0
V(�; t)f (t)dt;

is an integral operator with kernelV de�ned by:

V(s; t) = E [(X (s) � � (s)) 
 (X (t) � � (t))] ; s; t 2 [0; T]

where
 is the tensor product onRp. Thus, for any s; t 2 [0; T], V (s; t) is a p� p matrix
with elements

V(s; t)[j; ` ] = Cov(X j (s); X `(t)) ; j; ` = 1; : : : p:

2.1. Principal components analysis ofX

Under the hypothesis ofL2-continuity, V is an Hilbert-Schmidt operator, i.e com-
pact, self-adjoint and such that

P
j � 1 � 2

j < + 1 . The spectral analysis ofV provides
a countable set of positive eigenvaluesf � j gj � 1 associated to an orthonormal basis of
eigenfunctionsf f j gj � 1, f j = ( f 1

j ; : : : ; f p
j ), called principal factors and are solutions of:

Vf j = � j f j ; (1)
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with � 1 � � 2 � : : : and
Z T

0

pX

`=1

f `
j (t)f `

j 0(t)dt = 1 if j = j 0 and 0 otherwise.

The principal componentsCj of X are zero-mean random variables de�ned as the pro-
jections ofX on the eigenfunctions ofV:

Cj =
Z T

0
hX (t) � � (t); f j (t)i Rp dt =

Z T

0

pX

`=1

(X ` (t) � � ` (t)) f `
j (t)dt:

Similar to the univariate setting, the principal components f Cj gj � 1 are zero-mean un-
correlated random variables with variance� j , j � 1.
Saporta (1981) shows that the following Karhunen-Loeve expansion holds in multidi-
mensional context:

X (t) = � (t) +
X

j � 1

Cj f j (t); t 2 [0; T]: (2)

Principal components and principal factors of MFPCA have the same interpretation
as in the functional univariate case. The truncation of (2) at the �rst q terms pro-
vides a reduced dimensional space where classical tools (clustering, regression, ...) from
multivariate analysis can be used to describeX .

2.2. Computational methods for MFPCA
Let x 1; : : : ; x n , with x i = ( x1

i ; : : : ; xp
i ), be the observation of the sampleX 1; : : : ; X n .

The estimators for� (t) and V(s; t), for s; t 2 [0; T], are:

�̂ (t) =
1
n

nX

i =1

x i (t) and V̂ (s; t) =
1

n � 1

nX

i =1

(x i (s) � �̂ (s)) 
 (x i (t) � �̂ (t)) :

In Deville (1974) it has been shown that ^� and V̂ converges to� and V in L2-norm with
convergences rate ofO(n� 1=2).
Often in practice, data are observed at discrete time pointsand with some noise. In
order to get the functional feature of data, smoothing and interpolation methods are
used considering the true curve belongs to a �nite dimensional space spanned by some
basis of functions. This approximation also reduces the eigen-analysis problem (1) to
the one in �nite dimensional setting.
Let assume that each curvex`

i (1 � i � n, 1 � ` � p) can be expressed as a linear
combination of basis functionsf � j

` gj =1 ;m ` :

x`
i (t) =

m `X

j =1

ai`j � j
` (t); t 2 [0; T]: (3)

This can be written with the matrix formulation

x i (t) = �( t)a0
i
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with a i = (a i 11; : : : ; ai 1m1 ; ai 21; : : : ; ai 2m2 ; : : : ; aip1; : : : ; aipm p ) being the vector of the basis
expansion coe�cients, and

�( t) =

0

B
B
@

� 1
1(t) : : : � m1

1 (t) 0 : : : 0
0 : : : 0 � 1

2(t) : : : � m2
2 (t) 0 : : : 0

: : :
0 : : : 0 � 1

p(t) : : : � mp
p (t)

1

C
C
A :

Let ~A be the n �
P p

`=1 m` -matrix, whose rows are the vectors ai , and M(t) the n � p
matrix with values x`

i (t) of functions x`
i at times t 2 [0; T] (1 � i � n, 1 � ` � p). With

these notations, we have

M(t) = ~A� 0(t): (4)

Under the basis expansion assumption (3), the estimator̂V of V , for all s; t 2 [0; T], is
given by:

V̂ (s; t) =
1

n � 1
(M( s) � �̂ 0(s))0(M( t) � �̂ 0(t)) =

1
n � 1

�( s)A 0A� 0(t); (5)

where M(s) � �̂ 0(s) means that the row vector ^� 0(s) is subtracted to each row of M(s),
and A = ( I n � 1In (1=n; : : : ;1=n)) ~A where I n and 1In are respectively the identityn � n-
matrix and the unit column vector of sizen.
From (1) and (5), each principal factorf j belongs to the linear space spanned by the
basis �:

f j (t) = �( t)b0
j (6)

with b j = (b j 11; : : : ; bj 1m1 ; bj 21; : : : ; bj 2m2 ; : : : ; bjp 1; : : : ; bjpm p ).
Using the estimationV̂ of V , the eigen problem (1) becomes

Z T

0
V̂ (s; t)f j (t)dt = � j f j (s);

which, by replacingV̂ (s; t) and f j (s) by their expressions given in (5) and (6), is equiv-
alent to

Z T

0

1
n � 1

�( t)A 0A� 0(t)f 0
j (t)ds = � j �( s)b0

j ; (7)

,
1

n � 1
�( s)A 0A

Z T

0
� 0(t)�( t)dt

| {z }
W

b0
j = � j �( s)b0

j ; (8)
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where W =
RT

0 � 0(t)�( t)dt is de�ned as the symmetric block-diagonal
P p

`=1 m` �P p
`=1 m` -matrix of the inner products between the basis functions.

Since (8) is true for alls, we have:

1
n � 1

A0AWb 0
j = � j b0

j :

By de�ning u j = b j W1=2, the multivariate functional principal component analysis is
reduced to the usual PCA of the matrix 1p

n� 1
AW 1=2:

1
n � 1

W1=20
A0AW 1=2u0

j = � j u0
j :

The coe�cient b j , j � 1, of the principal factorsf j are obtained by bj = (W 1=20
)� 1u0

j ,
and the principal component scores, are given by

Cj = AWb 0
j j � 1:

Note that the principal components scores Cj are also the solutions of the eigenvalues
problem:

1
n � 1

AWA 0Cj = � j Cj :

2.3. Normed principal component analysis
When the X ` 's components ofX (1 � ` � p) are of di�erent natures (di�erent

measure units for example), the question of normalizing data occurs naturally. It is
well known that the principal components are de�ned as maximizing the variance with
respect to the total varianceT race(V) =

P
j � 1 � j . Since,

T race(V) =
Z T

0

pX

j =1

Var(X j (t))dt;

it is clear that componentsX j with large variances plays an important role in de�ning
the principal components. This source of variability is in general not interesting and
hides more interesting features of the data structure. For this reason, except in partic-
ular situations (same scale for allX j 's, for example), normalization is suitable. As in
the classical framework of PCA, this is done by introducing some metrics.
One way to introduce a metric in MFPCA is to consider it as a canonical analysis
(Saporta, 1981), in which the principal components are de�ned as solutions of the fol-
lowing eigen problem:

Z T

0
Pt (Cj )dt = � j Cj ; j � 1 (9)

7



wherePt is the orthogonal projection operator associated withX de�ned as

Pt (Cj ) = < X (t); [V(t; t )]� 1E[X (t)Cj ] > Rp : (10)

Combining (10) and (9) one obtains

Cj =
Z T

0
< X (t) � � (t); f j (t) > Rp dt (11)

wheref j is the solution of the eigenvector problem
Z T

0
[V (s; s)]� 1V(s; t)f j (t)dt = � f (s): (12)

Clearly, [V (s; s)]� 1 must exist for eachs 2 [0; T]. Under this hypothesis, the principal
factors of the normalized MFPCA are the eigenfunctions of the integral operator with
kernel [V(s; s)]� 1V(s; t) as in (12). The Karhunen-Loeve expansion ofX becomes

X (t) = � (t) +
1X

j =1

Cj [V (t; t )]f j (t);

where the principal components Cj , de�ned by (11), have zero mean and variance� j .

Normalization in practice. Observe that ifR(t; t ) is the square root of the matrixV(t; t ),
i.e. V(t; t ) = R(t; t )R(t; t )0, then the MFPCA of X with metric V(t; t ) is equivalent to
the MFPCA of Y de�ned by

Y (t) = R(t; t )� 1X (t);

with identity metric as in Section 2.1. In practice, ifX is observed at timest1; : : : ; tr ,
r > 1, then Y is de�ned from X as

Y (t i ) = R(t i ; t i )� 1X (t i ); i = 1; : : : ; r

and approximation and estimation methodology in Section 2.2 is applied toY .

3. Approximation of the density for multivariate functiona l data

As the notion of probability density is not well de�ned for functional data (Delaigle
and Hall, 2010), we can use an approximation of the density based on the Karhunen-
Loeve expansion (2). Considering the principal componentsindexed upon the descend-
ing order of the eigenvalues (� 1 � � 2 � : : :), and denotingX (q) as the approximation of
X by truncating (2) at the q �rst terms, q � 1, we have

X (q)(t) = � (t) +
qX

j =1

Cj f j (t): (13)
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Then, X (q) is the best approximation ofX , under the mean square criterion, among all
the approximations of the same type (linear combination ofq deterministic functions of
t with random coe�cients, Saporta (1981)).

Based on the approximationX (q) of X , Delaigle and Hall (2010) shows that, in the
casep = 1, the probability of X belonging to a ball of radiush centred atx 2 L2([0; T])p

can be written as

logP(kX � x k � h) =
qX

j =1

logf Cj (cj (x )) + � (h; q(h)) + o(q(h)); (14)

wheref Cj is the probability density of Cj and cj (x ) is the j th principal component score
of x , cj (x ) = < f j ; x > L 2 ([O;T ])p . The functions q and � are such thatq grows to in�nity
when h tends to zero and� depends only onh and q(h).

The equality (14) suggests the use of the multivariate probability density of the
vector C(q) = (C 1; : : : ; Cq) as a surrogatef (q)

X for the \density" of X :

f (q)
X (x ) =

qY

j =1

f Cj (cj (x )) : (15)

Jacques and Preda (2012) use successfully a similar densitysurrogate for the clustering
of univariate functional data.

4. A model based-clustering for multivariate functional da ta

The aim of model-based clustering is to identify homogeneous groups of data sampled
from a mixture density model. In this section, we build a mixture model based on the
surrogate (15) for the density ofX .

Let us consider that there exists a latent group variable Z, of K categories (K groups),
Z = (Z 1; : : : ; ZK ) 2 f 0; 1gK such that Zg = 1 indicates that the multivariate curve X
belongs to the clusterg, 1 � g � K , and Zg = 0 otherwise. For eachi = 1; : : : ; n, let Zi

be the group indicator corresponding toX i .
In the following we suppose thatX jZg =1 is such that eachX `

jZg =1 is a zero-mean
stochastic process (1� ` � p). The number K of groups is assumed to be known. In
the contrary case, an approximation of the BIC criterion (Schwarz, 1978), based on the
approximated likelihood (17), could be used to selectK .

4.1. The mixture model
Let assume that each couple (X i ; Zi ), i = 1; : : : ; n, is an independent realization

of the random vector (X ; Z) where X has a density surrogate depending on its group
belonging:

f (qg )
X j Zg =1

(x ; � g) =
qgY

j =1

f Cj j Zg =1
(cj;g (x ); � j;g )

9



whereqg is the number of principal components retained in the approximation (15) for
the group g, cj;g (x ) is the j th principal component score ofX jZg =1 for X = x , f Cj j Zg =1

its probability density and � g the diagonal matrix of the principal components variances
(� 1;g; : : : ; � qg ;g). Conditionally on the group g, the probability density f Cj j Zg =1

of the j th
principal component ofX is assumed to be the univariate Gaussian density with zero
mean (the principal component are centred) and variance� j;g . This assumption is in
particular satis�ed when X jZg =1 is a Gaussian process.

Remark (Data generation). For a given clusterg, 1 � g � K , provided that theqg

eigenfunctionsf j and eigenvalues� j of the covariance operator ofX jZ g=1 are known,

then, generating an approximationX (qg )
jZ g=1 of X jZ g =1 reduces to generating a real random

variablesCj according to centred Gaussian distributions with variance� j (1 � j � qg).
Of course, that does not generate the trueX jZ g=1 . However, the main structure of
clusters is assumed to be characterized by this type of approximations.

The vector Z = (Z1; : : : ; ZK ) is assumed to have one-order multinomial distribution
M 1(� 1; : : : ; � K ), with � 1; : : : ; � K the mixing proportions (

P K
g=1 � g = 1). Under this

model we can deduce a surrogate for the unconditional density of X :

f (q)
X (x ; � ) =

KX

g=1

� g

qgY

j =1

f Cj j Zg =1
(cj;g (x ); � j;g ) (16)

where� = f (� g; � 1;g; : : : ; � qg ;g)1� g� K g and q = ( q1; : : : ; qK ). From this density surrogate,
we deduce the pseudo likelihood:

l (q)(� ; X ) =
nY

i =1

KX

g=1

� g

qgY

j =1

1
p

2�� j;g
exp

�
�

1
2

C2
i;j;g (X i )

� j;g

�
(17)

where Ci;j;g (X i ) is the j th principal score of the curveX i for the group g and X =
(X 1; : : : ; X n ).

Remark (Identi�ability) . When the approximation orders are di�erent, identi�ability
of the mixture model (16) is straightforward. When all the approximation orders are
equal, the identi�ability of model (16) deduces directly from the identi�ability of mixture
of multivariate Gaussian (Titterington et al., 1985).

4.2. Parameter estimation

In the unsupervised context the estimation of the mixture model parameters is not so
straightforward as in the supervised context since the groups indicators Zi are unknown.
On one hand, we need to use an iterative algorithm which alternates the estimation
of the group indicators, the estimation of the PCA scores foreach group and then
the estimation of the mixture model parameters. On the otherhand, the parameter

10



q = ( q1; : : : ; qg) will be estimated by an empirical method, similar to those used to select
the number of components in usual PCA.

A classical way to maximise a mixture model likelihood when data are missing (here
the clusters indicators Zi ) is to use the iterative EM algorithm (Dempster et al., 1977;
McLachlan and Peel, 2000). In this work we use an EM-like algorithm including, between
the standard E and M steps, a �rst step in which the principal components scores of each
group are updated and a second one in which the approximationorder q are selected.
Our EM-like algorithm consists in maximizing the pseudo completed log-likelihood

L (q)
c (� ; X ; Z) =

nX

i =1

KX

g=1

Zg
i

 

log� g +
qgX

j =1

logf Cj j Zg
i =1

(Ci;j;g (X i ); � j;g )

!

;

where Z= (Z 1; : : : ; Zn). Let � (h) contains the current values of the estimated parameters
at step h, h � 1.

E step. As the group indicators Zg
i 's are unknown, the E step consists in computing the

conditional expectation of the pseudo completed log-likelihood:

Q(� ; � (h)) = E � ( h ) [L (q)
c (� ; X ; Z)jX = x ] =

nX

i =1

KX

g=1

t i;g

0

@log � g +
qgX

j =1

log f Cj j Zg
i =1

(ci;j;g (x i ); � j;g )

1

A

where ci;j;g (x i ) is the value of the random variable Ci;j;g (X i ) for X i = x i , t i;g is the
probability for the multidimensional curve X i to belong to the groupg conditionally to
Ci;j;g (X i ) = c i;j;g (x i ):

t i;g = E � ( h ) [Zg
i jX = x ] '

� g
Q qg

j =1 f Cj j Zg
i =1

(ci;j;g (x i ); � j;g )
P K

l=1 � l
Q ql

j =1 f Cj j Z l
i =1

(ci;j;l (x i ); � j;l )
: (18)

The approximation in (18) is due to the use of the surrogate for the density of X given
by (15).

Principal score updating step.The computation of the principal component scores has
been described in Section 2.2. Here, the principal component scores Ci;j;g of the mul-
tidimensional curveX i in the group g is updated according to the current conditional
probability t i;g computed in the previous E step. This computation is carriedout by
weighting the importance of each curve in the construction of the principal components
with the t i;g 's. Consequently, the �rst step consists in centring the curve X i within the
group g by subtracting the mean curve computed using thet i;g 's: the basis expansion
coe�cients matrix A becomes Ag = ( I n � 1In (t1;g; : : : ; tn;g)) ~A. The j th principal compo-
nent scores Cj;g is then the j th eigenvector of the matrix AgWA 0

gTg associated with the
j th eigenvalue� j;g , with Tg = diag( t1;g; : : : ; tn;g ).

11



Group speci�c dimensionqg estimation step. The estimation of the group speci�c di-
mensionqg is an open problem. In this work we propose to use, once the group speci�c
FPCA have been computed at the previous step, the scree-testof Cattell (1966) in
order to select each group speci�c dimensionqg. The advantage of using this test is
that one hyperparameter (the threshold of the Cattell scree-test) allows to estimateK
approximation orders.

M step. The M step consists of computing the mixture model parameters � (h+1) which
maximizesQ(� ; � (h)) according to � . It leads simply to the following estimators

� (h+1)
g =

1
n

nX

i =1

t i;g ; and � j;g
(h+1) = � j;g ; 1 � j � qg;

where � j;g is the variance of thej th principal component of the clusterg computed in
the principal score updating step.

Convergence and numerical considerations.The proposed estimation algorithm is not
a proper EM algorithm, since the growth of the pseudo likelihood is not guaranteed
between two steps. The main reason is the use of a pseudo likelihood built on an ap-
proximation of the notion of density. Indeed, since only a �nite number of principal
components are used, and since these principal components are computed with di�erent
weights at each iteration of the algorithm (thet i;g 's), the 'data' on which the pseudo
likelihood is computed,i.e. the principal components scores, are not the same at each
step. To avoid this phenomenon, all principal components should be used, which is gen-
erally not applicable for functional data since they form anin�nite set. Thus, the values
of the likelihood can not be directly compared between two iterations. The properties of
the EM algorithm, which guarantee the convergence to a localmaxima of the likelihood
in the classical framework does not work any more. Moreover,the approximation orders
qg, 1 � g � K , are updated at each iteration, and this can also induce an arti�cial
increase or decrease of the pseudo likelihood.
In practice, we adopt the following empirical strategy which allows us to perform nu-
merical applications:

ˆ the algorithm is launched several times with random initializations for a small
number of iterations, and the best reached solution is used as the initialization
point for a longer algorithm (Biernacki, 2004). Typically, 10 small runs with 10
iterations are used in the following experiments.

ˆ the values ofqg are initialized to 1, and they are only allowed to increase.

ˆ the number S of iterations is set as follows: for a givenS (200 for instance),
the algorithm is executed 20 times, andS is considered to be large enough if the
maximum of the pseudo likelihood has been achieved before 3S=4 iterations for
the 20 executions.
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Anticipating the application results, Figure 4 and Figure 6illustrate the trajectories of
the pseudo likelihood and the approximation orders on simulated and real datasets.

5. Numerical experiments

This section is devoted to compare our approach, which we will call Funclust {
as in univariate case (Jacques and Preda, 2012){ with other existing methods. The
evaluation of a clustering algorithm is always a di�cult and subjective task. Following
Guyon et al. (2009), three evaluations strategies are considered in this paper. First,
Funclust is compared to other clustering methods for univariate functional data using
three classi�cation benchmark datasets. Second, a simulation study allows to compare
Funclust with another clustering method for multivariate functional data based on k-
means. Third, a real clustering application on a climatology dataset is carried out. The
clusters obtained by Funclust and the k-means based method are then compared from
the interpretation point of view.

Remark (Data registration). When working with functional data, a curve registration
step is often needed to remove the amplitude and phase variation of curves (Ramsay and
Silverman, 2005, Chap. 7). In our opinion, in the clusteringcontext, the amplitude
and phase variability of curves are interesting elements tode�ne clusters. For instance,
in the Canadian weather example which will be analysed in thesequel, the geographical
interpretation of the clusters is mainly due to amplitude variability. Similarly, for the
Growth dataset, it is shown in Liu and Yang (2009) that performing registration before
or simultaneously with clustering failed in retrieving thegender of subjects, probably
because the main gender di�erence is due to a time wrapping e�ect. For this reason, we
do not perform data registration in this work before our clustering study.

The R code for Funclust is available on request from the authors.

5.1. Benchmark study in the case of univariate functional data
The data. Three real datasets are considered: theKneading, Growth, andECG datasets.
These three datasets, already studied in Jacques and Preda (2012), are plotted on Fig-
ure 1. The �rst dataset (Kneading) comes from Danone Vitapole Paris Research Center
and concerns the quality of cookies and the relationship with the our kneading pro-
cess. The kneading dataset is described in detail in Levederet al. (2004). There are 115
di�erent ours for which the dough resistance is measured during the kneading process
for 480 seconds. One obtains 115 kneading curves observed at241 equispaced instants
of time in the interval [0; 480]. The 115 ours produce cookies of di�erent quality: 50
of them have produced cookies ofgoodquality, 25 producedmedium quality and 40 low
quality. This data has been already studied in a supervised classi�cation context (Lev-
eder et al., 2004; Preda et al., 2007). This data is known to behard to discriminate,
even for supervised classi�ers, partly because of the medium class. The second dataset
(Growth) comes from the Berkeley growth study (Tuddenham and Snyder, 1954) and is
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Figure 1: Kneading, Growth and ECG datasets.

available in thefda package of the softwareR. In this dataset, the heights of 54 girls and
39 boys were measured at 31 stages, from 1 to 18 years. The goalis to cluster the growth
curves and to determine whether the resulting clusters reect gender di�erences. The
last dataset (ECG) is taken from theUCR Time Series Classi�cation and Clustering
website1. This dataset consists of 200 curves from 2 groups sampled at96 time instants,
and has already been studied in Olszewski (2001).

Experimental set-up.For each dataset, the labels indicating the group membership of
observations are available. These labels have been provided by human experts (Kneading
and ECG datasets) or simply by the nature of the individuals (gender for the Growth
dataset). In order to compare the ability of the clustering methods to retrieve the
class labels, we choose to use the correct classi�cation rate (CCR) which measures
the adequacy of the resulting clusters with the known partition. This measure varies
between 0 and 1, and larger the CCR, better the correspondence between the clustering
and the known partition. In order to deal with the labelling problem, all the possible
permutations are tested to label theK groups, and the best CCR is retained.
In this benchmark study, Funclust is compared to three challengers dedicated to the
clustering of univariate functional data: FunHDDC (Bouveyron and Jacques, 2011) and
k-centres (kCFC, Chiou and Li (2007)) which are the closest methods andfclust (James
and Sugar, 2003) which is known to be a good challenger. Note that since no code is
available for kCFC (to the best of our knowledge), only the comparison on the Growth
dataset is possible, thanks to the classi�cation results presented in Chiou and Li (2007).
The number of iterations and the initialization are set as explained in Section 4.2. The
threshold of the Cattell scree test allowing to select the approximation order qk is �xed
to 0.05. With this experimental set-up, Funclust estimation is obtained in about 30
seconds for each dataset, on a laptop (2.80GHz CPU) and with acode inR software.

1http://www.cs.ucr.edu/ � eamonn/time series data/
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Results. The estimated approximation ordersqg for Funclust are the following: Knead-
ing (q1 = 2; q2 = 1; q3 = 3), Growth ( q1 = 2; q2 = 3), ECG ( q1 = 9; q2 = 4). These
qg's are relatively close (or slightly greater) to the numbersq�

g 's of principal components
retained by the Cattell scree test (with the same threshold of 0.05) when carrying out
FPCA on the true classes: Kneading (q�

1 = 1; q�
2 = 1; q�

3 = 2), Growth ( q�
1 = 1; q�

2 = 1),
ECG (q�

1 = 4; q�
2 = 5).

The correct classi�cation rates (CCR) according to the known partitions are given in
Table 1. Funclust performs better than the other methods on two datasets among
three (Kneading and ECG). On the last dataset, the results are relatively poor (69:89%
whereas some method are about 97%), but they can be greatly increased (95:70%) if
the dimensionsqg are �xed to 2. This dataset illustrates that the choice of theapprox-
imation order is a very important question, and that further works have to be carried
out in this direction.

method Kneading Growth ECG
Funclust 66.96 69.89 84
FunHDDC 62.61 96.77 75
fclust 64 69.89 74.5
kCFC - 93.55 -

Table 1: Correct classi�cation rates (CCR) in percentage for Funclust, FunHDDC (best model according
BIC), fclust and kCFC on the Kneading, Growth and ECG datasets.

5.2. Simulation study in the case of multivariate functional data

The data. In this simulation study, the number of clusters is assumed to be known: K=2.
A sample ofn = 50 curves are simulated according to the following model inspired by
Ferraty and Vieu (2003) and Preda (2007): fort 2 [1; 21],

Class 1 : X 1(t) = � 5 + t=2 + U2h3(t) + U3h2(t) +
p

0:1� (t);

X 2(t) = � 5 + t=2 + U1h1(t) + U2h2(t) + U3h3(t) +
p

0:5� (t);

Class 2 : X 1(t) = U3h2(t) +
p

10� (t);

X 2(t) = U1h1(t) + U3h3(t) +
p

0:5� (t);

where U1 � N (0:5; 1=12), U2 � N (0; 1=12) and U3 � N (0; 2=3) are independent
Gaussian variables and� (t) is a white noise, independent ofUi 's and of unit vari-
ance. The function h1, h2 and h3 (plotted on Figure 2) are de�ned, for t 2 [1; 21],
by h1(t) = (6 � j t � 11j)+ where (�)+ mean the positive part,h2(t) = (6 � j t � 7j)+ and
h3(t) = (6 � j t � 15j)+ . The mixing proportions � i 's are chosen to be equal, and the
curves are observed in 1001 equidistant points (t = 1; 1:02; : : : ; 21). Figure 3 plots the
simulated curves.
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Figure 2: Function h1(t) = (6 � j t � 11j)+ , h2(t) = (6 � j t � 7j)+ and h3(t) = (6 � j t � 15j)+ for t 2 [1; 21].
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Figure 3: Bi-dimensional simulated curves for class 1 (top)and class 2 (bottom).

Experimental set-up.Funclust is compared to the multivariate functional data clustering
methods described in Ieva et al. (2011), based on k-means method with the following
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distances:

d1(X ; Y ) =

vu
u
t

2X

j =1

Z T

0
(X j (t) � Yj (t))2dt and d2(X ; Y ) =

vu
u
t

2X

j =1

Z T

0
(X 0

j (t) � Y 0
j (t))2dt;

where X 0
j (t) is the derivative of X j (t). A discussion on these distances in the case of

univariate functional data can be found in Ferraty and Vieu (2003). Since no public
implementation is available for this method, we built our own implementation in the R
software. In particular, the distanced2 was computed using the packagefda.
In addition to these methods, quoted withkmeans-d1 and kmeans-d2 in the sequel,
we consider usual k-means applied on the values of the functions at each observation
points t = 1; 1:02; : : : ; 21 (quoted askmeans-points) and on the coe�cients resulting
from a linear spline smoothing with 30 equidistant knots (kmeans-spline). Linear spline
smoothing has also been used by Funclust, with initialization and iterations number
�xed following Section 4.2, and with a Cattell scree test threshold �xed to 0.05. Since
both componentsX 1 and X 2 have similar covariance structure, the curves have not been
normalized.
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Figure 4: Convergence of the pseudo EM algorithm (top: pseudo likelihood evolution, bottom: ap-
proximation orders evolutions). The red part in the pseudo likelihood stops when the maximum is
achieved.

Results. The convergence of Funclust is illustrated by Figure 4. Table 2 presents the
mean and standard deviation of the correct classi�cation rates (CCR), for 100 simula-
tions. The results con�rm the good behaviour of Funclust that we have already noticed
for univariate functional data.
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method Funclust kmeans-d1 kmeans-d2 kmeans-points kmeans-spline
Mean CCR 86.80 86.32 85.76 80.60 86.14
Std CCR 14.51 16.30 10.28 14.94 15.80

Table 2: Mean and standard deviation (for 100 simulations) of correct classi�cation rates (CCR) in
percentage for Funclust, kmeans-d1, kmeans-d2 and k-means applied on observations points and spline
coe�cients.

5.3. Canadian temperature and precipitation
In this last application, the Canadian temperature and precipitation data (available

in the R packagefda and presented in detail in Ramsay and Silverman (2005)) are used
to compared Funclust with Ieva et al. (2011)'s method (kmeans-d1 and kmeans-d2). The
dataset consists in the daily temperature and precipitation at 35 di�erent locations in
Canada averaged over 1960 to 1994. The goal is to provide a clustering into 4 groups,
and to give a geographical interpretation of the resulting clusters.
Since the units of both curves are di�erent (Celsius degreesand millimetres), the data
are normalized following methodology presented at the end of Section 2.3. Figure 5
plots original and reduced curves. The curve has been smoothed using Fourier basis
with 65 knots, as in Ramsay and Silverman (2005).
Funclust, kmeans-d1 and kmeans-d2 are applied on this dataset. For Funclust, the
initialization and the iterations number has been chosen following Section 4.2 and the
threshold of the Cattell scree test has been �xed to 0.2. The convergence of Funclust is
illustrated by Figure 6. Figure 7 presents the clustering into 4 groups of the Canadian
weather stations using Funclust. We can observe four distinct groups of stations. The
green group is mostly made of northern continental stations, whereas Atlantic stations
and southern continental stations are mostly gathered in the red group. The blue
group mostly contains Paci�c stations and the last group (black) contains only the
northernmost station Resolute (N.W.T.). We recall that all these results have been
obtained without using the geographical positions of the stations.

In comparison, Figure 8 shows the clustering withkmeans-d1 andkmeans-d2 methods,
using the same normalized curves and the same basis approximation. This clustering
seems less pertinent than Funclust clustering since the blue and red group contains both
Atlantic and Paci�c stations. Nevertheless, the black group mainly contains continental
stations whereas in Funclust clustering, continental and Atlantic stations are gathered
together. This last fact is probably due to the Resolute station which is so di�erent from
the others (the temperature and precipitation are the lowest) that Funclust clusters this
station alone apart in a group.

6. Discussion

In this paper we propose a clustering procedure for multivariate functional data based
on an approximation of the notion of density for multivariate random function. We
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