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The IR Spectrum of Supercritical Water: Combined
Molecular Dynamics/Quantum Mechanics Strategy
and Force Field for Cluster Sampling

P. Bordat,*[a] D. Bégué,*[a] R. Brown,[a] A. Marbeuf,[b] H. Cardy,[a] and I. Baraille[a]

Supercritical water was analyzed recently as a gas of small

clusters of waters linked to each other by intermolecular

hydrogen-bonds, but unexpected ‘linear’’ conformations of

clusters are required to reproduce the infra-red (IR) spectra

of the supercritical state. Aiming at a better understanding of

clusters in supercritical water, this work presents a strategy

combining classical molecular dynamics to explore the

potential energy landscape of water clusters with quantum

mechanical calculation of their IR spectra. For this purpose, we

have developed an accurate and flexible force field of water

based on the TIP5P 5-site model. Water dimers and trimers

obtained with this improved force field compare well with the
quantum mechanically optimized clusters. Exploration by

simulated annealing of the potential energy surface of the
classical force field reveals a new trimer conformation whose
IR response determined from quantum calculations could play
a role in the IR spectra of supercritical water.

Introduction

Water uniquely combines both highly anomalous properties

compared with many solvents, and paramount importance in

practical and industrial chemistry and in biology. The supercrit-

ical state is the most recent subject of the longstanding inter-

est in the physical and chemical properties of water.[1–3]

Among the unusual properties of supercritical water are:

dielectric constant, viscosity, and solvating ability.[4] Applica-

tions of these properties include oxidation of industrial

waste,[5] some chemical reactions and synthesis without the

need for catalysis,[6] and control of reaction kinetics.[7]

Naturally, one would like to understand how these proper-

ties are related to the difference in molecular and intermolecu-

lar structure and dynamics of supercritical and ordinary water.

The structure of supercritical water has been investigated

using X-rays,[8,9] neutron scattering experiments,[10] and more

recently by inelastic X-ray scattering.[11] Proton NMR experi-

ments have been performed to measure the self-diffusion of

water[12] and the degree of hydrogen bonding under supercrit-

ical conditions.[13,14] Raman scattering,[15,16] infrared absorp-

tion[7,17–21] as well as time resolved spectroscopy[22] have

shown qualitatively how the degree of hydrogen bonding in

pure water changes with temperature and pressure. It was

concluded from all these experiments that hydrogen bonds

persist in supercritical water and the degree of hydrogen

bonding was found to depend strongly upon the pressure and

temperature. The current picture of supercritical water is a

state akin to a gas of small clusters of hydrogen bonded water

molecules (H bonds).

The sensitivity of the intramolecular stretch and bend

vibrational frequencies of water to hydrogen bonds with

neighboring molecules makes near- and mid-infra-red (IR)

spectroscopies appealing tools for investigating these

clusters, particularly when interpreted with the help of

molecular simulation. On the one hand, molecular dynamics

and Monte Carlo simulations provide information on the

nature and dynamics of the water clusters.[7,23–26] On the

other, quantum chemistry may identify particularly stable

small clusters (in fact mostly dimers and trimers) and the

specific signature of the perturbing influence of H bonds on

the intramolecular IR frequencies (and intensities) of each

type of the cluster. Not surprisingly in this approach, cyclic

H-bonded clusters are found to be more stable than linear

structures of the same size.

In earlier work, we found the proportions of these small

clusters in supercritical water by fitting a weighted sum of the

predicted IR bands to the experimental spectra, yielding good

agreement with the experimental fundamental, combination

and overtone bands, over a range of pressures at 380�C.[27,28]

However, we found an anomalously high proportion of linear

rather than cyclic clusters, compared with the ratios deduced
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from thermal equilibrium and the potential energies of the

optimized model clusters. Bearing in mind the temperatures

and pressures involved (critical point 374.15�C, 217.7 bar), we

thus ask two questions:

a. Are the linear clusters present in supercritical water and

what is the physical mechanism responsible for their appear-

ance despite unfavorable thermal population factors?

b. Are the IR bands predicted for the energy-minimized

structures the only relevant data to describe the spectrum of

supercritical water?

Both questions imply broad sampling of the total potential

energy surface of water, under supercritical thermodynamic

conditions, which today still means long (nanoseconds) classi-

cal molecular dynamics or Monte Carlo simulation of large

models (hundreds of molecules), accommodating the forma-

tion, collision, and decay of clusters. But only sophisticated

quantum chemistry can predict the positions and intensities

of the near- and mid-IR bands with sufficient accuracy to fully

draw out all the information in the remarkably structured ex-

perimental spectra. However, this quantum mechanical (QM)

approach requires solution of the vibrational Schrödinger

equation on a potential energy surface determined by expen-

sive, high level electronic structure computations. Clearly, a

compromise is necessary. Our opinion is that there are two

main points: the relevance of energy minimized structures to

supercritical conditions and sufficient sampling of the poten-

tial energy surface. We therefore propose a five-pronged

strategy:

1. Screen possible candidate clusters of water molecules by

simulated annealing in classical molecular dynamics

simulations.

2. Optimize these candidates in accurate QM calculations.

Estimate their IR bands by solution of the vibrational Schrö-

dinger equation on the QM energy surface.

3. Search a classical simulation of supercritical water on the

fly, for the clusters identified in step (1) (and others that may

occur).

4. Use the spectra from (2) and the statistical weights from

(3) to predict the experimental spectrum.

5. Solve the vibrational Schrödinger equation and compute

the IR spectrum using the classical potential energy surface in

lieu of the QM one. When compare with the spectrum

obtained from the classical simulation of supercritical water by

Fourier transformation of the fluctuations of the dipole

moment.

Points (1)–(4) are intended to improve our current method

of computing the spectrum, hence to answer question (a).

Point (5) should help answer question (b): Rather than com-

paring the spectrum predicted from the QM energy minima

with the experimental spectrum, for which the ‘‘electronic

energy surface’’ is unknown and surely different, we suggest

comparing the QM spectrum with an ‘‘experiment’’ (molecular

dynamics) with a known, simple potential energy surface.

Because the molecular dynamics force field is carried over to

the QM computation in step (5), any discrepancies between

the classical spectra and those QM-derived from the opti-

mized structures should highlight shortcomings of represent-

ing the ‘‘real’’ system (the molecular dynamics simulation)

with only minimized structures. This article illustrates steps

(1–2).

Before carrying out this program, one obviously would pre-

fer the classical mechanical model of water to reproduce as far

as possible the QM-determined clusters and their properties,

while retaining compatibility with the experimentally known

properties of supercritical water. In this work, we therefore de-

velop intramolecular force-fields to describe the structure of

the water molecule and its vibrational modes, in agreement

with experimental data and ab initio calculations. These force-

fields are combined in simulated annealing in molecular dy-

namics simulations, with an intermolecular force field in which

the water molecule originally was represented as a rigid unit,

TIP/5P. We thus find cluster conformers missed in our earlier

search.

Computational Procedures

Simulated annealing

We used the molecular dynamics package DL POLY 2.20[29,30]

for simulated annealing on the potential energy surface of the

water dimer and trimer. Long simulations of isolated clusters

(5 � 106 steps) were performed in the canonical ensemble, at

a temperature of 450 K in a cubic box, side 40 Å. The cutoff

radius for nonbonded interactions was 18.5 Å, and the time-

step 0.5 fs. Electrostatic interactions were evaluated with the

Ewald approximation. Every 5000 steps, we quenched the in-

stantaneous structure to 1 K for 105 timesteps. 1000 minimiza-

tions were performed along the ‘‘hot’’ trajectory. The high tem-

perature favors efficient exploration of the energy surface, but

also favors evaporation of the cluster. We could effectively

Å

Figure 1. Standard intermolecular Lennard Jones potential energy term 
between oxygen atoms of water in blue, and the modified (red) with a 
restraining wall at r ¼ 15 . 
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counter this tendency by adding a restraining potential energy

term between any pair of oxygen atoms, with the form W(r) ¼
A exp( a(r rm)), where A ¼ 1 kcal/mol, rm ¼ 15 Å, and a ¼
4 Å�1, see Figure 1. The restraining potential does not affect

the structures and energies of the minimized clusters.

Figure 2 shows that the structure reached in the quenches

changes frequently along the hot trajectory. We believe that

most if not all the minima have been found. Note that in this

size range, the stabilization energy per molecule increases

faster than the number of molecules, n, because of H-bonding

in cyclic and partially cyclic clusters. We concentrate below on

the dimer and trimer because it is already known that tet-

ramer contributes little to the experimental IR spectrum of

supercritical water.[27,28]

Development of a flexible classical model

We developed flexible models of water, starting from two

well-known rigid body models of bulk water, by replacing the

rigid body by a flexible molecule with intramolecular bond

stretch and bend terms. Parameters were optimized with

respect to the experimental anharmonic and harmonic vibra-

tional frequencies of water (see Table 1).

The OH bond was represented by a Morse potential: EOH(r)

¼ E0{[1 exp( k(r r0)]}
2, where E0 is the well depth, r0 the

equilibrium distance, and k

determines the curvature.

Coupling between the OH

bonds is represented by a

cross term: E(r12,r13) ¼ kc(r12
r0)(r13 r0), where is r12

and r13 are the distances

between the oxygen atom

(1) and the hydrogens (2,3).

The HOH angle, h, moves

under the influence of the potential energy term E(h) ¼ 1
2kh(h

h0)
2, with reference value h0.

We used the theoretical position and depth of the OH

potential well in the water molecule (CCSD(T)/aug-ccpVTZ) to

determine r0 ¼ 0.96 Å, k and h0 ¼ 104.5�. Experimental bend

and stretch harmonic frequencies (Table 1) further restrict the

choice of the force constants k and kh. Finally, the difference

between the antisymmetric and symmetric stretch frequencies

fixes kc. After which E0 and k must be slightly adjusted.

We thus first extended the SPC/E model of water, but

quickly abandoned it, because it leads to a planar cyclic

structure as the lowest trimer configuration, in contradiction

to ab initio calculations,[27] in which half the hydrogens lie

out of the plane of the oxygen atoms. The root of the prob-

lem is that in an H-bond, OH O, hydrogen interacts with a

lone pair of the second oxygen. The overall tetrahedral

arrangement of the hydrogens and the lone pairs around the

oxygen then drives one of the hydrogens of the second mol-

ecule out of the plane of the cyclic trimer, the other pointing

to the third oxygen atom (again through a lone pair). Several

models of water allow for the lone pairs. We adapted

our intramolecular interaction terms to the TIP5P model,[17]

which originally specified a rigid molecule with the parame-

ters: OH ¼ 0.9572 Å, HOH ¼ 104.52�, OL ¼ 0.7 Å, where L is

a negative point charge to represent a lone pair, with LOL ¼
109.47�.

Tables 2 and 3 provide the parameters of our flexible TIP5P

model of water. Whereas in the original TIP5P model, the L

sites are massless, DL POLY 2.20 requires all centers of force

to have finite mass. In our extension of the model, LOL is

therefore a rigid unit with atomic masses mO ¼ 15.679, mL ¼
0.16, a compromise which keeps the moments of inertia of

the modified 5 site model very close to those of the original.

We tuned two sets of parameters, set I to reproduce the ex-

perimental harmonic vibrational frequencies to within 0.1

cm�1 and set II relative to the observed anharmonic

frequencies.

Figure 2. Configurational energy stabilization per molecule (relative to free 
molecules) D0/n ¼ (Epot((H2O)n)  nEpot(H2O))/n for 1000 structures 
quenched from ‘hot ’ MD simulations of small water clusters, n ¼ 2 4,: 
dimer (blue, *), trimer (green, �), and tetramer (red, þ). Lines: Connected 
portions of each quench history highlight the absence of correlation 
between successive quenches.

Table 1. Experimental observed (anharmonic) and harmonic vibrational

frequencies of water.

Modes

Observed

frequency (cm 1)

Harmonic

frequency (cm 1)

Refs. [31,32] Our work

Bending 1594.75 1648.5

Symmetric stretching 3657.05 3832.2

Antisymmetric stretching 3755.8 3942.5

Table 2. Parameters of the Lennard

Jones interactions between oxygen

atoms

r (Å) 3.12

e (kcal/mol) 0.155

qO (e) 0.000

qH (e) þ0.241

qL (e) 0.241

Partial charges in the TIP5P model

of water.

Table 3. Intramolecular force field parameters in this work.

Set I Set II

E0 (kcal/mol) 116.609 106.135

k (Å 1) 2.2805 2.2805

r0 (Å) 0.96 0.96

kc (kcal/mol/Å2) 16.66655 13.59655

r12 ¼ r13 (Å) 0.96 0.96

kh (kcal/mol/rad2) 99.4433 93.1886

h (�) 104.5 104.5
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Quantum mechanical

calculations

The QM calculations closely

follow the procedures of Tas-

saing et al.,[27,28] including

both mechanical and electri-

cal anharmonicity at a

B1LYP/cc-pVTZ level of calcu-

lation. Briefly, the modeling

of specific vibrations requires

well-adapted mathematical

approaches like the variational

one. Despite the existence of

efficient specific perturba-

tional treatments, often sufficient to describe the fundamental

modes, an extensive vibrational configuration space obtained in a

variational development is essential to correctly describe resonant

phenomena which arise when considering overtones and combi-

nations bands.[27,33–35] In our case, the vibrational Schrödinger

equation has been solved by our P MWVCI (Parallel Multi Win-

dows Variational CI) variational procedure considering the rota-

tional contribution to anharmonicity in the vibrational Hamilto-

nian implemented in the P Anhar v1.2 code.[35] Anharmonic

activities are also computed with the use of a variational

approach developed in the last version of the P Anhar code.[27]

In this work, four spectral regions were examined (in term

of trimer nomenclature): HOH bend, m1–m3, [1570:1640] cm
�1,

symmetrical and anti-symmetrical OH stretching, m4–m9,
[3400:3800] cm�1, the first bend-stretch combination

band, [5250:5380] cm�1, and the first stretch harmonic over-

tone mOH, [7150:7350] cm
�1. The width and density of states of

these regions required over 10,000 vibrational configurations

in each variational process to ensure convergence of all states

in all regions to within 0.1 cm�1.

Results

Classical screening of water trimer conformers

Figure 4 displays the dimer conformation and four trimer con-

formations identified in the simulated annealing procedure.

We find both cyclic and linear structures. On the whole, the

lowest energy structures are cyclic, and in each category, the

higher the degree of regular donor–acceptor H-bond alterna-

tion, the lower the energy. Considering the number of

quenches in the simulated annealing and the absence of cor-

relation between successive quenches, we believe that we

have found most of the minima of the molecular mechanics

potential energy surface. This is step (1) of the strategy

described above. When compared with the earlier, much more

costly and hence less exhaustive search by quantum mechan-

ics alone,[27,28] the present search threw up new minima, such

as the ‘‘4d’’ trimer (cf. Fig. 4d). In step (2) below, we optimize

the candidate structures quantum mechanically and compute

their IR spectra.

QM derived properties and

spectra of the conformers

Reoptimization is important

for obtaining accurate har-

monic frequencies, which

are well known to depend

strongly on the geometry

of the system. The struc-

tures quenched in molecu-

lar dynamics are close,

but not identical to the

corresponding QM minima

(Table 4). The mean devia-

tion of the QM vibronic

frequencies between the

as-quenched and the reop-

timized system 4d is

thus 40 cm�1, precluding

direct reliable comparison

with the fine details of

the experimental spectra.

On the other hand, classical

screening, which is much

less expensive than QM

computation, allows thor-

ough exploration of the

complete energy surface.

Figure 3. Modified flexible model of

water derived from the TIP5P 5 site.

LOL is a rigid unit. All other degrees

of freedom are free. [Color figure can

be viewed in the online issue, which

is available at wileyonlinelibrary.com.]

Figure 4. Dimer and trimer conformations obtained with the present flexible TIP5P model of water: a) Lowest dimer 
(D0 ¼ 6.73 kcal/mol); b) Lowest trimer (D0 ¼ 5.54 kcal/mol), with cyclic alternation of donor acceptor H bonds in 
the plane of the oxygens; c) The lowest linear trimer (D0 ¼ 4.59 kcal/mol), with regular alternation of donor acceptor 
bonds; d) A cyclic trimer with double acceptor H bonds on one molecule (D0 ¼ 4.10 kcal/mol); e) A higher linear trimer 
(D0 ¼ 3.85 kcal/mol), with a double donor molecule. 
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The vibrational frequencies of trimer 4d were determined

exactly as in our earlier work.[27,28] Figure 5 compares the spec-

tra of 4d with those of the lowest linear trimer 4c,[27] which is

only 1.5 kcal/mol lower than 4d, and of the linear trimer 4e,

which was thought to be the most frequent cluster appearing

in supercritical conditions.[28] We observe from these data that:

Table 4. Properties of water clusters optimized at both the B1LYP/cc pVTZ and molecular dynamics (italic) levels includes corrections for ZPE and BSSE.

Figure 4 H2O

(H2O)2 (H2O)3

4a 4b 4c 4d 4e

D0 (kcal/mol) 3.18 13.21 7.10 6.14 5.10

6.73 16.63 13.78 12.31 11.55

[ 3.6 6 0.5][a] 3.53[b]

3.09[c] 5.18[d] 2.98[e]
12.71[b] 10.88[c] 15.90[d]

dO O (Å) 0.96[f ] 2.92 2.79(2) 2.83 3.36 2.97(2)

0.96 2.71 2.73 2.75 3.21 2.73

[0.9572][g,h] [2.98][a] 2.90[c] 2.92[i] [2.94 2.97][a] 2.91[b] 2.79[i] 2.81[i] 2.90[j]

dHOH (�) 104.6 104.8 105.5 105.6 105.7 105.6 105.7 105.1 105.4 106.2

104.4 103.1 103.3 102.6 102.7 103.1 103.5 103.3 103.5

[104.52][g,h] 105.0 105.4[b] 104.2[e] 105.8 106.2[b]

dOHO (�) 173.1 151.0 152.7 154.6 156.7 165.4 174.8

176.8 158.7 160.0 160.2 160.6 166.4 177.0

[174 6 20][k] 173.8[b] 171.7[c] 150.0 151.9[b] 148.6 151.3[c]

Experimental data in brackets.

[a] (m ¼ 0), Ref. [36]. [b] DFT PP gradient corrected density functional, Ref. [37]. [c] MP2/aug cc pVTZ, Ref. [38]. [d] DE (TTM3 F potential), Ref. [39]. [e]

CCSD(T)/aug cc pVTZ (avtz), Ref. [40]. [f ] dO H value for the monomer. [g] Ref. [41]. [h] dO H (Å). [i] MP2/6 311þþG(3d,3p), Ref. [42]. [j] MD, Refs. [2,38].

[k] Ref. [43].

Figure 5. IR spectra of 4c (blue lines), 4d (green lines), and 4e (red lines) water trimers. Intensities are reported in km/mol. Quantum mechanical calcula
tions including both mechanical and electrical anharmonicity determined at the B1LYP/cc pVTZ level. Four spectral regions were examined: a) HOH bend,
m1 m3, [1570:1640] cm 1, b) symmetrical and anti symmetrical OH stretching, m4 m9, [3400:3800] cm 1, c) the first bend stretch combination band,[5250:5380]
cm 1, and d) the first stretch harmonic overtone mOH, [7150:7350] cm 1.
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i. The spectra of all four clusters cannot be mistaken one

for another, particularly the OH stretching, depending on

whether it is free or coupled into an H-bond. The differences

for a given mode between the cyclic and linear forms is up to

200 cm�1;

ii. Intensities of corresponding modes are similar in each

configuration.

iii. Modes of trimer 4d in the range [5250:5380] cm�1, cov-

ering a broad spectral range, are up to twice as strong as

those of the other clusters;

iv. Features in the spectral range [7150:7350] cm�1 are

strongly coupled modes, hence difficult to assign. The main

active modes in this region are combination modes (m6 þ m9
7193 cm�1; 1.69 km/mol) and (m5 þ m8 7280 cm�1; 1.12 km/

mol), and the overtone of mode 8 corresponding to the asym-

metrical OH stretch at 3883 cm�1 (7277 cm�1; 1.21 km/mol).

All trimer conformers share this behavior.[28]

v. Looking forward to a cluster-analysis of supercritical

water,[27,44] note that the mOH modes in the range [7150:7350]

cm�1 illustrate particularly well that neither the new cyclic

trimer 4d nor the linear trimer 4c can explain the experimental

data.[28] This discrepancy confirms the usefulness of step (3) of

our strategy.

Inclusion of electrical anharmonicity is essential to such a

study.

Conclusion and Outlook

The geometric structures of the clusters found with the pres-

ent flexible TIP5P model compare well with the clusters

deduced from quantum chemistry calculations (Table 4). Fur-

ther quantum chemical minimization of the ‘‘classical’’ clusters

leads to conformers found earlier in direct quantum chemistry

optimizations,[27,28] lending confidence in use of the force

field to perform molecular dynamics simulations of water in

supercritical conditions. Analysis of these simulations should

provide the water clusters prevalent at high temperatures and

pressures. We now are working on a comparison of the

clusters in supercritical water to the minimized structures iden-

tified so far.

A possible direction for improvement of the force-field is

adjustment of the partial charges on L and H, dependent on

neighborhood. The dipole moment of the flexible TIP5P model

is about 2.3D to take into account the polarization effect of

the neighborhood in liquid water under ambient conditions. In

the clusters prevalent in supercritical water, the polarization

effect is certainly much less, leading to an effective dipole

much closer to the dipole of water in vacuum, around 1.84D.

Another possibility is adjustment of the OL bond distance,

inherited from TIP5P as 0.7 Å in the present 5-site flexible

model. Because this distance reflects the size of the lone pair,

it could be an adjustable parameter.

However, as we already know that even small differences

between classical clusters and QM optimized structures can

lead to significant spectral shifts and intensity discrepancies, it

seems more fruitful to adhere to the strategy laid out in the

introduction:

Preliminary screening by simulated annealing with a classical

force-field, allowing very wide coverage of the potential

energy surface, e.g., we here discovered a trimer missed in

previous work;

Accurate QM minimization of the classical clusters followed

by vibrational analysis to deduce its participation in the global

IR spectrum.

Note that this coupled QM/MM approach is quite general

and could be applied to other systems. Here, combining classi-

cal force-field screening with QM optimization provides a fast

and accurate way to distinguish the relevant clusters involved

in the IR spectrum of supercritical water. The method could be

applied easily to other supercritical fluids, such as alcohol-

water mixtures or other organic systems playing a key role in

‘‘green’’ chemistry.
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