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Abstract

Model-based clustering is considered for multivariatectional data. Based on multivariate
functional principal components analysis (FPCA), a migtomodel is defined an estimated by
an EM-like algorithm. The main advantage of the proposedehisdthe ability to take into
account the dependence among curves, thanks to the maitey&PCA. Comparisons on
simulated and real data show that the proposed method iscajtesnative to conventional
methods.

Keywords: Multivariate functional data, density approximation, rebased clustering,
multivariate functional principal component analysis, BMorithm

1. Introduction

Functional data analysis or "data analysis with curves'higetive topic in statistics with
awide range of applications. New technologies allow to récata with accuracy and at high
frequency (in time or other dimension), generating largew of data. In medicine one has
growth curves of children and patient’s state evolutionglimatology one records weather
parameters over decades, chemometric curves are anatysbdmistry and physics (spec-
troscopy) and special attention is paid to the evolutiomaidators coming from economy
and finance. See Ramsay and Silverman (2005) for more details

The statistical model underlying data represented by suive real-valued stochastic
process with continuous timg,= {Xt}te[O,T]- Most of the approaches dealing with functional
data consider the univariate case, Me< R, Vt € [0, T], a path ofX being represented by a
single curve. Despite its evident interest, the multidisienal case,

X(t) = (Xa(t),...,Xp(t)) eRP, p>2

is, curiously, rarely considered in literature. In thiseaspath ofX is represented by a set
of p curves. The dependency between thpseeasures provides the structurexaf One
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finds in Ramsay and Silverman (2005) a brief example of taarfunctional dataX(t) =
(X1(t),X2(t)) € R?, as a model for gait data (knee and hip measures) used in titexto
of functional principal component analysis (FPCA) as areeston of the univariate case.
For a more theoretical framework, we must go back to the giomnerks of Besse (1979) on
random variables with values into a general Hilbert spaepo8a (1981) provides a complete
analysis of multivariate functional data from the point egw of factorial methods (principal
components and canonical analysis).

In this paper we consider the problem of clustering multatarfunctional data. Cluster
analysis aims to identify homogeneous groups of data withsing any prior knowledge on
the group labels of data. The main difficulty in clusteringdtional data arises because of
the infinite dimensional space data belong. Consequentyt of clustering algorithms for
functional data consists of a first step of transforming tifanite dimensional problem into
a finite dimensional one and of a second step of using a cingterethod designed for fi-
nite dimensional data. Most of proposed approach condmek-means algorithm applied to
a B-spline fitting (Abraham et al., 2003), on defined principaings of curves (Tarpey and
Kinateder, 2003) or on the truncated Karhunen-Loeve expar{€hiou and Li, 2007). San-
galli et al. (2010) use also a k-means algorithm for clusgemisaligned curves. As in the
finite dimensional setting, where Gaussian model-basestaring generalizes the k-means
algorithm, some other works introduce more sophisticatedetibased techniques: James
and Sugar (2003) define an approach particularly effectivesparsely sampled functional
data, Ray and Mallick (2006) propose a nonparametric Baye®let model for clustering of
functional data based on a mixture of Dirichlet processagirth-Schnatter and Kaufmann
(2008) build a specific clustering algorithm based on patamé&me series models, Bou-
veyron and Jacques (2011) extend the high-dimensionaldliagéering algorithm (HDDC,
Bouveyron et al. (2007)) to the functional case and Jacque$eeda (2012) build a model-
based clustering based on an approximation of the notiomia$ity —which in general does
not exists— for functional data.

The case of multivariate functional data is rarely consgden literature: Singhal and
Seborg (2005) and leva et al. (2011) use a k-means algorids®doon specific distances be-
tween multivariate functional data, whereas Kayano et211Q) consider Self-Organizing
Maps based on the coefficients of multivariate curves intbamormalized Gaussian basis
expansions. Tokushige et al. (2007) extend crisp and fuzme&ns algorithms for multi-
variate functional data by considering an usual distantedsn functions, but applied their
algorithms only on univariate functional data.

In the finite dimensional setting, model-based clusteriggr&thms consider that data is
sampled from a mixture of density probabilities. This is diwectly applicable to functional
data since the notion of density probability generally do&exist for functional random vari-
able (Delaigle and Hall, 2010). Consequently, model-ba$estering algorithms assume a
parametric distribution on some finite set of coefficientareloterizing the curves. In Jacques
and Preda (2012), the authors use the density surrogated#fibelaigle and Hall (2010) to
build a model-based clustering for univariate functioretbd This density surrogate, based on



the truncation of the Karhunen-Loeve expansion, reliesherdensity probability of the first
principal components of the curves (Ramsay and Silverm@@5) In this paper we propose
an extension of Jacques and Preda (2012) approach to nniafte/functional data. We firstly
introduce principal component analysis for multivariatedtional data and assume a cluster-
specific Gaussian distribution for the principal comporssares. The elements derived from
FPCA are estimated using approximation for the multivaratrves into a finite dimnesional
functional space. The number of first principal componestdun the density surrogate as
well as the computation of the principal component scoreshuster specific.

The main advantage of our model is its ability to take intooart dependency between
the p curves, thanks to the principal component analysis for irariate functional data.

The paper is organized as follows. Section 2 introduces thaeahfor multivariate func-
tional data and present the principal components analgsithis type of data. Estimation
and approximation details are provided. Section 3 definepanoximation of the probabil-
ity density for multivariate functional random variablend model-based clustering approach
and parameters estimation by an EM-like algorithm are piteskin Section 4. Comparisons
with existing methods on simulated and real datasets asepted in Section 5.

2. Principal component analysisfor multivariate functional data

Principal component analysis for multivariate functiodata (MFPCA) has already been
suggested in Ramsay and Silverman (2005) and Berrendeto (@041). In Ramsay and
Silverman (2005) the authors propose to concatenate thenali®ns of the functions at a
fine grid of points (or the coefficients in a suitable basisaggion) into a single vector and
then to perform a standard PCA on these concatenated vettren a basis expansion is
used, this method forces to consider only orthonormal bsiseg the metric induces by the
scalar product between the basis functions is not takenaotount. In Berrendero et al.
(2011), the authors propose to not summarize the curvessadtar principal components as
in usual FPCA, but with functional ones. For this, they cay classical multivariate PCA
for each value of the domain on which the functions are oleskand suggest an interpolation
method to build functional principal components.

Our approach is close to Ramsay and Silverman (2005) butkiyganto account the
possible use of non orthonormal basis. In particular, ouhotkallows to use different basis
for each dimension of the multivariate curves.

Let Q be a population space of statistical units aqd= {cwy, wp,...,w,} be a random
sample of sizen drawn fromQ. Let X be a random variable defined éhassociating to
w € Q a set ofp curves,p > 2, each one defined on the finite interf@IT], 0< T < o, i.e

X (@) = {(Xe2(t), ., Xep(t)),t € [0, T]}.

The observation oK on the samples, provides the sefX(w),...,X(wn)} of multivariate
curves callednultivariate functional data From thes, curves, one can be interested in op-
timal representation of curves in a reduced dimensionaitian space (principal component



analysis), or in clustering, by determining an optimal piart of s, with respect to some dis-
tance or homogeneity criterion. In order to address thesegtvestions in a formal way, we
need the hypothesis that consid&rs- (Xy,...,Xp) is alL, continuous stochastic process,

0.

fim B [[X(t+h) — _#To/ ;E [(Xe(t+h) =X (1))?]

Notice thatL,-continuity of X implies Lp-continuity of each component of, i.e. X is a
Lo-continuous stochastic process for &= 1,...,p. The Ly-continuity is a quite general
hypothesis, most of real data applications satisfyingdhes.

Let denote by, = {u,(t) = E[X,(t)],t € [0, T]} the mean function oX, and by

U= (H1,-..Hp) =E[X],

the mean function oX.
The covariance operator &f is defined as an integral operatvith kernel

C(t,s) = E[(X(t) — u(t)) @ (X(s) — u(s))],
where® is the tensor product aRP. Thus,C(t,s) is ap x p matrix with elements
C(t,S)fi, j] = Cov(Xi(t),X;(9)). i,j=1....p.
The covariance operator &f, C : L>([0, T])P — L2([0, T])P is defined by

g, g(t)zf()TC(t,S)f(S)dS te[oTl,

wheref = (fy,..., fp) andg = (g1,...,9p) are elements df,([0, T])P.

2.1. Principal components analysisXf

Under the hypothesis af-continuity,C is an Hilbert-Schmidt operator, i.e compact, self-
adjoint and such thagjzl)\jz < +00. The spectral analysis & provides a countable set of
positive eigenvalue$A |} -1 associated to an orthonormal basis of eigen-functidins;>1,
fi = (fj1,..., fjp), called principal factors:

Cfj = Ajfj, 1)

with A1 > Ao > ... and(fi,fj) P La([0,T]) p—/;ﬁg fjg =g jwithg;=1ifi=jand0

otherwise.
The principal component; of X are zero-mean random variables defined as the projections
of X on the eigenfunctions @,

T TP
Ci= /0 (X(t) = u(t),fj(t))gpdt = /O gl(xe(t)—ue(t)>fj,e(t>dt-
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Let recall that, as in the univariate setting, the princigahponentqC;} ;-1 are zero-mean
uncorrelated random variables with variaidg;) = Aj, j > 1.
The following Karhunen-Loeve expansion holds (Saport&1})9

X(t)=put)+ S Cifj(t),

j=1

and the approximation of orderof X, q € N*,
q
X@t) = u)+ Y Cifj(),
=1

is the best approximation of this form under the mean squaezion.

2.2. Estimation and computational methods

Let consider the random sample of sizes, = {1, wp,...,w}, and denote by =
(Xi1,-..,Xp) = X(w)'. The estimators fop andC are

n

ﬁ:%;xi and C(t,9) = 1 3 (a(t) ~ (1) @ ((9) — A(S))

In Deville (1974) it is shown that andC converges tqu andC in L,-norm with convergences
rate ofO(n~1/2).

2.2.1. Approximation into a finite basis of functions
Often in practice, data are observed at discrete time pandsvith some noise. In order to
get the functional feature of data, smoothing and intetpmianethods are used considering
the true curve belongs to a finite dimensional space spannsdrbe basis of functions. This
approximation reduces also the eigen-analysis problemo (e in finite dimensional setting.
Let assume that each curxg (1 < ¢ < p) can be expressed as a linear combination of
basis functionsb, = (@1,...,@q,):

@
Xie(t) = leiéjfpéj(t)~
i=

This can be written with the matrix formulation

Xi = ®a
with
@1 ... g, O 0
o 0O ... 0 @ ... ¢@g O 0
0 0O @1 - G,



and

& = (&i11,-- -, &ingy» &i21s - -+ &izgps - -+ Eipls - - -5 Sipap ) -

The samples, providesn paths ofX, x; = X(w), i =1,...,n. Putx = (X1,...,Xn)". we
have

x=Ad' 2

with A then x Zle g,-matrix, with rows the vectorg; (i=1,...,n).
Under the previous basis expansion assumption, the cocariaatrix estimatoC(t, s) is

Clt,8) =~ (x(t) — A1)/ ((5) ~ i(8)) =~ OAAD(S),

with A = (I,— 2,(1/n,...,1/n))A wherel, and 1 are respectively the identityx n-matrix

and the unit column vector of size
From (1), each principal factd§ belongs to the linear space spanned by the lsbsis

fj:CDb/j
Withbz(bjll,...,bjlql,bjzj_,...,bquz,...,bjpl,...,bqup).
Then
-
cf; = /C(t S)fj(s)ds=
0

T o1
_ /0 (A ’AGD’(S)GD(S)b’jds—— ’A/ ©/(s)P(s)dsb]  (4)

T 1

[ S POAAY (s (s)ds ©)

whereW = fOT ¢'(s)®(s)dsis the symmetric block-diagongl}_, g, x zg’zlqg-matrix of the
inner products between the basis functions.
The eigen-analysis problem (1) can be written as

1
-1

which becomes, since (5) is true for gl

—P(t )A'AWb'j = /\jCD(t)b’j 5)

1 / /
= AAWD] = Ajbj.
By definingu; = bjW??, the multivariate functional principal component anagyisiapprox-
imated by the usual PCA of the matn\?%AWl/z:

1

WA AW = A,



The coefficienbj, j > 1, of the principal factors are obtained by= (Wl/zl)*lu’j, and the
principal component scores,
Cj=AWD| j>1

Note that the principal components scofgsare also solutions of the eigenvalues problem:

1

2.3. Normed principal component analysis

When theX,’s components oK (1 < ¢ < p) are of different natures (different measure
units for example), the question of normalizing data ocoatsirally. One way to introduce a
metric in MFPCA is to consider it as a canonical analysis (B 1981).

The principal components are then defined as solutions dbtlesving eigen problem:

/OT P(C)dt = AC, ©6)

whereP; is the orthogonal projection operator associated g = (Xy(t),...,Xp(t)) defined
by

PL(C) =< X(1), [C(t,1)] "E[X(t)C] >ge - ()
Replacing (7) into (6) one obtains that
C= /OT < X(t)— p(t),f(t) > dt
wheref is solution of the eigenvector problem
/O TCtt et syt (9)ds= Af(t). ®)
Clearly, [C(t,t)]~! must exist for each < [0,T]. Under this hypothesis, the principal

factors of the normalized MFPCA are the eigenfunctions efititegral operator with kernel
[C(t,t)]71C(t,s) as in (8). Notice that with the orthogonality condition oe firincipal factors

T
| < 0. C00150 >re= 8, ii=1
with &; = 1if i = j, 0 otherwise. The Karhunen-Loeve expansioXdfecomes

X(t) = (t) + fléj-[ca,t)yf,-(w,
2

with € = [§ < X(t) — u(t),fj(t) > dt, Var(€;) = A; andE[E;] = 0.
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Remark.Observe that iR(t,t) is the square root of the matr@t,t), i.e.
C(t,t) = R(t,t)R(t,t)’,

then the MFPCA oK with metricC(t,t) is equivalent to the MFPCA of defined by
Y (t) = R(t,t)7IX(1),

with identity metric as in Section 2.1.
In practice, ifX is observed at timetg, ..., t,, r > 1, thenY is defined fromX as

Y () =R, 6)7IX(), i=1,...r

and approximation and estimation methodology in Secti@rilds applied tor .

3. Approximation of the density for multivariate functional data

As the notion of probability density is not well defined fonfitional data (Delaigle and
Hall, 2010), we can use an approximation of the density basd¢te Karhunen-Loeve expan-
sion, adapted here to the multidimensional nature of the dat

XU =kl = 3 G0 ©
i=

Considering the principal components indexed upon theeteBiog order of the eigenvalues
(A1> A, >..)), let denote byX (9 the approximation oX by truncating (9) at the first terms,
q>1,

q
X (1) - p(t) = Zlefj(t)- (10)
J:

Then, X (@ is the best approximation of, under the mean square criterion, among all the
approximations of the same type (linear combinatiom afeterministic functions of with
random coefficients, Saporta (1981)).

Based on the approximation fby X (@, in Delaigle and Hall (2010) it is shown that the
probability of X to belong to a ball of radius centred inx € L,([0, T|)P can be written as

q
logP([|X — x| <'h) = _leog fe; (c(x)) + & (h,q(h)) +o(q(h)), (11)
j=

wherefc; is the probability density of;j andc;(x) is the jth principal component score &f
Cj(X) =<fj,X > ,(01))p- The functiongy(h) and¢ are such thai(h) grows to infinity when
h decreases to zero agds a constant depending drandq(h).

8



The equality (11) suggests the use of the multivariate gmntibadensity of the vector
Cl = (Cy,...,Cq) as a surrogate for the "density” &f:

q
= I_ll ij (CJ (X))7 (12)
|=

Jacques and Preda (2012) use successfully a similar desusitygate for the clustering of
univariate functional data.

4. A model based-clustering for multivariate functional data

The aim of model-based clustering is to identify homogesegnoups of data sampled
from a mixture densities model. In this section, we build atore model based on the
surrogate (12) for the density &f.

Let us consider that there exists a latent group varidblef K categories K groups),
Z=(Z,...,Z) € {0,1}X such thafZy = 1 indicates that the multivariate cur¥ebelongs to
the clusterg, 1 < g <K, andZy = 0 otherwise. For each=1,...,n, let associate tX; the
corresponding group indicatds .

In the following we suppose th.xng:l is such that eacxazg:l IS a zero-mean stochastic
process (K ¢ < p). The numbekK of groups is assumed to be known.

4.1. The mixture model

Let assume that each cougl€;,Z;) is an independent realization of the random vector
(X,Z) whereX has a density surrogate depending on its group belonging:

Cg
f>(((|]§3:1 (X’ Zg) = I_ll ij|Zg:l(Cj7g(X) ; )\j,g)
|=

whereqy is the number of the first principal components retained eapproximation (12)
for the groupg, cj g(x) is the jth principal component score ong:l for X = x, fCJ|zg:1
its probability density andy the diagonal matrix of the principal components variances
(Arg,---»Agg)- Conditionally to the group, the probability densit(yjlzg:l of the jth prin-
cipal component oK is assumed to be the univariate Gaussian density with zeam ftke
principal component are centred) and variahgg. This assumption is satisfied Whm%zl
is a Gaussian process.

The vectorZ = (Z,...,Zk) is assumed to have multinomial distributio#; (g, . . ., Tk)
of order 1, withrg, ..., 7k the mixing proportionsxgz1 g = 1). Under this model we can
deduce a surrogate for the unconditional densitf of

x9:

K
o=

1

Uy
757 foi g 4 (i) Aig) (13)
=1



where6 = {(1g,A1g, .- -,Aqyg)1<g<k } @andq = (0, ...,k ). From this density surrogate, we
n K Qg

deduce a pseudo likelihood:
1 1CZj 4(Xi)
19(9;X) = g [ —e—=—exp| —5—%>— (14)
= gzl jljl V2T g 2 Ajg
whereG; j ¢(Xi) is the jth principal score of the curv¥ for the groupg.

4.2. Parameter estimation

In the unsupervised context the estimation of the mixturelehgparameters is not so
straightforward as in the supervised context since theggandicatorsZ; are unknown. On
the one hand, we need to use an iterative algorithm whichnalte the estimation of the group
indicators, the estimation of the PCA scores for each groadlzen the estimation of the mix-
ture model parameters. On the other hand, the parametgn;, .. .,qq) will be estimated by
an empirical method, similar to those used to select the rumicomponents in usual PCA.

A classical way to maximise a mixture model likelihood whextadare missing (here the
clusters indicator&;) is to use the iterative EM algorithm (McLachlan and PeeD®Q0 In
this work we use an EM-like algorithm including, between stendard E and M steps, a first
step in which the principal components scores of each groeip@dated and a second one in
which the approximation ordeyare selected. Our EM-like algorithm consists in maximizing
the pseudo completed log-likelihood

n K Qg

@ (g- _ : XA
Lc"(6:X,2) = i;g;zl,g ('097'@+1_zl|09 fcjlzg_l(CI,J,g(Xn)J\J,g)) :

Let 8" be the current value of the estimated parameter attstep- 1.

E step.As the group indicatorg; g's are unknown, the E step consists in computing the
conditional expectation of the pseudo completed log-licd:

n K g
2(6;0M) = Egin LV (8:X.Z)[X = X] = Zl > tig <|OQT@+ > log ijzgl(Ci,j,g(Xi)?/\j,g)>
i=1g=1 =1

whereg; j g(Xi) is the value of the random variallj 4(Xi) for Xj = x;, tj g is the probabil-
ity for the multidimensional curvé; to belong to the groupg conditionally toC; j 4(X;) =

Ci,j,g(Xi):

g n?gzl ij|ziyg:1(Ci,j,g(Xi);/\j,g)
S fe, o (Gja(X)iAL)

tig=Egm [Zig|X = X] ~ (15)
The approximation in (15) is due to the use of a surrogatehdensity oiX given by (12).
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Principal score updating stepThe computation of the principal component scores has been
described in Section 2.2. Here, the principal componenes€s j 4 of the multidimensional
curveX; in the groupg, is updated depending on the current conditional prokgiily com-
puted in the previous E step. This computation is carriecbgweighting the importance of
each curve in the construction of the principal componeritis the conditional probabilities

Tg = diag(t1g,...,tng). Consequently, the first step consists in centring the cXyweithin

the groupg by subtracting the mean curve computed usingitgis: the basis expansion coef-
ficients matrixA become®g = (In— Un(tyg, .- .,tng))A. Thejth principal component scores
Cj g is then thejth eigenvector of the matri&yWA{ Ty associated to thith eigenvalug\| .

Group specific dimensiory@stimation step.The estimation of the group specific dimension
Qg is an open problem. In this work we propose to use, once thepgspecific FPCA have
been computed at the previous step, the scree-test of IGa®@6é6) in order to select each
group specific dimensioty. The advantage of using this test is that one hyperpararftbeer
threshold of the Cattell scree-test) allows to estinkaggpproximation orders.

M step. The M step consists in computing the mixture model parara@&&r?) which maxi-
mizes2 (6, G(h)) according taf. It leads simply to the following estimators

iy 1o (D) :
==SYtg and A =Ajg, 1<)<0qq
Té ”i; i.g ig ig J = Qg

whereAj 4 is the variance of thgth principal component of the clustgrcomputed in the
principal score updating step.

Convergence and numerical consideratioiNotice that thegy estimation step could lead to
modify the number of principal components used in the dgrssitrogate at each iteration of
the algorithm. A change of dimension will lead to an artifidhange (increase or decrease)
in the density surrogate, and then in the pseudo likelihaaithout moving the values of the
model parameters. Thus, during the iterations of the algworithe pseudo likelihood is not
necessarily increasing, and we loose the usual propeftibe &M algorithm. In particular,
the pseudo likelihood is not strictly increasing, and thgoathm can not be stopped at its
convergence as usually. We decide to stop the algorithm aftixed number of iterations,
and to choose the best reached solutions. A stopping oritext the convergence of the
classification (same classification for consecutive stbps)also been tested, but the results
are more stable with the fixed number of iterations.

Moreover, in order to avoid the convergence to a local marimihe estimation algorithm
is launched several times with random initializations fagraall number of iterations, and
the best reached solution is used as the initializationtgoma longer algorithm (Biernacki,
2004).

5. Numerical experiments

This section is devoted to compare our approach, we willfeaficlust—as in univariate
case (Jacques and Preda, 2012)— with other existing methidas numerical experiments

11



are organized in three parts. First, Funclust is comparetusiering methods for univariate
functional data using three real datasets. Then Funclastipared to multivariate functional
data clustering methods based on k-means using a simulatadgetl in a second part and a
climatology dataset in a third part.

5.1. Benchmark study in the case of univariate functionéd da

The data. Three real datasets are consideredkheading Growth, andECGdatasets. These
three datasets, already studied in Jacques and Preda (264 p)otted on Figure 1.

Growth (2 groups)
Kneading data (3 groups) ECG (2 groups)

80 100 120 140 160 180 200

Figure 1:Kneading GrowthandECG datasets.

The first dataset (Kneading) comes from Danone VitapolesfResearch Center and con-
cerns the quality of cookies and the relationship with therflmeading process. The kneading
dataset is described in detail in Leveder et al. (2004). &hee 115 different flours for which
the dough resistance is measured during the kneading préme480 seconds. One obtains
115 kneading curves observed at 241 equispaced instartsepirt the interval0,480. The
115 flours produce cookies of different quality: 50 of themréhproduced cookies ajood
quality, 25 producednediumquality and 4dow quality. These data, have been already stud-
ied in a supervised classification context (Leveder et 8042 Preda et al., 2007). They are
known to be hard to discriminate, even for supervised diass] partly because of the medium
class. The second dataset (Growth) comes from the Berkebsytly study (Tuddenham and
Snyder, 1954) and is available in tfta package of the softwai. In this dataset, the heights
of 54 girls and 39 boys were measured at 31 stages, from 1 tedi® yThe goal is to cluster
the growth curves and to determine whether the resultingfets reflect gender differences.
The last dataset (ECG) is taken from th€R Time Series Classification and Clusterimgb-
site!. This dataset consists of 200 curves from 2 groups sampl@6l tine instants, and has
already been studied in Olszewski (2001).

http://www.cs.ucr.eda/eamonn/timeseriesdata/
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Experimental setupFor each dataset, the labels indicating the group memigefshieach
observation are available. These labels have been probiladman experts (Kneading and
ECG datasets) or simply by the nature of the individuals dgeffior the Growth dataset). In
order to compare the clustering ability of the studied méshave choose to use the correct
classification rate (CCR) which measures the adequationeofdsulting clustering with the
known partition. This measure varies between 0 and 1, aggldhe CCR is, better the
clustering algorithm performs.

In this benchmark study, Funclust is compared to three ehgéirs dedicated to the clus-
tering of functional data: FUNnHDDC (Bouveyron and Jacq2€d4,1) andk-centres (kCFC,
Chiou and Li (2007)) which are the closest methodsfahgtJames and Sugar (2003) which
is known to be a good challenger. Notice that kKCFC being nall@ve as a computer code
(at our knowledge), only the comparison on the Growth datiase been possible thanks to
the classification results presented in Chiou and Li (2007).

The maximum number of iterations is fixed to 200. Since theaiiens corresponding
to the retained solutions (according to the best pseudiitod) were always relatively far
from the last one, we judge this maximum number of iteratemsufficient. The threshold of
the Cattell scree test allowing to select the approximatiaiergy is fixed to 0.05. In order to
avoid convergence to a local maximum of the pseudo likelih@ur EM-like algorithm has
been initialized with the best solutions of 20 small EM-l&dgorithms with 20 iterations each
Biernacki (2004). With this experimental setup, Funcliustimeation is obtained in about 30
seconds for each dataset, on an usual laptop and with a cédsafiware.

Results.The estimated approximation ordegg for Funclust are the following: Kneading
(=2, =1 g3=23), Growth (1 =2, q» = 3), ECG @1 = 9, q» = 4). The correct
classification rates (CCR) according to the known partgtiare given in Table 1. Funclust
performs better than the other methods on two datasets atniieg(Kneading and ECG). On
the last dataset, the results are relatively poor§8% whereas some method are about 97%),
but they can be greatly increased (B®») if the dimensionsgg are fixed to 2. This dataset
illustrates that the choice of the approximation order iseeyvmportant question, and that
further works have to be carried out in this direction.

method Kneading| Growth | ECG
Funclust 66.96 69.89 | 84
FunHDDC| 62.61 96.77 75
fclust 64 69.89 | 74.5
kCFC - 93.55 -

Table 1: Correct classification rates (CCR) in percentag&tmclust, FunHDDC (best model according BIC),
fclust and kCFC on the Kneading, Growth and ECG datasets.
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5.2. Simulation study in the case of multivariate functiasa

The data.In this simulation study, the number of clusters is assurndeetknown: K=2. A
sample ofn = 50 curves are simulated according to the following modegpinesl by Ferraty
and Vieu (2003) and Preda (2007):

Class1 : Xi(t) = =541/2+Usha(t) +Usho(t) +V0.1g(t),  te[1,21],

Xo(t) = =541t/24Ushy(t) +Ushp(t) +Ushs(t) + v0.5e(t),  te[1,21],
Class 2 : Xi(t) = Ughp(t) +V10e(t),  te[1,21],

Xo(t) = Ughy (t) +Ughg(t) +V0.5¢(t),  te[1,21],

whereU; ~ .#7(0.5,1/12), U, ~ .47(0,1/12) andUs ~ .#'(0,2/3) are independent Gaussian
variables and (t) is a white noise, independentldf's and of unit variance. The functidn,

hy andhg (plotted on Figure 2) are defined, foe [1,21], by hy(t) = (6 — |t — 11]), where
(-)+ mean the positive parp(t) = (6 — |t — 7|)+ andhs(t) = (6 — [t —15]) ;.

h1 h2 h3

ni(y
nz(t)
n3(t)

mt : ’ ’ mt : ’ ’ mt
Figure 2: Functioriny (t) = (6 — |t — 11))+, ho(t) = (6— |t — 7|)+ andhs(t) = (6 — [t — 15])4 fort € [1,2]] .

The mixing proportionst’s are chosen to be equal, and the curves are observed in 1001
equidistant pointst(= 1,1.02,...,21). Figure 3 plots the simulated curves.

Experimental setupFunclust is compared to the multivariate functional datstering meth-
ods described in leva et al. (2011), based on k-means methiodhe following distances:

dh(X,Y) = $z/x, _Yi(t)2dt  and  da(X,Y) = Jz/ )2dt,

whereX;|(t) is the derivative o¥;(t). A discussion on these distances in the case of univariate
functional data can be found in Ferraty and Vieu (2003). &ma public implementation is
available for this method, we built our own implementatiartheR software. In particular,

the distancel, was computed using the packédda.
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Figure 3: Bi-dimensional simulated curves for class 1 (@) class 2 (bottom).

In addition to these methods, namkwheans-g and kmeans-d in the following, we con-
sider usual k-means applied on the values of the functioreaelh observation points=
1,1.02,...,21 (quoted akmeans-poinjsand on the coefficients resulting from a linear spline
smoothing with 30 equidistant knotsmieans-spline Linear spline smoothing has also been
used by Funclust in the principal score updating step. TherstFunclust setting (Cattell
threshold, initialization) are the same as for the previexygeriments in the univariate case.
Since both componenk§ andX, have similar covariance structure, the curves have not been
normalized.

Results.Table 2 presents the mean and standard deviation of thectateassification rates
(CCR), for 100 simulations. The results confirm the good ha of Funclust that we have
already noticed for univariate functional data.

5.3. Canadian temperature and precipitation

In this last application, the Canadian temperature andtation data (available in the
R packagefda and presented in detail in Ramsay and Silverman (2005)) s&d to com-
pared Funclust with other clustering methods for multeeifunctional data (kmeartg-and
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method Funclust| kmeansd; | kmeansd, | kmeans-points kmeans-spling
Mean CCR| 86.80 86.32 85.76 80.60 86.14
Std CCR 14.51 16.30 10.28 14.94 15.80

Table 2: Mean and standard deviation (for 100 simulatiohgpeorect classification rates (CCR) in percentage
for Funclust, kmeansg;, kmeansd, and k-means applied on observations points and spline ciegits.

kmeansd,). The dataset consists in the daily temperature and ptatign at 35 different
locations in Canada averaged over 1960 to 1994. The goapi®tade a classification into 4
groups, and to compare this classification with a naturaliatuative geographical classifica-
tion.

Since the unit of both curves are different (Celsius degagelsmillimetres), the data are nor-
malized following methodology presented at the end of $ac2.3. Figure 4 plots original
and reduced temperature and precipitation curves.

Figure 5 presents the classification into 4 groups of the @anaveather stations using
Funclust, with Fourier basis approximation (65 knots) ai@h#ell scree test threshold fixed
at 0.2. We can observe four distinct groups of stations. Teerggroup is mostly made of
northern continental stations, whereas Atlantic statanms southern continental stations are
mostly gathered in the red group. The blue group mostly eesifdacific stations and the last
group (black) contains only the northernmost station ReeaN.W.T.). We recall that all
these results have been obtained without using the gedgedjplositions of the stations.

In comparison, Figure 6 shows the classification vkitheans-¢g and kmeans-g meth-
ods, using the same normalized curves and the same bastxapation. This classification
seems less pertinent than Funclust classification sindduleeand red group contains both At-
lantic and Pacific stations. Nevertheless, the black groaimimncontains continental stations
whereas in Funclust classification, continental and Aittastations are gathered together.
This last fact is probably due to the Resolute station whscoidifferent from the others (the
temperature and precipitation are from far the lowest)foaiciust classifies this station alone
in a apart group.

6. Discussion

In this paper we propose a clustering procedure for mulat@rfunctional data based on
an approximation of the notion of density for multivariassdom function. The main tool
is the principal component analysis of multivariate fuootl data and the use of probability
densities of principal components scores. Assuming ttetrtbltivariate functional data are
sampled from a multivariate Gaussian process, the reguttirture model is an extrapolation
of the finite dimensional Gaussian mixture model to the itéidimensional setting. In com-
parison to other clustering techniques for multivariatectional data, our procedure has the
advantage to take into account the dependency between itimgoo@nts of the multivariate
data. An EM-like algorithm is proposed for the parametenestion, and applications on real
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Figure 4: .Temperature and precipitation curves for 35tlona in Canada, averaged over 1960 to 1994. The
top figures are the original curves and the bottom figurederedduced ones.

and simulated data exhibit an interesting clustering amuof the proposed method.

Some questions still remain open and further research ape tendertaken to provide
answers. First of all, as previously discussed, the selecif the approximation orders is a
great challenge for which we actually use an empirical mettidoreover, since only an ap-
proximation of the likelihood is available, usual questi@uich as the selection of the number
of clusters or the proofs of the convergence of the estimatigorithm are currently without
response.
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