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Existence of weak solutions up to collision

for viscous fluid-solid systems with slip

David Gérard-Varet∗ Matthieu Hillairet†

March 5, 2014

Abstract

We study in this paper the movement of a rigid solid inside an incompressible Navier-Stokes

flow, within a bounded domain. We consider the case where slip is allowed at the fluid/solid

interface, through a Navier condition. Taking into account slip at the interface is very natural

within this model, as classical no-slip conditions lead to unrealistic collisional behavior between

the solid and the domain boundary. We prove for this model existence of weak solutions of

Leray type, up to collision, in three dimensions. The key point is that, due to the slip condition,

the velocity field is discontinuous across the fluid/solid interface. This prevents from obtaining

global H1 bounds on the velocity, which makes many aspects of the theory of weak solutions for

Dirichlet conditions inappropriate.

1 Introduction

The general concern of this paper is the dynamics of solid bodies in a fluid flow. This dynamics

is relevant to many natural and industrial processes, like blood flows, sprays, or design of micro

swimmers.

A main problem to understand this dynamics is to compute the drag exerted by the flow on the

bodies. From the mathematical point of view, a natural approach to this problem is to use the Euler or

Navier-Stokes equations to model the flow. However, this generates serious difficulties. A famous one

is D’Alembert’s paradox, related to the Euler equation: in an incompressible and inviscid potential

flow, a solid body undergoes no drag [21].

But the Navier-Stokes equations also raise modeling issues. Let us consider for instance a single

solid moving in a viscous fluid. We denote by S(t) ⊂ R
3, F (t) ⊂ R

3 the solid and fluid domains

at time t, and Ω := S(t) ∪ F (t) the total domain. We assume that the fluid is governed by the

Navier-Stokes equations. We denote uF and pF its velocity and internal pressure, ρF its density, µF
its viscosity. Thus:

{

ρF (∂tuF + uF · ∇uF )− µF∆uF = −∇pF − ρF g, t > 0, x ∈ F (t),

div uF = 0, t > 0, x ∈ F (t),
(1.1)
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with −ρF g the gravitational force. In parallel to the fluid modeling, we write the conservation of

linear and angular momentum for the body. Denoting xS(t) ∈ R
3 the position of the center of mass,

US(t) ∈ R
3 its velocity, and ωS(t) ∈ R

3 the angular velocity at time t, these conservation laws read


















mS
d

dt
US(t) = −

∫

∂S(t)
ΣF ν dσ − mS g,

d

dt
(JS ωS(t)) = −

∫

∂S(t)
(x− xS(t))× (ΣF ν) dσ + ρS

∫

S(t)
(x− xS(t))× (−g ).

(1.2)

Following standard notations, ρS and mS := ρS |S(0)| are the density and mass of the solid (inde-

pendent of t and x), ΣF (t, x) ∈M3(R) is the newtonian tensor of the fluid:

ΣF = (2µFD(uF )− pF Id ) ,

and JS(t) ∈M3(R) is the inertia matrix of the solid:

JS(t) := ρS

∫

S(t)

(

|x− xS(t)|2 Id − (x− xS(t))⊗ (x− xS(t))
)

dx.

The vector ν = ν(t, ·) is the unit normal vector pointing inside the solid S(t). Note that the velocity

uS(t, x) at each point x of the solid reads

uS(t, x) := US(t) + ωS(t)× (x− xS(t)).

To close the system, one usually imposes no-slip conditions, both at the fluid-solid interface and

the cavity boundary:
{

uF |∂S(t) = uS |∂S(t)
uF |∂Ω = 0,

(1.3)

and one specifies the initial data: the initial position of the solid S0,

uF,0 := uF |t=0 and uS,0 := US,0 + ωS(0)× (x− xS0).

One could believe that system (1.1)-(1.2)-(1.3) is a good model for the interaction between a solid

and a viscous fluid. Far from it: in the case of a sphere falling over a flat wall

S(0) := e3 +B(0, 1/2), Ω := {x3 > 0},

it predicts that no collision is possible between the solid and the wall ! This no-collision paradox

has been known from specialists since the 1960’s, after articles by Cox and Brenner [4] and Cooley

and O’Neill [5] in the context of Stokes equations. Since then, the no-collision paradox has been

confirmed at the level of the Navier-Stokes equations (see [16, 17], and the preliminary result in [23]).

Of course, such a result is unrealistic, as it goes against Archimedes’ principle. It suggests that

the Navier-Stokes equations are not relevant to collisional and post-collisional descriptions. Hence,

many physicists have tried to find an explanation for the paradox. We shall focus here on one possible

explanation, namely the no-slip condition. The idea is that, when the distance between the solids gets

very small (below the micrometer), the no-slip condition is no longer accurate, and must be replaced

by a Navier condition:
{
(

uF − uS
)

· ν|∂S(t) = 0,
(

uF − uS
)

× ν|∂S(t) = −2βS(ΣFν)× ν|∂S(t),
uF · ν|∂Ω = 0, uF × ν|∂Ω = −2βΩ (ΣF ν)× ν|∂Ω.

(1.4)
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In other words, only the normal component of the relative velocity of the fluid is zero, to ensure

impermeability. The tangential ones are non-zero, and proportional to the stress constraint, with

constant slip lengths βS , βΩ > 0. For a recent discussion of the Navier condition, notably in the

context of microfluidics, we refer to [19]. See also the seminal paper [18]. Let us point out that the

Navier-condition is sometimes used as a wall law, to describe the averaged effect of rough hydrophobic

surfaces [2].

The effect of slip conditions (1.4) on collision was investigated recently by the authors in article

[13]. More precisely, this article is devoted to a simplified model, in which

• The Navier-Stokes equations are replaced by the steady Stokes ones (quasi-static regime).

• The domain Ω is a half-space, the solid S is a sphere.

In this context, denoting h(t) the distance between S(t) and the plane ∂Ω, it is shown that the dynam-

ics obeys the reduced ODE

ḧ = ḣD(h) +
(ρF − ρS)

ρS
g

where the drag term D(h) satisfies D(h) = O(| lnh|) as h → 0. This is in sharp contrast with the

case of no-slip conditions (1.3), for which D(h) ∼ C
h . In particular, it allows for collisions in finite

time. We refer to [13] for all details and other results in the context of rough boundaries.

Hence, paper [13] provides a resolution of the paradox: one can a priori keep the Navier-Stokes

equations, up to considering the Navier boundary conditions (1.4). Nevertheless, the analysis in [13]

is limited to simple configurations and to Stokes flows. In the context of the full 3D Navier-Stokes

system (1.1), more complicated behaviors may occur. For instance, smooth solutions may exhibit

singularities prior to any collision. To describe the qualitative features of the collision, one needs to

consider weak solutions. The theory of weak solutions is well understood in the case of no-slip condi-

tions and many references will be given in the next section. However, the existence of weak solutions

with Navier conditions has been so far an open question, due to serious additional mathematical dif-

ficulties. To address this question is the purpose of the present paper. Broadly, we shall build weak

solutions for system (1.1)-(1.2)-(1.4), up to collision between the solid and the cavity Ω.

The paper is organized as follows. Section 2 contains the statement of our main result: we give

a definition of weak solutions, and state the existence of such solutions as long as no contact occurs.

We explain the main difficulties in proving their existence, in comparison to the results available for

no-slip conditions. We conclude Section 2 by an outline of our proof, to be carried out in sections 3

to 5. More precisely:

• Section 3 is devoted to an auxiliary nonlinear transport equation, which is crucial to our approx-

imation procedure.

• Section 4 is dedicated to the construction of solutions for well-chosen approximations of the

Navier-Stokes / solid dynamics.

• Section 5 describes the limit procedure, from the approximate to the exact system.
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2 Main result and ideas

2.1 Weak solutions of Navier-Stokes with slip conditions

The aim of this paragraph is to define a weak formulation and weak solutions for system (1.1)-(1.2)-

(1.4), that is in the case of slip conditions of Navier type. We remind that in the case of no-slip

conditions, the theory of weak solutions has been successfully achieved over the last ten years, first

up to collision (see [8]) and then globally in time (see [23] in the 2D case, [10] in the 3D case). Let us

also mention the alternative approach in [3], and the recent result [14] on the uniqueness of 2D weak

solutions up to collision.

As usual, in order to derive a weak formulation, the starting point is formal multiplication by

appropriate test functions. These test functions must of course look like the solution itself. Notably,

they must be rigid vector fields in the solid domain S. This forces the space of test functions to

depend on the solution itself: it is a classical difficulty, already recognized in the no-slip case. A

key feature of the slip conditions is that these test functions, and also the solution, will be moreover

discontinuous across the fluid/solid interface. Indeed, the first line of (1.4) ensures the continuity of

the normal component, but the tangential ones may have a jump. It is a strong difference with regards

to boundary conditions (1.3), and it will generate many difficulties throughout the paper.

We first introduce some notation for the classical spaces of solenoidal vector fields. Let O be a

Lipschitz domain. We set

Dσ(O) := {ϕ ∈ D(O), div ϕ = 0} , Dσ(O) :=
{

ϕ|O, ϕ ∈ Dσ(R
3)
}

,

L2
σ(O) := the closure of Dσ(O) in L2(O), H1

σ(O) := H1(O) ∩ L2
σ(O),

H1
σ(O) := the closure of Dσ(O) in H1(O)

We remind that elements u of L2
σ(O) satisfy u · ν = 0 in H−1/2(∂O).

We also introduce the finite dimensional space of rigid vector fields in R
3:

R := {ϕs, ϕs(x) = V + ω × x, for some V ∈ R
3, ω ∈ R

3}.

Finally, we define for any T > 0 the space TT of test functions over [0, T ):

TT :=
{

ϕ ∈ C([0, T ];L2
σ(Ω)), there exists ϕF ∈ D([0, T );Dσ(Ω)), ϕS ∈ D([0, T );R)

such that ϕ(t, ·) = ϕF (t, ·) on F (t), ϕ(t, ·) = ϕS(t, ·) on S(t), for all t ∈ [0, T ]
}

.

Let us point out once again that this space of test functions depends on the solution itself through the

domains S(t) and F (t). Let us also notice that the constraint ϕ(t, ·) ∈ L2
σ(Ω) encodes in a weak form

the continuity of the normal component at ∂S(t):

ϕF (t, ·) · ν = ϕS(t, ·) · ν at ∂S(t), ∀t ∈ [0, T ).

Multiplying (1.1) by ϕ ∈ TT , integrating over F (t), and integrating by parts, we obtain (formally)

d

dt

∫

F (t)
ρF uF ·ϕF −

∫

F (t)
ρF uF · ∂tϕF −

∫

F (t)
ρF uF ⊗ uF : ∇ϕF +

∫

F (t)
2µFD(uF ) : D(ϕF )

=

∫

∂Ω
(ΣF ν) · ϕF +

∫

∂S(t)
(ΣFν) · ϕF +

∫

F (t)
ρF (−g) · ϕF ,
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where the normal vectors ν, in the integrals at the right-hand side, point resp. outside Ω and inside

S(t). Using (1.4):
∫

∂Ω
(ΣFν) · ϕF = − 1

2βΩ

∫

∂Ω
(uF × ν) · (ϕF × ν),

∫

∂S(t)
(ΣFν) · ϕF = − 1

2βS

∫

∂S(t)
((uF − uS)× ν) · ((ϕF − ϕS)× ν) +

∫

∂S(t)
(ΣFν) · ϕS

Eventually, one can use (1.2) to write differently the last integral: tedious but straightforward manip-

ulations yield
∫

∂S(t)
(ΣFν) · ϕS = − d

dt

∫

S(t)
ρS uS · ϕS +

∫

S(t)
ρS uS · ∂tϕS +

∫

S(t)
ρS(−g) · ϕS .

Combining the previous identities and integrating from 0 to T entails

−
∫ T

0

∫

F (t)
ρF uF · ∂tϕF −

∫ T

0

∫

S(t)
ρS uS · ∂tϕS +

∫ T

0

∫

F (t)
ρF uF ⊗ uF : ∇ϕF

+

∫ T

0

∫

F (t)
2µFD(uF ) : D(ϕF ) +

1

2βΩ

∫ T

0

∫

∂Ω
(uF × ν) · (ϕF × ν)

+
1

2βS

∫ T

0

∫

∂S(t)
((uF − uS)× ν) · ((ϕF − ϕS)× ν)

=

∫ T

0

∫

F (t)
ρF (−g) · ϕF +

∫ T

0

∫

S(t)
ρS(−g) · ϕS

+

∫

F (0)
ρFuF,0 · ϕF |t=0 +

∫

S(0)
ρSuS,0 · ϕS |t=0

(2.1)

Equation (2.1) is a global weak formulation of the momentum equations (1.1) and (1.2), taking the

slip conditions (1.4) into account. Setting ϕ = u in the above formal computations yields that, for all

t ∈ [0, T ] :

∫

F (t)

1

2
ρF |uF (t, ·)|2 +

∫

S(t)

1

2
ρS |uS(t, ·)|2 +

∫ t

0

∫

F (s)
2µF |D(uF )|2ds

+
1

2βΩ

∫ t

0

∫

∂Ω
|uF × ν|2 +

1

2βS

∫ t

0

∫

∂S(t)
|(uF − uS)× ν|2

≤
∫ t

0

∫

F (t)
ρF (−g) · uF +

∫ t

0

∫

S(t)
ρS(−g) · uS +

∫

Ω\S0

ρF |uF,0|2 +

∫

S0

ρS |uS,0|2.

(2.2)

This goes together with the conservation of mass, that amounts to the transport of S by the rigid vector

field uS . It reads

∂tχS + div (uSχS) = 0 in Ω, χS(t, x) := 1S(t)(x),

or in a weak form: for all Ψ ∈ D([0, T ),D(Ω)),

−
∫ T

0

∫

S(t)
∂tΨ −

∫ T

0

∫

S(t)
uS · ∇Ψ =

∫

S0

Ψ|t=0. (2.3)

Pondering on these formal manipulations, we can now introduce our definition of a weak solution on

[0, T ). We fix once for all the positive constants ρS, ρF , µF , βS , βΩ.
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Definition 1 Let Ω and S0 ⊂ Ω two Lipschitz bounded domains of R3. Let uF,0 ∈ L2
σ(Ω), uS,0 ∈ R

such that uF,0 · ν = uS,0 · ν on ∂S0.

A weak solution of (1.1)-(1.2)-(1.4) on [0, T ) (associated to the initial data S0, uF,0 and uS,0) is a

couple (S, u) satisfying

• S(t) ⊂ Ω is a bounded domain of R3 for all t ∈ [0, T ), such that

χS(t, x) := 1S(t)(x) ∈ L∞((0, T ) × Ω).

• u belongs to the space

ST :=
{

u ∈ L∞(0, T ;L2
σ(Ω)), there exists uF ∈ L2(0, T ;H1

σ(Ω)), uS ∈ L∞(0, T ;R)

such that u(t, ·) = uF (t, ·) on F (t), u(t, ·) = uS(t, ·) on S(t), for a. e. t ∈ [0, T ]
}

,

where F (t) := Ω \ S(t) for all t ∈ [0, T ).

• Equation (2.1) is satisfied for all ϕ ∈ TT .

• Equation (2.3) is satisfied for all ψ ∈ D([0, T );D(Ω)).

• Equation (2.2) is satisfied for almost every t ∈ (0, T ).

Let us conclude this paragraph by a few comments on this definition of weak solutions:

1. As χS ∈ L∞((0, T ) × Ω), the integrals over S(t) in (2.3) are integrable with respect to time:

namely,

t 7→
∫

S(t)
∂tΨ =

∫

Ω
χS∂tΨ and t 7→

∫

S(t)
uS · ∇Ψ =

∫

Ω
χSuS · ∇Ψ

belong to L1(0, T ). Actually, by the method of characteristics, as uS ∈ L∞(0, T ;R) (rigid

velocity field), it is easily seen that

S(t) = φt,0(S0)

for an isometric propagator φt,s which is Lipschitz continuous in time, smooth in space. It

follows that all integrals in equation (2.1) make sense. For instance, as ∂S(t) is Lipschitz for

all t and fields uF , uS , ϕF , ϕS have at least L2H1 regularity, the surface integral
∫

∂S(t)
((uF − uS)× n) · ((ϕF − ϕS)× n)

can be defined for almost every t in the trace sense. Moreover, it defines an element of L1(0, T ).
This can be seen through the change of variable x = φt,0(y): the surface integral turns into

∫

∂S0

 (t, φt,0(y)) Jacτ (y) dy,

where

(t, x) := ((uF (t, x)− uS(t, x)) × ν) · ((ϕF (t, x)− ϕS(x)) × ν)

and where

Jacτ (y) = ‖[∇φt,0(y)]−1 ν(y)‖2 det(∇φt,0(y)) (= 1)

is the tangential jacobian (see [15, Lemme 5.4.1] for details). This clearly defines an element

of L1(0, T ).
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2. Equations (2.1) and (2.3) involve fields uF , uS , ϕF , ϕS defined over Ω and such that

u = (1− χS)uF + χSuS , ϕ = (1− χS)ϕF + χSϕS ,

However, a closer look at equations (2.1) and (2.3) shows that they only involve

χSuS , χF (1,∇)uF , as well as χS(1, ∂t)ϕS and χF (1, ∂t,∇)ϕF .

In particular, they only depend on u and ϕ, not on the choice of the extended fields uF , uS and

ϕF , ϕS .

3. The condition u ∈ L∞(0, T ;L2
σ(Ω)) implies that

uF · ν|∂S(t) = uS · ν|∂S(t) for a.e. t

all terms being again understood in the trace sense.

4. It is easy to see that equation (2.3), that is the transport equation

∂tχS + div (χSuS) = 0 in D′([0, T ) ×Ω)

can be written

∂tχS + div (χSu) = 0 in D′([0, T ) × Ω) (2.4)

and implies

∂tχF + div (χFu) = 0 in D′([0, T ) × Ω), χF (t, x) = χF (t)(x) (2.5)

(remind that F (t) = Ω\S(t)). More generally, one can replace u by any v ∈ L∞(0, T ;L2
σ(Ω))

satisfying

v(t, ·) · ν|∂S(t) = u · ν|∂S(t) = uS · ν|∂S(t) for a.e. t

where the last equality holds in the space H−1/2(∂S(t)) (see [11, Theorem 3.2.2]). Note that

equations (2.4) and (2.5) should be replaced by

∂tρs + div (ρsu) = 0, ∂tρf + div (ρfu) = 0

in the case of inhomogeneous solid and fluid, with variable density functions ρs and ρf . See

[10] in the case of no-slip conditions. Extension of the present work (on a single rigid and

homogeneous solid in a homogeneous fluid) to more general configurations will be the matter

of a forthcoming paper.

5. Noticing that

D(u(t, ·)) = D(uS(t, ·)) = 0 in S(t), D(ϕ(t, ·)) = D(ϕS(t, ·)) = 0 in S(t)

it is tempting to write (2.1) under the condensed form

−
∫ T

0

∫

Ω
ρu · ∂tϕ+

∫ T

0

∫

Ω
ρu⊗ u : D(ϕ) +

∫ T

0

∫

Ω
2µFD(u) : D(ϕ)

= ”boundary terms” (2.6)
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where ρ := ρFχF + ρSχS , coupled with the global transport equation

∂tρ+ div (ρu) = 0 in Ω. (2.7)

This kind of global formulation, reminiscent of the inhomogeneous Navier-Stokes equations, is

used in the construction of weak solutions with Dirichlet boundary conditions: cf [23]. However,

it is not valid here: due to the discontinuity of the tangential components of u and ϕ, neither

∂tϕ nor D(u) and D(ϕ) belong to L2(Ω). For instance,

∂tϕ = χF∂tϕF + χS∂tϕS + uS · ν (ϕF − ϕS) δ∂S

where δ∂S is the Dirac mass along the solid boundary ∂S. This is why we keep the formulation

(2.1), distinguishing between the solid and the fluid part.

6. The definition of a weak solution that we consider can not be satisfactory after collision. Indeed,

we do not specify any rebound law. Moreover, in the case of Dirichlet conditions at the fluid-

solid interface, explicit examples show that the analogue of our weak solution is not unique

[26].

2.2 Main result

Our result is the following

Theorem 1 (Existence of weak solutions up to collision)

Let Ω and S0 ⋐ Ω two C1,1 bounded domains of R3. Let uF,0 ∈ L2
σ(Ω), uS,0 ∈ R such that

uF,0 · ν = uS,0 · ν on ∂S0.

There exists T > 0 and a weak solution of (1.1)-(1.2)-(1.4) on [0, T ) (associated to the initial data

S0, uF,0 and uS,0). Moreover, such weak solution exists up to collision, that is

S(t) ⋐ Ω for all t ∈ [0, T ), and lim
t→T−

dist(S(t), ∂Ω) = 0.

The rest of the paper will be devoted to the proof of the theorem. Briefly, there are two main

difficulties compared to the case of Dirichlet conditions:

• The lack of a unified formulation such as (2.6).

• The lack of a uniform H1 bound on solutions u.

These difficulties appear both in the construction of approximate solutions, and in the convergence

process.

Indeed, the approximation of fluid-solid systems is usually adressed by relaxing the solid con-

straint, through a penalization term. In this way, one is left with approximate systems that are close to

density dependent Navier-Stokes equations. Roughly, they read

{

∂t(ρnun) + div (ρnun ⊗ un) + . . . = penalization

∂tρn + div (ρnun) = 0.
(2.8)

In the case of no slip conditions, in which a global formulation of type (2.6)-(2.7) already holds, to

build such approximation is quite natural. But in the case of Navier conditions, this is not easy.
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Once an approximate sequence of solutions (ρn, un) has been derived, Dirichlet conditions allow

for uniform H1 bounds on un. This simplifies a lot of convergence arguments, notably with regards

to the transport equation

∂tρn + div (ρnun) = 0

to which the classical DiPerna-Lions theory applies straightforwardly [9]. Also, it helps to provide

strong convergence of un in L2((0, T ) × Ω). In short, the lack of bound on ∂t(ρnun) (due to the

penalization term) can be overcome by considering the fields Pδ(t)un, where Pδ(t) is the orthogonal

projection in H1
σ(Ω) over the fields that are rigid in a δ-neighborhood of S(t). One can show that

Pδ(t)un has good equicontinuity properties uniformly in δ and n.

In the case of Navier boundary conditions, no uniform bound is available in H1. This forces us to

use more the structure of the solution u, in particular the H1 bounds on the fluid and solid domains

separately. This is also a source of trouble for the construction of approximate solutions, as one must

find an approximation scheme in which such structure is not too much broken.

2.3 Strategy of proof

Let us describe here briefly the main lines of our proof. Let S0, uF,0, uS,0 as in Theorem 1, and

ρ0 := ρF (1− 1S0) + ρS1S0 , u0 := (1− 1S0)uF,0 + 1S0uS,0 .

The keypoint is to consider approximate problems of the following type: find (Sn, un) such that

a) Sn(t) ⊂ Ω is a bounded Lipschitz domain for all t ∈ [0, T ], such that

χn
S(t, x) := 1Sn(t)(x) ∈ L∞((0, T ) × Ω) ∩ C([0, T ];Lp(Ω)), ∀ p < +∞

b) un ∈ L∞(0, T ;L2
σ(Ω)) ∩ L2(0, T ;H1

σ(Ω)).

c) For all ϕ ∈ H1(0, T ;L2
σ(Ω)) ∩ L2(0, T ;H1

σ(Ω)) s.t. ϕ|t=T = 0:

−
∫ T

0

∫

Ω
ρn (un∂tϕ+ vn ⊗ un : ∇ϕ) +

∫ T

0

∫

Ω
2µnD(un) : D(ϕ)

+
1

2βΩ

∫ T

0

∫

∂Ω
(un × ν) · (ϕ× ν) +

1

2βS

∫ T

0

∫

∂Sn(t)
((un − Pn

S u
n)× ν) · ((ϕ − Pn

Sϕ)× ν)

+ n

∫ T

0

∫

Ω
χn
S(u

n − Pn
S u

n) · (ϕ − Pn
Sϕ) =

∫ T

0

∫

Ω
ρn(−g) · ϕ +

∫

Ω
ρ0 u0 · ϕ|t=0

d) ∂tχ
n
S + Pn

S u
n · ∇χn

S = 0, χn
S|t=0 = 1S0 .

In above lines,

• ρn := ρF (1− χn
S) + ρSχ

n
S is the total density function.

• µn := µF (1− χn
S) + 1

n2χ
n
S is an inhomogeneous viscosity coefficient.

• Pn
S = Pn

S (t) is the orthogonal projection in L2(Sn(t)) over rigid fields. This means that:

9



∀ 0 ≤ t < T, ∀uS ∈ R, ∀u ∈ L2
σ(Ω), Pn

S (t)u ∈ R and

∫

Ω
χn
S(t, ·)(u−Pn

S (t)u) · uS = 0.

• Eventually,

vn ∈ L∞(0, T ;L2
σ(Ω)) ∩ L2(0, T ;H1

σ(Ω))

is a field that satisfies

vn(t, ·) = Pn
S (t)u

n(t, ·) in Sn(t),

vn(t, ·) = un(t, ·) outside a δ neighborhood of Sn(t), t ∈ [0, T ),

for some δ fixed and arbitrary in (0, dist(S0, ∂Ω)/2). Moreover, vn will be chosen so that it is

close to un outside Sn (in Lp topology). In this way, it will asymptotically coincide with the

limit u of un. Further details on the definition of vn will be provided in due course.

Let us make a few comments on such approximate problems:

1. They rely on the use of the fields Pn
S u

n, that were already introduced in [3] in the context of

Dirichlet conditions. These fields appear both:

i) in the transport equation for χn
S . They will allow for a good control of the trajectories of the

approximate solid bodies Sn.

ii) in the penalization term n

∫ T

0

∫

Ω
χn
S(u

n − Pn
S u

n) · (ϕ − Pn
Sϕ). Formally, as n goes to

infinity, this term will allow to recover the rigid constraint inside the solid.

2. Note that a contrario to the large penalization term, the viscosity term µn vanishes asymptot-

ically in the solid part. Hence, there will be no uniform bound in H1
σ(Ω) for un, as expected

(see the discussion in paragraph 2.2).

3. A specificity of these approximate problems is that the transport equation d) is nonlinear in

χn
S for a given un. Indeed, Pn

S depends on χn
S (cf the formula in section 3). The whole sec-

tion 3 is dedicated to this auxiliary nonlinear transport equation, which is a keystone of the

approximation procedure.

4. Once the solution χn
S of d) is found and seen as a functional of un, equation c) can be written

as F(un) = 0 for some functional F from L∞L2
σ ∩ L2H1

σ into itself. In short, we shall solve

this equation by a Galerkin procedure: we shall look for an approximate solution un,N (t, x) =
∑N

k=0 αk(t)ek(x) where (ek) is an orthonormal basis of L2
σ(Ω). We shall solve approximate

equations Fn,N (un,N ) = 0 by Schauder’s theorem and pass to the limit with respect to N . This

process is explained in section 4.

5. Note that the field vn satisfies

vn(t, ·) · ν|∂Sn(t) = Pn
S (t)u

n(t, ·) · ν|∂Sn(t).

In particular, one can write

∂tχ
n
S + vn · ∇χn

S = 0, and ∂tρ
n + vn · ∇ρn = 0.

10



This will allow to obtain energy estimates in a standard way, in the spirit of the approximate

systems (2.8) used for Dirichlet conditions. The price to pay is the necessary control of un−vn,

which will exhibit strong gradients near ∂Sn as n→ +∞. Moreover, a similar ”boundary layer

behaviour” will be involved in the approximation of discontinuous test functions ϕ ∈ TT by

continuous test functions ϕn (involved in c)). The whole convergence process will be analyzed

in section 5.

3 A nonlinear transport equation

Let T > 0, u ∈ L∞(0, T ;L2
σ(Ω)). This section is devoted to the equation

∂tχS + PSu · ∇χS, χS|t=0 = 1S0 ,

where PSu is defined by the following formula

PSu :=
1

M

∫

Ω
ρS χS u +

(

J−1

∫

Ω
ρS χS

(

(x′ − xS)× u
)

dx′)

)

× (x− xS) (3.1)

where the center of mass, total mass and inertia tensor of the solid are defined by

xS :=

∫

R3

ρSχS , M :=

∫

R3

ρSχS , (3.2)

and

J :=

∫

R3

ρSχS

(

|x− xS |2Id − (x− xS)⊗ (x− xS)
)

dx. (3.3)

If χS(t, x) = 1S(t)(x) with S(t) a subdomain of Ω , PS(t) is the orthogonal projection in L2(S(t))
over rigid vector fields, see [3].

We start with the regular case, that is when u ∈ C([0, T ];Dσ(Ω)). This case will be useful for

Galerkin approximations of a)-d).

Proposition 2 (Well-posedness)

Let u ∈ C([0, T ];Dσ(Ω)).

i) There is a unique solution χS ∈ L∞((0, T ) × R
3) ∩ C([0, T ];Lp(R3)) (p <∞) of

∂tχS + div (χS PSu) = 0 in R
3, χS |t=0 = 1S0 . (3.4)

ii) Moreover χS(t, ·) = 1S(t) for all t, with S(t) a Lipschitz bounded domain. More precisely,

S(t) = φt,0(S0)

for the isometric propagator φt,s associated to PSu : (t, s) 7→ φt,s ∈ C1([0, T ]2;C∞
loc(R

3)).

Proof. We can suppose u ∈ C([0, T ];Dσ(R
3)) with no loss of generality.

Assume for a moment that we have found a solution χS of (3.4). Then, we can see (3.4) as a linear

transport equation, with given transport PSu ∈ C([0, T ]; R). By the method of characteristics, we

get easily

χS(t, φt,0(y)) = 1S0(y), (3.5)
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where φt,s is the isometric propagator defined by

{

φs,s(y) = y , ∀ y ∈ R
3,

∂tφt,s(y) = PSu(t, φt,s(y)) ∀ (s, t, x) ∈ (0, T )2 × R
3.

(3.6)

Now, we use (3.5) in the expression (3.1) for PSu. We obtain:

PSu(t, x) =
1

M

∫

S0

ρS 1Ω(φt,0(y))u(t, φt,0(y))dy

+

(

J−1(t)

∫

S0

ρS 1Ω(φt,0(y)) (φt,0(y)− xS(t))× u(t, φt,0(y))dy

)

× (x− xS(t)) (3.7)

where M := |S0| ρS , xS(t) :=

∫

S0

ρSφt,0(y)dy, and

J(t) :=

∫

S0

ρS

(

|φt,0(y)− xS(t)|2Id − (φt,0(y)− xS(t))⊗ (φt,0(y)− xS(t))

)

dy.

In particular, denoting Isom(R3) ≈ R
3 ×O3(R) the finite dimensional manifold of affine isometries,

we deduce from (3.6) and (3.7) that t 7→ φt,0, [0, T ] 7→ Isom(R3) satisfies an ordinary differential

equation, of the type
d

dt
φt,0 = US(t, φt,0), φ0,0 = Id, (3.8)

for a time-dependent vector field US over Isom(R3). Namely, US(t, φ) ∈ Tφ(Isom(R3)) ≈ R is

defined by the same formula as in (3.7), replacing everywhere φt,0 by φ.

Conversely, if we manage to show existence of and uniqueness of a C1 solution of (3.8) over

[0, T ], then formula (3.5) will define the unique solution χS of the nonlinear equation (3.4), proving

Theorem 2.

Hence, it only remains to study the well-posedness of (3.8). We can identify Isom(R3) with

R
3×O3(R) ⊂ R

3×R
9, and identify all tangent spaces with R ⊂ R

3×R
9. By the Cauchy-Lipschitz

theorem, there is existence and uniqueness of a C1 maximal solution if US is continuous in t, φ,

locally Lipschitz in φ. Considering the expression of US , see (3.7), this follows from

Lemma 3 Let v ∈ C([0, T ];C∞
loc(R

3)). Then, the function

M : [0, T ]× Isom(R3) 7→ R, M(t, φ) =

∫

S0

1Ω(φ(y))v(t, φ(y))dy

is continuous in (t, φ), and uniformly Lipschitz in φ over [0, T ].

Proof of the lemma. The continuity is obvious. Then, for two affine isometries φ and φ′, we write

M(t, φ)−M(t, φ′) =

∫

S0

1Ω(φ(y))
(

v(t, φ) − v(t, φ′(y))
)

+

∫

S0

(

1Ω(φ(y)) − 1Ω(φ
′(y))

)

v(t, φ′(y)) dy

:= M1(t) +M2(t).

Clearly,

|M1(t)| ≤ sup
t∈[0,T ],

|x|≤‖(φ,φ′)‖∞

|∂xv(t, x)|
∫

S0

|φ(y)− φ′(y)|dy ≤ Cφ,φ′ ||φ− φ′||∞.
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As regards M2, we write

M2(t) ≤ sup
t∈[0,T ],

|x|≤‖φ′‖∞

|v(t, x)|
∫

R3

∣

∣1Ω(φ(y)) − 1Ω(φ
′(y))

∣

∣ dy ≤ Cφ′

∫

R3

∣

∣1Ω(φ(y)) − 1Ω(φ
′(y))

∣

∣ dy

For each y, the integrand is non-zero if and only if φ(y) ∈ Ω and φ′(y) ∈ Ωc or vice-versa. As

|φ(y)−φ′(y)| ≤ ||φ−φ′||∞, this is only possible if φ(y) and φ′(y) are in a ||φ−φ′||∞-neighborhood

(say V ) of ∂Ω. Hence,

|M2(t)| ≤ Cφ,φ′

(

∫

φ−1(V )
dy +

∫

φ′−1(V )
dy

)

≤ 2Cφ,φ′ |V | ≤ C ′
φ,φ′ ||φ− φ′||∞.

This concludes the proof of the lemma.

Last step is to prove that the maximal solution is defined over the whole interval [0, T ]. From

(3.6)-(3.7), one can write

φt,0(y) = xS(t) +QS(t)y

where xS(t) is defined in (3.6) and QS(t) is an orthogonal matrix. In particular, the only way that the

maximal solution is not global on [0, T ] is through a blow-up of xS . But, again, from (3.7),

| d
dt
xS(t)| =

1

M

∣

∣

∣

∣

∫

S0

ρS 1Ω(φt,0(y))u(t, φt,0(y))dy

∣

∣

∣

∣

≤ C ‖u‖L∞((0,T )×Ω)

which prevents any blow-up. This ends the proof of the theorem.

Proposition 4 (Strong sequential continuity) Assume that

un → u in C([0, T ];Dσ(Ω)).

Then with obvious notations, one has

χn
S → χS weakly * in L∞((0, T )× R

3), strongly in C([0, T ];Lp
loc(R

3)) (p <∞),

as well as

Pn
S u

n → PSu strongly in C([0, T ];C∞
loc(R

3)), φn → φ strongly in C1([0, T ]2;C∞
loc(R

3)).

Proof of the proposition. As un converges in C([0, T ];Dσ(Ω)), we have that Pn
S u

n is bounded in

L∞(0, T ;L2(Ω)) . Similarly χn
S is bounded in L∞((0, T ) × Ω). Furthermore, up to a subsequence

that we do not relabel, Pn
S u

n converges weakly-* in L∞(0, T ;H1
loc(R

3)) to some ūS and χn
S(0)(=

1S0 , for all n ∈ N) converges strongly in L1(Ω). Applying Di Perna-Lions theory, we obtain that χn
S

converges weakly-* in L∞((0, T )×Ω) and strongly in C([0, T ];Lp
loc(Ω)) for all finite p. Its limit χ̄S ,

satisfies :

∂tχ̄S + div(χ̄S ūS) = 0 .

Using the convergence of both χn
S and un in equation (3.1), we obtain that ūS = P̄Su, where

P̄S is defined similarly to PSu, replacing χS by χ̄S . Moreover, the convergence of Pn
S u holds in

C([0, T ];C∞
loc(R

3)). Consequently, (χ̄S , P̄Su) is the unique solution of (3.4) so that χ̄S = χS and

P̄Su = PSu, and all the sequence converges.

To derive the convergence of the propagators φn from the convergence of the vector fields Pn
S u

n

is then standard, and we omit it for brevity.
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Proposition 5 (Weak sequential continuity)

Let (un, χn
S) be a bounded sequence in L∞(0, T ;L2

σ(Ω))× L∞((0, T ) × Ω), satisfying

∂tχ
n
S + div (Pn

S u
n χn

S) = 0 in R
3, χn

S |t=0 = 1S0 .

Then, up to a subsequence, one has

un → u weakly * in L∞(0, T ;L2
σ(Ω))

χn
S → χS weakly * in L∞((0, T ) × R

3), strongly in C([0, T ];Lp
loc(R

3)) (p <∞),

with (uS , χS) a solution of

∂tχS + div (PSuχS) = 0 in R
3, χS |t=0 = 1S0 .

Moreover, χS satisfies condition ii) of Proposition 2, and the following additional convergences hold:

Pn
S u

n → PSu weakly * in L∞(0, T ;C∞
loc(R

3)),

φn → φ weakly * in W 1,∞((0, T )2;C∞
loc(R

3)) strongly in C([0, T ]2;C∞
loc(R

3)) .

Proof. The proof follows the same scheme as the previous one. We only sketch the arguments. First,

up to the extraction of a subsequence, we obtain that

un → u weakly * in L∞(0, T ;L2
σ(Ω))

Then, as before, we obtain that Pn
S u

n is bounded in L∞(0, T ;C∞
loc(R

3)). This yields that

Pn
S u

n → P̄ u weakly * in L∞(0, T ;H1
loc(R

3))

(still up to a subsequence). We then deduce applying Di Perna-Lions theory that, up to the extraction

of a subsequence, χn
S converges strongly in C([0, T ];Lp

loc(R
3)) to some χS , which in turn implies

that ūS = PSu and that (χS , PSu) is a solution to our tranport equation. Eventually, uniform bounds

on φn and ∂tφ
n (which imply weak-* convergence of a subsequence in W 1,∞) follow easily.

4 Approximation

This section is devoted to the resolution of approximate fluid-solid systems. These approximate sys-

tems were introduced in paragraph 2.3, cf a)-d). The previous section has focused on the transport

equation d). It remains to examine c). At first, we explain a little how the field vn connecting Pn
S u

n

to unS is defined. The detailed definition of vn will be achieved in section 5.

4.1 Connecting velocity

We first remind a classical result on the equation div u = f , taken from [11, Exercise III.3.5]:

Proposition 6 Let O be a bounded Lipschitz domain. Let f ∈ L2(O) and ϕ ∈ H1/2(∂O) satisfying

the compatibility condition
∫

O
f =

∫

∂O
ϕ · ν.
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Then there exists a solution u ∈ H1(O) of

div u = f in O, u = ϕ at ∂O

with

‖u‖H1(O) ≤ CO

(

‖ϕ‖H1/2(∂O) + ‖f‖L2(O)

)

.

The previous proposition yields easily

Corollary 7 (Extension of solenoidal vector fields)

There exists a continuous linear operator EΩ : H1
σ(Ω) 7→ H1

σ(R
3) satisfying EΩ u = u on Ω.

Moreover, for all open subset ω ⋐ Ω,

‖EΩ u‖H1(R3\ω) ≤ Cω‖u‖H1(Ω\ω), ∀ u ∈ H1
σ(Ω).

Corollary 8 (Connection of solenoidal vector fields)

For all δ > 0, there exists a continuous linear operator

V δ : H1
σ

(

R
3 \ S0

)

×H1
σ(S0) 7→ H1

σ(R
3), (U,US) 7→ V δ[U,US ]

such that

V δ[U,US ] = US in S0,

V δ[U,US ] = U outside a δ neighborhood of S0.

From there, we have the following

Proposition 9 For all δ > 0, there exists a continuous mapping

vδ : L2(0, T ;H1
σ(R

3))× L∞(0, T ;R) 7→ L2(0, T ;H1
σ(R

3)), (u, uS) 7→ vδ[u, uS ]

such that

vδ[u, uS ](t, ·) = uS(t, ·) in S(t),

vδ[u, uS ](t, ·) = u(t, ·) outside a δ neighborhood of S(t), t ∈ [0, T ),

where, as usual, S(t) := φt,0(S0) and φ = φt,s is the isometric propagator associated to uS .

Moreover, vδ can be chosen so that

‖vδ [u, uS ]‖2L2(0,T ;H1(R3)) ≤ C
∫ T

0

(

‖u(t, ·)‖2
H1(R3\S(t))

+ ‖uS(t, ·)‖2L2(S(t))

)

dt,

where C depends on δ and T .

Proof of the proposition. The proposition can be deduced from Corollary 8 using Lagrangian

coordinates. Namely, we introduce U and US through the relations

u (t, φt,0(y)) = dφt,0|y (U(t, y)) , uS (t, φt,0(y)) = dφt,0|y (US(t, y)) .
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Clearly, for all t, U(t, ·) and US(t, ·) define elements of H1
σ(R

3 \S0) and H1
σ(S0) respectively. Using

Corollary 8, we define vδ[u, uS ] through the relation

vδ[u, uS ] (t, φt,0(y)) = dφt,0|y
(

V δ[U(t, ·), US(t, ·)](y)
)

.

It fulfills all requirements, which ends the proof.

Back to system c), the idea is to define

vn := vδ [EΩu
n, Pn

S u
n].

Clearly, for any time T n such that

dist(Sn(t), ∂Ω) ≥ 2δ, t ∈ [0, T n],

vn|Ω will belong to L2(0, T n;H1
σ(Ω)) and will satisfy

vn(t, ·) = Pn
S (t)u

n(t, ·) in Sn(t),

vn(t, ·) = un(t, ·) outside a δ neighborhood of Sn(t), t ∈ [0, T n).

Let us stress that there is still some latitude left in the construction of vn, through the choice of the

operator V δ in Corollary 8. As will be shown in section 5, this operator can be chosen depending on n
(V δ = V δ,n) so that vn is close to un outside Sn (in Lp topology). However, this additional property

will not be needed until section 5.

Last remark: the resolution of a)-d), and the whole construction of weak solutions, will be first

performed on a small time interval [0, T ], for a time T that is uniform in n. Existence of weak solutions

up to collision will follow from a continuation argument, to be explained at the end of section 5.

4.2 Galerkin approximation

As pointed out in paragraph 2.3, the resolution of a)-d) is carried out through a Galerkin scheme. Let

(ek)k≥1 being both an orthonormal basis of L2
σ(Ω) and a basis of H1

σ(Ω), with elements in Dσ(Ω).
The aim of this paragraph is to find for all N,n and some T > 0 a couple (SN , uN ) satisfying

a’) SN (t) ⊂ Ω is a bounded Lipschitz domain for all t ∈ [0, T ], such that

χN
S (t, x) := 1SN (t)(x) ∈ L∞((0, T ) × Ω) ∩ C([0, T ];Lp(Ω)) (p <∞)

b’) uN (t, ·) =

N
∑

i=1

αk(t)ek, with α = (α1, . . . , αN ) ∈ C([0, T ])N .

c’) For all ϕ ∈ D([0, T ); span(e1, . . . , eN ))

−
∫ T

0

∫

Ω
ρN

(

uN · ∂tϕ+ vN ⊗ uN : ∇ϕ
)

+

∫ T

0

∫

Ω
2µND(uN ) : D(ϕ)

+
1

2βΩ

∫ T

0

∫

∂Ω
(uN × ν) · (ϕ× ν) +

1

2βS

∫ T

0

∫

∂SN (t)
((uN − PN

S u
N )× ν) · ((ϕ − PN

S ϕ)× ν)

+ n

∫ T

0

∫

Ω
χN
S (uN − PN

S u
N ) · (ϕ− PN

S ϕ) =

∫ T

0

∫

Ω
ρN (−g) · ϕ +

∫

Ω
ρ0 u0 · ϕ|t=0
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d’) ∂tχ
N
S + PN

S u
N · ∇χN

S = 0 in Ω, χN
S |t=0 = 1S0 .

In above lines, similarly to the original problem:

• ρN := ρF (1− χN
S ) + ρSχ

N
S is the total density function.

• µN := µF (1− χN
S ) + 1

n2χ
N
S is an inhomogeneous viscosity coefficient.

• PN
S = PN

S (t) is defined by (3.1), adding the upperscript N everywhere.

• Eventually, vN = vδ[uN , PN
S u

N ], see paragraph 4.1.

Note that all quantities above depend on n, notably through the penalization term and the viscosity

coefficient. But we omit n from the notations to lighten writings. Also, note that uN can be seen as

an element of L2(0, T ;H1
σ(R

3)), as the ek are defined globally. In particular, vN = vδ[uN , PN
S u

N ] is

well-defined.

The main result of this paragraph is

Theorem 10 There is T > 0, R > 0, such that for all n,N , a’)-d’) has at least one solution such

that ‖uN‖L∞(0,T ;L2(Ω)) ≤ R.

To prove Theorem 10, we shall express our Galerkin problem as a fixed point problem, and will apply

Schauder’s theorem to it. Thus, we want to identify uN as the fixed point of an application

FN : u 7→ ũ,

defined on BR,T :=
{

u ∈ C([0, T ]; span(e1, . . . , eN )), ‖u‖L∞(0,T ;L2(Ω)) ≤ R
}

. We proceed as

follows. Let u ∈ BR,T .

• Step 1. Let χS be the solution of

∂tχS + PSu · ∇χS = 0, χS |t=0 = 1S0 ,

given by Proposition 2. We know that χS(t, x) = 1S(t)(x) with S(t) a bounded Lipschitz

domain, t ∈ [0, T ]. We define accordingly:

ρ := ρF (1− χS) + ρSχS , µ := µF (1− χS) +
1

n2
χS , v(t, x) := vδ [u, PSu].

• Step 2. We consider the following ODE, with unknown ũ : [0, T ] 7→ span(e1, . . . , eN ):

A(t)
d

dt
ũ(t) +B(t)ũ(t) = f(t), ũ(0) = uN0 :=

N
∑

k=1

(
∫

Ω
u0 · ek

)

ek, (4.1)

in which A(t) := (ai,j(t))1≤i,j≤N , B(t) := (bi,j(t))1≤i,j≤N and f(t) := (fi(t))1≤i≤N are

defined by

ai,j :=

∫

Ω
ρei · ej ,

bi,j :=

∫

Ω
ρ(v · ∇ej) · ei +

∫

Ω
2µD(ei) : D(ej) +

1

2βΩ

∫

∂Ω
(ei × ν) · (ej × ν)

+
1

2βS

∫

∂S(t)
((ei − PSei)× ν) · ((ej − PSej)× ν) + n

∫

Ω
χS(ei − PSei) · (ej − PSej)

fi :=

∫

Ω
ρ(−g) · ei.
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We have identified here the function ũ with its coefficients in the basis e1, . . . , eN . Note that

the function ρ defined in step 1 has a positive lower bound, so that A(t) ≥ min(ρS , ρF )IN in

the sense of symmetric matrices, whatever the value of χS . Also, the continuity of A and B
over [0, T ] is easy and will be proved below. In particular, equation (4.1) has a unique solution

ũ ∈ C1([0, T ]; span(e1, . . . , eN )).

In this way, we can associate to each u ∈ BR,T some field

ũ = FN (u) ∈ C([0, T ]; span(e1, . . . , eN )).

The whole point is to prove

Proposition 11 There exists T > 0, R > 0, uniform in n and N , such that FN is a well-defined

mapping from BR,T to itself, continuous and compact.

Before proving this proposition, let us show how it implies Theorem 10. By Schauder’s theorem, it

yields the existence of a fixed point uN ∈ BR,T of FN . Let χN
S = 1SN be the corresponding solution

of the transport equation on [0, T ]×R
3. As will be clear from the proof, the time T of the proposition

satisfies

dist(SN (t), ∂Ω) ≥ 2δ, ∀ t ∈ [0, T ],

for some δ fixed and arbitrary in (0, dist(S0, ∂Ω)/2). Hence, a’) is satisfied, and vN := vδ [uN , PN
S u

N ]
satisfies vN · ν|∂Ω = 0, as well as

∂tρ
N + vN · ∇ρN = 0 in Ω

(see remark 4 after the definition of weak solutions, and remark 5, paragraph 2.3). Finally, we notice

that ODE (4.1) is equivalent to: for all ϕ ∈ D([0, T ); span(e1, . . . , eN ))

∫ T

0

∫

Ω
ρN ∂tu

N · ϕ +

∫ T

0

∫

Ω
ρNvN · ∇uN · ϕ +

∫ T

0

∫

Ω
2µND(uN ) : D(ϕ)

+
1

2βΩ

∫ T

0

∫

∂Ω
(uN × ν) · (ϕ× ν) +

1

2βS

∫ T

0

∫

∂SN (t)
((uN − PN

S u
N )× ν) · ((ϕ − PN

S ϕ)× ν)

+ n

∫ T

0

∫

Ω
χN
S (uN − PN

S u
N ) · (ϕ− PN

S ϕ) =

∫ T

0

∫

Ω
ρN (−g) · ϕ−

∫

Ω
ρ0 u

N
0 ϕ|t=0 .

(4.2)

Combining this equation with the previous one on ρN leads to c’). Note that condition vN · ν|∂Ω = 0
is needed for the convective term to vanish through integration by parts.

Proof of the proposition.

Step 1: Definition of FN .

We first prove that FN is well-defined from BR,T to C([0, T ]; span(e1, . . . , eN )) for any T and

R > 0. The only thing to check is the continuity of matrices A and B in (4.1) with respect to

time, which will guarantee the existence of a solution to the linear ODE (4.1). As χS belongs to

C([0, T ];Lp(Ω)) for all finite p, so does ρ, and A is clearly continuous. As regards B, the only

difficult terms are

I(t) :=

∫

Ω
ρ(v(t, ·) · ∇ej) · ei, J(t) :=

1

2βS

∫

∂S(t)
((ei − PS(t)ei)× ν) · ((ej − PS(t)ej)× ν).
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We remind that the propagator φ = φt,s associated to PSu satisfies

φ ∈ C1
(

[0, T ]2; C∞
loc(R

3)
)

Hence, a look at the construction of vδ, cf Corollary 8 and Proposition 9 (see also Lemma 16 in the

appendix A), yields

v ∈ C([0, T ];H1
σ(R

3)).

It implies that t 7→ I(t) is continuous.

As regards J(t), we change variables to go back to a fixed domain. We set x = φt,0(y) to obtain

J(t) :=
1

2βS

∫

∂S0

 (t, φt,0(y)) Jacτ (y) dy,

where

(t, x) := ((ei(x)− PS(t)ei(x)) × ν) · ((ej(x)− PS(t)ej(x))× ν)

and where

Jacτ (y) = ‖dφt,0|−1
y ν(y)‖2 det(dφt,0|y)(= 1)

is the tangential jacobian. See [15, Lemme 5.4.1] for details. As  is continuous in t and smooth in x,

we obtain that t 7→ J(t) is continuous.

Step 2: FN sends BR,T to itself.

Here, we need to restrict to small T . More precisely, we fix 0 < δ < 1
2dist(S0, ∂Ω), and consider

a time T such that

inf
u∈BR,T

dist(S(t), ∂Ω) ≥ 2δ > 0 (4.3)

Let us prove that such time T does exist and can be chosen uniformly with respect to N and n. For

all u ∈ BR,T , we write

S(t) = φt,0(S0)

with φ the propagator associated to the rigid field PSu = ẋS + ωS × (x− xS) defined in (3.1). It is

enough that

sup
t∈[0,T ]

|∂tφt,0(t, y)| <
dist(S0, ∂Ω)− 2δ

T
, t ∈ [0, T ], y ∈ S0.

We find

|∂tφt,0(t, y)| < |uS(t, φt,0(t, y))| < |ẋS(t)| + |ωS(t)| |y − xS0 |
using that the propagator is isometric. Moreover, classical calculations yield

|ẋS(t)|2 + J(t)ωS(t) · ωS(t) =

∫

S(t)
ρS |PSu(t, ·)|2 ≤

∫

S(t)
ρS |u(t, ·)|2 ≤ ρS R

2.

We can then use the inequality

|ẋS(t)| + |ωS(t)| |y − xS0 | ≤
√
2 max(1, |y − xS0 |)

(

|ẋS(t)|2 + |ωS(t)|2
)1/2

≤ C0

(

|ẋS(t)|2 + J(t)ωS(t) · ωS(t)
)1/2
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where for instance

C0 :=
√
2
max

(

1, supy∈S0
|y − xS0 |

)

min(1, λ0)1/2
, λ0 : smallest eigenvalue of J(0).

Eventually, any T <
dist(S0, ∂Ω)− 2δ

C0(ρS)1/2R
will satisfy (4.3).

Let now u be arbitrary inBR,T . Thanks to (4.3), we have that v = vδ[u, PSu] satisfies v·ν|∂Ω = 0,

and

∂tρ+ v · ∇ρ = 0 in Ω.

Mutiplying (4.1) by ũ, integrating in time, and combining with the last transport equation, we obtain

the energy estimate

‖√ρũ(t, ·)‖2L2 +

∫ t

0

∫

Ω
2µ|D(ũ)|2

+
1

2βΩ

∫ t

0

∫

∂Ω
|ũ× ν|2 +

1

2βS

∫ t

0

∫

∂S(t)
|(ũ− PS ũ)× ν|2 + n

∫ t

0

∫

Ω
χS |ũ− PS ũ|2 (4.4)

≤
∫ t

0

∫

Ω
ρ(−g) · ũ +

∫

Ω
ρ0 |uN0 |2

As min(ρF , ρS) ≤ ρ ≤ max(ρF , ρS), we deduce easily that

‖ũ‖L∞(0,T ;L2(Ω)) ≤ R

for R = R(T, u0) large enough. Hence, F sends BR,T to itself.

Step 3. Compactness of FN .

For any u =

N
∑

k=1

αkek, we get from equation (4.1):

| d
dt
α̃(t)| ≤ |A−1(t)| |B(t)| |α(t)| + |f(t)| ≤ R |A−1(t)| |B(t)| + |f(t)|.

Integrating with respect to time, we obtain

sup
t∈[0,T ]

(

|α̃(t)|+ | d
dt
α̃(t)|

)

≤ C ′

(where the constant at the r.h.s. may depend on N or n). In other words,

sup
u∈BR,T

‖FN (u)‖C1([0,T ]; span(e1,...,eN )) ≤ C ′′

which provides compactness in BR,T by Ascoli’s theorem.

Step 4. Continuity of FN .

Let (uk) a sequence in BR,T , such that uk → u in BR,T (that is uniformly over [0, T ]). We

want to show that FN (uk) → FN (u) in BR,T . First, we note that, as span(e1, . . . , eN ) is a finite-

dimensional subspace of Dσ(Ω̄) we have that uk converges to u in C([0, T ];Dσ(Ω̄)). Then, we use

Proposition 4. With obvious notations,

χk
S → χS weakly * in L∞((0, T )× R

3), strongly in C([0, T ];Lp
loc(R

3)) (p <∞),
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as well as

P k
Su

k → PSu strongly in L∞(0, T ;C∞
loc(R

3)), φk → φ strongly in W 1,∞((0, T )2;C∞
loc(R

3)).

From there, and the construction of vδ (Corollary 8, Proposition 9, Lemma 17 in appendix A), it is

easy to see that

vk → v strongly in C([0, T ];H1
σ(R

3)).

By slightly adapting the arguments of Step 1, one can then show that the matrices in (4.1) satisfy

Bk → B, Ak → A strongly in C([0, T ]).

From classical results for ODE’s, it follows that

ũk = F(uk) → ũ = F(u) strongly in C([0, T ]; span(e1, . . . , eN )).

For the sake of brevity, we leave the details to the reader.

4.3 Convergence of the Galerkin scheme

In the previous paragraph, we have built for each n,N a solution un,N (denoted uN for brevity) of

a’)-d’). It is defined on [0, T ] for some time T uniform in n,N , satisfying (4.3). The next step is to let

N go to infinity, to recover a solution un of a)-d). We remind the uniform energy estimate (see (4.2))

‖
√

ρNuN (t, ·)‖2L2(Ω) +

∫ t

0

∫

Ω
2µN |D(uN )|2 +

1

2βΩ

∫ t

0

∫

∂Ω
|uN × ν|2

+
1

2βS

∫ t

0

∫

∂SN (t)
|(uN − PN

S u
N )× ν|2 + n

∫ t

0

∫

Ω
χN
S |uN − PN

S u
N |2 (4.5)

≤
∫ t

0

∫

Ω
ρ(−g) · uN +

∫

Ω
ρ0 |uN0 |2

It yields that

(uN )N∈N is bounded uniformly with respect to N in L∞(0, T ;L2
σ(Ω)) ∩ L2(0, T ;H1

σ(Ω))

The bound in H1 follows from the L2 bound on D(uN ) and Korn’s inequality, see [22]. From there,

we will be able to show strong convergence both in the transport equation d’) and in the momentum

equation c’). As regards the transport equation, we rely on Proposition 5. Up to a subsequence, one

has

uN → u weakly * in L∞(0, T ;L2
σ(Ω)) and weakly in L2(0, T ;H1

σ(Ω))

for some u(= un), and it follows from this proposition that

χN
S → χS weakly * in L∞((0, T ) × R

3), strongly in C([0, T ];Lp
loc(R

3)) (p <∞),

as well as

PN
S u

N → PSu weakly * in L∞(0, T ;C∞
loc(R

3)),

φN → φ weakly * in W 1,∞((0, T )2;C∞
loc(R

3)) , strongly in C([0, T ];C∞
loc(R

3)) .
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up to another extraction. We stress again that all limits depend on n.

It remains to study the convergence of equation c’). Therefore, we fix the test function: we take

ϕ(t, x) := χ(t) ej , χ ∈ D([0, T )).

for some fixed j. The point is to obtain as N → +∞ the limit equation c), still with ϕ(t, x) =
χ(t)ej(x). But as j is arbitrary, and as (ek)k≥1 is a basis of H1

σ(Ω), standard density arguments will

allow to extend the formulation to general test functions.

At first, we need to prove that,

vN |Ω → v = vδ[EΩu, PSu]|Ω in L2(0, T ;H1
σ(Ω)).

It is enough to prove that

v̂N := vδ[EΩu
N , PN

S u
N ] → v̂ := vδ[EΩu, PSu]

weakly in L2(0, T ; H1
loc(R

3)). In view of Corollary 8 and Proposition 9, it is an easy consequence of

Lemma 17.

We are now ready to handle the asymptotics of c’) (with ϕ(t, x) = χ(t) ej(x)). As before, for the

sake of brevity, we focus on the two most difficult terms, those which involve

IN (t) :=

∫

Ω
ρN (vN ⊗ uN ) : ∇ej,

JN (t) :=
1

2βS

∫

∂SN (t)
((uN − PN

S (t)uN )× ν) · ((ej − PN
S (t)ej)× ν).

As regards JN (t), once again we change variables to go back to a fixed domain. We obtain

JN (t) :=
1

2βS

∫

∂S0

N
(

t, φNt,0(y)
)

JacNτ (y) dy,

where

N (t, x) :=
(

(uN (t, x) − PN
S (t)uN (t, x))× ν

)

·
(

(ej(x)− PN
S (t)ej(x))× ν

)

and where

JacNτ (y) = ‖dφNt,0|−1
y ν(y)‖2 det(dφNt,0|y) = 1.

Let rN := EΩu
N − PN

S u
N , resp. ηNj := ej − PN

S ej to which we associate RN , resp. HN
j through

the change of coordinates:

rN (t, φN (t, y)) := dφNt |yRN (t, y) , ηNj (t, φN (t, y)) := dφNt |yHN
j (t, y) .

From the weak convergence of uN , we deduce that rN converges weakly in L2(0, T ;H1
loc(R

3)).
Given the strong convergence of χN in C([0, T ];Lp(Ω)) we also have that ηNj converges strongly to

ηj := ej − PSej in L2(0, T ;H1
loc(R

3)). Furthermore, as dφNt,0|y is an isometric mapping for all N ,

we get that :

N (t, φt,0(y)) = (RN × ν) · (HN
j × ν) , ∀N ∈ N
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where, because of lemma 17 :

RN → R weakly in L2(0, T ;H1(Ω)) , HN
j → Hj strongly in L2(0, T ;H1(Ω)) .

with obvious notations. This yields corresponding weak and strong convergences of the traces of these

functions on ∂S0. Having in mind that JacNτ ≡ 1 for all N , and going back to the moving domain, we

obtain easily that JN converges weakly in L1(0, T ) to :

J(t) :=
1

2βS

∫

∂S(t)
((u− PS(t)u) × ν) · ((ej − PS(t)ej)× ν).

We finally turn to the convergence of IN , for which we will need some compactness on (ρNuN ).
Therefore, we introduce some notations: we denote by P the orthogonal projection from L2(Ω) onto

L2
σ(Ω), respectively Pk the orthogonal projection from L2(Ω) onto span(e1, . . . , ek). We also remind

that our strong, resp. weak, convergence results on ρN , resp. uN imply that.

ρNuN → ρu weakly-* in L∞(0, T ;L2(Ω)).

In particular, we have for any fixed k:

Pk(ρ
NuN )⇀ Pk(ρu) weakly-* in L∞(0, T ;L2

σ(Ω)) as N → ∞. (4.6)

Moreover, equation c’) can be written: for all 1 ≤ k ≤ N ,

∂t Pk(ρ
NuN ) + PkF

N = 0 in D′
(

0, T ; [H1
σ(Ω)]

∗
)

where FN ∈ D′
(

0, T ; [H1
σ(Ω)]

∗)
)

is defined by the duality relation:

〈FN , ϕ〉 =

∫ T

0

∫

Ω
ρNvN ⊗ uN : ∇ϕ −

∫ T

0

∫

Ω
2µND(uN ) : D(ϕ)

+
1

2βS

∫ T

0

∫

∂SN (t)
((uN − PN

S u
N )× ν) · ((ϕ− PN

S ϕ)× ν)

+ n

∫ T

0

∫

Ω
χN
S (uN − PN

S u
N ) · (ϕ− PN

S ϕ) +
1

2βΩ

∫ T

0

∫

∂Ω
(uN × ν) · (ϕ× ν)

−
∫ T

0

∫

Ω
ρN (−g) · ϕ, for all ϕ ∈ D

(

0, T ;H1
σ(Ω)

)

.

We remind that for f ∈ [H1
σ(Ω)]

∗, Pk is defined by duality: < Pkf, ϕ > := < f,Pkϕ >. From

the above expression for FN and the various bounds already obtained, it is easily seen that for any

fixed k, (PkF
N ) is bounded (in N ) in L2(0, T ; [H1

σ(Ω)]
∗). Hence, the same conclusion applies to

(∂t Pk(ρ
NuN )). Combining with (4.6), it follows that for any fixed k,

Pk(ρ
NuN ) → Pk(ρu) strongly in L∞(0, T ; [H1

σ(Ω)]
∗) as N → ∞. (4.7)

Now, we note that, for arbitrary k and N, and a.a. t ∈ (0, T ) there holds

‖P (ρNuN )(t)− Pk(ρ
NuN )(t)‖[H1

σ(Ω)]∗ = sup
‖ϕ‖

[H1
σ(Ω)]

=1

∫

Ω

(

P (ρNuN (t))− Pk(ρ
NuN )(t)]

)

ϕ

= sup
‖ϕ‖

[H1
σ(Ω)]

=1

∫

Ω
ρNuN (t)(ϕ − Pkϕ)

≤



 sup
‖ϕ‖

[H1
σ(Ω)]

=1
‖ϕ− Pkϕ‖L2(Ω)



 ‖ρNuN‖L∞L2(Ω) ,
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By a standard argument based on Rellich Lemma, one shows that

sup
‖ϕ‖

H1
σ(Ω)

=1
‖ϕ− Pkϕ‖L2(Ω) → 0

as k → ∞. With the uniform bound on ρNuN in L∞(0, T ;L2(Ω)), we can conclude that

Pk(ρ
NuN )− P (ρNuN ) → 0 strongly in L∞(0, T ; [H1

σ(Ω)]
∗), as k → +∞, uniformly in N .

(4.8)

Of course, with a similar but simpler estimate, we also have

Pk(ρu)− P (ρu) → 0 strongly in L∞(0, T ; [H1
σ(Ω)]

∗), as k → +∞. (4.9)

Combining (4.7), (4.8) and (4.9), we obtain finally that : P (ρNuN ) converges to P (ρu) strongly

in L2(0, T ; [H1
σ(Ω)]

∗). Combining this strong convergence with the weak convergence of (uN ) in

L2(0, T ;H1
σ(Ω)),we might apply the method of P.L. Lions [20, p.47] with the duality bracket [H1

σ(Ω)]
∗−

H1
σ(Ω) to prove that

√

ρNuN converges to
√
ρu strongly in L2((0, T ) × Ω). Finally, we rewrite :

IN (t) =

∫

Ω

√

ρNuN ⊗
√

ρNvN : ∇ej ,

where :

•
√

ρNuN converges to
√
ρu strongly in L2((0, T )× Ω)

•
√

ρN converges to
√
ρ strongly in L∞(0, T ;L3(Ω))

• vN converges to v weakly in L2(0, T ;L6(Ω)) (thanks to the imbedding H1(Ω) ⊂ L6(Ω)).

Combining these statements, we get that IN converges to I (with obvious notations) weakly in

L1(0, T ).
Such convergences result yield that (ρn, un) satisfy c’) for test functions ϕ of the form χ(t)ψ

with χ ∈ D([0, T )) and ψ ∈ span({ek, k ∈ N}). Via a classical density argument, the convergence

extends to all ϕ ∈ H1(0, T ;L2
σ(Ω)) ∩ L2(0, T ;H1

σ(Ω)) such that ϕ|t=T = 0.

4.4 Energy inequality

We end this section by proving that the approximate solution (ρn, un) satisfies the further estimate :

‖√ρnun(t, ·)‖2L2(Ω) +

∫ t

0

∫

Ω
2µn|D(un)|2 +

1

2βΩ

∫ t

0

∫

∂Ω
|un × ν|2

+
1

2βS

∫ t

0

∫

∂SN (t)
|(un − Pn

S u
n)× ν|2 + n

∫ t

0

∫

Ω
χn
S |un − Pn

S u
n|2 (4.10)

≤
∫ t

0

∫

Ω
ρ(−g) · un +

∫

Ω
ρ0 |u0|2

for almost all t ∈ [0, T ]. For simplicity we drop exponent n in what follows.

First, we note that the solutions (ρN , uN ) of the Galerkin scheme satisfy (4.5) uniformly in N and

that, up to the extraction of a subsequence
√

ρNuN converges to
√
ρu in L2((0, T ) × Ω). Hence, we

may pass to the limit in (4.5) for almost all t ∈ [0, T ] . On the other hand, there holds:
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• By construction of the Galerkin scheme, uN0 → u0 in L2(Ω) so that :

lim
N→∞

∫

Ω
ρ0|uN0 |2 =

∫

Ω
ρ0|u0|2 .

• Given the strong convergence of (uN ) in L2((0, T ) × Ω) :

lim
N→∞

∫ T

0

∫

Ω
ρ(−g) · uN =

∫ T

0

∫

Ω
ρ(−g) · un .

• Given the weak convergence of uN in L2((0, T );H1(Ω)) and the strong convergence of χN
S in

C([0, T ];Lp(Ω)) we get that
√

µND(uN ) converges weakly to
√
µD(u) in L2−ε((0, T )×Ω).

In particular, in the weak limit, there holds :

∫ T

0

∫

Ω
µ|D(u)|2 ≤ lim inf

∫ T

0

∫

Ω
µN |D(uN )|2 .

With similar arguments, we obtain :

∫ T

0

∫

Ω
χS|u− PSu|2 ≤ lim inf

∫ T

0

∫

Ω
χN
S |uN − PN

S u
N |2 .

• Finally, we pass to the limit in the boundary terms. First, we introduce UN and UN
S associated

to the extension EΩ[u
N ] and the rigid vector field PN

S u
N respectively, computed through the

change of variable φNt,0. As previously, we have:

∫ T

0

∫

∂SN (t)
|(uN−PN

S u
N )×ν|2 =

∫ T

0

∫

∂SN (t)
|(uN−uNS )×ν|2 =

∫ T

0

∫

∂S0

|(UN−UN
S )×ν|2.

Because of the weak convergence of uN and uNS in L2(0, T ;H1
σ(Ω)), we have that UN and

UN
S converge also weakly in L2(0, T ;H1

loc(R
3)) (see Lemma 17). Hence, we have also weak

convergence of the traces on S0. The lower semi-continuity of the L2-norm on ∂S0 yields :

∫ T

0

∫

∂S(t)
|(u− PSu)× ν|2 =

∫ T

0

∫

∂S0

|(U − US)× ν|2

≤ lim inf

∫ T

0

∫

∂S0

|(UN − UN
S )× ν|2

≤ lim inf

∫ T

0

∫

∂SN (t)
|(uN − PN

S u
N )× ν|2

Similar weak-convergence and semi-continuity arguments yield also :

∫ T

0

∫

∂Ω
|u× ν|2 ≤ lim inf

∫ T

0

∫

∂Ω
|uN × ν|2 .

This ends the proof of (4.10).
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5 Convergence

In the previous section, we have obtained the existence of solutions un of approximate fluid-solid

systems, namely satisfying a)-d). These solutions un are defined on some (uniform in n) time interval

(0, T ) such that

dist(Sn(t), ∂Ω) ≥ 2δ, for t ∈ [0, T ), for some fixed δ > 0. (5.1)

We must now study the asymptotics of un as n goes to infinity, and recover a weak solution at the

limit.

In what follows, we will often make use of the notation

(O)η := {x ∈ R
3, dist(x,O) < η}

for O an open set and η > 0.

5.1 A priori bounds on u
n. Convergence in the transport equation

The density ρn clearly satisfies the uniform bound

min(ρF , ρS) ≤ ρn ≤ max(ρF , ρS). (5.2)

Combining (4.10) and (5.2) yields that

‖un‖2L∞(0,T ;L2(Ω)) + n‖
√

χn
S(u

n − Pn
S u

n)‖2L2((0,T )×Ω) + ‖√µnD(un)‖2L2((0,T )×Ω) ≤ C. (5.3)

for some constant C depending only on ρF , ρS , u0 and T .

In particular, up to a subsequence, the first inequality gives

un → u weakly* in L∞(0, T ;L2
σ(Ω)).

We can then pass to the limit of the transport equation d), using Proposition 5. The following conver-

gence holds up to a subsequence:

χn
S → χS weakly * in L∞((0, T ) × R

3), strongly in C([0, T ];Lp
loc(R

3)) (p <∞),

with

χS(t, ·) = 1S(t), S(t) = φt,0(S0)

for an isometric propagator φ = φt,s ∈W 1,∞((0, T )2;C∞
loc(R

3)). Moreover, one has

Pn
S u

n → PSu weakly * in L∞(0, T ;C∞
loc(R

3)), φn → φ weakly * in W 1,∞((0, T )2;C∞
loc(R

3)).

In particular, one recovers the transport equation (2.3) setting uS := PSu.

Now, we can combine the second inequality in (5.3), that yields

χn
S(u

n − Pn
S u

n) → 0 strongly in L2,

with the strong (resp. weak) convergence of χn
S (resp. un and Pn

S u
n). As n goes to infinity, we derive

easily:

χS(u− uS) = 0. (5.4)
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Finally, the last inequality in (5.3) and Korn’s inequality imply that

∫ T

0
‖un‖2H1(Fn(t))dt ≤ C

∫ T

0

(

‖D(un)‖2L2(Fn(t)) + ‖un‖2L2(Fn(t))

)

dt ≤ C, Fn(t) := Ω\Sn(t).

We then introduce continuous extension operators

En(t) : {u ∈ H1(Fn(t)), div u = 0 in Fn(t), u · ν|∂Ω = 0} 7→ H1
σ(Ω),

in the spirit of Corollary 7. As long as the Sn(t) are 2δ away from ∂Ω, it is standard to construct these

extension operators in such a way that

‖En(t)‖L(H1) ≤ Cδ, ∀ t ∈ [0, T ].

Hence, if we set unF (t, ·) := En(t)u
n(t, ·), we have that

(unF ) is bounded in L2(0, T ; H1
σ(Ω)), (1− χn

S)(u
n
F − un) = 0, ∀ n.

From the L2(0, T ;H1(Ω)) bound, we can assume up to another extraction that

unF → uF weakly in L2(0, T ;H1
σ(Ω)).

From above equality and from the strong convergence of χn
S , we then get:

(1− χS)(uF − u) = 0. (5.5)

Eventually, considering relations (5.4) and (5.5), we get that the limit u of un belongs to ST .

Hence, back to the definition of a weak solution, it only remains to show that the momentum equation

(2.1) is satisfied by S(·), uS , uF .

5.2 A priori bounds on v
n.

Prior to the analysis of the momentum equation, we must establish some refined estimates on the

connecting velocity vn. We remind that vn was defined in Lagrangian like coordinates, see paragraph

4.1. More precisely,

vn
(

t, φnt,0(y)
)

:= dφnt,0|y
(

V δ[Un(t, ·), Un
S (t, ·)]

)

,

where

EΩu
n
(

t, φnt,0(y)
)

= dφnt,0|y (Un(t, y)) , Pn
S u

n
(

t, φnt,0(y)
)

= dφnt,0|y (Un
S (t, y)) ,

and V δ = V δ[U,US ] is some linear operator connecting U ∈ H1
σ(R

3 \ S0) to US ∈ H1
σ

(

S0
)

over

a band of width δ outside S0: see Corollary 8. We shall here specify our choice for the operator V δ.

Actually, we shall make it depend on n (V δ = V δ,n), in order for the following additional assumption

to be satisfied:

‖V δ,n[U,US ]−U‖Lp((S0)δ\S0) ≤ Cδ,p

(

‖(U − US) · ν‖Lp(∂S0) + n1/6−1/p‖(U,US)‖H1((S0)δ\S0)

)

,

∀ 2 ≤ p ≤ 6. (5.6)
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We postpone the construction of such operator V δ,n to the end of the paragraph.

Back to vn, the additional assumption (5.6) implies easily that for all 2 ≤ p ≤ 6,

‖(1− χn
S)(v

n − un)‖L2(0,T ;Lp(Ω))

≤ Cδ,p

(
∫ T

0
‖(un − Pn

S u
n)(t, ·) · ν‖2Lp(∂Sn(t)) dt + n1/6−1/p

)

. (5.7)

But we know that

∫ T

0
‖(un − Pn

S u
n)(t, ·) · ν‖2

H−1/2(∂Sn(t))
dt ≤ C

∫ T

0
‖(un − Pn

S u
n)(t, ·) · ν‖2L2(Sn(t)) dt

≤ C

n
(5.8)

where the last bound comes from the second inequality in (5.3). We emphasize here that, as the

Sn(t)’s are all isometric to one another, the constant C does not depend on n, t. Interpolation with

the similar other bound

∫ T

0
‖(un − Pn

S u
n)(t, ·) · ν‖2

H1/2(∂Sn(t))

≤ C

∫ T

0

(

‖un‖2H1((Sn(t))δ∩Fn(t)) + ‖un‖2L2(Sn(t))

)

dt

≤ C

∫ T

0

(

‖un‖2H1(Fn(t)) + ‖un‖2L2(Sn(t))

)

dt ≤ C

(5.9)

yields that
∫ T

0
‖(un − Pn

S u
n)(t, ·) · ν‖2Lp(∂Sn(t)) dt → 0, ∀ p < 4. (5.10)

Eventually, we get that

‖(1− χn
S)(v

n − un)‖L2(0,T ;Lp(Ω)) → 0, ∀ p < 4. (5.11)

This will be much important in the treatment of the nonlinear terms.

We conclude this paragraph with the construction of the operator V δ,n satisfying (5.6). We take

U,US in H1
σ(R

3 \ S0) ×H1
σ(S0). Up to an extension of US , there is no loss of generality assuming

that US ∈ H1
σ(R

3).

Step 1. We shall construct a field V such that div V = 0,

V |∂S0 = US + (U − US) · ν ν, and V |∂(S0)δ = U. (5.12)

Therefore, we introduce a system of orthogonal curvilinear coordinates (s1, s2, z) in a tubular neigh-

borhood of ∂S0: s1, s2 are coordinates along the surface ∂S0, whereas z denotes a transverse coordi-

nate. In particular, ∂S0 = {z = 0}. We set

e1 :=
1

h1

∂

∂s1
, e2 :=

1

h2

∂

∂s2
, ez := ν =

1

hz

∂

∂z
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the associated orthonormal vectors, with scale factors h1, h2, hz ≥ 0. We remind that

∇f =
1

h1
∂s1fe1 +

1

h2
∂s2fe2 +

1

hz
∂zfez (5.13)

for a scalar function f , whereas

div f =
1

h1h2hz
(∂s1(h2hzf1) + ∂s2(h1hzf2) + ∂z(h1h2fz)) (5.14)

for any field f = f1e1 + f2e2 + fzez . We then set

V1 := (1− χ(nz))U + χ(nz)(US + [(U − US) · ez] ez)

for a smooth truncation function χ : R → [0, 1] equal to 1 in a neighborhood of 0. Clearly, for all

p ≤ 6, and 1
q +

1
6 = 1

p ,

‖V1 − U‖Lp((S0)δ\S0) ≤ Cp,δ n
−1/q ‖(U,US)‖L6((S0)δ\S0)

≤ C ′
p,δ n

−1/q ‖(U,US)‖H1((S0)δ\S0).
(5.15)

Also, V1 satisfies (5.12). But it is not divergence-free: formula (5.14) yields

div V1 = χ(nz) div ([(U − US) · ez]ez)

so that for all p ≤ 2,

‖div V1‖Lp((S0)δ\S0) ≤ C n1/2−1/p‖U − US‖H1((S0)δ\S0).

To obtain a divergence-free field, we note that both U and US have zero flux through ∂S0 and [11,

Theorem 3.1]: there exists a field V2 such that

div V2 = −div V1 in (S0)δ \ S0, V2|∂S0 = V2|∂(S0)δ = 0,

and for all p ∈]1, 2],

‖V2‖W 1,p((S0)δ\S0) ≤ Cδ n
1/2−1/p ‖U − US‖H1((S0)δ\S0).

In particular, by Sobolev imbedding, one has for all p∗ ≤ 6

‖V2‖Lp∗ ((S0)δ\S0) ≤ Cδ n
1/6−1/p∗ ‖(U,US)‖H1((S0)δ\S0). (5.16)

Finally, the field V := V1 + V2 fulfills our requirements.

Step 2. We construct a field W such that div W = 0,

W |∂S0 = [(U − US) · ν] ν, and W |∂(S0)δ = 0. (5.17)

In the same spirit as in the first step, we take

W1 := χ(
2z

δ
)[(U − US) · ν|z=0] ez

where χ is again a truncation function: χ = 1 near 0, and χ = 0 outside [−1, 1]. A rapid computation

shows that

‖W1‖Lp((S0)δ\S0) ≤ Cδ‖(U − US) · ν‖Lp(∂S0), ∀ p (5.18)
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By Proposition 6, there exists a field W2 such that

div W2 = −div W1 in (S0)δ \ S0, W2|∂S0 =W2|∂(S0)δ = 0,

and

‖W2‖H1((S0)δ\S0) ≤ Cδ ‖(U − US) · ν‖L2(∂S0).

In particular, by Sobolev imbedding, one has for all p ≤ 6

‖W2‖Lp((S0)δ\S0) ≤ Cδ ‖(U − US) · ν‖L2(∂S0). (5.19)

Finally, the field W := W1 +W2 fulfills our requirements.

Eventually, we set










V δ[U,US ] = U outside (S0)δ,

V δ[U,US ] = V −W in (S0)δ \ S0,
V δ[U,US ] = US in S0.

Combining (5.15), (5.16), (5.18) and (5.19) leads to (5.6).

5.3 Approximation of the test functions

The weak formulation of the momentum equation involves discontinuous test functions ϕ ∈ TT :

ϕ = (1− χS)ϕF + χSϕS , ϕF ∈ D([0, T );Dσ(Ω)), ϕS ∈ D([0, T );R),

with

ϕF · ν|∂Ω = 0, ϕF · ν|∂S(t) = ϕS · ν|∂S(t) ∀ t.
On the contrary, the approximate momentum equation c) involves continuous (or at least H1) test

functions. Hence, we will have to approach ϕ by a sequence (ϕn) in L2(0, T ;H1
σ(Ω)). Due to the

discontinuity of the limit, the ϕn(t, ·)’s will exhibit strong gradients near ∂Sn(t). Precise estimates

are needed, that are the purpose of

Proposition 12 Let α > 0. There exists a sequence (ϕn) in W 1,∞(0, T ;L2
σ(Ω))∩L∞(0, T ;H1

σ(Ω)),
of the form

ϕn = (1− χn
S)ϕF + χn

Sϕ
n
S ,

that satisfies

• ‖√χn
S(ϕ

n
S − ϕS)‖C([0,T ];Lp(Ω)) = O(n−α/p) for all p ∈ [2, 6].

• ϕn → ϕ strongly in C([0, T ];L6(Ω)).

• ‖ϕn‖C([0,T ];H1(Ω)) = O(nα/2).

• ‖χn
S(∂t + Pn

S u
n · ∇) (ϕn − ϕS) ‖L∞(0,T ;L6(Ω)) = O(n−α/6).

• (∂t + Pn
S u

n · ∇)ϕn → (∂t + PSu · ∇)ϕ weakly * in L∞(0, T ;L6(Ω)).
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Proof of the proposition.

The point is to build a good approximation ϕn
S of ϕS over the solid domain. Broadly, we want

ϕn
S(t, ·)|∂Sn(t) = ϕF (t, ·)|∂Sn(t) ∀ t,

and

ϕn
S(t, ·) ≈ ϕS(t, ·) in Sn(t) away from a n−α neighborhood of ∂Sn(t) ∀ t.

Therefore, we proceed as for vn, by using lagrangian coordinates: we define ΦS and ΦF through the

formulas

ϕS

(

t, φnt,0(y)
)

= dφnt,0|y (ΦS(t, y)) , ϕF

(

t, φnt,0(y)
)

= dφnt,0|y (ΦF (t, y)) ,

and the goal is to define properly some Φn
S , related to ϕn

S by the formula

ϕn
S

(

t, φnt,0(y)
)

= dφnt,0|y (Φn
S(t, y)) .

Note that ΦS and ΦF depend on n through the propagator φn, but we omit it from our notations. The

only thing we have to keep in mind is that the bounds on φn guarantee that ΦS and ΦF are uniformly

bounded in W 1,∞(0, T ;Hk
loc(R

3)) for all k.

Thanks to the change of coordinates, the problem is now in the fixed domain S0. Roughly, we

want to build Φn
S in such a way that

Φn
S(t, ·)|∂S0 = ΦF (t, ·)|∂S0 ∀ t,

and

Φn
S(t, ·) ≈ ΦS(t, ·) in S0 away from a n−α neighborhood of ∂S0 ∀ t.

Note that time is only a parameter in the system. The construction of Φn
S follows the one of V ,

performed in the previous paragraph, Step 1. We take Φn
S under the form

Φn
S = Φn

S,1 + Φn
S,2.

The first term has the explicit form

Φn
S,1 = ΦS + χ(nα z) ((ΦF − ΦS)− [(ΦS − ΦF ) · ez] ez) .

Again, χ is a smooth truncation function near 0, and z is a coordinate transverse to the boundary:

∂S0 = {z = 0}. It is easily seen that Φn
S,1 satisfies the right boundary condition at ∂S0. Moreover,

‖Φn
S,1 − ΦS‖W 1,∞(0,T ;Lp(S0)) ≤ C n−α/p ∀ p <∞, ‖Φn

S,1 − ΦS‖W 1,∞(0,T ;H1(S0)) ≤ C nα/2.
(5.20)

But it is not divergence-free. By applying formula (5.14), we get

div Φn
S,1 = χ(nα z)n, n := div (x 7→ ((ΦF − ΦS)− [(ΦS − ΦF ) · ez] ez)) .

In particular, n is uniformly bounded in W 1,∞(0, T ;L2(S0))

By Proposition 6, there exists some field Φn
S,2 satisfying

div Φn
S,2 = −div Φn

S,1 in S0, Φn
S,2|∂S0 = 0,
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and

‖Φn
S,2‖W 1,∞(0,T ;H1(S0)) ≤ C ‖χ(nαz) n‖W 1,∞(0,T ;L2(S0)) ≤ C n−α/2. (5.21)

In particular,

‖Φn
S,2‖W 1,∞(0,T ;L6(S0)) ≤ C n−α/2. (5.22)

Back to the moving domain (in variable x), one can combine the estimates (5.20)-(5.21)-(5.22)

with the uniform bound on φn in W 1,∞(0, T ; C∞(Ω)). From there, one can deduce the estimates of

the proposition. For the sake of brevity, we only treat the two last items. Namely, we write

‖χn
S(∂t + Pn

S u
n · ∇) (ϕn − ϕS) ‖L∞((0,T );L6(Ω)) ≤ C ‖ ∂

∂t
dφnt,0|y (Φn

S − ΦS) ‖L∞((0,T );L6(S0))

≤ C n−α/6 ,

where the last inequality involves (5.20) and (5.22). This bound implies in turn that

(∂t+P
n
S u

n ·∇)ϕn = (1−χn
S)(∂t+P

n
S u

n ·∇)ϕF + χn
S(∂t+P

n
S u

n ·∇)ϕS + O(n−α/6) in L6(Ω)

The products at the r.h.s. are then easily handled using the strong convergence of χn
S (and the weak

convergence of Pn
S u

n). We obtain

(∂t + Pn
S u

n · ∇)ϕn → (∂t + PSu · ∇)ϕ weakly *in L∞(0, T ;L6(Ω))

as expected. This concludes the proof of the proposition.

5.4 Convergence in the momentum equation: linear terms

We now have all the elements to study the asymptotics of the approximate momentum equation c).

Given an arbitrary ϕ ∈ TT , we consider an approximate sequence (ϕn) as in Proposition 12. We shall

take ϕn as a test function in c), and let n tend to infinity, so as to recover (2.1). We shall rely on the

fields unF and uF introduced in paragraph 5.1. We remind that

(1− χn
S)u

n
F = (1− χn

S)u
n, unF → uF weakly in L2(0, T ;H1

σ(Ω)). (5.23)

To lighten notations, we shall write unS := Pn
S u

n, uS := PSu. We remind that these rigid fields

satisfy

unS → uS weakly * in L∞(0, T ;W k
loc(R

3)) ∀k. (5.24)

In this paragraph, we consider the asymptotics of all terms but the convection one.

• We write the diffusion term as:

∫ T

0

∫

Ω
2µnD(un) : D(ϕn) =

∫ T

0

∫

Ω

(

2µF (1− χn
S)D(unF ) +

1

n2
χn
SD(un)

)

: D(ϕn)

=

∫ T

0

∫

Ω
2µF (1− χn

S)D(unF ) : D(ϕF ) +
1

n2

∫ T

0

∫

Ω
χn
S D(unS) : D(ϕn) := In1 + In2 .

From the strong convergence of χn
S to χS in C([0, T ];Lp(Ω)), and the weak convergence of unF

to uF in L2(0, T ;H1(Ω)), we deduce

In1 →
∫ T

0

∫

Ω
2µF (1− χS)D(uF ) : D(ϕF ).
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As regards In2 , we use the bounds

‖√µnD(un)‖2L2((0,T )×Ω) = O(1), ‖ϕn‖L∞(0,T ;H1(Ω)) = O(nα/2)

established in the previous paragraphs. They imply

|In2 | ≤ C

n2
‖χSD(un)‖L2((0,T )×Ω) ‖D(ϕn)‖L2((0,T )×Ω) ≤ C

n1−α/2

If we choose α < 2, then In2 goes to zero as n goes to infinity, and finally

∫ T

0

∫

Ω
2µnD(un) : D(ϕn) →

∫ T

0

∫

F (t)
2µF D(uF ) : D(ϕF ).

• The boundary term at ∂Ω reads

1

2βΩ

∫ T

0

∫

∂Ω
(un × ν) · (ϕn × ν) =

1

2βΩ

∫ T

0

∫

∂Ω
(unF × ν) · (ϕF × ν)

→ 1

2βΩ

∫ T

0

∫

∂Ω
(uF × ν) · (ϕF × ν)

by the weak convergence of unF in L2(0, T ;H1(Ω)).

• We deal with the boundary term at ∂Sn as in the Galerkin approximation. We introduce unS :=
Pn
S u

n, rnS := Pn
Sϕ

n = Pn
Sϕ

n
S and capital letters to denote velocity fields when seen through

the change of variable. We then have, as in the computation for the Galerkin method :

1

2βS

∫ T

0

∫

∂Sn(t)
((unF − unS)× ν) · ((ϕn

F − rnS)× ν)

=
1

2βS

∫ T

0

∫

∂S0

((Un
F − Un

S )× ν) · ((ΦF −Rn
S)× ν) ,

where we used that ϕn
F = ϕF . We note here that ϕn converges to ϕ in C([0, T ];L6(Ω)) so

that combining with the strong convergence of χn
S it yields that rnS converges to rS := PSϕ in

L2(0, T ;H1
loc(R

3)). Through the change of variable, Lemma 17 yields that :

Rn
S → RS strongly in L2(0, T ;H1/2(∂S0)).

Then, we combine the respective convergences of unF , u
n
S with Lemma 17 yielding, with obvi-

ous notations :

Un
F → UF weakly in L2(0, T ;H1(Ω)), Un

S → US weakly in L2(0, T ;H1(Ω)) .

We apply these convergences together with the continuity of traces on ∂S0 ⊂⊂ Ω, and go back

to the moving geometry, to obtain finally :

1

2βS

∫ T

0

∫

∂Sn(t)
((un − unS)× ν) · ((ϕn − ϕn

S)× ν)

→ 1

2βS

∫ T

0

∫

∂S(t)
((uF − uS)× ν) · ((ϕF − ϕS)× ν) .
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• to treat the penalization term we use the bounds

n‖
√

χn
S(u

n − Pn
S u

n)‖2L2((0,T )×Ω) = O(1), ‖
√

χn
S(ϕ

n
S − ϕS)‖C([0,T ];L6(Ω)) = O(n−α/2)

established in the previous paragraph. We also remind that ϕS , as a rigid vector field, satisfies

ϕS = Pn
SϕS . From there,

∣

∣

∣

∣

n

∫ T

0

∫

Ω
χn
S(u

n − Pn
S u

n) · (ϕn − Pn
Sϕ

n)

∣

∣

∣

∣

=

∣

∣

∣

∣

n

∫ T

0

∫

Ω
χn
S(u

n − Pn
S u

n) · ((ϕn
S − ϕS)− Pn

S (ϕ
n − ϕS))

∣

∣

∣

∣

=

∣

∣

∣

∣

n

∫ T

0

∫

Ω
χn
S(u

n − Pn
S u

n) · (ϕn
S − ϕS)

∣

∣

∣

∣

≤ Cn1/2−α/2

If we choose α > 1 (which is compatible with the former constraint α < 2), the penalization

term vanishes as n→ +∞.

5.5 Strong convergence of (un)

To show that (S, u) is a weak solution over (0, T ), we still have to pass to the limit in the convection

term

convn :=

∫ T

0

∫

Ω
ρn (un · ∂tϕn + vn ⊗ un : ∇ϕn) .

To compute this limit, we first prove

Proposition 13 Up to the extraction of a subsequence, (un) converges to u in L2((0, T ) ×Ω).

This result is obtained applying the method introduced in the reference [23] (see also [10] for the 3D

case). We first introduce some notations. Given 0 ≤ s ≤ 1 and S a bounded connected subset ⋐ Ω,

we denote

Rs[S] = the closure of {v ∈ H1
σ(Ω) such that v|S ∈ R} in Hs(Ω).

As Rs[S] is a closed subspace of Hs(Ω) we denote P s[S] the orthogonal projector from Hs(Ω)
onto this subspace. Given s′ > s, we recall that Rs′ [S] is a dense subspace of Rs[S] , and that the

imbbeding Rs′ [S] ⊂ Rs[S] is compact. If s = 0, we shall drop exponent s. We emphasize that in the

case s = 0 the projector P [S] does not coincide with the PS introduced in (3.1).

Our first step is the following approximation lemma :

Lemma 14 Let s < 1
3 .

i) The sequence (un) is uniformly bounded in L2(0, T ;Hs(Ω)). Moreover, there is ε = ε(s) > 0
such that for all h < δ/2,

∫ T

0
‖un(t, ·) − P s[(Sn(t))h]u

n(t, ·)‖2Hs(Ω) ≤ C
(

hε + n−ε
)

. (5.25)

ii) One has u ∈ L2(0, T ;Hs(Ω)). Moreover, there exists ε = ε(s) such that for all h < δ/2,

∫ T

0
‖u(t, ·) − P s[(S(t))h]u(t, ·)‖2Hs(Ω)dt ≤ Chε, (5.26)
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where, in both cases, the constant C depends only on initial data.

Proof of the lemma. We only prove the first item of the lemma, the second one being simpler. It

relies on the construction of a suitable approximation vnh of un, rigid in a h-neighborhood of Sn. This

approximation will satisfy the following properties :

• (vnh) is bounded in L2(0, T ;Hs(Ω)) for s small enough

• vnh(t, ·) = PSnun(t, ·) in (Sn(t))h and vnh(t, ·) = un(t, ·) outside (S(t))δ for a.a. t ∈ (0, T ).

Note that it implies vnh(t, ·) ∈ Rs[(Sn(t))h] for a.a. t ∈ (0, T ).

• for h sufficiently small and for a.a. t ∈ (0, T ) there holds

‖un(t, ·)− vnh(t, ·)‖L2(Ω\(Sn(t))h) ≤ C h
1
3
(

‖Pn
S u

n(t, ·)‖L2(Ω) + ‖un(t, ·)‖H1(Fn(t))

)

+ C ‖(un − Pn
S u

n) · ν‖L2(∂Sn(t)) ,

‖ vnh(t, ·)‖Hs(Ω) ≤ C(1 + h
1
3
−s)
(

‖Pn
S u

n(t, ·)‖L2(Ω) + ‖un(t, ·)‖H1(Fn(t))

)

+ C ‖(un − Pn
S u

n) · ν‖L2(∂Sn(t)).
(5.27)

Before giving further details on the construction of vnh we explain how the previous properties imply

Lemma 5.25. By interpolation of (5.8) and (5.9), we obtain

∫ T

0
‖(un − Pn

S u
n)(t, ·) · ν‖2L2(∂Sn(t)) dt ≤ C√

n
. (5.28)

We square the inequalities in (5.27) and integrate from 0 to T . Using (5.28) with the uniform bounds

(5.3), we end up with

(
∫ T

0
‖un − vnh‖2L2(Ω\(Sn(t))h)

)1/2

≤ C

(

h1/3 +
1√
n

)

, ‖vnh‖L2(0,T ;Hs(Ω)) ≤ C, ∀s ≤ 1/3.

(5.29)

Moreover,

(
∫ T

0
‖un − vnh‖2L2((Sn(t))h)

)1/2

=

(
∫ T

0
‖un − Pn

S u
n‖2L2((Sn(t))h)

)1/2

≤
(
∫ T

0
‖un − Pn

S u
n‖2L2(Sn(t))

)1/2

+

(
∫ T

0
‖un − Pn

S u
n‖2L2((Sn(t))h\Sn(t))

)1/2

Using (5.3), we get

(
∫ T

0
‖un − vnh‖2L2((Sn(t))h)

)1/2

≤ C√
n

+

(
∫ T

0
‖un − Pn

S u
n‖2L2((Sn(t))h\Sn(t))

)1/2

≤ C√
n

+ C
√
h

(
∫ T

0
‖un − Pn

S u
n‖2L4((Sn(t))h\Sn(t))

)1/2

≤ C√
n

+ C
√
h

(
∫ T

0
‖un − Pn

S u
n‖2H1(Fn(t))

)1/2

≤ C√
n

+ C
√
h
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Combining this last inequality with the first inequality in (5.29) yields

‖un − vnh‖L2((0,T )×Ω) ≤ C

(

h1/3 +
1√
n

)

(5.30)

As regards the Hs norm, s ≤ 1/3, we use the second inequality in (5.29) to write

‖un − vnh‖L2(0,T ;Hs(Ω)) ≤
(
∫ T

0
‖un − Pn

S u
n‖2Hs(Sn(t))dt

)1/2

+

(
∫ T

0
‖un‖2Hs(Fn(t))dt

)1/2

+

(
∫ T

0
‖vnh‖2Hs(Fn(t))dt

)1/2

≤ ‖un − Pn
S u

n‖L2(0,T ;Hs(Sn)) + O(1)

Finally, we have

‖un − Pn
S u

n‖L2(0,T ;Hs(Sn)) ≤ C ‖un − Pn
S u

n‖1−s
L2((0,T )×Sn)

‖un − Pn
S u

n‖sL2(0,T ;H1(Sn))

≤ C

(

1√
n

)1−s

ns ≤ C as soon as s ≤ 1

3
.

We end up with

‖un − vnh‖L2(0,T ;Hs(Ω)) ≤ C as soon as s ≤ 1

3
. (5.31)

One last interpolation between (5.30) and (5.31) shows that for all s < 1/3 and ε = ε(s) > 0,

‖un − vnh‖L2(0,T ;Hs(Ω)) ≤ C
(

hε + n−ε
)

.

As vnh(t, ·) belongs to Rs[(Sn(t))h] for all t, by definition of the projection, the same inequality holds

replacing vnh by P [(Sn(t))h], as expected.

We still have to achieve the construction of vnh . It follows the construction of vn, cf paragraph

5.2. It is actually simpler, because we only look for a vnh with Hs regularity for small s. In particular,

jump on the tangential part at ∂(Sn)h and ∂(Sn)δ will be allowed.

As before, we go back to Lagrangian coordinates : we look for a vnh under the form

vnh(t, φt,0(y)) = dφt,0|yV n
h (t, y).

Also, we define Un and Un
S through

EΩu
n
(

t, φnt,0(y)
)

= dφnt,0|y Un(t, y), Pn
S u

n
(

t, φnt,0(y)
)

= dφnt,0|y Un
S (t, y).

In this way, we are back to a static problem. For brevity, we shall omit temporarily the time dependence

in our notations. The point is to build a field V n
h satisfying

V n
h = Un

S in (S0)h, V n
h = Un outside (S0)δ ,

and suitable estimates.

Therefore, we follow paragraph 5.2. We parametrize (S0)δ\S0 by curvilinear coordinates (s1, s2, z),
z being the distance at ∂S0. Hence, ∂(S0)h = {z = h}. Then, we introduce

V n
h,1 :=

(

1− χ

(

z − h

h

))

Un + χ

(

z − h

h

)

(Un
S + [(Un − Un

S ) · ez] ez)
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and the solution V n
h,2 of

{

divV n
h,2 = −divV n

h,1 , in (S0)δ \ (S0)h ,
V n
h,2 = 0 on ∂(S0)δ and ∂(S0)h

Computations similar to those of paragraph 5.2 yield :

‖V n
h,1 − Un‖L2((S0)δ\(S0)h) ≤ h

1
3‖(Un, Un

S )‖H1((S0)δ\(S0)h)×R, (5.32)

‖V n
h,1‖H1((S0)δ\(S0)h) ≤ h−

2
3‖(Un, Un

S )‖H1((S0)δ\(S0)h)×R, (5.33)

‖V n
h,2‖H1((S0)δ\(S0)h) ≤ C ‖(Un, Un

S )‖H1((S0)δ\(S0)h)×R. (5.34)

Let us emphasize that the constant C in the last inequality can be chosen uniformly in h, see [11,

Theorem III.3.1]. It follows by interpolation that

‖V n
h,1 + V n

h,2‖Hs((S0)δ\(S0)h) ≤ C h
1
3
−s ‖(Un, Un

S )‖H1((S0)δ\(S0)h)×R. (5.35)

Finally, we build some W n
h = ∇Y n

h where Y n
h is the unique solution of :







∆Y n
h = 0 in (S0)δ \ (S0)h ,

∂zY
n
h = (Un

S − Un) · ez , on ∂(S0)h ,
∂zY

n = 0 , on ∂(S0)δ ,
such that

∫

(S0)δ\(S0)h

Y n
h = 0 .

we recall that ν = ez on ∂(S0)h. By standard elliptic regularity results, there exists a constant C
independent of h such that :

‖W n
h ‖L2((S0)δ\(S0)h) ≤ ‖Y n

h ‖H1((S0)δ\(S0)h) ≤ C‖(Un
S − Un) · ez‖H−1/2(∂(S0)h)

,

‖W n
h ‖H1((S0)δ\(S0)h) ≤ ‖Y n

h ‖H2((S0)δ\(S0)h) ≤ C‖(Un
S − Un) · ez‖H1/2(∂(S0)h)

.

By interpolation, we get

‖W n
h ‖H1/2((S0)δ\(S0)h)

≤ C‖(Un
S − Un) · ez‖L2(∂(S0)h) (5.36)

Now, we write

‖(Un
S − Un) · ez‖L2(∂(S0)h)

≤ C
(

h
1
2 ‖∇(Un

S − Un)‖L2((S0)δ\(S0)h) + ‖(Un
S − Un) · ez‖L2(∂S0)

)

. (5.37)

Eventually, we set V n
h := V n

h,1 + V n
h,2 − W n

h . We stress that the normal component of V n
h is

continuous across ∂(S0)h and ∂(S0)δ . Hence, for any s < 1
2 , the Hs norm of V n

h over the whole

domain is controlled by the sum of the Hs norms over (S0)h, (S0)δ \ (S0)h and Ωn \ (S0)δ, where

Ωn is a shorthand for φn0,t(Ω). It follows from this remark and the previous inequalities that: for all

s < 1/2

‖V n
h ‖Hs(Ωn) ≤ C

(

(1 + h
2−5s

6 )
(

‖Un‖H1(Fn) + ‖Un
S ‖R

)

+ ‖(Un
S − Un) · ez‖L2(∂S0)

)

. (5.38)

Also, one has

‖V n
h − Un‖L2(Ωn\(S0)h)

≤ C
(

h1/3
(

‖Un‖H1(Fn) + ‖Un
S ‖R

)

+ ‖(Un
S − Un) · ez‖L2(∂S0)

)

. (5.39)
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Back to the moving domain, and accouting for time dependence, we obtain (5.27).

The second step in the treatment of the nonlinear terms is a control of the Hausdorff distance

between Sn(t) and S(t′) for close times t, t′ ∈ [0, T ]. This is the purpose of

Lemma 15 Let h > 0.

i) There exists n0 ≥ 0 such that for all n ≥ n0,

Sn(t) ⊂ (S(t))h/4 ⊂ (Sn(t))h/2 ∀ t ∈ [0, T ].

ii) There exists η > 0 such that for all t0 ∈ [0, T ], for all t ∈ [t0 − η, t0 + η] ∩ [0, T ]

(S(t))h/2 ⊂ (S(t0))h ⊂ (S(t))2h.

Note that condition (5.1) and point i) of the lemma (applied with h = δ) imply that

dist(S(t), ∂Ω) ≥ 3

2
δ, for t ∈ [0, T ], for some fixed δ > 0. (5.40)

Proof of the lemma. We first treat i), focusing on the first inclusion (the other one is proved in

the same way). To this end, we recall that the associated sequence of characteristic functions χn
S

converges to χS in C([0, T ];L1(Ω)). This implies that

sup
t∈[0,T ]

|Sn(t)△ S(t)| = sup
t∈[0,T ]

‖χn
S(t, ·) − χS(t, ·)‖L1(Ω) → 0 when n→ ∞ ,

where we denoted △ the symmetric difference of subsets of R3. Let us now take h > 0 and assume

a contrario that there exists a sequence of times tk ∈ [0, T ] and of integers nk going to infinity such

that

Snk(tk) \ (S(tk))h/4 6= ∅ .
As Snk(tk) is isometric to S0, which satisfies:

∃ r > 0 s.t. for all x ∈ S0 there exists a euclidean ball B with radius r satisfying x ∈ B ⊂ S0

there exists for all k a ball B′
k with radius r′ = min(r, h/16) such that

B′
k ⊂ Snk(tk) \ S(tk) ,

so that

sup
t∈[0,T ]

|Snk(t)△ S(t)| ≥ 4π|r′|3
3

,

which yields a contradiction. Consequently, there exists n0 such that, for all n ≥ n0,

Sn(t) ⊂ (S(t))h/4 , ∀ t ∈ [0, T ].

The second item ii) is obtained in the same way. Let h > 0 and assume for instance that the first

inclusion does not hold. Arguing as previously, we are able to construct two sequences (tk0) and (tk)
converging both to t0 ∈ [0, T ] and such that S(tk) \ S(tk0) contains a ball of fixed radius. Once again,

this contradicts the continuity in L1(Ω) of χS at t0.
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Thanks to the previous lemmas, we can conclude the proof of Proposition 13, following very

closely [23]. At first, very minor adaptation of the proof of [23, Proposition 7.1] yields: for s ∈
(0, 1/3), there exists h0, such that, for all h ∈ (0, h0):

lim
n→∞

∫ T

0

∫

Ω
ρnun · P s[(S(t))h]u

n =

∫ T

0

∫

Ω
ρu · P s[(S(t))h]u. (5.41)

We remind that the main idea behind this limit is the following: thanks to Lemma 15, for any field

ξ, the projected field P s[(S(t))h](ξ) is rigid in a neighborhood of Sn(t) for n large enough. Hence,

if one uses P s[(S(t))h](ξ) as a test function in the momentum equation, the boundary term at ∂Sn(t)
and the penalization term vanish: roughly, one recovers a uniform bound on ∂tP

s[(S(t))h](ρ
nun) in

a Sobolev space of negative index, and from there compactness. For all details, see [23, Proposition

7.1].

Then, one establishes that

lim
n→∞

∫ T

0

∫

Ω
ρn|un|2 =

∫ T

0

∫

Ω
ρ|u|2, (5.42)

(

ρn = ρF (1− χn
S) + ρSχ

n
S, ρ = ρF (1− χS) + ρSχS

)

. The idea is to write

∫ T

0

∫

Ω
ρn|un|2 −

∫ T

0

∫

Ω
ρ|u|2

=

(
∫ T

0

∫

Ω
ρnun · P s[(S(t))h](u

n)−
∫ T

0

∫

Ω
ρu · P s[(S(t))h](u)

)

+

∫ T

0

∫

Ω
ρnun · (un − P s[S(t)h]u

n)dt +

∫ T

0

∫

Ω
ρu · (P s[S(t)h]u− u)dt

The first term at the r.h.s. is controlled using (5.41), whereas the last two are treated thanks to Lemma

13: note that (S(t))h ⊂ (Sn(t))2h for n large enough by Lemma 15, so that

∫ T

0
‖un(t, ·)− P s[(S(t))h]u

n(t, ·)‖2Hs(Ω) ≤
∫ T

0
‖un(t, ·)− P s[(Sn(t))2h]u

n(t, ·)‖2Hs(Ω)

≤ C
(

hε + n−ε
)

.

The final step of the proof consists in showing that

∫ T

0

∫

Ω
ρ|un|2 →

∫ T

0

∫

Ω
ρ|u|2

which yields the strong compactness of un (ρ having positive lower and upper bounds). The idea here

is to write

∣

∣

∣

∣

∫ T

0

∫

Ω
ρ(|un|2 − |u|2)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ T

0

∫

Ω

(

ρn|un|2 − ρ|u|2
)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ T

0

∫

Ω
(ρn − ρ)|un|2

∣

∣

∣

∣

.

The first term at the r.h.s. goes to zero by (5.42). For the second one, we use that ρn → ρ strongly in

C([9, T ];Lp(Ω)) for all finite p and that |un|2 is uniformly bounded in Lp′ for some p′ > 1, thanks to

the uniform Hs bound on un. Again, we refer to [23] for all details.
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5.6 Convergence in the momentum equation: nonlinear terms

Thanks to the strong convergence of Proposition 13, we are now able to split convn in a suitable way.

Let us first remind that vn is identically equal to unS inside Sn, whereas ϕn is identically equal to ϕF

outside Sn. This allows us to decompose the convection term as follows:

convn =

∫ T

0

∫

Ω
ρF (1− χn

S)u
n
F · ∂tϕF

+

∫ T

0

∫

Ω
ρF (1− χn

S)v
n ⊗ unF : ∇ϕF +

∫ T

0
ρSχ

n
S(∂t + unS · ∇)ϕn · un := In1 + In2 + In3

The convergence of In1 is clear:

In1 →
∫ T

0

∫

Ω
ρF (1− χS)uF · ∂tϕF .

The convergence of In3 follows from the fourth item in Proposition 12, which clearly implies that

In3 =

∫ T

0

∫

Ω
ρSχ

n
S(∂t + unS · ∇)ϕS · un + o(1).

Using the strong convergence of χn
Su

n to χSuS in L2((0, T ) × Ω), it is then easily shown that

In3 =

∫ T

0

∫

Ω
ρSχS∂tϕS · uS +

∫ T

0

∫

Ω
ρSχ

n
Su

n
S · ∇ϕS · unS + o(1).

Now, we write the second term at the r.h.s. as
∫ T

0

∫

Ω
ρSχ

n
Su

n
S · ∇ϕS · unS =

∫ T

0

∫

Ω
ρSχ

n
Su

n
S ⊗ unS : ∇ϕS

=

∫ T

0

∫

Ω
ρSχ

n
Su

n
S ⊗ unS : D(ϕS) = 0

as ϕS is a rigid vector field.

It remains to study In2 . We know from paragraph 5.2 that

(1− χn
S)(v

n − un) = (1− χn
S)(v

n − unF ) → 0 in L2(0, T ;Lp(Ω)), ∀p ≤ 6.

It follows that

In2 =

∫ T

0

∫

Ω
ρF (1− χn

S)u
n
F ⊗ unF : ∇ϕF + o(1).

=

∫ T

0

∫

Ω
ρF (1− χn

S)u
n ⊗ un : ∇ϕF + o(1).

In this last identity we collect the strong convergences of un to u in L2((0, T )×Ω) and of χn
S to χ in

C([0, T ];L15(Ω)), together with the uniform regularity of (un, u) in L2(0, T ;H1/5(Ω)) (see Lemma

14), which yields that (un, u) are uniformly bounded in L2(0, T ;L30/13(Ω)). We obtain then :

lim
n→∞

∫ T

0

∫

Ω
ρF (1− χn

S)u
n ⊗ un : ∇ϕF =

∫ T

0

∫

Ω
ρF (1− χS)u⊗ u : ∇ϕF

=

∫ T

0

∫

Ω
ρF (1− χS)uF ⊗ uF : ∇ϕF

This concludes our proof.
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5.7 Energy inequality and extension to collision time.

We pass to the weak limit in (4.10) and prove that the solution (ρ, u) satisfies the further energy

estimate (2.2). First, we note that (4.10) implies

‖√ρnun(t, ·)‖2L2(Ω) +

∫ t

0

∫

Ω
2µn|D(un)|2 +

1

2βΩ

∫ t

0

∫

∂Ω
|un × ν|2

+
1

2βS

∫ t

0

∫

∂SN (t)
|(un − Pn

S u
n)× ν|2 ≤

∫ t

0

∫

Ω
ρ(−g) · un +

∫

Ω
ρ0 |u0|2

for all n. As we have convergence of
√
ρnun in L2−ε((0, T ) × Ω) we can pass to the weak limit in

this inequality for almost all t ∈ [0, T ]. As S(t) remains far from ∂Ω we treat boundary terms in a

similar way as in paragraph 4.4. The only term which requires a new treatment is :

∫ t

0

∫

Ω
2µn|D(un)|2.

For this term, we note that, because of Lemma 15, there holds for arbitrary h > 0 and n sufficiently

large :
∫ t

0

∫

Ω\(S(t))h

2µF |D(un)|2 ≤
∫ t

0

∫

Ω
2µn|D(un)|2.

If we let n go to infinity, and then h go to 0, we obtain :

∫ t

0

∫

F (t)
2µF |D(uF )|2 ≤ lim inf

∫ t

0

∫

Ω
2µn|D(un)|2,

for almost all t ∈ [0, T ]. Hence, passing to the limit in (4.10) yields (2.2).

Our solutions are limited in time to avoid collision. Namely, the only shortcoming of our con-

struction is that it requires the distance between S(t) and ∂Ω to be larger than a fixed positive distance

δ through time. However, as long as we are given an initial data u0 ∈ L2(Ω) and an initial position S0
such that S0 ⋐ Ω, we are able to construct a small time T depending only on the inital position of S0
in Ω and the L2 norm of u0 such that the solution exists and satisfies this property on [0, T ]. As our

solutions satisfy also energy estimate (2.2) we might reproduce the arguments of [10, Lemma 2.2] to

concatenate solutions in time and prove existence of at least one weak solution until collision time.
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A Weak/Strong convergence and isometries

In this appendix, we study the influence of isometric transformations on weak and strong convergence

of sequences. First, we prove :

Lemma 16 Let φ ∈ C([0, T ]; Isom(R3)). Given w : (0, T )× R
3 → R

3 we define :

w(t, φ(t, y)) := dφt|yW (t, y) , ∀ (t, y) ∈ (0, T ) × R
3. (A.1)

Then

• If w ∈ L2(0, T ;H1(R3)) then W ∈ L2(0, T ;H1(R3)).

• If w ∈ C([0, T ];H1(R3)) then W ∈ C([0, T ];H1(R3)).

• The same assertions hold true replacing H1(R3) by H1
loc(R

3).

The proof of this lemma is based on the fact that formula (A.1) for fixed t defines a unitary transfor-

mation of H1(R3). The details are left to the reader. Second, we obtain :

Lemma 17 Let φN : [0, T ] × R
3 such that φN (t, ·) ∈ Isom(R3) for all t ∈ [0, T ]. We assume that

φN converges to φ in C([0, T ];C∞
loc(R

3)). Given a sequence (wN ) : (0, T )× R
3 → R

3 we define :

wN (t, φN (t, y)) := dφNt |yWN (t, y).

Then, with obvious notations:
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• If (wN ) converges to w strongly (resp. weakly) in L2(0, T ;H1(R3)) then (WN ) converges to

W strongly (resp. weakly) in L2(0, T ;H1(R3)).

• If (wN ) converges tow inC([0, T ];H1(R3)) then (WN ) converges toW inC([0, T ];H1(R3)).

• The same assertions hold true replacing H1(R3) by H1
loc(R

3).

Remark. We point out that wN and WN satisfy symmetric relations:

wN
(

t, φNt (y)
)

= dφNt |yWN(t, y) ⇔ WN
(

t, [φNt ]−1(x)
)

= d[φNt ]−1|xwN (t, x),

so that fields W n and wn, resp. W and w can be switched in this lemma.

Proof of Lemma 17. We first remind that φNt is an affine isometry, so that (for all N, t)

∣

∣dφNt |y x
∣

∣ = |x| ,
∣

∣[dφNt |y]−1M dφNt |y
∣

∣ = |M |, ∀(x, y) ∈ R
3 ×R

3, ∀M ∈M3(R). (A.2)

The same relations hold for φ instead of φN .

Strong convergence. We focus on convergence in C([0, T ];H1(R3)), the strong convergence in

L2H1 being treated in the same way. First, we note that our previous lemma yields:

WN ∈ C([0, T ];H1(R3)) for any N, W ∈ C([0, T ];H1(R3)).

Then, we write

‖WN −W‖C([0,T ];L2(R3)) ≤ sup
t
IN1 (t) + sup

t
IN2 (t) + sup

t
IN3 (t)

where

|IN1 (t)|2 :=

∫

R3

∣

∣WN (t, y)− dφNt ◦ [dφt]−1|yW (t, [φt]
−1 ◦ φNt (y))

∣

∣

2
dy,

|IN2 (t)|2 :=

∫

R3

∣

∣[dφNt ]−1 ◦ dφt|yW (t, [φt]
−1 ◦ φNt (y))−W (t, [φt]

−1 ◦ φNt (y))
∣

∣

2
dy,

and

|IN3 (t)|2 :=
∫

R3

∣

∣W (t, [φt]
−1 ◦ φNt (y))−W (t, y)

∣

∣

2
dy.

Using (A.2), we have easily

|IN1 (t)|2 =

∫

R3

∣

∣wN (t, φNt (y))− w(t, φNt (y))
∣

∣

2
dydt

=

∫

R3

∣

∣wN (t, x)− w(t, x)
∣

∣

2
dx,

which tends uniformly to 0 when N → ∞ by assumption. We then get

|IN2 (t)|2 ≤ sup
t,y

∣

∣dφN0,t ◦ dφt,0 − Id
∣

∣

2
∫

R3

∣

∣W (t, [φt]
−1 ◦ φNt (y))

∣

∣

2
dy

≤ sup
t,y

∣

∣dφN0,t ◦ dφt,0 − Id
∣

∣

2 ‖W‖C([0,T ];H1(R3)) → 0.
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Finally, the continuity of W with values in L2(R3) implies that:

∫

|y|≥A
|W (t, y)|2dy

can be made arbitrary small uniformly in time, taking A sufficiently large. So, we apply the local

convergence of φN to φ to obtain that, for N sufficiently large, there holds :

|IN3 (t)| ≤
(

∫

|y|≥A
|W (t, [φt]

−1 ◦ φNt (y))|2dy
)1/2

+

(

∫

|y|≥A
|W (t, y)|2dy

)1/2

+

(

∫

|y|<A

∣

∣W (t, [φt]
−1 ◦ φNt (y))−W (t, y)

∣

∣

2
dy

)1/2

≤ 2

(

∫ T

0

∫

|y|≥A/2
|W (t, (y))|2

)1/2

+

(

∫

|y|<A

∣

∣W (t, [φt]
−1 ◦ φNt (y))−W (t, y)

∣

∣

2
dy

)1/2

The first term at the r.h.s. is independent of N and goes to zero as A goes to infinity. Moreover, for

fixed A, [φt]
−1 ◦ φNt (y) converges to y uniformly in [0, T ] × {|y| ≤ A}. Hence, for fixed A, the

second term at the r.h.s. converges to zero as N goes to infinity (continuity of translations in L2)

uniformly in t. We conclude that IN3 goes to zero, so that WN converges to W in C([0, T ];L2(R3)).
The convergence of ∇WN to ∇W follows the same lines, which yields the result.

Weak convergence. Again, we only prove the convergence on R
3. The convergence in H1

loc(R
3)

is similar. We assume here that (wN ) converges to w in L2(0, T ;H1(R3)) weak. Given χ ∈
C∞
c ((0, T ) × R

3) there holds :

∫ T

0

∫

R3

WN(t, y) · χ(t, y) dt dy =

∫ T

0

∫

R3

wN (t, φNt (y)) · dφNt,0|y χ(t, y) dt dy

=

∫ T

0

∫

R3

wN (t, x) ·
(

d[φNt ]−1|x
)−1

χ(t, [φNt ]−1(x)) dt dy ,

where we applied again that dφNt |y is a linear isometry. Because of the strong convergence of φN in

C([0, T ];C1
loc(R

3)) there holds :

(

d[φNt ]−1|x
)−1

χ(t, [φNt ]−1(x)) →
(

d[φt]
−1|x

)−1
χ(t, [φt]

−1(x)) strongly in L2((0, T ) × R
3)

so that with the weak convergence of wN we obtain :

∫ T

0

∫

R3

WN(t, y) · χ(t, y) dt dy →
∫ T

0

∫

R3

W (t, y) · χ(t, y) dt dy .

Similar arguments yield also that:

∫ T

0

∫

R3

∇WN (t, y) : ∇χ(t, y) dt dy →
∫ T

0

∫

R3

∇W (t, y) : ∇χ(t, y) dt dy .

which ends the proof.
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