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Abstract

Model-based clustering is considered for multivariate functional data. Based on multivariate
functional principal components analysis (FPCA), a mixture model is defined an estimated by
an EM-like algorithm. The main advantage of the proposed model is the ability to take into
account the dependence among curves, thanks to the multivariate FPCA. Comparisons on
simulated and real data show that the proposed method is a good alternative to conventional
methods.
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1. Introduction

Functional data analysis or ”data analysis with curves” is an active topic in statistics with
a wide range of applications. New technologies allow to record data with accuracy and at high
frequency (in time or other dimension), generating large volume of data. In medicine one has
growth curves of children and patient’s state evolution, inclimatology one records weather
parameters over decades, chemometric curves are analysed in chemistry and physics (spec-
troscopy) and special attention is paid to the evolution of indicators coming from economy
and finance. See Ramsay and Silverman (2005) for more details.

The statistical model underlying data represented by curves is a real-valued stochastic
process with continuous time,X = {Xt}t∈[0,T]. Most of the approaches dealing with functional
data consider the univariate case, i.e.Xt ∈ R, ∀t ∈ [0,T], a path ofX being represented by a
single curve. Despite its evident interest, the multidimensional case,

X(t) = (X1(t), . . . ,Xp(t)) ∈ R
p, p≥ 2

is, curiously, rarely considered in literature. In this case a path ofX is represented by a set
of p curves. The dependency between thesep measures provides the structure ofX. One
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finds in Ramsay and Silverman (2005) a brief example of bivariate functional data,X(t) =
(X1(t),X2(t)) ∈ R

2, as a model for gait data (knee and hip measures) used in the context
of functional principal component analysis (FPCA) as an extension of the univariate case.
For a more theoretical framework, we must go back to the pioneer works of Besse (1979) on
random variables with values into a general Hilbert space. Saporta (1981) provides a complete
analysis of multivariate functional data from the point of view of factorial methods (principal
components and canonical analysis).

In this paper we consider the problem of clustering multivariate functional data. Cluster
analysis aims to identify homogeneous groups of data without using any prior knowledge on
the group labels of data. The main difficulty in clustering functional data arises because of
the infinite dimensional space data belong. Consequently, most of clustering algorithms for
functional data consists of a first step of transforming the infinite dimensional problem into
a finite dimensional one and of a second step of using a clustering method designed for fi-
nite dimensional data. Most of proposed approach consider the k-means algorithm applied to
a B-spline fitting (Abraham et al., 2003), on defined principal points of curves (Tarpey and
Kinateder, 2003) or on the truncated Karhunen-Loeve expansion (Chiou and Li, 2007). San-
galli et al. (2010) use also a k-means algorithm for clustering misaligned curves. As in the
finite dimensional setting, where Gaussian model-based clustering generalizes the k-means
algorithm, some other works introduce more sophisticated model-based techniques: James
and Sugar (2003) define an approach particularly effective for sparsely sampled functional
data, Ray and Mallick (2006) propose a nonparametric Bayes wavelet model for clustering of
functional data based on a mixture of Dirichlet processes, Frühwirth-Schnatter and Kaufmann
(2008) build a specific clustering algorithm based on parametric time series models, Bou-
veyron and Jacques (2011) extend the high-dimensional dataclustering algorithm (HDDC,
Bouveyron et al. (2007)) to the functional case and Jacques and Preda (2012) build a model-
based clustering based on an approximation of the notion of density –which in general does
not exists– for functional data.

The case of multivariate functional data is rarely considered in literature: Singhal and
Seborg (2005) and Ieva et al. (2011) use a k-means algorithm based on specific distances be-
tween multivariate functional data, whereas Kayano et al. (2010) consider Self-Organizing
Maps based on the coefficients of multivariate curves into orthonormalized Gaussian basis
expansions. Tokushige et al. (2007) extend crisp and fuzzy k-means algorithms for multi-
variate functional data by considering an usual distance between functions, but applied their
algorithms only on univariate functional data.

In the finite dimensional setting, model-based clustering algorithms consider that data is
sampled from a mixture of density probabilities. This is notdirectly applicable to functional
data since the notion of density probability generally doesnot exist for functional random vari-
able (Delaigle and Hall, 2010). Consequently, model-basedclustering algorithms assume a
parametric distribution on some finite set of coefficients characterizing the curves. In Jacques
and Preda (2012), the authors use the density surrogate defined in Delaigle and Hall (2010) to
build a model-based clustering for univariate functional data. This density surrogate, based on
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the truncation of the Karhunen-Loeve expansion, relies on the density probability of the first
principal components of the curves (Ramsay and Silverman, 2005). In this paper we propose
an extension of Jacques and Preda (2012) approach to multivariate functional data. We firstly
introduce principal component analysis for multivariate functional data and assume a cluster-
specific Gaussian distribution for the principal componentscores. The elements derived from
FPCA are estimated using approximation for the multivariate curves into a finite dimnesional
functional space. The number of first principal components used in the density surrogate as
well as the computation of the principal component scores are cluster specific.

The main advantage of our model is its ability to take into account dependency between
the p curves, thanks to the principal component analysis for multivariate functional data.

The paper is organized as follows. Section 2 introduces the model for multivariate func-
tional data and present the principal components analysis for this type of data. Estimation
and approximation details are provided. Section 3 defines anapproximation of the probabil-
ity density for multivariate functional random variable. The model-based clustering approach
and parameters estimation by an EM-like algorithm are presented in Section 4. Comparisons
with existing methods on simulated and real datasets are presented in Section 5.

2. Principal component analysis for multivariate functional data

Principal component analysis for multivariate functionaldata (MFPCA) has already been
suggested in Ramsay and Silverman (2005) and Berrendero et al. (2011). In Ramsay and
Silverman (2005) the authors propose to concatenate the observations of the functions at a
fine grid of points (or the coefficients in a suitable basis expansion) into a single vector and
then to perform a standard PCA on these concatenated vectors. When a basis expansion is
used, this method forces to consider only orthonormal basessince the metric induces by the
scalar product between the basis functions is not taken intoaccount. In Berrendero et al.
(2011), the authors propose to not summarize the curves withscalar principal components as
in usual FPCA, but with functional ones. For this, they carryout classical multivariate PCA
for each value of the domain on which the functions are observed and suggest an interpolation
method to build functional principal components.

Our approach is close to Ramsay and Silverman (2005) but by taking into account the
possible use of non orthonormal basis. In particular, our method allows to use different basis
for each dimension of the multivariate curves.

Let Ω be a population space of statistical units andsn = {ω1,ω2, . . . ,ωn} be a random
sample of sizen drawn fromΩ. Let X be a random variable defined onΩ associating to
ω ∈ Ω a set ofp curves,p≥ 2, each one defined on the finite interval[0,T], 0< T < ∞, i.e

X(ω) = {(Xω,1(t), . . . ,Xω,p(t)), t ∈ [0,T]}.

The observation ofX on the samplesn provides the set{X(ω1), . . . ,X(ωn)} of multivariate
curves calledmultivariate functional data. From thesn curves, one can be interested in op-
timal representation of curves in a reduced dimensional function space (principal component
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analysis), or in clustering, by determining an optimal partition of sn with respect to some dis-
tance or homogeneity criterion. In order to address these two questions in a formal way, we
need the hypothesis that considersX = (X1, . . . ,Xp) is aL2 continuous stochastic process,

lim
h→0

E
[
‖X(t +h)−X(t)‖2]= lim

h→0

∫ T

0

p

∑
ℓ=1

E
[
(Xℓ(t +h)−Xℓ(t))

2]= 0.

Notice thatL2-continuity of X implies L2-continuity of each component ofX, i.e. Xℓ is a
L2-continuous stochastic process for allℓ = 1, . . . , p. The L2-continuity is a quite general
hypothesis, most of real data applications satisfying thisone.

Let denote byµℓ = {µℓ(t) = E[Xℓ(t)], t ∈ [0,T]} the mean function ofXℓ and by

µ = (µ1, . . .µp) = E[X],

the mean function ofX.
The covariance operator ofX is defined as an integral operatorC with kernel

C(t,s) = E [(X(t)−µ(t))⊗ (X(s)−µ(s))],

where⊗ is the tensor product onRp. Thus,C(t,s) is a p× p matrix with elements

C(t,s)[i, j] = Cov(Xi(t),Xj(s)), i, j = 1, . . . p.

The covariance operator ofX, C : L2([0,T])p → L2([0,T])p is defined by

f C7−→ g, g(t) =

∫ T

0
C(t,s)f(s)ds, t ∈ [0,T],

wheref = ( f1, . . . , fp) andg = (g1, . . . ,gp) are elements ofL2([0,T])p.

2.1. Principal components analysis ofX
Under the hypothesis ofL2-continuity,C is an Hilbert-Schmidt operator, i.e compact, self-

adjoint and such that∑ j≥1λ 2
j < +∞. The spectral analysis ofC provides a countable set of

positive eigenvalues{λ j} j≥1 associated to an orthonormal basis of eigen-functions{f j} j≥1,
f j = ( f j ,1, . . . , f j ,p), called principal factors:

Cf j = λ j f j , (1)

with λ1 ≥ λ2 ≥ . . . and〈fi, f j〉L2([0,T])p =

∫ T

0

p

∑
ℓ=1

fi,ℓ(t) f j ,ℓ(t) = δi, j with δi, j = 1 if i = j and 0

otherwise.
The principal componentsCj of X are zero-mean random variables defined as the projections
of X on the eigenfunctions ofC,

Cj =
∫ T

0
〈X(t)−µ(t), f j(t)〉Rpdt =

∫ T

0

p

∑
ℓ=1

(Xℓ(t)−µℓ(t)) f j ,ℓ(t)dt.
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Let recall that, as in the univariate setting, the principalcomponents{Cj} j≥1 are zero-mean
uncorrelated random variables with varianceV(Cj) = λ j , j ≥ 1.
The following Karhunen-Loeve expansion holds (Saporta, 1981),

X(t) = µ(t)+ ∑
j≥1

Cj f j(t),

and the approximation of orderq of X, q∈ N
∗,

X(q)(t) = µ(t)+
q

∑
j=1

Cj f j(t),

is the best approximation of this form under the mean square criterion.

2.2. Estimation and computational methods

Let consider the random sample of sizen, sn = {ω1,ω2, . . . ,ωn}, and denote byxi =
(xi1, . . . ,xip)

′ = X(ωi)
′. The estimators forµ andC are

µ̂ =
1
n

n

∑
i=1

xi and Ĉ(t,s) =
1

n−1

n

∑
i=1

(xi(t)− µ̂(t))⊗ (xi(s)− µ̂(s)).

In Deville (1974) it is shown that̂µ andĈ converges toµ andC in L2-norm with convergences
rate ofO(n−1/2).

2.2.1. Approximation into a finite basis of functions
Often in practice, data are observed at discrete time pointsand with some noise. In order to

get the functional feature of data, smoothing and interpolation methods are used considering
the true curve belongs to a finite dimensional space spanned by some basis of functions. This
approximation reduces also the eigen-analysis problem (1)to one in finite dimensional setting.

Let assume that each curvexiℓ (1 ≤ ℓ ≤ p) can be expressed as a linear combination of
basis functionsΦℓ = (φℓ1, . . . ,φℓqℓ

):

xiℓ(t) =
qℓ

∑
j=1

ξiℓ jφℓ j(t).

This can be written with the matrix formulation

xi = Φa′i

with

Φ =







φ11 . . . φ1q1 0 . . . 0
0 . . . 0 φ21 . . . φ2q2 0 . . . 0

. . .
0 . . . 0 φp1 . . . φpqp
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and

ai = (ξi11, . . . ,ξi1q1,ξi21, . . . ,ξi2q2, . . . ,ξip1, . . . ,ξipqp).

The samplesn providesn paths ofX, xi = X(ωi), i = 1, . . . ,n. Putx = (x1, . . . ,xn)
′. we

have

x = ÃΦ′ (2)

with Ã then×∑p
ℓ=1qℓ-matrix, with rows the vectorsai (i = 1, . . . ,n).

Under the previous basis expansion assumption, the covariance matrix estimator̂C(t,s) is

Ĉ(t,s) =
1

n−1
(x(t)− µ̂(t))′(x(s)− µ̂(s)) =

1
n−1

Φ(t)A′AΦ′(s),

with A = (In−1In(1/n, . . . ,1/n))Ã whereIn and 1In are respectively the identityn×n-matrix
and the unit column vector of sizen.
From (1), each principal factorf j belongs to the linear space spanned by the basisΦ:

f j = Φb′
j

with b = (b j11, . . . ,b j1q1,b j21, . . . ,b j2q2, . . . ,b jp1, . . . ,b jpqp).

Then

Cf j =
∫ T

0
C(t,s)f j(s)ds=

∫ T

0

1
n−1

Φ(t)A′AΦ′(s)f j(s)ds (3)

=
∫ T

0

1
n−1

Φ(t)A′AΦ′(s)Φ(s)b′
jds=

1
n−1

Φ(t)A′A
∫ T

0
Φ′(s)Φ(s)ds

︸ ︷︷ ︸

W

b′
j (4)

whereW =
∫ T

0 Φ′(s)Φ(s)ds is the symmetric block-diagonal∑p
ℓ=1qℓ×∑p

ℓ=1qℓ-matrix of the
inner products between the basis functions.

The eigen-analysis problem (1) can be written as

1
n−1

Φ(t)A′AWb′
j = λ jΦ(t)b′

j (5)

which becomes, since (5) is true for allt,

1
n−1

A′AWb′
j = λ jb′

j .

By definingu j = b jW1/2, the multivariate functional principal component analysis is approx-
imated by the usual PCA of the matrix1√

n−1
AW1/2:

1
n−1

W1/2′A′AW1/2u′
j = λ ju′

j .
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The coefficientb j , j ≥ 1, of the principal factors are obtained byb j = (W1/2′)−1u′
j , and the

principal component scores,
Cj = AWb′

j j ≥ 1.

Note that the principal components scoresCj are also solutions of the eigenvalues problem:

1
n−1

AWA′Cj = λ jCj .

2.3. Normed principal component analysis

When theXℓ’s components ofX (1 ≤ ℓ ≤ p) are of different natures (different measure
units for example), the question of normalizing data occursnaturally. One way to introduce a
metric in MFPCA is to consider it as a canonical analysis (Saporta, 1981).

The principal components are then defined as solutions of thefollowing eigen problem:

∫ T

0
Pt(C̃)dt = λ C̃, (6)

wherePt is the orthogonal projection operator associated toX(t) = (X1(t), . . . ,Xp(t)) defined
by

Pt(C̃) =< X(t), [C(t, t)]−1
E[X(t)C̃] >Rp . (7)

Replacing (7) into (6) one obtains that

C̃ =
∫ T

0
< X(t)−µ(t), f(t) > dt

wheref is solution of the eigenvector problem

∫ T

0
[C(t, t)]−1C(t,s)f(s)ds= λ f(t). (8)

Clearly, [C(t, t)]−1 must exist for eacht ∈ [0,T]. Under this hypothesis, the principal
factors of the normalized MFPCA are the eigenfunctions of the integral operator with kernel
[C(t, t)]−1C(t,s) as in (8). Notice that with the orthogonality condition on the principal factors

∫ T

0
< fi(t), [C(t, t)] f j(t) >Rp= δi j , i, j ≥ 1,

with δi j = 1 if i = j, 0 otherwise. The Karhunen-Loeve expansion ofX becomes

X(t) = µ(t)+
∞

∑
j=1

C̃j .[C(t, t)].f j(t),

with C̃j =
∫ T

0 < X(t)−µ(t), f j(t) > dt, Var(C̃j) = λ j andE[C̃j ] = 0.
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Remark.Observe that ifR(t, t) is the square root of the matrixC(t, t), i.e.

C(t, t) = R(t, t)R(t, t)′,

then the MFPCA ofX with metricC(t, t) is equivalent to the MFPCA ofY defined by

Y(t) = R(t, t)−1X(t),

with identity metric as in Section 2.1.
In practice, ifX is observed at timest1, . . . , tr, r > 1, thenY is defined fromX as

Y(ti) = R(ti, ti)
−1X(ti), i = 1, . . . , r

and approximation and estimation methodology in Section 2.2.1 is applied toY.

3. Approximation of the density for multivariate functional data

As the notion of probability density is not well defined for functional data (Delaigle and
Hall, 2010), we can use an approximation of the density basedon the Karhunen-Loeve expan-
sion, adapted here to the multidimensional nature of the data:

X(t)−µ(t) =
∞

∑
j=1

Cj f j(t). (9)

Considering the principal components indexed upon the descending order of the eigenvalues
(λ1≥ λ2 ≥ . . .), let denote byX(q) the approximation ofX by truncating (9) at theq first terms,
q≥ 1,

X(q)(t)−µ(t) =
q

∑
j=1

Cj f j(t). (10)

Then,X(q) is the best approximation ofX, under the mean square criterion, among all the
approximations of the same type (linear combination ofq deterministic functions oft with
random coefficients, Saporta (1981)).

Based on the approximation ofX by X(q), in Delaigle and Hall (2010) it is shown that the
probability ofX to belong to a ball of radiush centred inx ∈ L2([0,T])p can be written as

logP(‖X−x‖ ≤ h) =
q

∑
j=1

log fCj (c j(x))+ ξ (h,q(h))+o(q(h)), (11)

where fCj is the probability density ofCj andc j(x) is the jth principal component score ofx,
c j(x) =< f j ,x >L2([O,T])p. The functionsq(h) andξ are such thatq(h) grows to infinity when
h decreases to zero andξ is a constant depending onh andq(h).
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The equality (11) suggests the use of the multivariate probability density of the vector
C(q) = (C1, . . . ,Cq) as a surrogate for the ”density” ofX:

f (q)
X (x) =

q

∏
j=1

fCj (c j(x)), (12)

Jacques and Preda (2012) use successfully a similar densitysurrogate for the clustering of
univariate functional data.

4. A model based-clustering for multivariate functional data

The aim of model-based clustering is to identify homogeneous groups of data sampled
from a mixture densities model. In this section, we build a mixture model based on the
surrogate (12) for the density ofX.

Let us consider that there exists a latent group variableZ, of K categories (K groups),
Z = (Z1, . . . ,ZK) ∈ {0,1}K such thatZg = 1 indicates that the multivariate curveX belongs to
the clusterg, 1≤ g≤ K, andZg = 0 otherwise. For eachi = 1, . . . ,n, let associate toXi the
corresponding group indicatorZi .

In the following we suppose thatX|Zg=1 is such that eachXℓ|Zg=1 is a zero-mean stochastic
process (1≤ ℓ ≤ p). The numberK of groups is assumed to be known.

4.1. The mixture model

Let assume that each couple(Xi,Zi) is an independent realization of the random vector
(X,Z) whereX has a density surrogate depending on its group belonging:

f
(qg)
X|Zg=1

(x;Σg) =
qg

∏
j=1

fCj |Zg=1
(c j ,g(x);λ j ,g)

whereqg is the number of the first principal components retained in the approximation (12)
for the groupg, c j ,g(x) is the jth principal component score ofX|Zg=1 for X = x, fCj |Zg=1

its probability density andΣg the diagonal matrix of the principal components variances
(λ1,g, . . . ,λqg,g). Conditionally to the group, the probability densityfCj |Zg=1

of the jth prin-

cipal component ofX is assumed to be the univariate Gaussian density with zero mean (the
principal component are centred) and varianceλ j ,g. This assumption is satisfied whenX|Zg=1
is a Gaussian process.

The vectorZ = (Z1, . . . ,ZK) is assumed to have multinomial distributionM1(π1, . . . ,πK)
of order 1, withπ1, . . . ,πK the mixing proportions (∑K

g=1πg = 1). Under this model we can
deduce a surrogate for the unconditional density ofX:

f (q)
X (x;θ) =

K

∑
g=1

πg

qg

∏
j=1

fCj |Zg=1
(c j ,g(x);λ j ,g) (13)
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whereθ = {(πg,λ1,g, . . . ,λqg,g)1≤g≤K} andq = (q1, . . . ,qK). From this density surrogate, we
deduce a pseudo likelihood:

l (q)(θ;X) =
n

∏
i=1

K

∑
g=1

πg

qg

∏
j=1

1
√

2πλj ,g
exp

(

−1
2

C2
i, j ,g(Xi)

λ j ,g

)

(14)

whereCi, j ,g(Xi) is the jth principal score of the curveXi for the groupg.

4.2. Parameter estimation

In the unsupervised context the estimation of the mixture model parameters is not so
straightforward as in the supervised context since the groups indicatorsZi are unknown. On
the one hand, we need to use an iterative algorithm which alternate the estimation of the group
indicators, the estimation of the PCA scores for each group and then the estimation of the mix-
ture model parameters. On the other hand, the parameterq = (q1, . . . ,qg) will be estimated by
an empirical method, similar to those used to select the number of components in usual PCA.

A classical way to maximise a mixture model likelihood when data are missing (here the
clusters indicatorsZi) is to use the iterative EM algorithm (McLachlan and Peel, 2000). In
this work we use an EM-like algorithm including, between thestandard E and M steps, a first
step in which the principal components scores of each group are updated and a second one in
which the approximation orderq are selected. Our EM-like algorithm consists in maximizing
the pseudo completed log-likelihood

L(q)
c (θ;X,Z) =

n

∑
i=1

K

∑
g=1

Zi,g

(

logπg+
qg

∑
j=1

log fCj |Zg=1
(Ci, j ,g(Xi);λ j ,g)

)

.

Let θ(h) be the current value of the estimated parameter at steph, h≥ 1.

E step.As the group indicatorsZi,g’s are unknown, the E step consists in computing the
conditional expectation of the pseudo completed log-likelihood:

Q(θ;θ(h)) = Eθ (h) [L
(q)
c (θ;X,Z)|X = x] =

n

∑
i=1

K

∑
g=1

ti,g

(

logπg+
qg

∑
j=1

log fCj |Zg=1
(ci, j,g(xi);λ j,g)

)

whereci, j ,g(xi) is the value of the random variableCi, j ,g(Xi) for Xi = xi , ti,g is the probabil-
ity for the multidimensional curveXi to belong to the groupg conditionally toCi, j ,g(Xi) =
ci, j ,g(xi):

ti,g = Eθ(h)[Zi,g|X = x] ≃
πg∏qg

j=1 fCj |Zi,g=1
(ci, j ,g(xi);λ j ,g)

∑K
l=1πl ∏ql

j=1 fCj |Zi,l =1
(ci, j ,l(xi);λ j ,l)

. (15)

The approximation in (15) is due to the use of a surrogate for the density ofX given by (12).
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Principal score updating step.The computation of the principal component scores has been
described in Section 2.2. Here, the principal component scoresCi, j ,g of the multidimensional
curveXi in the groupg, is updated depending on the current conditional probability ti,g com-
puted in the previous E step. This computation is carried outby weighting the importance of
each curve in the construction of the principal components with the conditional probabilities
Tg = diag(t1,g, . . . , tn,g). Consequently, the first step consists in centring the curveXi within
the groupg by subtracting the mean curve computed using theti,g’s: the basis expansion coef-
ficients matrixA becomesAg = (In−1In(t1,g, . . . , tn,g))Ã. The jth principal component scores
Cj ,g is then thejth eigenvector of the matrixAgWA′

gTg associated to thejth eigenvalueλ j ,g.

Group specific dimension qg estimation step.The estimation of the group specific dimension
qg is an open problem. In this work we propose to use, once the group specific FPCA have
been computed at the previous step, the scree-test of Cattell (1966) in order to select each
group specific dimensionqg. The advantage of using this test is that one hyperparameter(the
threshold of the Cattell scree-test) allows to estimateK approximation orders.

M step. The M step consists in computing the mixture model parameters θ(h+1) which maxi-
mizesQ(θ;θ(h)) according toθ. It leads simply to the following estimators

π(h+1)
g =

1
n

n

∑
i=1

ti,g, and λ j ,g
(h+1) = λ j ,g, 1≤ j ≤ qg,

whereλ j ,g is the variance of thejth principal component of the clusterg computed in the
principal score updating step.

Convergence and numerical considerations.Notice that theqg estimation step could lead to
modify the number of principal components used in the density surrogate at each iteration of
the algorithm. A change of dimension will lead to an artificial change (increase or decrease)
in the density surrogate, and then in the pseudo likelihood,without moving the values of the
model parameters. Thus, during the iterations of the algorithm, the pseudo likelihood is not
necessarily increasing, and we loose the usual properties of the EM algorithm. In particular,
the pseudo likelihood is not strictly increasing, and the algorithm can not be stopped at its
convergence as usually. We decide to stop the algorithm after a fixed number of iterations,
and to choose the best reached solutions. A stopping criterion at the convergence of the
classification (same classification for consecutive steps)has also been tested, but the results
are more stable with the fixed number of iterations.
Moreover, in order to avoid the convergence to a local maximum, the estimation algorithm
is launched several times with random initializations for asmall number of iterations, and
the best reached solution is used as the initialization point for a longer algorithm (Biernacki,
2004).

5. Numerical experiments

This section is devoted to compare our approach, we will callFunclust–as in univariate
case (Jacques and Preda, 2012)– with other existing methods. The numerical experiments
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are organized in three parts. First, Funclust is compared toclustering methods for univariate
functional data using three real datasets. Then Funclust iscompared to multivariate functional
data clustering methods based on k-means using a simulated dataset in a second part and a
climatology dataset in a third part.

5.1. Benchmark study in the case of univariate functional data

The data.Three real datasets are considered: theKneading, Growth, andECGdatasets. These
three datasets, already studied in Jacques and Preda (2012), are plotted on Figure 1.
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Figure 1:Kneading, GrowthandECGdatasets.

The first dataset (Kneading) comes from Danone Vitapole Paris Research Center and con-
cerns the quality of cookies and the relationship with the flour kneading process. The kneading
dataset is described in detail in Leveder et al. (2004). There are 115 different flours for which
the dough resistance is measured during the kneading process for 480 seconds. One obtains
115 kneading curves observed at 241 equispaced instants of time in the interval[0,480]. The
115 flours produce cookies of different quality: 50 of them have produced cookies ofgood
quality, 25 producedmediumquality and 40low quality. These data, have been already stud-
ied in a supervised classification context (Leveder et al., 2004; Preda et al., 2007). They are
known to be hard to discriminate, even for supervised classifiers, partly because of the medium
class. The second dataset (Growth) comes from the Berkeley growth study (Tuddenham and
Snyder, 1954) and is available in thefdapackage of the softwareR. In this dataset, the heights
of 54 girls and 39 boys were measured at 31 stages, from 1 to 18 years. The goal is to cluster
the growth curves and to determine whether the resulting clusters reflect gender differences.
The last dataset (ECG) is taken from theUCR Time Series Classification and Clusteringweb-
site1. This dataset consists of 200 curves from 2 groups sampled at96 time instants, and has
already been studied in Olszewski (2001).

1http://www.cs.ucr.edu/∼eamonn/timeseriesdata/
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Experimental setup.For each dataset, the labels indicating the group membership for each
observation are available. These labels have been providedby human experts (Kneading and
ECG datasets) or simply by the nature of the individuals (gender for the Growth dataset). In
order to compare the clustering ability of the studied methods, we choose to use the correct
classification rate (CCR) which measures the adequation of the resulting clustering with the
known partition. This measure varies between 0 and 1, and larger the CCR is, better the
clustering algorithm performs.

In this benchmark study, Funclust is compared to three challengers dedicated to the clus-
tering of functional data: FunHDDC (Bouveyron and Jacques,2011) andk-centres (kCFC,
Chiou and Li (2007)) which are the closest methods andfclustJames and Sugar (2003) which
is known to be a good challenger. Notice that kCFC being not available as a computer code
(at our knowledge), only the comparison on the Growth dataset has been possible thanks to
the classification results presented in Chiou and Li (2007).

The maximum number of iterations is fixed to 200. Since the iterations corresponding
to the retained solutions (according to the best pseudo-likelihood) were always relatively far
from the last one, we judge this maximum number of iterationsas sufficient. The threshold of
the Cattell scree test allowing to select the approximationorderqk is fixed to 0.05. In order to
avoid convergence to a local maximum of the pseudo likelihood, our EM-like algorithm has
been initialized with the best solutions of 20 small EM-likealgorithms with 20 iterations each
Biernacki (2004). With this experimental setup, Funclust estimation is obtained in about 30
seconds for each dataset, on an usual laptop and with a code inR software.

Results.The estimated approximation ordersqg for Funclust are the following: Kneading
(q1 = 2, q2 = 1, q3 = 3), Growth (q1 = 2, q2 = 3), ECG (q1 = 9, q2 = 4). The correct
classification rates (CCR) according to the known partitions are given in Table 1. Funclust
performs better than the other methods on two datasets amongthree (Kneading and ECG). On
the last dataset, the results are relatively poor (69.89% whereas some method are about 97%),
but they can be greatly increased (95.70%) if the dimensionsqg are fixed to 2. This dataset
illustrates that the choice of the approximation order is a very important question, and that
further works have to be carried out in this direction.

method Kneading Growth ECG
Funclust 66.96 69.89 84
FunHDDC 62.61 96.77 75
fclust 64 69.89 74.5
kCFC - 93.55 -

Table 1: Correct classification rates (CCR) in percentage for Funclust, FunHDDC (best model according BIC),
fclust and kCFC on the Kneading, Growth and ECG datasets.
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5.2. Simulation study in the case of multivariate functional data

The data.In this simulation study, the number of clusters is assumed to be known: K=2. A
sample ofn = 50 curves are simulated according to the following model inspired by Ferraty
and Vieu (2003) and Preda (2007):

Class 1 : X1(t) = −5+ t/2+U2h3(t)+U3h2(t)+
√

0.1ε(t), t ∈ [1,21],

X2(t) = −5+ t/2+U1h1(t)+U2h2(t)+U3h3(t)+
√

0.5ε(t), t ∈ [1,21],

Class 2 : X1(t) = U3h2(t)+
√

10ε(t), t ∈ [1,21],

X2(t) = U1h1(t)+U3h3(t)+
√

0.5ε(t), t ∈ [1,21],

whereU1 ∼N (0.5,1/12),U2 ∼N (0,1/12) andU3 ∼N (0,2/3) are independent Gaussian
variables andε(t) is a white noise, independent ofUi ’s and of unit variance. The functionh1,
h2 andh3 (plotted on Figure 2) are defined, fort ∈ [1,21], by h1(t) = (6−|t −11|)+ where
(·)+ mean the positive part,h2(t) = (6−|t−7|)+ andh3(t) = (6−|t−15|)+.
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Figure 2: Functionh1(t) = (6−|t−11|)+, h2(t) = (6−|t−7|)+ andh3(t) = (6−|t−15|)+ fort ∈ [1,21] .

The mixing proportionsπi ’s are chosen to be equal, and the curves are observed in 1001
equidistant points (t = 1,1.02, . . . ,21). Figure 3 plots the simulated curves.

Experimental setup.Funclust is compared to the multivariate functional data clustering meth-
ods described in Ieva et al. (2011), based on k-means method with the following distances:

d1(X,Y) =

√
√
√
√

2

∑
j=1

∫ T

0
(Xj(t)−Yj(t))2dt and d2(X,Y) =

√
√
√
√

2

∑
j=1

∫ T

0
(X′

j(t)−Y′
j (t))

2dt,

whereX′
j(t) is the derivative ofXj(t). A discussion on these distances in the case of univariate

functional data can be found in Ferraty and Vieu (2003). Since no public implementation is
available for this method, we built our own implementation in theR software. In particular,
the distanced2 was computed using the packagefda.
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Figure 3: Bi-dimensional simulated curves for class 1 (top)and class 2 (bottom).

In addition to these methods, namedkmeans-d1 and kmeans-d2 in the following, we con-
sider usual k-means applied on the values of the functions ateach observation pointst =
1,1.02, . . . ,21 (quoted askmeans-points) and on the coefficients resulting from a linear spline
smoothing with 30 equidistant knots (kmeans-spline). Linear spline smoothing has also been
used by Funclust in the principal score updating step. The others Funclust setting (Cattell
threshold, initialization) are the same as for the previousexperiments in the univariate case.
Since both componentsX1 andX2 have similar covariance structure, the curves have not been
normalized.

Results.Table 2 presents the mean and standard deviation of the correct classification rates
(CCR), for 100 simulations. The results confirm the good behaviour of Funclust that we have
already noticed for univariate functional data.

5.3. Canadian temperature and precipitation
In this last application, the Canadian temperature and precipitation data (available in the

R packagefda and presented in detail in Ramsay and Silverman (2005)) are used to com-
pared Funclust with other clustering methods for multivariate functional data (kmeans-d1 and
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method Funclust kmeans-d1 kmeans-d2 kmeans-points kmeans-spline
Mean CCR 86.80 86.32 85.76 80.60 86.14
Std CCR 14.51 16.30 10.28 14.94 15.80

Table 2: Mean and standard deviation (for 100 simulations) of correct classification rates (CCR) in percentage
for Funclust, kmeans-d1, kmeans-d2 and k-means applied on observations points and spline coefficients.

kmeans-d2). The dataset consists in the daily temperature and precipitation at 35 different
locations in Canada averaged over 1960 to 1994. The goal is toprovide a classification into 4
groups, and to compare this classification with a natural andintuitive geographical classifica-
tion.
Since the unit of both curves are different (Celsius degreesand millimetres), the data are nor-
malized following methodology presented at the end of Section 2.3. Figure 4 plots original
and reduced temperature and precipitation curves.

Figure 5 presents the classification into 4 groups of the Canadian weather stations using
Funclust, with Fourier basis approximation (65 knots) and aCattell scree test threshold fixed
at 0.2. We can observe four distinct groups of stations. The green group is mostly made of
northern continental stations, whereas Atlantic stationsand southern continental stations are
mostly gathered in the red group. The blue group mostly contains Pacific stations and the last
group (black) contains only the northernmost station Resolute (N.W.T.). We recall that all
these results have been obtained without using the geographical positions of the stations.

In comparison, Figure 6 shows the classification withkmeans-d1 andkmeans-d2 meth-
ods, using the same normalized curves and the same basis approximation. This classification
seems less pertinent than Funclust classification since theblue and red group contains both At-
lantic and Pacific stations. Nevertheless, the black group mainly contains continental stations
whereas in Funclust classification, continental and Atlantic stations are gathered together.
This last fact is probably due to the Resolute station which is so different from the others (the
temperature and precipitation are from far the lowest) thatFunclust classifies this station alone
in a apart group.

6. Discussion

In this paper we propose a clustering procedure for multivariate functional data based on
an approximation of the notion of density for multivariate random function. The main tool
is the principal component analysis of multivariate functional data and the use of probability
densities of principal components scores. Assuming that the multivariate functional data are
sampled from a multivariate Gaussian process, the resulting mixture model is an extrapolation
of the finite dimensional Gaussian mixture model to the infinite dimensional setting. In com-
parison to other clustering techniques for multivariate functional data, our procedure has the
advantage to take into account the dependency between the components of the multivariate
data. An EM-like algorithm is proposed for the parameter estimation, and applications on real
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Figure 4: .Temperature and precipitation curves for 35 locations in Canada, averaged over 1960 to 1994. The
top figures are the original curves and the bottom figures are the reduced ones.

and simulated data exhibit an interesting clustering accuracy of the proposed method.
Some questions still remain open and further research are tobe undertaken to provide

answers. First of all, as previously discussed, the selection of the approximation orders is a
great challenge for which we actually use an empirical method. Moreover, since only an ap-
proximation of the likelihood is available, usual questions such as the selection of the number
of clusters or the proofs of the convergence of the estimation algorithm are currently without
response.
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