
HAL Id: hal-00713334
https://hal.science/hal-00713334v2

Submitted on 13 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-based clustering for multivariate functional data
Julien Jacques, Cristian Preda

To cite this version:
Julien Jacques, Cristian Preda. Model-based clustering for multivariate functional data. Com-
putational Statistics and Data Analysis, 2014, 71, pp.92-106. �10.1016/j.csda.2012.12.004�. �hal-
00713334v2�

https://hal.science/hal-00713334v2
https://hal.archives-ouvertes.fr


Model-based clustering for multivariate functional data
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Abstract

This paper proposes the first model-based clustering algorithm for multivariate func-
tional data. After introducing multivariate functional principal components analysis
(MFPCA), a parametric mixture model, based on the assumption of normality of the
principal components, is defined and estimated by an EM-like algorithm. The main ad-
vantage of the proposed model is its ability to take into account the dependence among
curves. Results on simulated and real datasets show the efficiency of the proposed
method.

Keywords: Multivariate functional data, density approximation, model-based
clustering, multivariate functional principal component analysis, EM algorithm.

1. Introduction

Functional data analysis or “data analysis with curves” is an active topic in statistics
with a wide range of applications. New technologies allow to record data with accuracy
and at high frequency (in time or other dimension), generating large volume of data.
In medicine one has growth curves of children and patient’s state evolution, in clima-
tology one records weather parameters over decades, chemometric curves are analysed
in chemistry and physics (spectroscopy) and special attention is paid to the evolution
of indicators coming from economy and finance. See Ramsay and Silverman (2005) for
more details.

The statistical model underlying data represented by curves is a stochastic process
with continuous time, X = {X(t)}t∈[0,T ]. Most of the approaches dealing with func-
tional data consider the univariate case, i.e. X(t) ∈ R, ∀t ∈ [0, T ], a path of X being
represented by a single curve. Despite its evident interest, the multidimensional case,

X = {X(t)}t∈[0,T ] with X(t) = (X1(t), . . . , Xp(t))′ ∈ R
p, p ≥ 2
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is rarely considered in literature. In this case a path of X is represented by a set of p
curves. The dependency between these p measures provides the structure of X . One
finds in Ramsay and Silverman (2005) a brief example of bivariate functional data,
X(t) = (X1(t), X2(t))′ ∈ R

2, as a model for gait data (knee and hip measures) used
in the context of functional principal component analysis (FPCA) as an extension of
the univariate case. For a more theoretical framework, we must go back to the pioneer
works of Besse (1979) on random variables in a general Hilbert space. Saporta (1981)
provides a complete analysis of multivariate functional data from the point of view of
factorial methods (principal components and canonical analysis).

In this paper we consider the problem of clustering multivariate functional data.
Cluster analysis aims to identify homogeneous groups of data without using any prior
knowledge on the group labels of data. When clustering functional data, the main dif-
ficulty is due to infinite dimensional space that data belong to. Consequently, most
of clustering algorithms for functional data consists of a first step of transforming the
infinite dimensional problem into a finite dimensional one and a second step using a clus-
tering method designed for finite dimensional data. Recently, several new approaches
considers the k-means algorithm applied to a B-spline fitting (Abraham et al., 2003),
to defined principal points of curves (Tarpey and Kinateder, 2003) or to a truncation
of the Karhunen-Loeve expansion (Chiou and Li, 2007). Sangalli et al. (2010) also use
a k-means algorithm to cluster misaligned curves. As in the finite dimensional set-
ting, where Gaussian model-based clustering generalizes the k-means algorithm, some
other works introduce more sophisticated model-based techniques: James and Sugar
(2003) define an approach particularly effective for sparsely sampled functional data,
Ray and Mallick (2006) propose a nonparametric Bayes wavelet model for curves clus-
tering based on a mixture of Dirichlet processes, Frühwirth-Schnatter and Kaufmann
(2008) build a specific clustering algorithm based on parametric time series models,
Bouveyron and Jacques (2011) extend the high-dimensional data clustering algorithm
(HDDC, Bouveyron et al. (2007)) to the functional case and Jacques and Preda (2012)
build a model-based clustering based on an approximation of the notion of functional
variable density.

The case of multivariate functional data is more rarely considered in literature: Sing-
hal and Seborg (2005) and Ieva et al. (2011) use a k-means algorithm based on specific
distances between multivariate functional data, whereas Kayano et al. (2010) consider
Self-Organizing Maps based on the coefficients of multivariate curves into orthonormal-
ized Gaussian basis expansions. Tokushige et al. (2007) extend crisp and fuzzy k-means
algorithms for multivariate functional data by considering specific distance between
functions, but applied their algorithms only on univariate functional data.

In the finite dimensional setting, model-based clustering algorithms consider that
data is sampled from a mixture of probability densities. This is not directly applicable
to functional data since the notion of probability density generally does not exist for func-
tional random variable (Delaigle and Hall, 2010). Consequently, model-based clustering
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algorithms assume a parametric distribution on some finite set of coefficients character-
izing the curves. In Jacques and Preda (2012), the authors use the density surrogate
defined in Delaigle and Hall (2010) to build a model-based clustering for univariate
functional data. This density surrogate, based on the truncation of the Karhunen-Loeve
expansion, relies on the probability density of the principal components of the curves
(Ramsay and Silverman, 2005), which is assumed to be Gaussian.
In this paper we propose an extension of Jacques and Preda (2012) approach to mul-
tivariate functional data. For this, we firstly introduce principal component analysis
for multivariate functional data and assume a cluster-specific Gaussian distribution for
the principal component scores. The elements derived from FPCA are estimated using
approximation of the multivariate curves into a finite dimensional functional space. The
number of principal components used in the density surrogate as well as the computation
of the principal component scores are cluster specific.

The main advantage of our model is its ability to take into account dependency
between the p curves of the multidimensional data, thanks to the principal component
analysis for multivariate functional data.

The paper is organized as follows. Section 2 introduces principal components analysis
for multivariate functional data. Estimation and approximation details are provided and
the task of normalizing the curves is discussed. Section 3 defines an approximation of
the probability density for multivariate functional random variable. The model-based
clustering approach and parameter estimation via an EM-like algorithm are presented
in Section 4. Comparisons with existing methods on simulated and real datasets are
presented in Section 5, and a discussion concludes the paper in Section 6.

2. Principal component analysis for multivariate functional data (MFPCA)

Principal component analysis for multivariate functional data has already been sug-
gested in Ramsay and Silverman (2005) and Berrendero et al. (2011). In Ramsay and
Silverman (2005) the authors propose to concatenate the observations of the functions
on a fine grid of points (or the coefficients in a suitable basis expansion) into a single
vector and then to perform a standard principal component analysis (PCA) on these
concatenated vectors. When a basis expansion is used, this method forces to consider
only orthonormal basis since the metric induced by the scalar product between the basis
functions is not taken into account. In Berrendero et al. (2011), the authors propose
to summarize the curves with functional principal components instead of scalar ones as
in usual FPCA. For this purpose, they carry out classical PCA for each value of the
domain on which the functions are observed and suggest an interpolation method to
build the functional principal components.
Our approach is closely related to Ramsay and Silverman (2005) but in addition, we
take into account the possible use of non orthonormal basis. In particular, our method
allows to use different basis for each dimension of the multivariate curves.
Let X1, . . . , Xn be an i.i.d. sample of X. The observation of X1, . . . , Xn provides a
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set of n p-variate curves, called multivariate functional data.
From this set of multivariate curves, one can be interested in optimal representation of
curves in a function space of reduced dimension (principal component analysis), or in
clustering, by determining an optimal partition of the observed curves with respect to
some distance or homogeneity criterion. In order to address these two questions in a
formal way, we need the hypothesis that considers X = (X1, . . . , Xp)′ as a L2 continuous
stochastic process:

∀t ∈ [0, T ], lim
h→0

E
[
‖X(t + h) − X(t)‖2

]
= lim

h→0

∫ T

0

p
∑

ℓ=1

E
[
(Xℓ(t + h) − Xℓ(t))2

]
dt = 0.

Notice that L2-continuity of X implies L2-continuity of each component of X, i.e. Xℓ

is a L2-continuous stochastic process for all ℓ = 1, . . . , p. The L2-continuity is a quite
general hypothesis, as most of the real data applications satisfies this one.
Let µℓ = {µℓ(t) = E[Xℓ(t)]}t∈[0,T ] denotes the mean function of Xℓ (1 ≤ ℓ ≤ p) and

µ = (µ1, . . . µp)′ = E[X],

denotes the mean function of X.
The covariance operator V of X:

V : L2([0, T ])p → L2([0, T ])p

f
V7−→ Vf =

∫ T

0

V (·, t)f(t)dt,

is an integral operator with kernel V defined by:

V (s, t) = E [(X(s) − µ(s)) ⊗ (X(t) − µ(t))] , s, t ∈ [0, T ]

where ⊗ is the tensor product on R
p. Thus, for any s, t ∈ [0, T ], V (s, t) is a p×p matrix

with elements

V (s, t)[j, ℓ] = Cov(Xj(s), Xℓ(t)), j, ℓ = 1, . . . p.

2.1. Principal components analysis of X

Under the hypothesis of L2-continuity, V is an Hilbert-Schmidt operator, i.e com-
pact, self-adjoint and such that

∑

j≥1 λ2
j < +∞. The spectral analysis of V provides

a countable set of positive eigenvalues {λj}j≥1 associated to an orthonormal basis of
eigenfunctions {f j}j≥1, f j = (f 1

j , . . . , f p
j ), called principal factors and are solutions of:

Vf j = λjf j, (1)
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with λ1 ≥ λ2 ≥ . . . and

∫ T

0

p
∑

ℓ=1

f ℓ
j (t)f

ℓ
j′(t)dt = 1 if j = j′ and 0 otherwise.

The principal components Cj of X are zero-mean random variables defined as the pro-
jections of X on the eigenfunctions of V:

Cj =

∫ T

0

〈X(t) − µ(t), f j(t)〉Rpdt =

∫ T

0

p
∑

ℓ=1

(Xℓ(t) − µℓ(t))f ℓ
j (t)dt.

Similar to the univariate setting, the principal components {Cj}j≥1 are zero-mean un-
correlated random variables with variance λj, j ≥ 1.
Saporta (1981) shows that the following Karhunen-Loeve expansion holds in multidi-
mensional context:

X(t) = µ(t) +
∑

j≥1

Cjf j(t), t ∈ [0, T ]. (2)

Principal components and principal factors of MFPCA have the same interpretation
as in the functional univariate case. The truncation of (2) at the first q terms pro-
vides a reduced dimensional space where classical tools (clustering, regression, ...) from
multivariate analysis can be used to describe X.

2.2. Computational methods for MFPCA

Let x1, . . . , xn, with xi = (x1
i , . . . , x

p
i ), be the observation of the sample X1, . . . , Xn.

The estimators for µ(t) and V (s, t), for s, t ∈ [0, T ], are:

µ̂(t) =
1

n

n∑

i=1

xi(t) and V̂ (s, t) =
1

n − 1

n∑

i=1

(xi(s) − µ̂(s)) ⊗ (xi(t) − µ̂(t)).

In Deville (1974) it has been shown that µ̂ and V̂ converges to µ and V in L2-norm with
convergences rate of O(n−1/2).
Often in practice, data are observed at discrete time points and with some noise. In
order to get the functional feature of data, smoothing and interpolation methods are
used considering the true curve belongs to a finite dimensional space spanned by some
basis of functions. This approximation also reduces the eigen-analysis problem (1) to
the one in finite dimensional setting.
Let assume that each curve xℓ

i (1 ≤ i ≤ n, 1 ≤ ℓ ≤ p) can be expressed as a linear
combination of basis functions {φj

ℓ}j=1,mℓ
:

xℓ
i(t) =

mℓ∑

j=1

aiℓjφ
j
ℓ(t), t ∈ [0, T ]. (3)

This can be written with the matrix formulation

xi(t) = Φ(t)a′i
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with ai = (ai11, . . . , ai1m1 , ai21, . . . , ai2m2 , . . . , aip1, . . . , aipmp
) being the vector of the basis

expansion coefficients, and

Φ(t) =







φ1
1(t) . . . φm1

1 (t) 0 . . . 0
0 . . . 0 φ1

2(t) . . . φm2
2 (t) 0 . . . 0

. . .
0 . . . 0 φ1

p(t) . . . φ
mp
p (t)







.

Let Ã be the n ×∑p
ℓ=1 mℓ-matrix, whose rows are the vectors ai, and M(t) the n × p

matrix with values xℓ
i(t) of functions xℓ

i at times t ∈ [0, T ] (1 ≤ i ≤ n, 1 ≤ ℓ ≤ p). With
these notations, we have

M(t) = ÃΦ′(t). (4)

Under the basis expansion assumption (3), the estimator V̂ of V , for all s, t ∈ [0, T ], is
given by:

V̂ (s, t) =
1

n − 1
(M(s) − µ̂′(s))′(M(t) − µ̂′(t)) =

1

n − 1
Φ(s)A′AΦ′(t), (5)

where M(s) − µ̂′(s) means that the row vector µ̂′(s) is subtracted to each row of M(s),
and A = (In − 1In(1/n, . . . , 1/n))Ã where In and 1In are respectively the identity n× n-
matrix and the unit column vector of size n.
From (1) and (5), each principal factor f j belongs to the linear space spanned by the
basis Φ:

f j(t) = Φ(t)b′
j (6)

with bj = (bj11, . . . , bj1m1, bj21, . . . , bj2m2 , . . . , bjp1, . . . , bjpmp
).

Using the estimation V̂ of V , the eigen problem (1) becomes

∫ T

0

V̂ (s, t)f j(t)dt = λjf j(s),

which, by replacing V̂ (s, t) and f j(s) by their expressions given in (5) and (6), is equiv-
alent to

∫ T

0

1

n − 1
Φ(t)A′AΦ′(t)f ′

j(t)ds = λjΦ(s)b′
j , (7)

⇔ 1

n − 1
Φ(s)A′A

∫ T

0

Φ′(t)Φ(t)dt

︸ ︷︷ ︸

W

b′
j = λjΦ(s)b′

j , (8)
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where W =
∫ T

0
Φ′(t)Φ(t)dt is defined as the symmetric block-diagonal

∑p
ℓ=1 mℓ ×

∑p
ℓ=1 mℓ-matrix of the inner products between the basis functions.

Since (8) is true for all s, we have:

1

n − 1
A′AWb′

j = λjb
′
j .

By defining uj = bjW
1/2, the multivariate functional principal component analysis is

reduced to the usual PCA of the matrix 1√
n−1

AW1/2:

1

n − 1
W1/2′A′AW1/2u′

j = λju
′
j .

The coefficient bj, j ≥ 1, of the principal factors f j are obtained by bj = (W1/2′)−1u′
j ,

and the principal component scores, are given by

Cj = AWb′
j j ≥ 1.

Note that the principal components scores Cj are also the solutions of the eigenvalues
problem:

1

n − 1
AWA′Cj = λjCj .

2.3. Normed principal component analysis

When the Xℓ’s components of X (1 ≤ ℓ ≤ p) are of different natures (different
measure units for example), the question of normalizing data occurs naturally. It is
well known that the principal components are defined as maximizing the variance with
respect to the total variance Trace(V) =

∑

j≥1 λj . Since,

Trace(V) =

∫ T

0

p
∑

j=1

Var(Xj(t))dt,

it is clear that components Xj with large variances plays an important role in defining
the principal components. This source of variability is in general not interesting and
hides more interesting features of the data structure. For this reason, except in partic-
ular situations (same scale for all Xj’s, for example), normalization is suitable. As in
the classical framework of PCA, this is done by introducing some metrics.
One way to introduce a metric in MFPCA is to consider it as a canonical analysis
(Saporta, 1981), in which the principal components are defined as solutions of the fol-
lowing eigen problem:

∫ T

0

Pt(Cj)dt = λjCj , j ≥ 1 (9)
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where Pt is the orthogonal projection operator associated with X defined as

Pt(Cj) =< X(t), [V (t, t)]−1
E[X(t)Cj ] >Rp . (10)

Combining (10) and (9) one obtains

Cj =

∫ T

0

< X(t) − µ(t), f j(t) >Rp dt (11)

where f j is the solution of the eigenvector problem

∫ T

0

[V (s, s)]−1V (s, t)f j(t)dt = λf (s). (12)

Clearly, [V (s, s)]−1 must exist for each s ∈ [0, T ]. Under this hypothesis, the principal
factors of the normalized MFPCA are the eigenfunctions of the integral operator with
kernel [V (s, s)]−1V (s, t) as in (12). The Karhunen-Loeve expansion of X becomes

X(t) = µ(t) +
∞∑

j=1

Cj [V (t, t)]f j(t),

where the principal components Cj , defined by (11), have zero mean and variance λj.

Normalization in practice. Observe that if R(t, t) is the square root of the matrix V (t, t),
i.e. V (t, t) = R(t, t)R(t, t)′, then the MFPCA of X with metric V (t, t) is equivalent to
the MFPCA of Y defined by

Y (t) = R(t, t)−1X(t),

with identity metric as in Section 2.1. In practice, if X is observed at times t1, . . . , tr,
r > 1, then Y is defined from X as

Y (ti) = R(ti, ti)
−1X(ti), i = 1, . . . , r

and approximation and estimation methodology in Section 2.2 is applied to Y .

3. Approximation of the density for multivariate functional data

As the notion of probability density is not well defined for functional data (Delaigle
and Hall, 2010), we can use an approximation of the density based on the Karhunen-
Loeve expansion (2). Considering the principal components indexed upon the descend-
ing order of the eigenvalues (λ1 ≥ λ2 ≥ . . .), and denoting X(q) as the approximation of
X by truncating (2) at the q first terms, q ≥ 1, we have

X(q)(t) = µ(t) +

q
∑

j=1

Cjf j(t). (13)
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Then, X(q) is the best approximation of X, under the mean square criterion, among all
the approximations of the same type (linear combination of q deterministic functions of
t with random coefficients, Saporta (1981)).

Based on the approximation X(q) of X , Delaigle and Hall (2010) shows that, in the
case p = 1, the probability of X belonging to a ball of radius h centred at x ∈ L2([0, T ])p

can be written as

log P (‖X − x‖ ≤ h) =

q
∑

j=1

log fCj
(cj(x)) + ξ(h, q(h)) + o(q(h)), (14)

where fCj
is the probability density of Cj and cj(x) is the jth principal component score

of x, cj(x) =< f j, x >L2([O,T ])p. The functions q and ξ are such that q grows to infinity
when h tends to zero and ξ depends only on h and q(h).

The equality (14) suggests the use of the multivariate probability density of the

vector C(q) = (C1, . . . , Cq) as a surrogate f
(q)
X

for the “density” of X:

f
(q)
X

(x) =

q
∏

j=1

fCj
(cj(x)). (15)

Jacques and Preda (2012) use successfully a similar density surrogate for the clustering
of univariate functional data.

4. A model based-clustering for multivariate functional data

The aim of model-based clustering is to identify homogeneous groups of data sampled
from a mixture density model. In this section, we build a mixture model based on the
surrogate (15) for the density of X.

Let us consider that there exists a latent group variable Z, of K categories (K groups),
Z = (Z1, . . . , ZK) ∈ {0, 1}K such that Zg = 1 indicates that the multivariate curve X

belongs to the cluster g, 1 ≤ g ≤ K, and Zg = 0 otherwise. For each i = 1, . . . , n, let Zi

be the group indicator corresponding to X i.
In the following we suppose that X |Zg=1 is such that each Xℓ

|Zg=1 is a zero-mean
stochastic process (1 ≤ ℓ ≤ p). The number K of groups is assumed to be known. In
the contrary case, an approximation of the BIC criterion (Schwarz, 1978), based on the
approximated likelihood (17), could be used to select K.

4.1. The mixture model

Let assume that each couple (X i, Zi), i = 1, . . . , n, is an independent realization
of the random vector (X, Z) where X has a density surrogate depending on its group
belonging:

f
(qg)
X|Zg=1

(x; Σg) =

qg∏

j=1

fCj |Zg=1
(cj,g(x); λj,g)
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where qg is the number of principal components retained in the approximation (15) for
the group g, cj,g(x) is the jth principal component score of X |Zg=1 for X = x, fCj |Zg=1

its probability density and Σg the diagonal matrix of the principal components variances
(λ1,g, . . . , λqg,g). Conditionally on the group g, the probability density fCj |Zg=1

of the jth

principal component of X is assumed to be the univariate Gaussian density with zero
mean (the principal component are centred) and variance λj,g. This assumption is in
particular satisfied when X |Zg=1 is a Gaussian process.

Remark (Data generation). For a given cluster g, 1 ≤ g ≤ K, provided that the qg

eigenfunctions f j and eigenvalues λj of the covariance operator of X |Zg=1 are known,

then, generating an approximation X
(qg)

|Zg=1 of X |Zg=1 reduces to generating a real random

variables Cj according to centred Gaussian distributions with variance λj (1 ≤ j ≤ qg).
Of course, that does not generate the true X |Zg=1. However, the main structure of
clusters is assumed to be characterized by this type of approximations.

The vector Z = (Z1, . . . , ZK) is assumed to have one-order multinomial distribution
M1(π1, . . . , πK), with π1, . . . , πK the mixing proportions (

∑K
g=1 πg = 1). Under this

model we can deduce a surrogate for the unconditional density of X:

f
(q)
X

(x; θ) =
K∑

g=1

πg

qg∏

j=1

fCj |Zg=1
(cj,g(x); λj,g) (16)

where θ = {(πg, λ1,g, . . . , λqg,g)1≤g≤K} and q = (q1, . . . , qK). From this density surrogate,
we deduce the pseudo likelihood:

l(q)(θ; X) =
n∏

i=1

K∑

g=1

πg

qg∏

j=1

1
√

2πλj,g

exp

(

−1

2

C2
i,j,g(X i)

λj,g

)

(17)

where Ci,j,g(X i) is the jth principal score of the curve X i for the group g and X =
(X1, . . . , Xn).

Remark (Identifiability). When the approximation orders are different, identifiability
of the mixture model (16) is straightforward. When all the approximation orders are
equal, the identifiability of model (16) deduces directly from the identifiability of mixture
of multivariate Gaussian (Titterington et al., 1985).

4.2. Parameter estimation

In the unsupervised context the estimation of the mixture model parameters is not so
straightforward as in the supervised context since the groups indicators Zi are unknown.
On one hand, we need to use an iterative algorithm which alternates the estimation
of the group indicators, the estimation of the PCA scores for each group and then
the estimation of the mixture model parameters. On the other hand, the parameter
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q = (q1, . . . , qg) will be estimated by an empirical method, similar to those used to select
the number of components in usual PCA.

A classical way to maximise a mixture model likelihood when data are missing (here
the clusters indicators Zi) is to use the iterative EM algorithm (Dempster et al., 1977;
McLachlan and Peel, 2000). In this work we use an EM-like algorithm including, between
the standard E and M steps, a first step in which the principal components scores of each
group are updated and a second one in which the approximation order q are selected.
Our EM-like algorithm consists in maximizing the pseudo completed log-likelihood

L(q)
c (θ; X, Z) =

n∑

i=1

K∑

g=1

Zg
i

(

log πg +

qg∑

j=1

log fCj |Z
g
i
=1

(Ci,j,g(X i); λj,g)

)

,

where Z = (Z1, . . . , Zn). Let θ(h) contains the current values of the estimated parameters
at step h, h ≥ 1.

E step. As the group indicators Zg
i ’s are unknown, the E step consists in computing the

conditional expectation of the pseudo completed log-likelihood:

Q(θ; θ(h)) = Eθ(h) [L(q)
c (θ;X,Z)|X = x] =

n∑

i=1

K∑

g=1

ti,g



log πg +

qg∑

j=1

log fCj |Z
g
i
=1

(ci,j,g(xi);λj,g)





where ci,j,g(xi) is the value of the random variable Ci,j,g(X i) for X i = xi, ti,g is the
probability for the multidimensional curve X i to belong to the group g conditionally to
Ci,j,g(X i) = ci,j,g(xi):

ti,g = Eθ(h) [Z
g
i |X = x] ≃

πg

∏qg

j=1 fCj |Z
g
i
=1

(ci,j,g(xi); λj,g)
∑K

l=1 πl

∏ql

j=1 fCj |Zl
i
=1

(ci,j,l(xi); λj,l)
. (18)

The approximation in (18) is due to the use of the surrogate for the density of X given
by (15).

Principal score updating step. The computation of the principal component scores has
been described in Section 2.2. Here, the principal component scores Ci,j,g of the mul-
tidimensional curve X i in the group g is updated according to the current conditional
probability ti,g computed in the previous E step. This computation is carried out by
weighting the importance of each curve in the construction of the principal components
with the ti,g’s. Consequently, the first step consists in centring the curve X i within the
group g by subtracting the mean curve computed using the ti,g’s: the basis expansion
coefficients matrix A becomes Ag = (In − 1In(t1,g, . . . , tn,g))Ã. The jth principal compo-
nent scores Cj,g is then the jth eigenvector of the matrix AgWA′

gTg associated with the
jth eigenvalue λj,g, with Tg = diag(t1,g, . . . , tn,g).
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Group specific dimension qg estimation step. The estimation of the group specific di-
mension qg is an open problem. In this work we propose to use, once the group specific
FPCA have been computed at the previous step, the scree-test of Cattell (1966) in
order to select each group specific dimension qg. The advantage of using this test is
that one hyperparameter (the threshold of the Cattell scree-test) allows to estimate K
approximation orders.

M step. The M step consists of computing the mixture model parameters θ(h+1) which
maximizes Q(θ; θ(h)) according to θ. It leads simply to the following estimators

π(h+1)
g =

1

n

n∑

i=1

ti,g, and λj,g
(h+1) = λj,g, 1 ≤ j ≤ qg,

where λj,g is the variance of the jth principal component of the cluster g computed in
the principal score updating step.

Convergence and numerical considerations. The proposed estimation algorithm is not
a proper EM algorithm, since the growth of the pseudo likelihood is not guaranteed
between two steps. The main reason is the use of a pseudo likelihood built on an ap-
proximation of the notion of density. Indeed, since only a finite number of principal
components are used, and since these principal components are computed with different
weights at each iteration of the algorithm (the ti,g’s), the ’data’ on which the pseudo
likelihood is computed, i.e. the principal components scores, are not the same at each
step. To avoid this phenomenon, all principal components should be used, which is gen-
erally not applicable for functional data since they form an infinite set. Thus, the values
of the likelihood can not be directly compared between two iterations. The properties of
the EM algorithm, which guarantee the convergence to a local maxima of the likelihood
in the classical framework does not work any more. Moreover, the approximation orders
qg, 1 ≤ g ≤ K, are updated at each iteration, and this can also induce an artificial
increase or decrease of the pseudo likelihood.
In practice, we adopt the following empirical strategy which allows us to perform nu-
merical applications:

� the algorithm is launched several times with random initializations for a small
number of iterations, and the best reached solution is used as the initialization
point for a longer algorithm (Biernacki, 2004). Typically, 10 small runs with 10
iterations are used in the following experiments.

� the values of qg are initialized to 1, and they are only allowed to increase.

� the number S of iterations is set as follows: for a given S (200 for instance),
the algorithm is executed 20 times, and S is considered to be large enough if the
maximum of the pseudo likelihood has been achieved before 3S/4 iterations for
the 20 executions.

12



Anticipating the application results, Figure 4 and Figure 6 illustrate the trajectories of
the pseudo likelihood and the approximation orders on simulated and real datasets.

5. Numerical experiments

This section is devoted to compare our approach, which we will call Funclust –
as in univariate case (Jacques and Preda, 2012)– with other existing methods. The
evaluation of a clustering algorithm is always a difficult and subjective task. Following
Guyon et al. (2009), three evaluations strategies are considered in this paper. First,
Funclust is compared to other clustering methods for univariate functional data using
three classification benchmark datasets. Second, a simulation study allows to compare
Funclust with another clustering method for multivariate functional data based on k-
means. Third, a real clustering application on a climatology dataset is carried out. The
clusters obtained by Funclust and the k-means based method are then compared from
the interpretation point of view.

Remark (Data registration). When working with functional data, a curve registration
step is often needed to remove the amplitude and phase variation of curves (Ramsay and
Silverman, 2005, Chap. 7). In our opinion, in the clustering context, the amplitude
and phase variability of curves are interesting elements to define clusters. For instance,
in the Canadian weather example which will be analysed in the sequel, the geographical
interpretation of the clusters is mainly due to amplitude variability. Similarly, for the
Growth dataset, it is shown in Liu and Yang (2009) that performing registration before
or simultaneously with clustering failed in retrieving the gender of subjects, probably
because the main gender difference is due to a time wrapping effect. For this reason, we
do not perform data registration in this work before our clustering study.

The R code for Funclust is available on request from the authors.

5.1. Benchmark study in the case of univariate functional data

The data. Three real datasets are considered: the Kneading, Growth, and ECG datasets.
These three datasets, already studied in Jacques and Preda (2012), are plotted on Fig-
ure 1. The first dataset (Kneading) comes from Danone Vitapole Paris Research Center
and concerns the quality of cookies and the relationship with the flour kneading pro-
cess. The kneading dataset is described in detail in Leveder et al. (2004). There are 115
different flours for which the dough resistance is measured during the kneading process
for 480 seconds. One obtains 115 kneading curves observed at 241 equispaced instants
of time in the interval [0, 480]. The 115 flours produce cookies of different quality: 50
of them have produced cookies of good quality, 25 produced medium quality and 40 low
quality. This data has been already studied in a supervised classification context (Lev-
eder et al., 2004; Preda et al., 2007). This data is known to be hard to discriminate,
even for supervised classifiers, partly because of the medium class. The second dataset
(Growth) comes from the Berkeley growth study (Tuddenham and Snyder, 1954) and is
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Figure 1: Kneading, Growth and ECG datasets.

available in the fda package of the software R. In this dataset, the heights of 54 girls and
39 boys were measured at 31 stages, from 1 to 18 years. The goal is to cluster the growth
curves and to determine whether the resulting clusters reflect gender differences. The
last dataset (ECG) is taken from the UCR Time Series Classification and Clustering
website1. This dataset consists of 200 curves from 2 groups sampled at 96 time instants,
and has already been studied in Olszewski (2001).

Experimental set-up. For each dataset, the labels indicating the group membership of
observations are available. These labels have been provided by human experts (Kneading
and ECG datasets) or simply by the nature of the individuals (gender for the Growth
dataset). In order to compare the ability of the clustering methods to retrieve the
class labels, we choose to use the correct classification rate (CCR) which measures
the adequacy of the resulting clusters with the known partition. This measure varies
between 0 and 1, and larger the CCR, better the correspondence between the clustering
and the known partition. In order to deal with the labelling problem, all the possible
permutations are tested to label the K groups, and the best CCR is retained.
In this benchmark study, Funclust is compared to three challengers dedicated to the
clustering of univariate functional data: FunHDDC (Bouveyron and Jacques, 2011) and
k-centres (kCFC, Chiou and Li (2007)) which are the closest methods and fclust (James
and Sugar, 2003) which is known to be a good challenger. Note that since no code is
available for kCFC (to the best of our knowledge), only the comparison on the Growth
dataset is possible, thanks to the classification results presented in Chiou and Li (2007).
The number of iterations and the initialization are set as explained in Section 4.2. The
threshold of the Cattell scree test allowing to select the approximation order qk is fixed
to 0.05. With this experimental set-up, Funclust estimation is obtained in about 30
seconds for each dataset, on a laptop (2.80GHz CPU) and with a code in R software.

1http://www.cs.ucr.edu/∼eamonn/time series data/
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Results. The estimated approximation orders qg for Funclust are the following: Knead-
ing (q1 = 2, q2 = 1, q3 = 3), Growth (q1 = 2, q2 = 3), ECG (q1 = 9, q2 = 4). These
qg’s are relatively close (or slightly greater) to the numbers q∗g ’s of principal components
retained by the Cattell scree test (with the same threshold of 0.05) when carrying out
FPCA on the true classes: Kneading (q∗1 = 1, q∗2 = 1, q∗3 = 2), Growth (q∗1 = 1, q∗2 = 1),
ECG (q∗1 = 4, q∗2 = 5).
The correct classification rates (CCR) according to the known partitions are given in
Table 1. Funclust performs better than the other methods on two datasets among
three (Kneading and ECG). On the last dataset, the results are relatively poor (69.89%
whereas some method are about 97%), but they can be greatly increased (95.70%) if
the dimensions qg are fixed to 2. This dataset illustrates that the choice of the approx-
imation order is a very important question, and that further works have to be carried
out in this direction.

method Kneading Growth ECG
Funclust 66.96 69.89 84
FunHDDC 62.61 96.77 75
fclust 64 69.89 74.5
kCFC - 93.55 -

Table 1: Correct classification rates (CCR) in percentage for Funclust, FunHDDC (best model according
BIC), fclust and kCFC on the Kneading, Growth and ECG datasets.

5.2. Simulation study in the case of multivariate functional data

The data. In this simulation study, the number of clusters is assumed to be known: K=2.
A sample of n = 50 curves are simulated according to the following model inspired by
Ferraty and Vieu (2003) and Preda (2007): for t ∈ [1, 21],

Class 1 : X1(t) = −5 + t/2 + U2h3(t) + U3h2(t) +
√

0.1ǫ(t),

X2(t) = −5 + t/2 + U1h1(t) + U2h2(t) + U3h3(t) +
√

0.5ǫ(t),

Class 2 : X1(t) = U3h2(t) +
√

10ǫ(t),

X2(t) = U1h1(t) + U3h3(t) +
√

0.5ǫ(t),

where U1 ∼ N (0.5, 1/12), U2 ∼ N (0, 1/12) and U3 ∼ N (0, 2/3) are independent
Gaussian variables and ǫ(t) is a white noise, independent of Ui’s and of unit vari-
ance. The function h1, h2 and h3 (plotted on Figure 2) are defined, for t ∈ [1, 21],
by h1(t) = (6 − |t− 11|)+ where (·)+ mean the positive part, h2(t) = (6 − |t− 7|)+ and
h3(t) = (6 − |t − 15|)+. The mixing proportions πi’s are chosen to be equal, and the
curves are observed in 1001 equidistant points (t = 1, 1.02, . . . , 21). Figure 3 plots the
simulated curves.
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Figure 2: Function h1(t) = (6−|t−11|)+, h2(t) = (6−|t−7|)+ and h3(t) = (6−|t−15|)+ for t ∈ [1, 21].
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Figure 3: Bi-dimensional simulated curves for class 1 (top) and class 2 (bottom).

Experimental set-up. Funclust is compared to the multivariate functional data clustering
methods described in Ieva et al. (2011), based on k-means method with the following
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distances:

d1(X ,Y ) =

√
√
√
√

2∑

j=1

∫ T

0
(Xj(t) − Yj(t))2dt and d2(X ,Y ) =

√
√
√
√

2∑

j=1

∫ T

0
(X ′

j(t) − Y ′
j (t))2dt,

where X ′
j(t) is the derivative of Xj(t). A discussion on these distances in the case of

univariate functional data can be found in Ferraty and Vieu (2003). Since no public
implementation is available for this method, we built our own implementation in the R
software. In particular, the distance d2 was computed using the package fda.
In addition to these methods, quoted with kmeans-d1 and kmeans-d2 in the sequel,
we consider usual k-means applied on the values of the functions at each observation
points t = 1, 1.02, . . . , 21 (quoted as kmeans-points) and on the coefficients resulting
from a linear spline smoothing with 30 equidistant knots (kmeans-spline). Linear spline
smoothing has also been used by Funclust, with initialization and iterations number
fixed following Section 4.2, and with a Cattell scree test threshold fixed to 0.05. Since
both components X1 and X2 have similar covariance structure, the curves have not been
normalized.

0 50 100 150 200

40
80

12
0

iterations

ap
pr

ox
m

at
ed

 li
ke

lih
oo

d

0 50 100 150 200

0
1

2
3

4

iterations

di
m

en
si

on
 q

_k

Figure 4: Convergence of the pseudo EM algorithm (top: pseudo likelihood evolution, bottom: ap-
proximation orders evolutions). The red part in the pseudo likelihood stops when the maximum is
achieved.

Results. The convergence of Funclust is illustrated by Figure 4. Table 2 presents the
mean and standard deviation of the correct classification rates (CCR), for 100 simula-
tions. The results confirm the good behaviour of Funclust that we have already noticed
for univariate functional data.
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method Funclust kmeans-d1 kmeans-d2 kmeans-points kmeans-spline
Mean CCR 86.80 86.32 85.76 80.60 86.14
Std CCR 14.51 16.30 10.28 14.94 15.80

Table 2: Mean and standard deviation (for 100 simulations) of correct classification rates (CCR) in
percentage for Funclust, kmeans-d1, kmeans-d2 and k-means applied on observations points and spline
coefficients.

5.3. Canadian temperature and precipitation

In this last application, the Canadian temperature and precipitation data (available
in the R package fda and presented in detail in Ramsay and Silverman (2005)) are used
to compared Funclust with Ieva et al. (2011)’s method (kmeans-d1 and kmeans-d2). The
dataset consists in the daily temperature and precipitation at 35 different locations in
Canada averaged over 1960 to 1994. The goal is to provide a clustering into 4 groups,
and to give a geographical interpretation of the resulting clusters.
Since the units of both curves are different (Celsius degrees and millimetres), the data
are normalized following methodology presented at the end of Section 2.3. Figure 5
plots original and reduced curves. The curve has been smoothed using Fourier basis
with 65 knots, as in Ramsay and Silverman (2005).
Funclust, kmeans-d1 and kmeans-d2 are applied on this dataset. For Funclust, the
initialization and the iterations number has been chosen following Section 4.2 and the
threshold of the Cattell scree test has been fixed to 0.2. The convergence of Funclust is
illustrated by Figure 6. Figure 7 presents the clustering into 4 groups of the Canadian
weather stations using Funclust. We can observe four distinct groups of stations. The
green group is mostly made of northern continental stations, whereas Atlantic stations
and southern continental stations are mostly gathered in the red group. The blue
group mostly contains Pacific stations and the last group (black) contains only the
northernmost station Resolute (N.W.T.). We recall that all these results have been
obtained without using the geographical positions of the stations.

In comparison, Figure 8 shows the clustering with kmeans-d1 and kmeans-d2 methods,
using the same normalized curves and the same basis approximation. This clustering
seems less pertinent than Funclust clustering since the blue and red group contains both
Atlantic and Pacific stations. Nevertheless, the black group mainly contains continental
stations whereas in Funclust clustering, continental and Atlantic stations are gathered
together. This last fact is probably due to the Resolute station which is so different from
the others (the temperature and precipitation are the lowest) that Funclust clusters this
station alone apart in a group.

6. Discussion

In this paper we propose a clustering procedure for multivariate functional data based
on an approximation of the notion of density for multivariate random function. We
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Figure 5: Temperature and precipitation curves for 35 locations in Canada, averaged over 1960 to 1994.
The top figures are the original curves and the bottom figures are the reduced ones.
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Figure 6: Convergence of the pseudo EM algorithm (top: pseudo likelihood evolution, bottom: ap-
proximation orders evolutions). The red part in the pseudo likelihood stops when the maximum is
achieved.
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Figure 7: Funclust clustering using the reduced curves into 4 groups.
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Figure 8: K-means clustering using the reduced curves into 4 groups, with distance d1 (left) and d2

right.

introduce the principal component analysis of multivariate functional data. Assuming
normality for the principal components within clusters, we define a mixture model for
multivariate functional data clustering. The obtained model is an extrapolation of the
finite dimensional Gaussian mixture model to the infinite dimensional setting. With
respect to other clustering techniques for multivariate functional data, our methodology
has the advantage to take into account the dependency between the curves defining the
multivariate data. An EM-like algorithm is proposed for parameter estimation. The
results obtained on real and simulated data illustrate the efficiency of our methodology.

Some questions still remain open and further research are to be undertaken to provide
answers. First of all, as previously discussed, the selection of the approximation orders
is a great challenge for which we actually use an empirical method. Moreover, since
only an approximation of the likelihood is available, the question of the convergence of
the estimation algorithm is currently without response. However, the heuristic strategy
used in this paper provide interesting clusters.
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Preda, C., Saporta, G., Lévéder, C., 2007. PLS classification of functional data. Com-
putational Statistics 22 (2), 223–235.

Ramsay, J. O., Silverman, B. W., 2005. Functional data analysis, 2nd Edition. Springer
Series in Statistics. Springer, New York.

Ray, S., Mallick, B., 2006. Functional clustering by Bayesian wavelet methods. Journal
of the Royal Statistical Society. Series B. Statistical Methodology 68 (2), 305–332.

Sangalli, L., Secchi, P., Vantini, S., Vitelli, V., 2010. K-means alignment for curve
clustering. Computational Statistics and Data Analysis 54 (5), 1219–1233.
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