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Abstract

In [17], the author proved the existence and the uniqueness of solutions to Markovian superquadratic BSDEs
with an unbounded terminal condition when the generator and the terminal condition are locally Lipschitz. In
this paper, we prove that the existence result remains true for these BSDEs when the regularity assumptions on
the generator and/or the terminal condition are weakened.

1 Introduction

Since the early nineties and the work of Pardoux and Peng [15], there has been an increasing interest for backward
stochastic differential equations (BSDEs for short). These equations have a wide range of applications in stochastic
control, in finance or in partial differential equation theory. A particular class of BSDE is studied since few years:
BSDEs with generators of quadratic growth with respect to the variable z (quadratic BSDEs for short). This
class arises, for example, in the context of utility optimization problems with exponential utility functions, or
alternatively in questions related to risk minimization for the entropic risk measure (see e.g. [19, 11, 13] among
many other references). Many papers deal with existence and uniqueness of solution for such BSDEs. In the first
one [12], Kobylanski obtains an existence and uniqueness result for quadratic BSDEs when the terminal condition
is bounded. Now, it is well known that the boundedness of the terminal condition is a too strong assumption.
Indeed, when we look to the simple quadratic BSDE

Yt = ξ +

∫ T

t

|Zs|2
2

ds−
∫ T

t

ZsdWs,

we find the explicit solution Yt = log
(

E
[

eξ|Ft

])

and we immediately see that we just need to have an exponential
moment for ξ to obtain a solution. In [2], Briand and Hu show an existence result for quadratic BSDEs when the
terminal condition has such an assumption. For the uniqueness problem, see e.g. [6].

Naturally, we could also wonder what happens when the generator has a superquadratic growth with respect
to the variable z. Up to our knowledge the case of superquadratic BSDEs was firstly investigate in the recent
paper [5]. In this article, authors consider superquadratic BSDEs when the terminal condition is bounded and the
generator is convex in z. Firstly, they show that in a general way the problem is ill-posed: given a superquadratic
generator, there exists a bounded terminal condition such that the associated BSDE does not admit any bounded
solution and, on the other hand, if the BSDE admits a bounded solution, there exist infinitely many bounded
solutions for this BSDE. In the same paper, authors also show that the problem becomes well-posed in a Markovian
framework: When the terminal condition and the generator are deterministic functions of a forward SDE, we have
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an existence result. More precisely, let us consider (X,Y, Z) the solution to the (decoupled) forward backward
system

Xt = x+

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s)dWs,

Yt = g(XT ) +

∫ T

t

f(s,Xs, Ys, Zs)ds−
∫ T

t

ZsdWs,

with growth assumptions

|f(t, x, y, z)| 6 C(1 + |x|pf + |y|+ |z|l+1
)

|g(x)| 6 C(1 + |x|pg ).

In [5], authors obtain an existence result by assuming that pg = pf = 0, f is a convex function that depends
only on z and g is a lower (or upper) semi-continuous function. As in the quadratic case it is possible to show
that the boundedness of the terminal condition is a too strong assumption: in [17], author shows an existence and
uniqueness result by assuming that pg 6 1 + 1/l, pf 6 1 + 1/l, f and g are locally Lipschitz functions with
respect to x and z. When we consider this result, two questions arise:

• Could we have an existence result when pg or pf is upper than 1 + 1/l ?

• Could we have an existence result when f or g is less smooth with respect to x or z, that is to say, is
it possible to have assumptions on the growth of g and f but not on the growth of their derivatives with
respect to x and z ?

For the first question, the answer is clearly “no” in the quadratic case: see e.g. [6]. In the superquadratic case,
authors of [10] have obtained the same limitation on the growth of the initial condition for the so-called generalized
deterministic KPZ equation ut = uxx + λ |ux|q and they show that this boundary is sharp for power-type initial
conditions. So, it seems that the answer of the first question is also “no” in the superquadratic case.

For the second question, the answer is clearly “yes” in the quadratic case. Indeed, a smoothness assumption
on f is required for uniqueness results (see e.g. [3, 6]) but not for existence results (see e.g. [3, 1]). In the
superquadratic case, authors of [5] show an existence result when g is only lower (or upper) semi-continuous but
also bounded. Nevertheless f(z) is assume to be convex, that implies that it is a locally Lipschitz function. The
aim of this paper is to obtain an existence result more general than [5], that is to say with g unbounded and f not
necessarily locally Lipschitz with respect to z, and/or with functions less smooth than in [17]. More precisely, we
have obtained two different existence results. For the first one, we assume that (x, z) 7→ f(t, x, y, z) and g are
uniformly continuous functions with respect to a metric

d(x, x′) = (1 + |x|r + |x′|r) |x− x′| , (1.1)

with r well chosen. In this case, the smoothness of g is more restrictive than in the existence result of [5]. For the
second existence result, we assume that the terminal condition is only upper semi-continuous.

For completeness, in the recent paper [4], Cheridito and Stadje show an existence and uniqueness result for
superquadratic BSDEs in a “path-dependent” framework: the terminal condition and the generator are functions of
Brownian motion paths. To the best of our knowledge, [5, 17, 4] are the only papers that deals with superquadratic
BSDEs.

The paper is organized as follows. In section 2 we obtain some general a priori estimates on Y and Z for
Markovian superquadratic BSDEs whereas sections 3 and 4 are devoted to the two different existence results
described before.

Notations Throughout this paper, (Wt)t>0 will denote a d-dimensional Brownian motion, defined on a proba-
bility space (Ω,F ,P). For t > 0, let Ft denotes the σ-algebra σ(Ws; 0 6 s 6 t), augmented with the P-null
sets of F . The Euclidean norm on Rd will be denoted by |.|. The operator norm induced by |.| on the space of
linear operators is also denoted by |.|. The notation Et stands for the conditional expectation given Ft. For p > 2,
m ∈ N, we denote further

• Sp(Rm), or Sp when no confusion is possible, the space of all adapted processes (Yt)t∈[0,T ] with values
in Rm normed by ‖Y ‖Sp = E[(supt∈[0,T ] |Yt|)p]1/p; S∞(Rm), or S∞, the space of bounded measurable
processes;
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• Mp(Rm), or Mp, the space of all progressively measurable processes (Zt)t∈[0,T ] with values in Rm

normed by ‖Z‖Mp = E[(
∫ T

0 |Zs|2 ds)p/2]1/p.

In the following, we keep the same notation C for all finite, nonnegative constants that appear in our computations.
In this paper we will consider X the solution to the SDE

Xt = x+

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s)dWs, (1.2)

and (Y, Z) ∈ S2 ×M2 the solution to the Markovian BSDE

Yt = g(XT ) +

∫ T

t

f(s,Xs, Ys, Zs)ds−
∫ T

t

ZsdWs. (1.3)

2 Some a priori estimates on Y and Z

For the SDE (1.2) we use standard assumption.

Assumption (F.1). Let b : [0, T ]× Rd → Rd and σ : [0, T ] → Rd×d be continuous functions and let us assume
that there exists Kb > 0 such that:

(a) ∀t ∈ [0, T ], |b(t, 0)| 6 C,

(b) ∀t ∈ [0, T ], ∀(x, x′) ∈ Rd × Rd, |b(t, x)− b(t, x′)| 6 Kb |x− x′| .

Now we will introduce some assumptions on the generator and the terminal condition of the BSDE (1.3).

Assumption (B.1). Let f : [0, T ]×Rd × R× R1×d → R be a continuous function and let us assume that there
exist five constants, l > 1, 0 6 rf < 1

l , β > 0, γ > 0 and δ > 0 such that:

(a) for each (t, x, y, y′, z) ∈ [0, T ]× Rd × R× R× R1×d,

|f(t, x, y, z)− f(t, x, y′, z)| 6 δ |y − y′| ;

(b) for each (t, x, y, z, z′) ∈ [0, T ]× Rd × R× R1×d × R1×d,

|f(t, x, y, z)− f(t, x, y, z′)| 6
(

C +
γ

2
(|z|l + |z′|l)

)

|z − z′| ;

(c) for each (t, x, x′, y, z) ∈ [0, T ]× Rd × Rd × R× R1×d,

|f(t, x, y, z)− f(t, x′, y, z)| 6
(

C +
β

2
(|x|rf + |x′|rf )

)

|x− x′| .

Assumption (TC.1). Let g : Rd → R be a continuous function and let us assume that there exist 0 6 rg < 1
l

and α > 0 such that: for each (t, x, x′, y, z) ∈ [0, T ]× Rd × Rd × R× R1×d,

|g(x)− g(x′)| 6
(

C +
α

2
(|x|rg + |x′|rg )

)

|x− x′| .

The aim of our work is to relax assumptions on local Lipschicity of functions to obtain following growth
assumptions that are more naural for existence results.

Assumptions (B.2). Let f : [0, T ]×Rd×R×R1×d → R be a continuous function and let us assume that there
exist five constants, l > 1, 0 6 pf < 1 + 1

l , β̄ > 0, γ̄ > 0, δ̄ > 0 such that: one of these inequalities holds, for all
(t, x, y, z) ∈ [0, T ]× Rd × R× R1×d,

(a) |f(t, x, y, z)| 6 C + β̄ |x|pf + δ̄ |y|+ γ̄ |z|l+1,

(b) −C − β̄ |x|pf − δ̄ |y| − γ̄ |z| 6 f(t, x, y, z) 6 C + β̄ |x|pf + δ̄ |y|+ γ̄ |z|l+1.

(c) −C − β̄ |x|pf − δ̄ |y|+ ε |z|l+1
6 f(t, x, y, z) 6 C + β̄ |x|pf + δ̄ |y|+ γ̄ |z|l+1.
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Assumption (TC.2). Let g : Rd → R be a lower semi-continuous function and let us assume that there exist
0 6 pg < 1 + 1/l and ᾱ > 0 such that: for each x ∈ Rd,

|g(x)| 6 C + ᾱ |x|pg .

Remark 2.1

• (B.2)(c) ⇒ (B.2)(b) ⇒ (B.2)(a).

• (B.1) ⇒ (B.2)(a) with pf = rf + 1.

• (TC.1) ⇒ (TC.2) with pg = rg + 1.

• We will only consider quadratic and superquadratic BSDEs, so l > 1. The quadratic case corresponds to
l = 1.

Firstly, let us recall the existence and uniqueness result shown in [17].

Proposition 2.2 We assume that assumptions (F.1), (B.1) and (TC.1) hold. There exists a solution (Y, Z) of the
Markovian BSDE (1.3) in S2 ×M2 such that,

|Zt| 6 A+B(|Xt|rg + (T − t) |Xt|rf ), ∀t ∈ [0, T ].

Moreover, this solution is unique amongst solutions (Y, Z) such that

• Y ∈ S2,

• there exists η > 0 such that

E

[

e(
1
2+η) γ2

4

∫

T
0

|Zs|
2lds

]

< +∞.

Remark 2.3 To be precise, in the article [17] the author shows the estimate

|Zt| 6 A+B(|Xt|rg∨rf ), ∀t ∈ [0, T ],

but it is rather easy to do the proof again to show the estimate given in Proposition 2.2.

Such a result allows us to obtain a comparison result.

Proposition 2.4 We assume that (F.1) holds. Let f1, f2 two generators and g1, g2 two terminal conditions such
that (B.1) and (TC.1) hold. Let (Y 1, Z1) and (Y 2, Z2) be the associated solutions given by Proposition 2.2. We
assume that g1 6 g2 and f1 6 f2. Then we have that Y 1 6 Y 2 almost surely.

Proof of the proposition The proof is the same that the classical one that we can found in [7] for example. Let
us set δY := Y 1 − Y 2 and δZ := Z1 − Z2. The usual linearization trick gives us

δYt = g1(XT )− g2(XT ) +

∫ T

t

f1(s,Xs, Y
1
s , Z

1
s )− f2(s,Xs, Y

1
s , Z

1
s ) + δYsUs + δZsVsds−

∫ T

t

δZsdWs,

with |Us| 6 δ and

|Vs| 6 C +
γ

2

(

∣

∣Z1
s

∣

∣

l
+
∣

∣Z2
s

∣

∣

l
)

6 C(1 + |Xs|(rg∨rf )l).

Since (rg ∨ rf )l < 1, Novikov’s condition is fulfilled and we are allowed to apply Girsanov’s transformation:

δYt = E
Q
t

[

e
∫ T
t

Uudu(g1(XT )− g2(XT )) +

∫ T

t

e
∫ s
t
Uudu(f1(s,Xs, Y

1
s , Z

1
s )− f2(s,Xs, Y

1
s , Z

1
s ))ds

]

6 0.

⊓⊔

Proposition 2.5 Let us assume that (F.1), (B.1), (B.2), (TC.1) and (TC.2) hold. Let (Y, Z) the solution of the
BSDE (1.3) given by Proposition 2.2. Then we have, for all t ∈ [0, T ],

|Yt| 6 C(1 + |Xt|pg + (T − t) |Xt|pf )

with a constant C that depends on constants that appear in assumptions (F.1), (B.2) and (TC.2) but not in assump-
tions (B.1) and (TC.1).
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Proof of the proposition Let us consider the terminal condition

ḡ(x) = C + ᾱ(|x|+ 1)pg ,

and the generator
f̄(t, x, y, z) = C + β̄(|x|+ 1)pf + δ̄ |y|+ γ̄ |z|l+1

,

with C such that g 6 ḡ and f 6 f̄ . (B.1) holds for f̄ and (TC.1) holds for ḡ, so, according to Proposition 2.2,
there exists a unique solution (Ȳ , Z̄) to the BSDE

Ȳt = ḡ(XT ) +

∫ T

t

f̄(s,Xs, Ȳs, Z̄s)ds−
∫ T

t

Z̄sdWs.

Thanks to Proposition 2.4, we know that

Y 6 Ȳ , and Ȳ > 0.

Moreover, we have

Ȳt 6 Et

[

eδ̄(T−t)(C + ᾱ(|Xt|+ 1)pg ) +

∫ T

t

eδ̄(s−t)(C + β̄(|Xs|+ 1)pf + γ̄
∣

∣Z̄s

∣

∣

l+1
)ds

]

6 C

(

1 + Et

[

sup
t6s6T

|Xs|pg

]

+ (T − t)Et

[

sup
t6s6T

|Xs|pf

])

,

because
∣

∣Z̄s

∣

∣ 6 C(1 + |Xs|(pg−1)∨(pf−1)∨0
), (pg − 1)l < 1 and (pf − 1)l < 1. Let us remark that the constant

C in the a priori estimate for Z̄ depends on constants that appear in assumptions (F.1), (B.2) and (TC.2) but not in
assumptions (B.1) and (TC.1). Thanks to classical estimates on SDEs we have

Et

[

sup
t6s6T

|Xs|p
]

6 C(1 + |Xt|p),

so we obtain
Yt 6 Ȳt 6 C(1 + |Xt|pg + (T − t) |Xt|pf ).

By the same type of argument we easily show that

−C(1 + |Xt|pg + (T − t) |Xt|pf ) 6 Yt.

⊓⊔

Proposition 2.6 Let us assume that (F.1), (B.1), (B.2), (TC.1) and (TC.2) hold. Let (Y, Z) the solution of the
BSDE (1.3) given by Proposition 2.2. Then, for all t ∈ [0, T ],

• if we assume that (B.2)(b) holds, we have

Et

[

∫ T

t

|Zs|2 ds
]

6 C(1 + |Xt|2pg + (T − t) |Xt|2pf ),

• if we assume that (B.2)(c) holds, we have

Et

[

∫ T

t

|Zs|l+1
ds

]

6 C(1 + |Xt|pg + (T − t) |Xt|pf ),

with a constant C that depends on constants that appear in assumptions (F.1), (B.2) and (TC.2) but not in assump-
tions (B.1) and (TC.1).
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Proof of the proposition Let us begin by giving some notations. We set, for x ∈ Rd,

ϕ(t, x) := C(1 + |x|2pg + (T − t)2 |x|2pf )1/2,

with C such that Yt + ϕ(t,Xt) > 0. This constant exists thanks to Proposition 2.5. Itô’s formula gives us

d[Yt + ϕ(t,Xt)] = dYt +
t ∇xϕ(t,Xt)dXt +

1

2
tr
[

∇2
xxϕ(t,Xt)σ(t)

tσ(t)
]

dt+ ∂tϕ(t,Xt)dt

=

[

−f(t,Xt, Yt, Zt) +
t ∇xϕ(t,Xt)b(t,Xt) +

1

2
tr
[

∇2
xxϕ(t,Xt)σ(t)

tσ(t)
]

+ ∂tϕ(t,Xt)

]

dt

+
[

t∇xϕ(t,Xt)σ(t) + Zt

]

dWt

:= Atdt+BtdWt.

For the first point, we will consider the process Pt := (Yt + ϕ(t,Xt))
2. By applying Itô’s formula and taking the

conditional expectation we have

Et [Pt] + Et

[

∫ T

t

|Bs|2 ds
]

= Et [PT ] + 2Et

[

∫ T

t

(Ys + ϕ(s,Xs))Asds

]

.

By inequalities |∇xϕ(t, x)| 6 C(1+|x|pf−1
+|x|pg−1

),
∣

∣∇2
xxϕ(t, x)

∣

∣ 6 C and |∂tϕ(t, x)| 6 C(1+|x|pf +|x|pg ),
we show that

At 6 −f(t,Xt, Yt, Zt) + C(1 + |Xt|pf + |Xt|pg ).

Then, we use inequalities Yt + ϕ(t,Xt) > 0, (B.2)(b) and Proposition 2.5 to obtain

Et

[

∫ T

t

(Ys + ϕ(s,Xs))Asds

]

6 Et

[

∫ T

t

C(1 + |Xs|pf + |Xs|pg )(1 + |Xs|pf + |Xs|pg + |Zs|)ds
]

6

∫ T

t

C
(

1 + Et

[

|Xs|2pg

]

+ Et

[

|Xs|2pf

])

ds+
1

8
Et

[

∫ T

t

|Zs|2 ds
]

.

We have also, thanks to the growth assumption on g,

PT 6 C(1 + |XT |2pg ).

Finally, classical estimates on X give us

Et

[

∫ T

t

|Bs|2 ds
]

6 C(1 + |Xt|2pg + (T − t) |Xt|2pf ) +
1

4
Et

[

∫ T

t

|Zs|2 ds
]

,

and the result is proved because

1

4
Et

[

∫ T

t

|Zs|2 ds
]

=
1

2
Et

[

∫ T

t

|Zs|2 ds
]

− 1

4
Et

[

∫ T

t

|Zs|2 ds
]

6 Et

[

∫ T

t

|Bs|2 ds
]

+ Et

[

∫ T

t

∣

∣

t∇xϕ(s,Xs)σ(s)
∣

∣

2
ds

]

− 1

4
Et

[

∫ T

t

|Zs|2 ds
]

6 C(1 + |Xt|2pg + (T − t) |Xt|2pf ).

For the second point, we just have to write

Et

[

∫ T

t

|Zs|p ds
]

6
1

ε

(

Et

[

∫ T

t

f(s,Xs, Ys, Zs)ds+

∫ T

t

C + β̄ |Xs|pf + δ̄ |Ys| ds
])

6
1

ε

(

Et

[

Yt − g(XT ) +

∫ T

t

C + β̄ |Xs|pf + δ̄ |Ys| ds
])

6 C(1 + (T − t) |Xt|pf + |Xt|pg )

thanks to Proposition 2.5. ⊓⊔
Remark 2.7 Proposition 2.6 stays true if we replace assumption (B.2)(b) by

−C − β̄ |x|pf − δ̄ |y| − γ̄ |z|l+1
6 f(t, x, y, z) 6 C + β̄ |x|pf + δ̄ |y|+ γ̄ |z| ,

and assumption (B.2)(c) by

−C − β̄ |x|pf − δ̄ |y| − γ̄ |z|l+1
6 f(t, x, y, z) 6 C + β̄ |x|pf + δ̄ |y| − ε |z|l+1

.
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3 A first existence result

Theorem 3.1 Let assume that (F.1), (B.1)(a), (B.2)(c) and (TC.2) hold. We also assume that g and f are uniformly
continuous functions with respect to x and z for the metric (1.1):

lim sup
η→0

(

sup
{

|g(x)− g(x′)|
∣

∣

∣
|x− x′| (1 + |x|(pg−1)∨0

+ |x′|(pg−1)∨0
) < η

})

= 0,

lim sup
η→0

(

sup

{

|f(t, x, y, z)− f(t, x′, y, z)|
∣

∣

∣

∣

(t, y, z) ∈ [0, T ]× R× R1×d,

|x− x′| (1 + |x|(pf−1)∨0
+ |x′|(pf−1)∨0

) < η

})

= 0,

lim sup
η→0

(

sup

{

|f(t, x, y, z)− f(t, x, y, z′)|
∣

∣

∣

∣

(t, x, y) ∈ [0, T ]× Rd × R,

|z − z′| (1 + |z|l + |z′|l) < η

})

= 0.

Then, there exists a solution (Y, Z) to the BSDE (1.3) such that (Y, Z) ∈ S2 ×M2. Moreover, we have

E

[

∫ T

0

|Zs|l+1
ds

]

< +∞.

Remark 3.2 Standard examples of function uniformly continuous for the metric (1.1) are:

• f(t, x, y, z) := f1(t, x, y, z) + f2(t, x, y, z) such that (B.1) holds for f1 and f2 is continuous with respect
to t, Lipschitz with respect to y and uniformly continuous with respect to x and z,

• g(x) := g1(x) + g2(x) such that (TC.1) holds for g1 and g2 is a uniformly continuous function.

Proof of the theorem Let us introduce an inf-convolution approximation of g and f : for n ∈ N,

gn(x) := inf
u∈Rd

{

g(u) + n |x− u| (1 + |x|(pg−1)∨0
+ |u|(pg−1)∨0

)
}

,

fn(t, x, y, z) := inf
u∈Rd,v∈R1×d

{

f(t, u, y, v) + n |x− u| (1 + |x|(pf−1)∨0
+ |u|(pf−1)∨0

) + n |z − v| (1 + |z|l + |v|l)
}

.

Let us recall some well-known facts about inf-convolution:

Lemma 3.3 For n > n0 with n0 big enough, we have

• gn and fn are well defined,

• (TC.1) holds for gn with rg = (pg − 1) ∨ 0 < 1/l,

• (TC.2) holds for gn with C and ᾱ that do not depend on n,

• (B.1) holds for fn with δ that does not depend on n and rf = (pf − 1) ∨ 0 < 1/l,

• (B.2)(c) holds for fn with C, ε, β̄, δ̄ and γ̄ that do not depend on n,

• since f and g are uniformly continuous functions for the metric (1.1), we have

‖g − gn‖∞ + ‖f − fn‖∞ → 0.

Thanks to this lemma, we are able to apply Proposition 2.2: there exists a unique solution (Y n, Zn) to the BSDE
(1.3) with the terminal condition gn and the generator fn. Let us set δY n,p := Y n+p − Y n and δZn,p :=
Zn+p − Zn, for n > n0 and p ∈ N. As in the proof of Proposition 2.4, the usual linearization trick gives us

δY n,p
t = gn+p(XT )− gn(XT )−

∫ T

t

δZn,p
s dWs

+

∫ T

t

fn+p(s,Xs, Y
n+p
s , Zn+p

s )− fn(s,Xs, Y
n+p
s , Zn+p

s ) + δY n,p
s Un,p

s + δZn,p
s V n,p

s ds.

with |Un,p
s | 6 δ and

|V n,p
s | 6 Cn,p(1 +

∣

∣Zn+p
s

∣

∣

l
+ |Zn

s |l) 6 Cn,p(1 + |Xs|((pf−1)∨(pg−1)∨0)l
).
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Since ((pf − 1) ∨ (pg − 1) ∨ 0)l < 1, Novikov’s condition is fulfilled and we are allowed to apply Girsanov’s
transformation:

δY n,p
t = E

Qn,p

t

[

e
∫

T
t

Un,p
u du(gn+p(XT )− gn(XT ))

+

∫ T

t

e
∫

s
t
Un,p

u du(fn+p(s,Xs, Y
n+p
s , Zn+p

s )− fn(s,Xs, Y
n+p
s , Zn+p

s ))ds

]

|δY n,p
t | 6 E

Qn,p

t

[

eδT ‖gn+p − gn‖∞ + TeδT ‖fn+p − fn‖∞
]

6 (1 + T )eδT (‖gn+p − gn‖∞ + ‖fn+p − fn‖∞)

6 εn

with εn a positive constant such that εn → 0 when n → +∞. Itô’s formula applied to |δY n,p|2 and Burkholder-
Davis-Gundy inequalities give us

E

[

sup
06t6T

|δY n,p
t |2

]

+ E

[

∫ T

0

|δZn,p
t |2 dt

]

6 E

[

|gn+p(XT )− gn(XT )|2
]

+2E

[

∫ T

0

|δY n,p
t |

∣

∣fn+p(s,Xs, Y
n+p
s , Zn+p

s )− fn(s,Xs, Y
n
s , Zn

s )
∣

∣ ds

]

+CE





(

∫ T

0

|δY n,p
t |2 |δZn,p

t |2 dt
)1/2





6 ‖gn+p − gn‖2∞ + CεnE

[

∫ T

0

∣

∣fn+p(s,Xs, Y
n+p
s , Zn+p

s )
∣

∣+ |fn(s,Xs, Y
n
s , Zn

s )| ds
]

+CεnE

[(

∫ T

0

|δZn,p
t |2 dt

)]

,

with C that does not depend on n. Thanks to Lemma 3.3, we have

E

[

sup
06t6T

|δY n,p
t |2

]

+ E

[

∫ T

0

|δZn,p
t |2 dt

]

6 ‖gn+p − gn‖2∞
+Cεn

(

1 + E

[

sup
06t6T

|Xt|pf

]

+ E

[

sup
06t6T

∣

∣Y n+p
t

∣

∣

]

+ E

[

sup
06t6T

|Y n
t |
]

+E

[

∫ T

0

∣

∣Zn+p
s

∣

∣

l+1
ds

]

+ E

[

∫ T

0

|Zn
s |l+1 ds

])

with C that does not depend on n. Thanks to Lemma 3.3 we also know that we are allowed to apply Proposition
2.5 and Proposition 2.6 to (Y n+p, Zn+p) and (Y n, Zn). So,

E

[

sup
06t6T

|δY n,p
t |2

]

+ E

[

∫ T

0

|δZn,p
t |2 dt

]

6 ‖gn+p − gn‖2∞ + Cεn

with C that does not depend on n. Finally, (Y n, Zn)n>n0 is a Cauchy sequence in S2 ×M2: (Y n, Zn) tends to
(Y, Z) in S2 ×M2 and Fatou’s lemma gives us

E

[

∫ T

0

|Zt|l+1
dt

]

6 lim inf
n→+∞

E

[

∫ T

0

|Zn
t |l+1

dt

]

< +∞.

Moreover, a simple application of the dominated convergence theorem show that (Y, Z) is a solution of the BSDE
(1.3). ⊓⊔
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4 A second existence result

We will introduce new assumptions.

Assumption (F.2). b is differentiable with respect to x and σ is differentiable with respect to t. There exists
λ ∈ R+ such that ∀η ∈ Rd

∣

∣

∣

tησ(s)[
t
σ(s)

t∇b(s, x)− t
σ′(s)]η

∣

∣

∣
6 λ

∣

∣

tησ(s)
∣

∣

2
, ∀(s, x) ∈ [0, T ]× Rd.

Remark 4.1 It is shown in part 5.5.1 of [18] that if σ does not depend on time, assumption (F.2) is equivalent to
this kind of commutativity assumption:

• there exist A : [0, T ]× Rd → Rd×d and B : [0, T ] → Rd×d such that A is differentiable with respect to x,
∇xA is bounded and ∀x ∈ Rd, ∀s ∈ [0, T ], b(s, x)σ = σA(s, x) +B(s).

It is also noticed in [18] that this assumption allows us to reduce assumption on the regularity of b by a standard
smooth approximation of A.

Assumption (B.3). f is differentiable with respect to z and one of these inequalities is true, for all (t, x, y, z) ∈
[0, T ]× Rd × R× R1×d,

(a) f(t, x, y, z)− 〈∇zf(t, x, y, z), z〉 6 C + C |z| ,

(b) f(t, x, y, z)− 〈∇zf(t, x, y, z), z〉 6 C − ε |z|l+1
,

Remark 4.2 Let us give some substancial examples of functions such that (B.3) holds. Let us assume that
f(t, x, y, z) := f1(t, x, y, z) + f2(t, x, y, z) is a differentiable function with respect to z.

• If f1 is a Lipschitz function with respect to z and f2 is a convex function with respect to z then (B.3)(a)
holds.

• Let us assume that f1 is a locally Lipschitz function with respect to z such that, ∃p ∈ [0, l[, ∀(t, x, y, z, z′) ∈
[0, T ]× Rd × R× R1×d × R1×d,

|f1(t, x, y, z)− f1(t, x, y, z
′)| 6 (1 + |z|p + |z′|p) |z − z′| ,

and f2 is a twice differentiable function with respect to z such that, ∀(t, x, y, z) ∈ [0, T ]×Rd ×R×R1×d,
∀u ∈ Rd,

tu∇2
zzf2(t, x, y, z)u > (−C + ε |z|l−1

) |u|2 .
Then we easily see that

f1(t, x, y, z)− 〈∇zf1(t, x, y, z), z〉 6 C + C |z|p+1
,

and a direct application of Taylor expansion with integral form gives us

f2(t, x, y, z)− 〈∇zf2(t, x, y, z), z〉 6 C − C′ |z|l+1
,

so (B.3)(b) holds. For example, (B.3)(b) holds for the function z 7→ |z|l+1
+ h(|z|l+1−η

) with η > 0 and h
a Lipschitz function.

Proposition 4.3 Let us assume that (F.1), (F.2), (B.1), (TC.1) and (TC.2) hold. Let (Y, Z) the solution of the
BSDE (1.3) given by Proposition 2.2.

• If we assume that (B.3)(a) holds, l < 2, 0 6 pgl < 1− l/2 and pf l < 1, then we have, for all t ∈ [0, T [,

|Zt| 6
C(1 + |Xt|pg )√

T − t
+ C |Xt|pf∨rf .

• If we assume that (B.3)(b) holds, 0 6 pgl < 1, then we have, for all t ∈ [0, T [,

|Zt| 6
C(1 + |Xt|pg/(l+1)

)

(T − t)1/(l+1)
+ C |Xt|

pf
l+1∨rf .

The constant C depends on constants that appear in assumptions (F.1), (F.2), (B.1), (B.3) and (TC.2) but not in
assumption (TC.1).
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Proof of the proposition Firstly we will approximate our Markovian BSDE by another one. Let (Y M , ZM ) the
solution of the BSDE

Y M
t = gM (XT ) +

∫ T

t

fM (s,Xs, Y
M
s , ZM

s )ds−
∫ T

t

ZM
s dWs, (4.1)

with gM = g ◦ρM and fM = f(., ρM (.), ., .) where ρM is a smooth modification of the projection on the centered
euclidean ball of radius M such that |ρM | 6 M , |∇ρM | 6 1 and ρM (x) = x when |x| 6 M − 1. It is now
easy to see that gM and fM are Lipschitz functions with respect to x. Proposition 2.3 in [17] gives us that ZM is
bounded by a constant C0 that depends on M . So, fM is a Lipschitz function with respect to z and BSDE (4.1) is
a classical Lipschitz BSDE. Now we will use the following Lemma that will be shown after.

Lemma 4.4 Let us assume that (F.1), (F.2), (B.1), (TC.1) and (TC.2) hold.

• If we assume that (B.3)(a) holds, l < 2, 0 6 pgl < 1− l/2 and pf l < 1, then we have, for all t ∈ [0, T [,

∣

∣ZM
t

∣

∣ 6
An +Bn |Xt|pg

√
T − t

+Dn |Xt|rf∨pf ,

with (An, Bn, Dn)n∈N defined by recursion: B0 = 0, D0 = 0, A0 = C0

√
T ,

An+1 = C(1 +Aal
n +Balp

n +Dalp̄
n ), Bn+1 = C, Dn+1 = C,

where a := pg ∨ pf ∨ rf , p > 1, p̄ > 1 and C is a constant that does not depend on M and constants in
assumption (TC.1).

• If we assume that (B.3)(b) holds, 0 6 pgl < 1, then we have, for all t ∈ [0, T [,

∣

∣ZM
t

∣

∣ 6
A′

n +B′
n |Xt|pg/(l+1)

(T − t)1/(l+1)
+D′

n |Xt|
pf
l+1∨rf ,

with (A′
n, B

′
n, D

′
n)n∈N defined by recursion: B′

0 = 0, D′
0 = 0, A′

0 = C0

√
T ,

A′
n+1 = C(1 +A′a′l

n +B′a′lp′

n +D′a′lp̄′

n ), B′
n+1 = C, D′

n+1 = C,

where a′ := (pg ∨ pf ∨ (l + 1)rf )/(l + 1), p′ > 1, p̄′ > 1 and C is a constant that does not depend on M
and constants in assumption (TC.1).

Since al < 1 and a′l < 1, recursion functions that define sequences (An)n>0 and (A′
n)n>0 are contractor

functions, so An → A∞ and A′
n → A′

∞ when n → +∞, with A∞ and A′
∞ that do not depend on M and

constants in assumption (TC.1). Finally,we have:

• if we assume that (B.3)(a) hold, l < 2, 0 6 pgl < 1− l/2 and pf l < 1, then we have, for all t ∈ [0, T [,

∣

∣ZM
t

∣

∣ 6
C(1 + |Xt|pg )√

T − t
+ C |Xt|pf∨rf ,

• if we assume that (B.3)(b) hold, 0 6 pgl < 1, then we have, for all t ∈ [0, T [,

∣

∣ZM
t

∣

∣ 6
C(1 + |Xt|pg/(l+1)

)

(T − t)1/(l+1)
+ C |Xt|

pf
l+1∨rf .

The constant C depends on constants that appear in assumptions (F.1), (F.2), (B.1), (B.3) and (TC.2) but not in
assumption (TC.1). Moreover C does not depends on M . Now, we want to come back to the initial BSDE (1.3).
It is already shown in the proof of Proposition 2.2 of the article [17] that (Y n, Zn) → (Y, Z) in S2 ×M2. So our
estimates on ZM stay true for a version of Z . ⊓⊔
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Proof of Lemma 4.4 Let us prove the result by recursion. For n = 0 we have already shown the result. Let us
assume that the result is true for some n ∈ N and let us show that it stays true for n + 1. In a first time we will
suppose that f and g are differentiable with respect to x and y. Then (Y M , ZM ) is differentiable with respect to
x and (∇Y M ,∇ZM ) is the solution of the BSDE

∇Y M
t = ∇gM (XT )∇XT −

∫ T

t

∇ZM
s dWs

+

∫ T

t

∇xfM (s,Xs, Y
M
s , ZM

s )∇Xs +∇yfM (s,Xs, Y
M
s , ZM

s )∇Y M
s +∇zfM (s,Xs, Y

M
s , ZM

s )∇ZM
s ds,

and a version of ZM is given by (∇Y M
t (∇Xt)

−1σ(t))t∈[0,T ]. Let us introduce some notations: we set

dW̃t := dWt −∇zfM (t,Xt, Y
M
t , ZM

t )dt,

αt :=

∫ t

0

e
∫ s
0
∇yfM (u,Xu,Y

M
u ,ZM

u )du∇xfM (s,Xs, Y
M
s , ZM

s )∇Xsds(∇Xt)
−1σ(t),

Z̃t := e
∫ t
0
∇yfM (s,Xs,Y

M
s ,ZM

s )dsZM
t + αt.

By applying Girsanov’s theorem we know that there exists a probability QM under which W̃ is a Brownian

motion. Then, exactly as in the proof of Theorem 3.2 in [16], we can show that
∣

∣

∣
eλtZ̃t

∣

∣

∣

2

is a QM -submartingale.

Firstly, we will show the first point of the lemma. Since
∣

∣

∣
eλtZ̃t

∣

∣

∣

2

is a QM -submartingale, we have:

E
QM

t

[

∫ T

t

e2λs
∣

∣

∣
Z̃M
s

∣

∣

∣

2

ds

]

> e2λt
∣

∣

∣
Z̃M
t

∣

∣

∣

2

(T − t)

> e2λt
∣

∣

∣
e
∫ t
0
∇yfM (s,Xs,Y

M
s ,ZM

s )dsZM
t + αt

∣

∣

∣

2

(T − t),

which implies

∣

∣ZM
t

∣

∣

2
(T − t) 6 C

(

e2λt
∣

∣

∣
e
∫ t
0
∇yfM (s,Xs,Y

M
s ,ZM

s )dsZM
t + αt

∣

∣

∣

2

+ |αt|2
)

(T − t)

6 C

(

E
QM

t

[

∫ T

t

e2λs
∣

∣

∣
Z̃M
s

∣

∣

∣

2

ds

]

+ (T − t)
(

1 + |Xt|2rf
)

)

6 C

(

1 + E
QM

t

[

∫ T

t

∣

∣ZM
s

∣

∣

2
ds

]

+ E
QM

t

[

∫ T

t

|Xs|2rf ds
]

+ (T − t) |Xt|2rf
)

. (4.2)

Let us recall that (Y M , ZM ) is solution of BSDE

Y M
t = gM (XT ) +

∫ T

t

f̃M (s,Xs, Y
M
s , ZM

s )ds−
∫ T

t

ZM
s dW̃s,

with
f̃M (s, x, y, z) := fM (s, x, y, z)− 〈z,∇zfM (s, x, y, z)〉.

Since assumption (B.3)(a) holds for f , assumption (B.2)(b) holds for −f̃M with constants that do not depend on
M . Then we can mimic the proof of the first point of Proposition 2.6 (see remark 2.7) to show that

E
QM

t

[

∫ T

t

∣

∣ZM
s

∣

∣

2
ds

]

6 C

(

1 + E
QM

t

[

|XT |2pg

]

+

∫ T

t

E
QM

t

[

|Xs|2pg

]

+ E
QM

t

[

|Xs|2pf

]

ds

)

, (4.3)

with a constant C that does not depend on M and constants that appear in assumption (TC.1). Then, by putting

(4.3) in (4.2), we see that we just have to obtain an a priori estimate for EQM

t [|Xs|c] with c ∈ R+∗. We have

|Xs| =

∣

∣

∣

∣

Xt +

∫ s

t

b(u,Xu)du+

∫ s

t

σ(u)dW̃u +

∫ s

t

σ(u)∇zfM (u,Xu, Y
M
u , ZM

u )du

∣

∣

∣

∣

6 |Xt|+ C + C

∫ s

t

|Xu| du+

∣

∣

∣

∣

∫ s

t

σ(u)dW̃u

∣

∣

∣

∣

+ C

∫ s

t

∣

∣ZM
u

∣

∣

l
du,
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with C that does not depend on M . Now we use the recursion assumption to obtain

∫ s

t

∣

∣ZM
u

∣

∣

l
du 6 C

∫ s

t

Al
n

(T − u)l/2
+

Bl
n

(T − u)l/2
|Xu|lpg +Dl

n |Xu|rf l∨pf l du.

Since l/2 < 1,
∫ T

t
Al

n

(T−u)l/2
du 6 CAl

n. For other terms we use Young inequality: Since (rf l ∨ pf l ∨ pgl) < 1,
we have

∫ s

t

∣

∣ZM
u

∣

∣

l
du 6 CAl

n + C

∫ s

t

Blp
n

(T − u)lp/2
+Dlp̄

n + |Xu| du,

with p = 1/(1− lpg) and p̄ > 1. Since we assume that lpg < 1− l/2, then lp/2 < 1 and
∫ s

t
Blp

n

(T−u)lp/2
du 6 CBlp

n .
Finally, we obtain

∫ s

t

∣

∣ZM
u

∣

∣

l
du 6 CAl

n + CBlp
n + CDlp̄

n + C

∫ s

t

|Xu| du,

and

|Xs| 6 |Xt|+ C + C

∫ s

t

|Xu| du+

∣

∣

∣

∣

∫ s

t

σ(u)dW̃u

∣

∣

∣

∣

+ CAl
n + CBlp

n + CDlp̄
n .

Gronwall’s lemma gives us

|Xs| 6 C

(

1 +

∣

∣

∣

∣

∫ s

t

σ(u)dW̃u

∣

∣

∣

∣

+Al
n +Blp

n +Dlp̄
n + |Xt|

)

that implies

E
QM

t [|Xs|c] 6 C
(

1 +Acl
n +Bclp

n +Dclp̄
n + |Xt|c

)

. (4.4)

By putting (4.4) in (4.3) and (4.2), we obtain

∣

∣ZM
t

∣

∣

2
(T − t) 6 C

(

1 + E
Q

M

t

[

|XT |2pg

]

+

∫ T

t

E
Q

M

t

[

|Xs|2(pg∨pf∨rf )
]

ds+ (T − t) |Xt|2rf
)

6 C
(

1 +A2al
n +B2alp

n +D2alp̄
n + |Xt|2pg + (T − t) |Xt|2(pf∨rf )

)

,

with a = pg ∨ pf ∨ rf and C that does not depend on M and constants that appear in assumption (TC.1). So, we
easily see that we can take

An+1 = C(1 +Aal
n +Balp

n +Dalp̄
n ), Bn+1 = C, Dn+1 = C,

and then the first point is proved.

To prove the second point, we will use the same machinery. Since
∣

∣

∣
eλtZ̃t

∣

∣

∣

2

is a QM -submartingale,
∣

∣

∣
eλtZ̃t

∣

∣

∣

l+1

is also a QM -submartingale. By the same calculus than previously, instead of having inequality (4.2), we obtain

∣

∣ZM
t

∣

∣

l+1
(T − t) 6 C

(

1 + E
QM

t

[

∫ T

t

∣

∣ZM
s

∣

∣

l+1
ds

]

+ E
QM

t

[

∫ T

t

|Xs|(l+1)rf ds

]

+ (T − t) |Xt|(l+1)rf

)

.

(4.5)

Since assumption (B.3)(b) holds for f , assumption (B.2)(c) holds for −f̃M with constants that do not depend on
M . Then we can mimic the proof of the second point of Proposition 2.6 (see remark 2.7) to show that

E
QM

t

[

∫ T

t

∣

∣ZM
s

∣

∣

l+1
ds

]

6 C

(

1 + E
QM

t [|XT |pg ] +

∫ T

t

E
QM

t [|Xs|pg ] + E
QM

t [|Xs|pf ] ds

)

, (4.6)

with C that does not depend on M and constants that appear in assumption (TC.1). Then, by putting (4.6) in (4.5),

we see that we just have to obtain an a priori estimate for EQM

t [|Xs|c] with c ∈ R+∗. Once again, we have

|Xs| 6 |Xt|+ C + C

∫ s

t

|Xu| du+

∣

∣

∣

∣

∫ s

t

σ(u)dW̃u

∣

∣

∣

∣

+ C

∫ s

t

∣

∣ZM
u

∣

∣

l
du,
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with C that does not depend on M . Now we use the recursion assumption to obtain
∫ s

t

∣

∣ZM
u

∣

∣

l
du 6 C

∫ s

t

A′l
n

(T − u)l/(l+1)
+

B′l
n

(T − u)l/(l+1)
|Xu|lpg/(l+1)

+D′l
n |Xu|rf l∨pf l/(l+1)

du.

Obviously we have
∫ T

t
A′l

n

(T−u)l/(l+1) du 6 CA′l
n. For other terms we use Young inequality: Since rf l < 1 and

(pf l ∨ pgl)/(l+ 1) < 1, we have
∫ s

t

∣

∣ZM
u

∣

∣

l
du 6 CA′l

n + C

∫ s

t

B′lp
n

(T − u)lp/(l+1)
+D′lp̄

n + |Xu| du,

with p = 1/(1−lpg/(l+1)) and p̄ > 1. Since we assume that lpg < 1, then lp/(l+1) < 1 and
∫ s

t
B′lp

n

(T−u)lp/(l+1) du 6

CB′lp
n . Finally, we obtain

∫ s

t

∣

∣ZM
u

∣

∣

l
du 6 CA′l

n + CB′lp
n + CD′lp̄

n + C

∫ s

t

|Xu| du,

and

|Xs| 6 |Xt|+ C + C

∫ s

t

|Xu| du+

∣

∣

∣

∣

∫ s

t

σ(u)dW̃u

∣

∣

∣

∣

+ CA′l
n + CB′lp

n + CD′lp̄
n .

Gronwall’s lemma gives us

|Xs| 6 C

(

1 +

∣

∣

∣

∣

∫ s

t

σ(u)dW̃u

∣

∣

∣

∣

+A′l
n +B′lp

n +D′lp̄
n + |Xt|

)

that implies

E
QM

t [|Xs|c] 6 C
(

1 +A′cl
n +B′clp

n +D′clp̄
n + |Xt|c

)

. (4.7)

By putting (4.7) in (4.6) and (4.5), we obtain

∣

∣ZM
t

∣

∣

l+1
(T − t) 6 C

(

1 + E
QM

t [|XT |pg ] +

∫ T

t

E
QM

t

[

|Xs|pg∨pf∨(l+1)rf
]

ds+ (T − t) |Xt|(l+1)rf

)

6 C
(

1 +A′(l+1)a′l
n +B′(l+1)a′lp

n +D′(l+1)a′lp̄
n + |Xt|pg + (T − t) |Xt|pf∨(l+1)rf

)

,

with a′ = (pg ∨ pf ∨ (l + 1)rf )/(l + 1). So, we easily see that we can take

A′
n+1 = C(1 +A′a′l

n +B′a′lp
n +D′a′lp̄

n ), B′
n+1 = C, D′

n+1 = C,

and then the second point is proved.
When f and g are not differentiable we can prove the result by a standard approximation and stability results

for BSDEs with linear growth. ⊓⊔
Since estimates on Z given by Proposition 4.3 do not depend on constants that appear in assumption (TC.1),

we can use it to show an existence result for superquadratic BSDEs with a quite general terminal condition.

Theorem 4.5 Let assume that (F.1), (F.2), (B.1), (B.2)(b) and (TC.2) hold.

• If we assume that (B.3)(a) holds, l < 2, 0 6 pgl < 1 − l/2 and 0 6 pf l < 1, then there exists a solution
(Y, Z) to the BSDE (1.3) such that (Y, Z) ∈ S2 ×M2. Moreover we have, for all t ∈ [0, T [,

|Zt| 6
C(1 + |Xt|pg )√

T − t
+ C |Xt|pf∨rf . (4.8)

• If we assume that (B.3)(b) holds and 0 6 pgl < 1, then there exists a solution (Y, Z) to the BSDE (1.3) such
that (Y, Z) ∈ S2 ×M2. Moreover, we have for all t ∈ [0, T [,

|Zt| 6
C(1 + |Xt|pg/(l+1)

)

(T − t)1/(l+1)
+ C |Xt|

pf
l+1∨rf , (4.9)

and, if we assume that (B.2)(c) holds,

E

[

∫ T

0

|Zs|l+1
ds

]

< +∞.



4 A SECOND EXISTENCE RESULT 14

Proof of Theorem 4.5 The proof is based on the proof of Proposition 4.3 in [5]. For each integer n > 0, we
construct the sup-convolution of g defined by

gn(x) := sup
u∈Rd

{g(u)− n |x− u|} .

Let us recall some well-known facts about sup-convolution:

Lemma 4.6 For n > n0 with n0 big enough, we have,

• gn is well defined,

• (TC.1) holds for gn with rg = 0,

• (TC.2) holds for gn with C and ᾱ that do not depend on n,

• (gn)n is decreasing,

• (gn)n converges pointwise to g.

Since (TC.1) holds, we can consider (Y n, Zn) the solution given by Proposition 2.2. It follows from Propositions
2.4 and 2.5 that

−C(1 + |X |pf∨pg) 6 Y n+1
6 Y n

6 Y n0 6 C(1 + |X |pf∨pg ).

So (Yn)n converges almost surely and we can define

Y = lim
n→+∞

Y n.

It is easy to see that the estimate of Proposition 2.5 stays true for Y . Now the aim is to show that (Zn)n converges
in the good space. For any T ′ ∈]0, T [, (Y n, Zn) satisfies

Y n
t = Y n

T ′ +

∫ T ′

t

f(s,Xs, Y
n
s , Zn

s )ds−
∫ T ′

t

Zn
s dWs, 0 6 t 6 T ′. (4.10)

Let us denote δY n,m := Y n − Y m and δZn,m := Zn − Zm. The classical linearization method gives us that
(δY n,m, δZn,m) is the solution of BSDE

δY n,m
t = δY n,m

T ′ +

∫ T ′

t

Un,m
s δY n,m

s + V n,m
s δZn,m

s ds−
∫ T ′

t

δZn,m
s dWs,

where |Un,m| 6 C and, by using estimates of Proposition 4.3,

|V n,m| 6 C(1 + |Zn|l + |Zm|l) 6 C(1 + |X |p), (4.11)

with p < 1 and C that does not depends on n and m. Since p < 1, Novikov’s condition is fulfilled and we can
apply Girsanov’s theorem: there exists a probability Qn,m such that dW̃t := dWt−V n,m

t dt is a Brownian motion
under this probability. By classical transformations, we have that (δY n,m, δZn,m) is the solution of the BSDE

δY n,m
t = δY n,m

T ′ e
∫

T ′

t
Un,m

s ds −
∫ T ′

t

e
∫

s
t
Un,m

u duδZn,m
s dW̃s.

Since Un,m is bounded, classical estimates on BSDEs give us

EQn,m





(

∫ T ′

0

|δZn,m
s |2 ds

)2


 6 CEQn,m
[

|δY n,m
T ′ |4

]

. (4.12)

Now, we would like to have the same type of estimate than (4.12), but with the classical expectation. To do such
a thing, we define the exponential martingale

En,m
T ′ := exp

(

∫ T ′

0

V n,m
s dWs −

1

2

∫ T ′

0

|V n,m
s |2 ds

)

.

Then, for all p ∈ R,
E [(En,m

T ′ )p] < Cp, (4.13)
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with Cp that does not depend on n and m: indeed, by applying (4.11) and Gronwall lemma we have

E

[

ep
∫ T ′

0
V n,m
s dWs−

p
2

∫ T ′

0
|V n,m

s |2ds
]

= E

[

e
1
2

(

∫ T ′

0
2pV n,m

s dWs−
1
2

∫ T ′

0
|2pV n,m

s |2ds
)

+(p2− p
2 )

∫ T ′

0
|V n,m

s |2ds
]

6 E

[

e
∫

T ′

0
2pV n,m

s dWs−
1
2

∫

T ′

0
|2pV n,m

s |2ds
]

E

[

e(2p
2−p)

∫

T ′

0
|V n,m

s |2ds
]

6 E

[

eC|2p2−p|(1+sup06s6T |Xs|
2p)
]

< +∞,

because 2p < 2. By applying Cauchy Schwarz inequality and by using (4.13) and (4.12), we obtain

E

[

∫ T ′

0

|δZn,m
s |2 ds

]

= E

[

(En,m
T ′ )−1/2(En,m

T ′ )1/2
∫ T ′

0

|δZn,m
s |2 ds

]

6 E
[

(En,m
T ′ )−1

]1/2
EQn,m





(

∫ T ′

0

|δZn,m
s |2 ds

)2




1/2

6 CEQn,m
[

|δY n,m
T ′ |4

]1/2

6 CE
[

(En,m
T ′ )2

]1/2
E

[

|δY n,m
T ′ |8

]1/4

6 CE

[

|δY n,m
T ′ |8

]1/4 n,m→0−−−−−→ 0.

Since M2 is a Banach space, we can define

Z = lim
n→+∞

Zn, Ω× [0, T [-a.e..

If we apply Proposition 2.6, we have that ‖Zn‖M2 < C with a constant C that does not depend on n. So, Fatou’s
lemma gives us that Z ∈ M2. It is also easy to see that estimates on Zn given by Proposition 4.3 stay true for Z .
Moreover, if we assume that (B.2)(c) holds, then Proposition 2.6 gives us that

E

[

∫ T

0

|Zn
s |

l+1
ds

]

< C

with a constant C that does not depend on n and so

E

[

∫ T

0

|Zs|l+1
ds

]

< C.

Finally, by passing to the limit when n → +∞ in (4.10) and by using the dominated convergence theorem,
we obtain that for any fixed T ′ ∈ [0, T [, (Y, Z) satisfies

Yt = YT ′ +

∫ T ′

t

f(s,Xs, Ys, Zs)ds−
∫ T ′

t

ZsdWs, 0 6 t 6 T ′. (4.14)

To conclude, we just have to prove that we can pass to the limit when T ′ → T in (4.14). Let us show that

YT ′

T ′→T−−−−→ g(XT ) a.s.. Firstly, we have

lims→TYs 6 lims→TY
n
s = gn(XT ) a.s. for any n > n0,

which implies lims→TYs 6 g(XT ), a.s.. On the other hand, we use assumption (B.2)(b) and we apply Proposi-
tions 2.5 and 4.3 to deduce that, a.s.,

Y n
t = gn(XT ) +

∫ T

t

f(s,Xs, Y
n
s , Zn

s )ds−
∫ T

t

Zn
s dWs

> gn(XT )− C

∫ T

t

1 + |Xs|pf + |Y n
s |+ |Zn

s | ds−
∫ T

t

Zn
s dWs

> Et

[

gn(XT )− C

∫ T

t

1 + |Xs|pf∨pg∨rf +
|Xs|pg

(T − s)1/2
ds

]

> Et [gn(XT )]− C(T − t)(1 + |Xt|pf∨pg∨rf )− C
√
T − t(1 + |Xt|pg ),
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and
Yt = lim

n→+∞
Y n
t > Et [g(XT )]− C(T − t)(1 + |Xt|pf∨pg∨rf )− C

√
T − t(1 + |Xt|pg ),

which implies
limt→TYt > limt→TEt [g(XT )] = g(XT ).

Hence, limt→T Yt = g(XT ) a.s. .
Now, let us come back to BSDE (4.14). Since we have

∫ T

t

f−(s,Xs, Ys, Zs)ds 6

∫ T

t

C(1 + |Xs|pf + |Ys|+ |Zs|)ds < +∞ a.s.,

then
∫ T ′

t

f−(s,Xs, Ys, Zs)ds
T ′→T−−−−→

∫ T

t

f−(s,Xs, Ys, Zs)ds < +∞ a.s.,

and

∫ T ′

t

f+(s,Xs, Ys, Zs)ds = Yt − YT ′ +

∫ T ′

t

f−(s,Xs, Ys, Zs)ds+

∫ T ′

t

ZsdWs

T ′→T−−−−→ Yt − YT +

∫ T

t

f−(s,Xs, Ys, Zs)ds+

∫ T

t

ZsdWs < +∞ a.s..

Finally, passing to the limit when T ′ → T in (4.14), we conclude that (Y, Z) is a solution to BSDE (1.3). ⊓⊔

Remark 4.7 Estimate (4.8) is already known in the Lipschitz framework as a consequence of the Bismut-Elworthy
formula (see e.g. [8]). For the superquadratic case, the same estimate was obtained when pg = pf = 0 in [5]
(see also [16] for the quadratic case). In [5], Remark 4.4. gives the same type of estimate than (4.9) for the
example f(z) = |z|l. This result was already obtained by Gilding et al. in [9] using Bernstein’s technique when
f(z) = |z|l, b = 0 and σ is the identity.

Remark 4.8 In this article, estimates (4.8) and (4.9) for the process Z allow us to obtain an existence result. But
this type of deterministic bound is also interesting for numerical approximation of BSDEs (see e.g. [16]) or for
studying stochastic optimal control problems in infinite dimension (see e.g. [14]).
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