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Abstract

This paper explores a conditional Gibbs theorem for a random walkinduced by
i.i.d. (X1, ..,Xn) conditioned on an extreme deviation of its sum (Sn1 = nan) or
(Sn1 > nan) where an → ∞. It is proved that when the summands have light tails
with some additional regulatity property, then the asymptotic conditional distribu-
tion of X1 can be approximated in variation norm by the tilted distribution at point
an , extending therefore the classical LDP case.

1 Introduction

Let Xn
1 := (X1, .., Xn) denote n independent unbounded real valued random variables and

Sn1 := X1 + .. + Xn denote their sum. The purpose of this paper is to explore the limit
distribution of the generic variable X1 conditioned on extreme deviations (ED) pertaining
to Sn1 . By extreme deviation we mean that Sn1 /n is supposed to take values which are
going to infinity as n increases. Obviously such events are of infinitesimal probability. Our
interest in this question stems from a first result which assesses that under appropriate
conditions, when the sequence an is such that

lim
n→∞

an = ∞

then there exists a sequence εn which tends to 0 as n tends to infinity such that

lim
n→∞

P (∩ni=1 (Xi ∈ (an − εn, an + εn))|Sn1 /n > an) = 1 (1.1)

which is to say that when the empirical mean takes exceedingly large values, then all
the summands share the same behaviour. This result obviously requires a number of
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hypotheses, which we simply quote as “light tails” type. We refer to [3] for this result
and the connection with earlier related works.

The above result is clearly to be put in relation with the so-called Gibbs conditional
Principle which we recall briefly in its simplest form.

Consider the case when the sequence an = a is constant with value larger than the
expectation of X1. Hence we consider the behaviour of the summands when (Sn1 /n > a)
, under a large deviation (LD) condition about the empirical mean. The asymptotic
conditional distribution of X1 given (Sn1 /n > a) is the well known tilted distribution of
PX with parameter t associated to a. Let us introduce some notation to put this in light.
The hypotheses to be stated now together with notation are kept throughout the entire
paper.

It will be assumed that PX , which is the distribution of X1, has a density p with
respect to the Lebesgue measure on R. The fact that X1 has a light tail is captured in
the hypothesis that X1 has a moment generating function

Φ(t) := E exp tX1

which is finite in a non void neighborhood N of 0. This fact is usually refered to as a
Cramer type condition.

Defined on N are the following functions. The functions

t→ m(t) :=
d

dt
log Φ(t)

t→ s2(t) :=
d

dt
m(t)

t→ µj(t) :=
d

dt
s2(t) , j = 3, 4

are the expectation and the three first centered moments of the r.v. Xt with density

πt(x) :=
exp tx

Φ(t)
p(x)

which is defined on R and which is the tilted density with parameter t. When Φ is steep,
meaning that

lim
t→t+

m(t) = ∞

where t+ := ess supN then m parametrizes the convex hull of the support of PX . We
refer to Barndorff-Nielsen (1978) for those properties. As a consequence of this fact, for
all a in the support of PX , it will be convenient to define

πa = πt
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where a is the unique solution of the equation m(t) = a.
We now come to some remark on the Gibbs conditional principle in the standard above

setting. A phrasing of this principle is:
As n tends to infinity the conditional distribution of X1 given (Sn1 /n > a) is Πa, the

distribution with density πa.
Indeed we prefer to state Gibbs principle in a form where the conditioning event is

a point condition (Sn1 /n = a) . The conditional distribution of X1 given (Sn1 /n = a) is
a well defined distribution and Gibbs conditional principle states that this conditional
distribution converges to Πa as n tends to infinity. In both settings, this convergence
holds in total variation norm. We refer to [6] for the local form of the conditioning event;
we will mostly be interested in the extension of this form in the present paper.

For all α (depending on n or not) we will denote pα the density of the random vector
Xk

1 conditioned upon the local event (Sn1 = nα) . The notation pα
(
Xk

1 = xk1
)
is sometimes

used to denote the value of the density pα at point xk1. The same notation is used xhen
X1, .., Xn are sampled under some Πα, namely πα(Xk

1 = xk1).
In [4] some extension of the above Gibbs principle has been obtained. When an

= a > EX1 a second order term provides a sharpening of the conditioned Gibbs principle,
stating that

lim
n→∞

∫
|pa(x)− ga(x)| dx) = 0 (1.2)

where

ga(x) := Cp(x)n
(
a, s2n, x

)
. (1.3)

Hereabove n (a, sn, x) denotes the normal density function at point x with expectation a,
with variance s2n, and s

2
n := s2(t)(n−1). In the above display, C is a normalizing constant.

Obviously developing in this display yields

ga(x) = πa(x) (1 + o(1))

which proves that (1.2) is a weak form of Gibbs principle, with some improvement due to
the second order term.

The paper is organized as follows. Notation and hypotheses are stated in Section 2
, along with some necessary facts from asymptotic analysis in the context of light tailed
densities. Section 3 provides a local Gibbs conditional principle under EDP, namely
producing the approximation of the conditional density of X1, .., Xk conditionally on
((1/n) (X1 + ..+Xn) = an) for sequences an which tend to infinity, and where k is fixed,
independent on n. The approximation is local. This result is extended in Section 4 to
typical paths under the conditional sampling scheme, which in turn provides the approx-
imation in variation norm for the conditional distribution; in this extension, k is equal 1,
although the result clearly also holds for fixed k > 1. The method used here follows closely
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the approach by [4]. Discussion of the differences between the Gibbs principles in LDP
and EDP are discussed. Section 5 states similar results in the case when the conditioning
event is ((1/n) (X1 + .. +Xn) > an).

The main tools to be used come from asymptotic analysis and local limit theorems,
developped from [7] and [1]; we also have borrowed a number of arguments from [9]. A
number of technical lemmas have been postponed to the appendix.

2 Notation and hypotheses

In this paper, we consider the uniformly bounded density function p(x)

p(x) = c exp
(
−

(
g(x)− q(x)

))
x ∈ R+, (2.1)

where c is some positive normalized constant. Define h(x) := g′(x). We assume that for
some And there exists some positive constant ϑ , for large x, it holds

sup
|v−x|<ϑx

|q(v)| ≤ 1√
xh(x)

. (2.2)

The function g is positive and satisfies

g(x)

x
−→ ∞, x→ ∞. (2.3)

Not all positive g’s satisfying (2.3) are adapted to our purpose. Regular functions
g are defined as follows. We define firstly a subclass R0 of the family of slowly varying
function. A function l belongs to R0if it can be represented as

l(x) = exp
(∫ x

1

ǫ(u)

u
du

)
, x ≥ 1, (2.4)

where ǫ(x) is twice differentiable and ǫ(x) → 0 as x→ ∞.
We follow the line of Juszczak and Nagaev [9] to describe the assumed regularity

conditions of h.
Class Rβ : h(x) ∈ Rβ , if, with β > 0 and x large enough, h(x) can be represented as

h(x) = xβl(x),

where l(x) ∈ R0 and in (2.4) ǫ(x) satisfies

lim sup
x→∞

x|ǫ′(x)| <∞, lim sup
x→∞

x2|ǫ′′(x)| <∞. (2.5)
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Class R∞ : Further, l ∈ R̃0, if, in (2.4), l(x) → ∞ as x→ ∞ and

lim
x→∞

xǫ′(x)

ǫ(x)
= 0, lim

x→∞

x2ǫ
′′
(x)

ǫ(x)
= 0, (2.6)

and, for some η ∈ (0, 1/4)
lim inf
x→∞

xηǫ(x) > 0. (2.7)

We say that h ∈ R∞ if h is increasing and strictly monotone and its inverse function ψ
defined through

ψ(u) := h←(u) := inf {x : h(x) ≥ u} (2.8)

belongs to R̃0.
Denote R : = Rβ ∪ R∞. In fact, R covers one large class of functions, although, Rβ

and R∞ are only subsets of Regularly varying and Rapidly varying functions, respectively.

Remark 2.1. The rôle of (2.4) is to make h(x) smooth enough. Under (2.4) the third
order derivative of h(x) exists, which is necessary in order to use a Laplace methode for
the asymptotic evaluation of the moment generating function Φ(t) as t→ ∞, where

Φ(t) =

∫ ∞

0

etxp(x)dx = c

∫ ∞

0

exp
(
K(x, t) + q(x)

)
dx, t ∈ (0,∞)

in which
K(x, t) = tx− g(x).

If h ∈ R, K(x, t) is concave with respect to x and takes its maximum at x̂ = h←(t). The
evaluation of Φ(t) for large t follows from an expansion of K(x, t) in a neighborhood of
x̂; this is Laplace’s method. This expansion yields

K(x, t) = K(x̂, t)− 1

2
h′(x̂)

(
x− x̂

)2 − 1

6
h′′(x̂)

(
x− x̂

)3
+ ǫ(x, t),

where ǫ(x, t) is some error term. Conditions (2.6) (2.7) and (2.5) guarantee that ǫ(x, t)
goes to 0 when t tends to ∞ when x belongs to some neighborhood of x̂.

Example 2.1. Weibull Density. Let p be a Weibull density with shape parameter
k > 1 and scale parameter 1, namely

p(x) = kxk−1 exp(−xk), x ≥ 0

= k exp
(
−

(
xk − (k − 1) log x

))
.

Take g(x) = xk − (k − 1) log x and q(x) = 0. Then it holds

h(x) = kxk−1 − k − 1

x
= xk−1

(
k − k − 1

xk
)
.
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Set l(x) = k − (k − 1)/xk, x ≥ 1, then (2.4) holds, namely,

l(x) = exp
(∫ x

1

ǫ(u)

u
du

)
, x ≥ 1,

with

ǫ(x) =
k(k − 1)

kxk − (k − 1)
.

The function ǫ is twice differentiable and goes to 0 as x → ∞. Additionally, ǫ satisfies
condition (2.5). Hence we have shown that h ∈ Rk−1.

Example 2.2. A rapidly varying density. Define p through

p(x) = c exp(−ex−1), x ≥ 0.

Then g(x) = h(x) = ex and q(x) = 0 for all non negative x. We show that h ∈ R∞. It
holds ψ(x) = log x + 1. Since h(x) is increasing and monotone, it remains to show that

ψ(x) ∈ R̃0. When x ≥ 1, ψ(x) admits the representation of (2.4) with ǫ(x) = log x + 1.
Also conditions (2.6) and (2.7) are satisfied. Thus h ∈ R∞.

Throughout the paper we use the following notation. When a r.v. X has density p
we write p(X = x) instead of p(x). This notation is useful when changing measures. For
example πa(X = x) is the density at point x for the variable X generated under πa, while
p(X = x) states for X generated under p. This avoids constant changes of notation.

3 Conditional Density

We inherit of the definition of the tilted density πa defined in Section 1, and of the
corresponding definitions of the functions m, s2 and µ3. Because of (2.1) and on the
various conditions on g those functions are defined as t → ∞. The following Theorem is
basic for the proof of the remaining results.

Theorem 3.1. Let p(x) be defined as in (2.1) and h(x) ∈ R. Denote by

m(t) =
d

dt
log Φ(t), s2(t) =

d

dt
m(t), µ3(t) =

d3

dt3
log Φ(t),

then with ψ defined as in (2.8)it holds as t→ ∞

m(t) ∼ ψ(t), s2(t) ∼ ψ′(t), µ3(t) ∼
M6 − 3

2
ψ

′′
(t),

where M6 is the sixth order moment of standard normal distribution.
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The proof of this result relies on a series of Lemmas. Lemmas (7.2), (7.3), (7.4) and
(7.5) are used in the proof. Lemma (7.1) is instrumental for Lemma (7.5). The proof of
Theorem 3.1 and these Lemmas are postponed to Appendix.

Corollary 3.1. Let p(x) be defined as in (2.1) and h(x) ∈ R. Then it holds as t→ ∞

µ3(t)

s3(t)
−→ 0. (3.1)

Proof: Its proof relies on Theorem 2.1 and is also put in Appendix.

4 Edgeworth expansion under extreme normalizing

factors

With πan defined through

πan(x) =
etxp(x)

Φ(t)
,

and t determined by an = m(t), define the normalized density of πan by

π̄an(x) = snπ
an(snx+ an),

and denote the n-convolution of π̄an(x) by π̄ann (x). Denote by ρn the normalized density
of n-convolution π̄ann (x),

ρn(x) :=
√
nπ̄ann (

√
nx).

The following result extends the local Edgeworth expansion of the distribution of nor-
malized sums of i.i.d. r;v’s to the present context, where the summands are generated
under the density π̄an . Therefore the setting is that of a triangular array of row wise
independent summands; the fact that an → ∞ makes the situation unusual. We mainly
adapt Feller’s proof (Chapiter 16, Theorem 2 [7]).

Theorem 4.1. With the above notation, uniformly upon x it holds

ρn(x) = φ(x)
(
1 +

µ3

6
√
ns3

(
x3 − 3x

))
+ o

( 1√
n

)
.

where φ(x) is standard normal density.

Proof: Step 1: In this step, we will express the following formula G(x) by its Fourier
transform. Let

G(x) := ρn(x)− φ(x)− µ3

6
√
ns3n

(
x3 − 3x

)
φ(x).
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From

φ(x) =
1

2π

∫ ∞

−∞
e−iτxe−

1

2
τ2dτ, (4.1)

it follows that

φ′′′(x) = − 1

2π

∫ ∞

−∞
(iτ)3e−iτxe−

1

2
τ2dτ. (4.2)

On the other hand
φ′′′(x) = −(x3 − 3x)φ(x),

which, together with (4.2), gives

(x3 − 3x)φ(x) =
1

2π

∫ ∞

−∞
(iτ)3e−iτxe−

1

2
τ2dτ. (4.3)

Let ϕan(τ) be the characteristic function (c.f) of π̄an ; the c.f of ρn is
(
ϕan(τ/

√
n)
)n
.

Hence it holds by Fourier inversion theorem

ρn(x) =
1

2π

∫ ∞

−∞
e−iτx

(
ϕan(τ/

√
n)
)n
dτ. (4.4)

Using (4.1), (4.3) and (4.4), we have

G(x) =
1

2π

∫ ∞

−∞
e−iτx

((
ϕan(τ/

√
n)
)n − e−

1

2
τ2 − µ3

6
√
ns3

(iτ)3e−
1

2
τ2
)
dτ.

Hence it holds
∣∣∣ρn(x)− φ(x)− µ3

6
√
ns3

(
x3 − 3x

)
φ(x)

∣∣∣

≤ 1

2π

∫ ∞

−∞

∣∣∣
(
ϕan(τ/

√
n)
)n − e−

1

2
τ2 − µ3

6
√
ns3

(iτ)3e−
1

2
τ2
∣∣∣dτ. (4.5)

Step 2: In this step, we show that characteristic function ϕan of π̄an(x) satisfies

sup
an∈R+

∫
|ϕan(τ)|2dτ <∞ and sup

an∈R+,|τ |≥ǫ>0

|ϕan(τ)| < 1, (4.6)

for any positive ǫ .
It is easy to verify that r-order (r ≥ 1) moment µr of πan(x) satisfies

µr(t) =
dr log Φ(t)

dtr
with t = m←(an),
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By Parseval identity

∫
|ϕan(τ)|2dτ = 2π

∫
(π̄an(x))2dx ≤ 2π sup

x∈R
π̄an(x). (4.7)

For the density function p(x) in (2.1), Theorem 5.4 of Nagaev [9] states that the normalized
conjugate density of p(x), namely, π̄an(x) has the propriety

lim
an→∞

sup
x∈R

|π̄an(x)− φ(x)| = 0.

Thus for arbitrary positive δ, there exists some positive constant M such that it holds

sup
an≥M

sup
x∈R

|π̄an(x)− φ(x)| ≤ δ,

which entails that supan≥M supx∈R π̄
an(x) <∞. When an < M , supan<M supx∈R π̄

an(x) <
∞; hence we have

sup
an∈R+

sup
x∈R

π̄an(x) <∞,

which, together with (4.7), gives (4.6). Furthermre, ϕan(τ) is not periodic, hence the
second inequality of (4.6) holds from Lemma 4 (Chapiter 15, section 1) of [7].

Step 3: In this step, we complete the proof by showing that when n→ ∞
∫ ∞

−∞

∣∣∣
(
ϕan(τ/

√
n)
)n − e−

1

2
τ2 − µ3

6
√
ns3

(iτ)3e−
1

2
τ2
∣∣∣dτ = o

( 1√
n

)
. (4.8)

For arbitrarily positive sequence an we have

sup
an∈R+

∣∣∣ϕan(τ)
∣∣∣ = sup

an∈R+

∣∣∣
∫ ∞

−∞
eiτxπ̄an(x)dx

∣∣∣ ≤ sup
an∈R+

∫ ∞

−∞

∣∣∣eiτxπ̄an(x)
∣∣∣dx = 1.

In addition, πan(x) is integrable, by Riemann-Lebesgue theorem, it holds when |τ | → ∞

sup
an∈R+

∣∣∣ϕan(τ)
∣∣∣ −→ 0.

Thus for any strictly positive ω, there exists some corresponding Nω such that if |τ | > ω,
it holds

sup
an∈R+

∣∣∣ϕan(τ)
∣∣∣ < Nω < 1. (4.9)

We now turn to (4.8) which is splitted on |τ | > ω
√
n and on |τ | ≤ ω

√
n .
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It holds

√
n

∫

|τ |>ω√n

∣∣∣
(
ϕan(τ/

√
n)
)n − e−

1

2
τ2 − µ3

6
√
ns3

(iτ)3e−
1

2
τ2
∣∣∣dτ

≤ √
n

∫

|τ |>ω√n

∣∣∣
(
ϕan(τ/

√
n)
)∣∣∣
n

dτ +
√
n

∫

|τ |>ω√n

∣∣∣e− 1

2
τ2 +

µ3

6
√
ns3

(iτ)3e−
1

2
τ2
∣∣∣dτ

≤ √
nNn−2

ω

∫

|τ |>ω√n

∣∣∣
(
ϕan(τ/

√
n)
)∣∣∣

2

dτ +
√
n

∫

|τ |>ω√n
e−

1

2
τ2
(
1 +

∣∣∣ µ3τ
3

6
√
ns3

∣∣∣
)
dτ. (4.10)

where the first term of the last line tends to 0 when n→ ∞, since

√
nNn−2

ω

∫

|τ |>ω√n

∣∣∣
(
ϕan(τ/

√
n)
)∣∣∣

2

dτ

= exp
(1
2
log n+ (n− 2) logNω + log

∫

|τ |>ω√n

∣∣∣
(
ϕan(τ/

√
n)
)∣∣∣

2

dτ
)
−→ 0, (4.11)

where the last step holds from (4.6) and (4.9). As for the second term of (4.10), by
Corollary (3.1), when n→ ∞, we have |µ3/s

3| → 0. Hence it holds when n→ ∞
√
n

∫

|τ |>ω√n
e−

1

2
τ2
(
1 +

∣∣∣ µ3τ
3

6
√
ns3

∣∣∣
)
dτ

≤ √
n

∫

|τ |>ω√n
e−

1

2
τ2 |τ |3dτ =

√
n

∫

|τ |>ω√n
exp

{
− 1

2
τ 2 + 3 log |τ |

}
dτ

= 2
√
n exp

(
− ω2n/2 + o(ω2n/2)

)
−→ 0, (4.12)

where the second equality holds from, for example, Chapiter 4 of [1]. (4.10), (4.11) and
(4.12) implicate that, when n→ ∞

∫

|τ |>ω√n

∣∣∣
(
ϕan(τ/

√
n)
)n − e−

1

2
τ2 − µ3

6
√
ns3

(iτ)3e−
1

2
τ2
∣∣∣dτ = o

( 1√
n

)
. (4.13)

If |τ | ≤ ω
√
n, it holds

∫

|τ |≤ω√n

∣∣∣
(
ϕan(τ/

√
n)
)n − e−

1

2
τ2 − µ3

6
√
ns3

(iτ)3e−
1

2
τ2
∣∣∣dτ

=

∫

|τ |≤ω√n
e−

1

2
τ2
∣∣∣
(
ϕan(τ/

√
n)
)n
e

1

2
τ2 − 1− µ3

6
√
ns3

(iτ)3
∣∣∣dτ

=

∫

|τ |≤ω√n
e−

1

2
τ2
∣∣∣ exp

{
n logϕan(τ/

√
n) +

1

2
τ 2
}
− 1− µ3

6
√
ns3

(iτ)3
∣∣∣dτ. (4.14)

The integrand in the last display is bounded through

|eα − 1− β| = |(eα − eβ) + (eβ − 1− β)| ≤ (|α− β|+ 1

2
β2)eγ , (4.15)
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where γ ≥ max(|α|, |β|); this inequalityfollows replacing eα, eβ by their power series, for
real or complex α, β. Denote by

γ(τ) = logϕan(τ) +
1

2
τ 2.

Since γ′(0) = γ′′(0) = 0, the third order Taylor expansion of γ(τ) at τ = 0 yields

γ(τ) = γ(0) + γ′(0)τ +
1

2
γ′′(0)τ 2 +

1

6
γ′′′(ξ)τ 3 =

1

6
γ′′′(ξ)τ 3,

where 0 < ξ < τ . Hence it holds

∣∣∣γ(τ)− µ3

6s3
(iτ)3

∣∣∣ =
∣∣∣γ′′′(ξ)− µ3

s3n
i3
∣∣∣ |τ |

3

6
.

Here γ′′′ is continuous; thus we can choose ω small enough such that |γ′′′(ξ)| < ρ for
|τ | < ω. Meanwhile, for n large enough, according to Corollary (3.1) , we have |µ3/s

3| → 0.
Hence it holds for n large enough

∣∣∣γ(τ)− µ3

6s3
(iτ)3

∣∣∣ ≤
(
|γ′′′(ξ)|+ ρ

) |τ |3
6

< ρ|τ |3. (4.16)

Choose ω small enough, such that for n large enough it holds for |τ | < ω
∣∣∣ µ3

6s3
(iτ)3

∣∣∣ ≤ 1

4
τ 2, |γ(τ)| ≤ 1

4
τ 2.

For this choice of ω, when |τ | < ω we have

max
(∣∣∣ µ3

6s3
(iτ)3

∣∣∣, |γ(τ)|
)
≤ 1

4
τ 2. (4.17)

Replacing τ by τ/
√
n, it holds for |τ | < ω

√
n

∣∣∣n logϕan(τ/
√
n) +

1

2
τ 2 − µ3

6
√
ns3

(iτ)3
∣∣∣

= n
∣∣∣ logϕan(τ/

√
n) +

1

2

( τ√
n

)2

− µ3

6s3

( iτ√
n

)3∣∣∣

= n
∣∣∣γ
( τ√

n

)
− µ3

6s3

( iτ√
n

)3∣∣∣ < ρ|τ |3√
n
, (4.18)

where the last inequality holds from (4.16). In a similar way, with (4.17), it also holds for
|τ | < ω

√
n

max
(∣∣∣n logϕan(τ/

√
n) +

1

2
τ 2
∣∣∣,
∣∣∣ µ3

6
√
ns3

(iτ)3
∣∣∣
)

= nmax
(∣∣∣γ

( τ√
n

)∣∣∣,
∣∣∣ µ3

6s3

( iτ√
n

)3∣∣∣
)
≤ 1

4
τ 2. (4.19)
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Apply (4.15) to estimate the integrand of last line of (4.14), with the choice of ω in
(4.16) and (4.17), using (4.18) and (4.19) we have for |τ | < ω

√
n

∣∣∣ exp
{
n logϕan(τ/

√
n) +

1

2
τ 2
}
− 1− µ3

6
√
ns3

(iτ)3
∣∣∣

≤
(∣∣∣n logϕan(τ/

√
n) +

1

2
τ 2 − µ3

6
√
ns3

(iτ)3
∣∣∣ + 1

2

∣∣∣ µ3

6
√
ns3

(iτ)3
∣∣∣
2)

× exp
[
max

(∣∣∣n logϕan(τ/
√
n) +

1

2
τ 2
∣∣∣,
∣∣∣ µ3

6
√
ns3

(iτ)3
∣∣∣
)]

≤
(ρ|τ |3√

n
+

1

2

∣∣∣ µ3

6
√
ns3

(iτ)3
∣∣∣
2)

exp
(τ 2
4

)

=
(ρ|τ |3√

n
+

µ2
3τ

6

72ns6

)
exp

(τ 2
4

)
.

Use this upper bound to (4.14), we obtain
∫

|τ |≤ω√n

∣∣∣
(
ϕan(τ/

√
n)
)n − e−

1

2
τ2 − µ3

6
√
ns3

(iτ)3e−
1

2
τ2
∣∣∣dτ

≤
∫

|τ |≤ω√n
exp

(
− τ 2

4

)(ρ|τ |3√
n

+
µ2
3τ

6

72ns6

)
dτ

=
ρ√
n

∫

|τ |≤ω√n
exp

(
− τ 2

4

)
|τ |3dτ + µ2

3

72ns6

∫

|τ |≤ω√n
exp

(
− τ 2

4

)
τ 6dτ,

where both the first integral and the second integral are finite, and ρ is arbitrarily small;
additionally, by Corollary (3.1), µ2

3/s
6 → 0 when n large enough, hence it holds when

n→ ∞ ∫

|τ |≤ω√n

∣∣∣
(
ϕan(τ/

√
n)
)n − e−

1

2
τ2 − µ3

6
√
ns3

(iτ)3e−
1

2
τ2
∣∣∣dτ = o

( 1√
n

)
. (4.20)

Now (4.13) and (4.20) give (4.8). Further, coming back to (4.5), using (4.8), we obtain
∣∣∣π̄ann (x)− φ(x)− µ3

6
√
ns3

(
x3 − 3x

)
φ(x)

∣∣∣ = o
( 1√

n

)
,

which concludes the proof.

5 Gibbs’ conditional principles under extreme events

We now explore Gibbs conditional principles under extreme events. The first result is
a pointwise approximation of the conditional density pan

(
yk1
)
on Rk for fixed k. As a

by-product we also address the local approximation of pAn where

pAn

(
yk1
)
:= p

(
Xk

1 = yk1
∣∣Sn1 > nan

)
.

12



However tese local approximations are of poor interest when comparing pan to its approx-
imation.

We consider the case k = 1. For Y n
1 a random vector with density pan we first provide

a density gan on R such that

pan (Y1) = gan (Y1) (1 +Rn)

where Rn is a function of the vector Y n
1 which goes to 0 as n tends to infinity. The above

statement may also be written as

pan (y1) = gan (y1)
(
1 + oPan

(1)
)

(5.1)

where Pan is the joint probability measure of the vector Y n
1 under the condition (Sn1 = nan) .

This statement is of a different nature with respect to the above one, since it amounts to
prove the approximation on typical realisations under the conditional sampling scheme.
We will deduce from (5.1) that the L1 distance between pan and gan goes to 0 as n tends
to infinity. It would be interesting to extend these results to the case when k = kn is close
to n, as done in [4] in all cases from the CLT to the LDP ranges. The extreme deviation
case is more envolved, which led us to restrict this study to the case when k = 1 (or k
fixed, similarly).

5.1 A local result in Rk

Fix yk1 := (y1, .., yk) in Rk and define sji := yi + .. + yj for 1 ≤ i < j ≤ k.
Define ti through

m(ti) :=
nan − si1
n− i

. (5.2)

For the sake of brevity, we write mi instead of m(ti), and define s2i := s2(ti). We have the
following conditional density.

Consider the following condition

lim
n→∞

ψ(tk)
2

√
nψ′(tk)

= 0, (5.3)

which can be seen as a growth condition on an, avoiding too large increases of this se-
quence.

For 0 ≤ i ≤ k − 1 < n, define zi through

zi =
mi − yi+1

si
√
n− i− 1

.
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Lemma 5.1. Assume that p(x) satisfies (2.1) and h(x) ∈ R. Let ti is defined in (5.2).
Assume that an → ∞ as n→ ∞ and that (5.3) holds. then it holds as an → ∞

lim
n→∞

sup
0≤i≤k−1

zi = 0.

Proof: When n→ ∞, it holds

zi ∼ mi/si
√
n− i− 1 ∼ mi/(si

√
n).

From Theorem 3.1, it holds m(t) ∼ ψ(t) and s(t) ∼
√
ψ′(t). Hence we have

zi ∼
ψ(ti)√
nψ′(ti)

. (5.4)

By (5.2), mi ∼ mk as n→ ∞. Consider mk ∼ ψ(tk). Then it holds

mi ∼ ψ(tk).

In addition, mi ∼ ψ(ti) by Theorem 3.1, this implies it holds

ψ(ti) ∼ ψ(tk). (5.5)

Case 1: if h(x) ∈ Rβ. We have h(x) = xβl0(x), l0(x) ∈ R0, β > 0. Hence

h
′
(x) = xβ−1l0(x)

(
β + ǫ(x)

)
,

set x = ψ(t), we get

h
′(
ψ(t)

)
=

(
ψ(t)

)β−1
l0
(
ψ(t)

)(
β + ǫ

(
ψ(t)

))
. (5.6)

Notice that it holds ψ
′
(t) = 1/h

′(
ψ(t)

)
, combine (5.5) with (5.6), we obtain

ψ′(ti)

ψ′(tk)
=
h

′(
ψ(tk)

)

h′
(
ψ(ti)

) =

(
ψ(tk)

)β−1
l0
(
ψ(tk)

)(
β + ǫ

(
ψ(tk)

))
(
ψ(ti)

)β−1
l0
(
ψ(ti)

)(
β + ǫ

(
ψ(ti)

)) −→ 1,

where we use the slowly varying propriety of l0. Thus it holds

ψ′(ti) ∼ ψ′(tk),

which, together with (5.5), is put into (5.4) to yield

zi ∼
ψ(tk)√
nψ′(tk)

.
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Hence we have under condition (5.3)

z2i ∼
ψ(tk)

2

nψ′(tk)
=

ψ(tk)
2

√
nψ′(tk)

1√
n
= o

( 1√
n

)
,

which implies further zi → 0. Note that the final step is used in order to relax the strength
of the growth condition on an.

Case 2: if h(x) ∈ R∞. By (5.2), it holds m(tk) ≥ m(ti) as n→ ∞. Since the function
t→ m(t) is increasing, we have

ti ≤ tk.

The function t→ ψ
′
(t) is decreasing, since

ψ
′′
(t) = −ψ(t)

t2
ǫ(t)

(
1 + o(1)

)
< 0 as t→ ∞.

Therefore it holds as n→ ∞
ψ′(ti) ≥ ψ′(tk),

which, combined with (5.4) and (5.5), yields

zi ∼
ψ(tk)√
nψ′(ti)

≤ 2ψ(tk)√
nψ′(tk)

,

hence we have

z2i ≤
4ψ(tk)

2

nψ′(tk)
=

4ψ(tk)
2

√
nψ′(tk)

1√
n
= o

( 1√
n

)
,

where the last step holds from condition (5.3). Further it holds zi → 0.

Theorem 5.1. With the above notation and hypotheses, assuming (5.3), it holds

pan(y
k
1) = p(Xk

1 = yk1 |Sn1 = nan) = gm(y
k
1)
(
1 + o(1)

)
.

with

gm(y
k
1) =

k−1∏

i=0

(
πmi(Xi+1 = yi+1)

)
.

Proof:
Using Bayes formula,

pan
(
yk1
)
:= p(Xk

1 = yk1 |Sn1 = nan) = p(X1 = y1|Sn1 = nan)

k−1∏

i=1

p(Xi+1 = yi+1|X i
1 = yi1, S

n
1 = nan)

=

k−1∏

i=0

p(Xi+1 = yi+1|Sni+1 = nan − si1). (5.7)
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We make use of the following invariance property:For all yk1 and all α > 0

p(Xi+1 = yi+1|X i
1 = yi1, S

n
1 = nan) = πα(Xi+1 = yi+1|X i

1 = yi1, S
n
1 = nan)

where on the LHS, the r.v’s X i
1 are sampled i.i.d. under p and on the RHS, sampled i.i.d.

under πα.Itthusholds

p(Xi+1 = yi+1|Sni+1 = nan − Si1) = πmi(Xi+1 = yi+1|Sni+1 = nan − si1)

= πmi(Xi+1 = yi+1)
πmi(Sni+2 = nan − si+1

1 )

πmi(Sni+1 = nan − si1)

=

√
n− i√

n− i− 1
πmi(Xi+1 = yi+1)

π̃n−i−1(
mi−yi+1

si
√
n−i−1)

π̃n−i(0)
, (5.8)

where π̃n−i−1 is the normalized density of Sni+2 under i.i.d. sampling under πmi ;correspondingly,
π̃n−i is the normalized density of Sni+1 under the same sampling. Note that a r.v. with
density πmi has expectation mi and variance s2i .

Write zi =
mi−yi+1

si
√
n−i−1 , and perform a third-order Edgeworth expansion of π̃n−i−1(zi),

using Theorem 4.1. It follows

π̃n−i−1(zi) = φ(zi)
(
1 +

µi3
6s3i

√
n− 1

(z3i − 3zi)
)
+ o

( 1√
n

)
, (5.9)

The approximation of π̃n−i(0) is obtained from (5.9)

π̃n−i(0) = φ(0)
(
1 + o

( 1√
n

))
. (5.10)

Put (5.9) and (5.10) into (5.8) to obtain

p(Xi+1 = yi+1|Sni+1 = nan − Si1)

=

√
n− i√

n− i− 1
πmi(Xi+1 = yi+1)

φ(zi)

φ(0)

[
1 +

µi3
6s3i

√
n− 1

(z3i − 3zi) + o
( 1√

n

)]

=

√
2π(n− i)√
n− i− 1

πmi(Xi+1 = yi+1)φ(zi)
(
1 +Rn + o(1/

√
n)
)
, (5.11)

where

Rn =
µi3

6s3i
√
n− 1

(z3i − 3zi).

Under condition (5.3), using Lemma 5.1, it holds zi → 0 as an → ∞, and under
Corollary (3.1), µi3/s

3
i → 0. This yields

Rn = o
(
1/
√
n
)
,
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which, combined with (5.11), gives

p(Xi+1 = yi+1|sni+1 = nan − Si1) =

√
2π(n− i)√
n− i− 1

πmi(Xi+1 = yi+1)φ(zi)
(
1 + o(1/

√
n)
)

=

√
n− i√

n− i− 1
πmi(Xi+1 = yi+1)

(
1− z2i /2 + o(z2i )

)(
1 + o(1/

√
n)
)
,

where we use one Taylor expansion in second equality. Using once more Lemma 5.1, under
conditions (5.3), we have as an → ∞

z2i = o(1/
√
n),

hence we get

p(Xi+1 = yi+1|Sni+1 = nan − si1) =

√
n− i√

n− i− 1
πmi(Xi+1 = yi+1)

(
1 + o(1/

√
n)
)
,

which together with (5.7) yields

p(Xk
1 = yk1 |Sn1 = nan) =

k−1∏

i=0

( √
n− i√

n− i− 1
πmi(Xi+1 = yi+1)

(
1 + o(1/

√
n)
))

=

k−1∏

i=0

(
πmi(Xi+1 = yi+1)

) k−1∏

i=0

( √
n− i√

n− i− 1

) k−1∏

i=0

(
1 + o

( 1√
n

))

=
(
1 + o

( 1√
n

)) k−1∏

i=0

(
πmi(Xi+1 = yi+1)

)
,

The proof is completed.

Define t through m(t) = an, replace condition (5.3) by

lim
n→∞

ψ(t)2√
nψ′(t)

= 0, (5.12)

then for fixed k, an equivalent statement is

Theorem 5.2. Under the same hypotheses as in the previous Theorem

pan(y
k
1) = p(Xk

1 = yk1 |Sn1 = nan) = gan(y
k
1)
(
1 + o

( 1√
n

))
.

with

gan(y
k
1) =

k∏

i=1

(
πan(Xi = yi)

)
.
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Proof:
Using the notations of Theorem 5.1, by (5.7), we obtain

p(Xk
1 = yk1 |Sn1 = nan) =

k−1∏

i=0

p(Xi+1 = yi+1|Sni+1 = nan − Si1). (5.13)

(5.8) is replaced by

p(Xi+1 = yi+1|Sni+1 = nan − Si1) =

√
n− i√

n− i− 1
πan(Xi+1 = yi+1)

π̃ann−i−1(
(i+1)an−Si+1

1

s
√
n−i−1 )

π̃ann−i
( ian−Si

1

s
√
n−i

) ,

(5.14)

where π̃ann−i−1((i+ 1)an − yi+1/si
√
n− i− 1) is the normalized density of πan(Sni+2 = nan−

Si+1
1 ), and πan has the expectation an and variance s. Correspondingly, π̃ann−i

(
(ian − Si1)/s

√
n− i

)

is the normalized density of πan(Sni+1 = nan − Si1).

Write zi =
(i+1)an−Si+1

1

s
√
n−i−1 , by Theorem 4.1 one three-order Edgeworth expansion yields

π̃ann−i−1(zi) = φ(zi)
(
1 +Ri

n

)
+ o

( 1√
n

)
, (5.15)

where
Ri
n =

µ3

6s3
√
n− 1

(z3i − 3zi).

Set i = i− 1, the approximation of π̃ann−i is obtained from (5.15)

π̃n−i(zi−1) = φ(zi−1)
(
1 +Ri+1

n

)
+ o

( 1√
n

)
. (5.16)

When an → ∞, using Theorem 3.1, it holds

sup
0≤i≤k−1

z2i ∼
(i+ 1)2a2n

s2n
≤ 2k2a2n

s2n
=

2k2(m(t))2

s2n

∼ 2k2(ψ(t))2

ψ′(t)n
=

2k2(ψ(t))2√
nψ′(t)

1√
n
= o

( 1√
n

)
, (5.17)

where last step holds under condition (5.12). Hence it holds zi → 0 uniformly in i as
an → ∞, and by Corollary (3.1), µ3/s

3 → 0, then it follows

Ri
n = o

(
1/
√
n
)

Ri+1
n = o

(
1/
√
n
)
,
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then put (5.15) and (5.16) into (5.14), we obtain

p(Xi+1 = yi+1|Sni+1 = nan − Si1) =

√
n− i√

n− i− 1
πan(Xi+1 = yi+1)

φ(zi)

φ(zi−1)

(
1 + o(1/

√
n)
)

=

√
n− i√

n− i− 1
πmi(Xi+1 = yi+1)

(
1− (z2i − z2i−1)/2 + o(z2i − z2i−1)

)(
1 + o(1/

√
n)
)
,

where we use one Taylor expansion in second equality. Using (5.17), we have as an → ∞

|z2i − z2i−1| = o(1/
√
n),

hence we get

p(Xi+1 = yi+1|Sni+1 = nan − Si1) =

√
n− i√

n− i− 1
πan(Xi+1 = yi+1)

(
1 + o(1/

√
n)
)
,

which together with (5.13) yields

p(Xk
1 = yk1 |Sn1 = nan) =

k−1∏

i=0

(
πan(Xi+1 = yi+1)

√
n

n− k

) k−1∏

i=0

(
1 + o

( 1√
n

))

=
(
1 + o

( 1√
n

)) k−1∏

i=0

(
πan(Xi+1 = yi+1)

)
. (5.18)

This completes the proof.

Remark 5.1. The above result shows that asymptotically the point condition (Sn1 = nan)
leaves blocks of k of the X ′is independent. Obviously this property does not hold for large
values of k, close to n. A similar statement holds in the LDP range, conditioning either
on (Sn1 = na) (see Diaconis and Friedman 1988)), or on (Sn1 ≥ na); see Csiszar 1984 for
a general statement on asymptotic conditional independence.

Using the same proof as in Theorem (5.2), we obtain the following corollary.

Corollary 5.1. It holds

pa(y
k
1) = p(Xk

1 = yk1 |Sn1 = nan) = ga(y
k
1)
(
1 + o

( k√
n

))
.

with

ga(y
k
1) =

k∏

i=1

(
πa(Xi = yi)

)
.
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5.2 Strenghtening of the local Gibbs conditional principle

We now turn to a stronger approximation of pan . Consider Y
n
1 with density pan and the

resulting random variable pan (Y1) . We prove the following result

Theorem 5.3. With all the above notation and hypotheses it holds

pan (Y1) = gan (Y1) (1 +Rn)

where
gan = πan

the tilted density at point an , and where Rn is a function of Y n
1 such that Pan (|Rn| > δ

√
n) →

0 as n→ ∞ for any positive δ.

This result is of much greater relevance than the previous ones. Indeed under Pan the
r.v. Y1 may take large values. At the contrary simple approximation of pan by gan on R+

only provides some knowledge on pan on sets with smaller and smaller probability under
pan . Also it will be proved that as a consequence of the above result, the L1 norm between
pan and gan goes to 0 as n→ ∞, a result out of reach through the aforementioned results.

In order to adapt the proof of Theorem *** to the present setting it is necessary to
get some insight on the plausible values of Y1 under Pan . It holds

Lemma 5.2. Under Pan it holds

Y1 = OPan
(an)

Proof: This is a consequence of Markov Inequality:

P (Y1 > u|Sn1 = nan) ≤
E (Y1|Sn1 = nan)

u
=
an
u

which goes to 0 for all u = un such that limn→∞un/an = ∞.

We now turn back to the proof of our result, replacing yk1 by Y1 in (5.14).
It holds

P (X1 = Y1|Sn1 = nan) = P (X1 = Y1)
P (Sn2 = nan − Y1)

P (Sn1 = nan)

in which the tilting substitution of measures is performed, with tilting density πan , followed
by normalization. Now if the growth condition (5.3) holds, namely

lim
n→∞

ψ(t)√
nψ′(t)

= 0
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with m(t) = an it follows that

P (X1 = Y1|Sn1 = nan) = πan (Y1) (1 +Rn)

as claimed where the order of magnitude of Rn is oPan
(1/

√
n). We have proved Theorem

5.3.
Denote the conditional probabilities by Pan and Gan which correspond to the density

functions pan and gan , respectively.

5.3 Gibbs principle in variation norm

We now consider the approximation of Pan by Gan in variation norm.
The main ingredient is the fact that in the present setting approximation of pan by

gan in probability plus some rate implies approximation of the corresponding measures in
variation norm. This approach has been developped in Broniatowski and Caron (2012);
we state a first lemma which states that wether two densities are equivalent in probability
with small relative error when measured according to the first one, then the same holds
under the sampling of the second.

Let Rn and Sn denote two p.m’s on Rn with respective densities rn and sn.

Lemma 5.3. Suppose that for some sequence εn which tends to 0 as n tends to infinity

rn (Y
n
1 ) = sn (Y

n
1 ) (1 + oRn(εn)) (5.19)

as n tends to ∞. Then
sn (Y

n
1 ) = rn (Y

n
1 ) (1 + oSn(εn)) . (5.20)

Proof. Denote

An,εn := {yn1 : (1− εn)sn (y
n
1 ) ≤ rn (y

n
1 ) ≤ sn (y

n
1 ) (1 + εn)} .

It holds for all positive δ
lim
n→∞

Rn (An,δεn) = 1.

Write

Rn (An,δεn) =

∫
1An,δεn

(yn1 )
rn (y

n
1 )

sn(yn1 )
sn(y

n
1 )dy

n
1 .

Since
Rn (An,δεn) ≤ (1 + δεn)Sn (An,δεn)

it follows that
lim
n→∞

Sn (An,δεn) = 1,

which proves the claim.
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Applying this Lemma to the present setting yields

gan (Y1) = pan (Y1)
(
1 + oGan

(
1/
√
n
))

as n→ ∞.
This fact entails, as in [4]

Theorem 5.4. Under all the notation and hypotheses above the total variation norm
between Pan and Gan goes to 0 as n→ ∞.

The proof goes as follows
For all δ > 0, let

Eδ :=

{
y ∈ R :

∣∣∣∣
pan (y)− gan (y)

gan (y)

∣∣∣∣ < δ

}

which
lim
n→∞

Pan (Eδ) = lim
n→∞

Gan (Eδ) = 1. (5.21)

It holds

sup
C∈B(R)

|Pan (C ∩ Eδ)−Gan (C ∩ Eδ)| ≤ δ sup
C∈B(R)

∫

C∩Eδ

gan (y) dy ≤ δ.

By the above result (5.21)

sup
C∈B(R)

|Pan (C ∩ Eδ)− Pan (C)| < ηn

and
sup

C∈B(R)
|Gan (C ∩ Eδ)−Gan (C)| < ηn

for some sequence ηn → 0 ; hence

sup
C∈B(R)

|Pan (C)−Gan (C)| < δ + 2ηn

for all positive δ, which proves the claim.
As a consequence, applying Scheffé’s Lemma

∫
|pan − gan | dx→ 0 as n→ ∞.

Remark 5.2. This result is to be paralleled with Theorem 1.6 in Diaconis and Freedman
[6] and Theorem 2.15 in Dembo and Zeitouni [5] which provide a rate for this convergence
in the LDP range.
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5.4 The asymptotic location of X under the conditioned distri-

bution

This section intends to provide some insight on the behaviour of X1 under the condition
(Sn1 = nan) ; this will be extended further on to the case when (Sn1 ≥ nan) and to be
considered in parallel with similar facts developped in [4] for larger values of an.

It will be seen that conditionally on (Sn1 = nan) the marginal distribution of the sample
concentrates around an. Let Xt be a r.v. with density πan where m(t) = an and an satisfies
(5.3). Recall that EXt = an andVarXt = s2. We evaluate the moment generating function
of the normalized variable (Xt − an) /s. It holds

logE exp λ (Xt − an) /s = −λan/s+ log Φ

(
t+

λ

s

)
− log Φ (t) .

A second order Taylor expansion in the above display yields

logE exp λ (Xt − an) /s =
λ2

2

s2
(
t+ θλ

s

)

s2

where θ = θ(t, λ) ∈ (0, 1) . It holds

Lemma 5.4. Under the above hypotheses and notation, for any compact set K,

lim
n→∞

sup
u∈K

s2
(
t+ u

s

)

s2
= 1.

Proof: Case 1: if h(t) ∈ Rβ. By Theorem 3.1, it holds s2 ∼ ψ′(t) with ψ(t) ∼ t1/βl1(t),
where l(t) is some slowly varying function. And we have also ψ′(t) = 1/h

′(
ψ(t)

)
, hence

by (??) it follows

1

s2
∼ h

′(
ψ(t)

)
= ψ(t)β−1l0

(
ψ(t)

)(
β + ǫ

(
ψ(t)

))

∼ βt1−1/βl1(t)
β−1l0

(
ψ(t)

)
= o(t),

which implies that for any u ∈ K it holds

u

s
= o(t),

s2 (t+ u/s)

s2
∼ ψ′(t + u/s)

ψ′(t)
=

ψ(t)β−1l0
(
ψ(t)

)(
β + ǫ

(
ψ(t)

))
(
ψ(t+ u/s)

)β−1
l0
(
ψ(t + u/s)

)(
β + ǫ

(
ψ(t+ u/s)

))

∼ ψ(t)β−1

ψ(t + u/s)β−1
∼ t1−1/βl1(t)

β−1

(t+ u/s)1−1/βl1(t+ u/s)β−1
−→ 1.
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Case 2: if h(t) ∈ R∞. Then we have in this case ψ(t) ∈ R̃0, hence it holds

1

st
∼ 1

t
√
ψ′(t)

=

√
1

tψ(t)ǫ(t)
−→ 0,

which last step holds from condition (2.7). Hence for any u ∈ K, we get as n→ ∞
u

s
= o(t),

thus using the slowly varying propriety of ψ(t) we have

s2 (t + u/s)

s2
∼ ψ′(t+ u/s)

ψ′(t)
=
ψ(t+ u/s)ǫ(t+ u/s)

t + u/s

t

ψ(t)ǫ(t)

∼ ǫ(t+ u/s)

ǫ(t)
=
ǫ(t) +O

(
ǫ′(t)u/s

)

ǫ(t)
−→ 1,

where we use one Taylor expansion in the second line, and last step holds from condition
(2.6). This completes the proof.

Applying the above Lemma it follows that the normalized r.v’s (Xt − an) /s converge
to a standard normal variable N(0, 1) in distribution, as n→ ∞. This amount to say that

Xt = an + sN(0, 1) + oΠan (1).

Recall that limn→∞ s = 0, which implies that Xt concentrates around an with rate s. Due
to Theorem 5.4 the same holds for X1 under (Sn1 = nan) .

5.5 Differences between Gibbs principle under LDP and under
extreme deviation

It is of interest to confront the present results with the general form of the Gibbs principle
under linear contraints in the LDP range. We recall briefly and somehow unformally the
main classical facts in a simple setting similar as the one used in this paper.

Let X1, .., Xn denote n i.i.d. real valued r.v’s with distribution P and density p and
let f : R → R be a measurable function such that Φf (λ) := E exp λf(X1) is finite for
λ in a non void neighborhood of 0 (the so-called Cramer condition). Denote mf (λ)
and s2f (λ) the first and second derivatives of log Φf(λ). Consider the point set condition

En :=
(
1
n

∑n
i=1 f(Xi) = 0

)
and let Ω be the set of all probability measures on R such that∫

f(x)dQ(x) = 0.
The classical Gibbs conditioning principle writes as follows:
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The limiting distribution P ∗ of X1 conditioned on the family of events En exists and
is defined as the unique minimizer of the Kullback-Leibler distance between P and Ω,
namely

P ∗ = argmin {K(Q,P ), Q ∈ Ω}
where

K(Q,P ) :=

∫
log

dQ

dP
dQ

whenever Q is absolutely continuous w.r.t. P , and K(Q,P ) = ∞ otherwise. Also it can
be proved that P ∗ has a density, which is defined through

p∗(x) =
exp λf(x)

Φf (λ)
p(x)

with λ the unique solution of the equation mf(λ) = 0. Take f(x) = x− a with a fixed to
obtain

p∗(x) = πa(x)

with the current notation of this paper.
Consider now the application of the above result to r.v’s Y1, .., Yn with Yi := (Xi)

2

where the X ′is are i.i.d. and are such that the density of the i.i.d. r.v’s Y ′i s satisfy (2.1)
with all the hypothese stated in this paper. By the Gibbs conditional principle, for fixed a,
conditionally on (

∑n
i=1 Yi = na) the generic r.v. Y1 has a non degenerate limit distribution

p∗Y (y) :=
exp ty

E exp tY1
pY (y)

and the limit density of X1 under (
∑n

i=1X
2
i = na) is

p∗X(y) :=
exp tx2

E exp tX2
1

pX(y)

whereas, when an → ∞ its limit distribution is degenerate and concentrates around an. As
a consequence the distribution of X1 under the condition (

∑n
i=1X

2
i = nan) concentrates

sharply at −√
an and +

√
an.

6 EDP under exceedance

The following proposition states the marginally conditional density under condition An =
{Sn ≥ nan}, we denote this density by pAn to differentiate it from pan which is under
condition {Sn = nan}. For the purpose of proof, we need the following lemma, based
on Theorem 6.2.1 of Jensen [8], to provide one asymptotic estimation of tail probability
P (Sn ≥ nan) and n-convolution density p(Sn/n = u) for u > an.
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Define

I(x) := xm−1(x)− log Φ
(
m−1(x)

)
. (6.1)

Lemma 6.1. X1, ..., Xn are i.i.d. random variables with density p(x) defined in (2.1) and
h(x) ∈ R. Set m(tn) = an. Suppose when n→ ∞, if it holds

ψ(tn)
2

√
nψ′(tn)

−→ 0, (6.2)

then it holds

P (Sn ≥ nan) =
exp(−nI(an))√
2π

√
ntns(tn)

(
1 + o

( 1√
n

))
. (6.3)

Let further

Hn(u) :=

√
n exp

(
− nI(u)

)
√
2πs(tu)

It then holds

sup
u>an

p(Sn/n = u)

Hn(u)
= 1 + o

(
1/
√
n
)
. (6.4)

Proof: For the density p(x) defined in (2.1), we show g(x) is convex when x is large
enough. If h(x) ∈ Rβ, it holds for x large enough

g
′′
(x) = h

′
(x) =

h(x)

x

(
β + ǫ(x)

)
> 0. (6.5)

If h(x) ∈ R∞, its reciprocal function ψ(x) ∈ R̃0. Set x = ψ(u), hence we have for x large
enough

g
′′
(x) = h

′
(x) =

1

ψ′(u)
=

u

ψ(u)ǫ(u)
> 0, (6.6)

where the inequality holds since ǫ(u) > 0 under condition (2.7) when u is large enough.
(6.5) and (6.6) imply that g(x) is convex for x large enough.

Therefore, the density p(x) with h(x) ∈ R satisfies the conditions of Jensen’s Theorem
6.2.1 ([8]). Denote by pn the density of X̄ = (X1 + ...+Xn)/n. We obtain with the third
order’s Edgeworth expansion from formula (2.2.6) of ([8])

P (Sn ≥ nan) =
Φ(tn)

n exp(−ntnan)√
ntns(tn)

(
B0(λn) +O

( µ3(tn)

6
√
ns3(tn)

B3(λn)
))
, (6.7)
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where λn =
√
ntns(tn), B0(λn) and B3(λn) are defined by

B0(λn) =
1√
2π

(
1− 1

λ2n
+ o(

1

λ2n
)
)
, B3(λn) ∼ − 3√

2πλn
.

We show, under condition (6.2), it holds as an → ∞
1

λ2n
= o

(1
n

)
. (6.8)

Since n/λ2n = 1/(t2ns
2(tn)), (6.8) is equivalent to show

t2ns
2(tn) −→ ∞. (6.9)

By Theorem 3.1, m(tn) ∼ ψ(tn) and s
2(tn) ∼ ψ′(tn), combined with (??), it holds tn ∼

h(an).
If h ∈ Rβ, notice that it holds

ψ′(tn) =
1

h′(ψ(tn))
=

ψ(tn)

h
(
ψ(tn)

)(
β + ǫ(ψ(tn))

) ∼ an

h(an)
(
β + ǫ(ψ(tn))

) ,

hence we have

t2ns
2(tn) ∼ h(an)

2 an

h(an)
(
β + ǫ(ψ(tn))

) =
anh(an)

β + ǫ(ψ(tn))
−→ ∞. (6.10)

If h ∈ R∞, then ψ(tn) ∈ R̃0, thus it follows

t2ns
2(tn) ∼ t2n

ψ(tn)ǫ(tn)

tn
= tnψ(tn)ǫ(tn) −→ ∞, (6.11)

where last step holds from condition (2.7). We have showed (6.8) , therefore it holds

B0(λn) =
1√
2π

(
1 + o(

1

n
)
)
.

By (6.9), λn goes to ∞ as an → ∞, which implies further B3(λn) → 0. On the other
hand, by (3.1) it holds µ3/s

3 → 0. Hence we obtain from (6.7)

P (Sn ≥ nan) =
Φ(tn)

n exp(−ntnan)√
2πntns(tn)

(
1 + o

( 1√
n

))
,

which together with (6.1) gives (6.3).
By Jensen’s Theorem 6.2.1 ([8]) and formula (2.2.4) in[8] it follows that

p(Sn = nan) =

√
nΦ(tn)

n exp(−ntnan)√
2πs(tn)

(
1 + o

( 1√
n

))
,

which, together with (6.1), gives (6.4).
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Proposition 6.1. X1, ..., Xn are i.i.d. random variables with density p(x) defined in (2.1)
and h(x) ∈ R. Suppose when n→ ∞, if it holds

ψ(tn)
2

√
nψ′(tn)

−→ 0, (6.12)

and

ηn → 0,
log n

nh(an)ηn
→ ∞, (6.13)

then

pAn(y1) = p(X1 = y1|Sn ≥ nan) = gAn(y1)
(
1 + o

( 1√
n

))
,

where gAn(y1) = ntns(tn)e
nI(an)

∫ an+ηn
an

gτ (y1) exp
(
−nI(τ)− log s(tτ )

)
dτ , gτ (y1) is defined

as gan(y1) in Theorem (5.1) on replacing an by τ .

Proof: We can denote pAn(y1) by the integration of pan(y1)

pAn(y1) =

∫ ∞

an

p(X1 = y1|Sn = nτ)p(Sn = nτ |Sn ≥ nan)dτ

= p(X1 = y1)

∫∞
an
p(Sn2 = nτ − y1)dτ

p(Sn ≥ nan)

=
p(X1 = y1)

p(Sn ≥ nan)
P1

(
1 +

P2

P1

)
,

where the second equality is obtained by Bayes formula, and P1 =
∫ an+ηn
an

p(Sn2 = nτ −
y1)dτ , P2 =

∫∞
an+ηn

p(Sn2 = nτ − y1)dτ , S
n
2 = X2 + ... + Xn. In fact P2 is one infinitely

small term with respect to P1, which is proved below. Further we have

P2 =
1

n
P
(
Sn2 ≥ n(an + η)− y1

)
=

1

n
P
(
Sn2 ≥ (n− 1)cn

)
,

P1 + P2 =
1

n
P
(
Sn2 ≥ nan − y1

)
=

1

n
P
(
Sn2 ≥ (n− 1)dn

)
,

where cn =
(
n(an+ ηn)− y1

)
/(n− 1) and dn = (nan− y1)/(n− 1). Denote tcn = m−1(cn)

and tdn = m−1(dn). Using Lemma (6.1), it holds

P2

P1 + P2
=

(
1 + o

( 1√
n

))tdns(tdn)
tcns(tcn)

exp
(
− (n− 1)

(
I(cn)− I(dn)

))
, (6.14)
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Using the convexity of the function I, it holds

exp
(
− (n− 1)

(
I(cn)− I(dn)

))
≤ exp

(
− (n− 1)(cn − dn)m

−1(dn)
))

= exp
(
− nηnm

−1(dn)
)

Consider u → m−1(u) is increasing, since dn ≤ an as an → ∞, it holds m−1(dn) ≥
m−1(an), hence we get

exp
(
− (n− 1)

(
I(cn)− I(dn)

))
≤ exp

(
− nηnm

−1(an)
)
. (6.15)

Using Theorem 3.1, we have m−1(an) ∼ ψ−1(an) = h(an), thus under condition (6.13) it
holds as an → ∞

exp
(
− (n− 1)

(
I(cn)− I(dn)

))
−→ 0.

Then we show it holds

tdns(tdn)

tcns(tcn)
−→ 1. (6.16)

By definition, cn/dn → 1 as an → ∞. if h ∈ Rβ, by (6.10), it holds

(tdns(tdn)
tcns(tcn)

)2

∼
( dnh(dn)

β + ǫ
(
ψ(dn)

)
)2(β + ǫ

(
ψ(cn)

)

cnh(cn)

)2

∼
(h(dn)
h(cn)

)2

−→ 1. (6.17)

If h ∈ R∞, notice the function t → tψ(t)ǫ(t) is increasing and continuous as t large
enough. By (6.11), it holds

t2s2(t) ∼ tψ(t)ǫ(t), (6.18)

consider dn → cn as n→ ∞, hence we have

(tdns(tdn)
tcns(tcn)

)2

∼ dnψ(dn)ǫ(dn)

cnψ(cn)ǫ(cn)
−→ 1. (6.19)

Using (6.14), (6.15) and (6.16), we obtain

P2

P1 + P2
≤ 2 exp

(
− nm−1(an)ηn

)
,

which, together with condition (6.13), it holds

P2

P1

= o
( 1√

n

)
.
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Therefore we can approximate pAn(y1) by

pAn(y1) =
(
1 + o

( 1√
n

)) ∫ an+ηn

an

p(X1 = y1|Sn = nτ)p(Sn = nτ |Sn ≥ nan)dτ. (6.20)

According to Lemma 6.1, it follows when τ ∈ [an, an + ηn]

p(Sn = nτ |Sn ≥ nan) =
(
1 + o

( 1√
n

))nm−1(an)s(tn)
s(tτ )

exp
(
− n(I(τ)− I(an))

)
, (6.21)

where m(tn) = an, m(tτ ) = τ . Inserting (6.20) into (6.21), we obtain

pAn(y1) =
(
1 + o

( 1√
n

))
ntns(tn)e

nI(an)

∫ an+ηn

an

gτ (y1) exp
(
− nI(τ)− log s(tτ )

)
dτ,

this completes the proof.

7 Appendix

For density functions p(x) defined in (2.1) satisfying also h(x) ∈ R, denote by ψ(x) the

reciprocal function of h(x) and σ2(v) =
(
h′(v)

)−1
, v ∈ R+. For brevity, we write x̂, σ, l

instead of x̂(t), σ
(
ψ(t)

)
, l(t).

When t is given, K(x, t) attain its maximum at x̂ = ψ(t). The fourth order Taylor
expansion of K(x, t) on x ∈ [x̂− σl, x̂+ σl] yields

K(x, t) = K(x̂, t)− 1

2
h′(x̂)

(
x− x̂

)2 − 1

6
h′′(x̂)

(
x− x̂

)3
+ ǫ(x, t), (7.1)

with some θ ∈ [0, 1]

ǫ(x, t) = − 1

24
h

′′′(
x̂+ θ(x− x̂)

)
(x− x̂)4. (7.2)

Lemma 7.1. For p(x) in (2.1), h(x) ∈ R, it holds when t→ ∞,

| logσ
(
ψ(t)

)
|

∫ t
1
ψ(u)du

−→ 0. (7.3)

Proof: If h(x) ∈ Rβ, by Theorem (1.5.12) of [1], there exists some slowly varying
function such that it holds ψ(x) ∼ x1/βl1(x). Hence it holds as t→ ∞(see [7], Chapter 8)

∫ t

1

ψ(u)du ∼ t1+
1

α l1(t). (7.4)
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On the other hand, h′(x) = xβ−1l(x)
(
β + ǫ(x)

)
, thus we have as x→ ∞

| log σ(x)| =
∣∣ log

(
h′(x)

)− 1

2

∣∣ =
∣∣∣1
2

(
(β − 1) logx+ log l(x) + log(β + ǫ(x))

)∣∣∣

≤ 1

2
(β + 1) log x,

set x = ψ(t), then when t→ ∞, it holds x < 2t1/βl1(t) < t1/β+1, hence we have

| log σ
(
ψ(t)

)
| < (β + 1)2

2β
log t,

which, together with (7.4), yields (7.22).

If h(x) ∈ R∞, then by definition ψ(x) ∈ R̃0 is slowly varying as x → ∞. Hence it
holds as t→ ∞(see [7], Chapter 8)

∫ t

1

ψ(u)du ∼ tψ(t). (7.5)

And now we have h′(x) = 1/ψ′(v) with x = ψ(v). Therefore it follows

| log σ(x)| =
∣∣ log

(
h′(x)

)− 1

2

∣∣ = 1

2
| logψ′(v)|,

Set x = ψ(t), then v = t, consider ψ(t) ∈ R̃0, thus we have

| log σ
(
ψ(t)

)
| = 1

2
| logψ′(t)| = 1

2

∣∣∣ log
(
ψ(t)

ǫ(t)

t

)∣∣∣

=
1

2

∣∣ logψ(t) + log ǫ(t)− log t
∣∣

≤ log t +
1

2
| log ǫ(t)| ≤ 2 log t, (7.6)

where last inequality follows from (2.6). (7.5) and (7.6) imply (7.22). This completes the
proof.

Lemma 7.2. For p(x) in (2.1), h ∈ R, then for any varying slowly function l(t) → ∞
as t→ ∞, it holds

sup
|x|≤σl

h′′′(x̂+ x)σ4l4 −→ 0 as t→ ∞. (7.7)

Proof: Case 1: h ∈ Rβ. We have h(x) = xβl0(x), l0(x) ∈ R0, β > 0. Hence it holds

h
′′
(x) = β(β − 1)xβ−2l0(x) + 2βxβ−1l

′

0(x) + xβl
′′

0 (x). (7.8)
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and

h
′′′
(x) = β(β − 1)(β − 2)xβ−3l0(x) + 3β(β − 1)xβ−2l

′

0(x) + 3βxβ−1l
′′

0 (x) + xβl
′′′

0 (x).
(7.9)

Consider l(x) ∈ R0, it is easy to obtain

l
′

0(x) =
l0(x)

x
ǫ(x), l

′′

0 (x) =
l0(x)

x2
(
ǫ2(x) + xǫ′(x)− ǫ(x)

)
, (7.10)

and

l
′′′

0 (x) =
l0(x)

x3
(
ǫ3(x) + 3xǫ′(x)ǫ(x)− 3ǫ2(x)− 2xǫ

′
(x) + 2ǫ(x) + x2ǫ

′′
(x)

)
.

Under condition (2.5), there exists some positive constant Q such that it holds

|l′′0 (x)| ≤ Q
l0(x)

x2
, |l′′′0 (x)| ≤ Q

l0(x)

x3
,

which, together with (7.9), yields with some positive constant Q1

|h′′′
(x)| ≤ Q1

h(x)

x3
. (7.11)

By definition, we have σ2(x) = 1/h
′
(x) = x/

(
h(x)(β + ǫ(x))

)
, thus it follows

σ2 = σ2(x̂) =
x̂

h(x̂)(β + ǫ(x̂))
=

ψ(t)

t(β + ǫ(ψ(t)))
=
ψ(t)

βt

(
1 + o(1)

)
, (7.12)

this implies σl = o(ψ(t)) = o(x̂). Thus we get with (7.11)

sup
|x|≤σl

|h′′′
(x̂+ x)| ≤ sup

|x|≤σl
Q1

h(x̂+ x)

(x̂+ x)3
≤ Q2

t

ψ3(t)
, (7.13)

where Q2 is some positive constant. Combined with (7.12), we obtain

sup
|x|≤σl

|h′′′
(x̂+ x)|σ4l4 ≤ Q2

t

ψ3(t)
σ4l4 =

Q2l
4

β2tψ(t)
−→ 0,

as sought.
Case 2: h ∈ R∞. Since x̂ = ψ(t), we have h(x̂) = t. Thus it holds

h′(x̂) =
1

ψ′(t)
and h′′(x̂) = − ψ′′(t)

(
ψ′(t)

)3 , (7.14)
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further we get

h′′′(x̂) = −ψ
′′′
(t)ψ

′
(t)− 3

(
ψ

′′
(t)

)2
(
ψ′(t)

)4 . (7.15)

Notice if h(x̂) ∈ R∞, then ψ(t) ∈ R̃0. Therefore we obtain

ψ
′
(t) =

ψ(t)

t
ǫ(t), (7.16)

and

ψ
′′
(t) = −ψ(t)

t2
ǫ(t)

(
1− ǫ(t)− tǫ

′
(t)

ǫ(t)

)

= −ψ(t)
t2

ǫ(t)
(
1 + o(1)

)
as t→ ∞, (7.17)

where last equality holds from (2.6). Using (2.6) once again, we have also ψ
′′′
(t)

ψ
′′′
(t) =

ψ(t)

t3
ǫ(t)

(
2 + ǫ2(t) + 3tǫ

′
(t)− 3ǫ(t)− 2tǫ

′
(t)

ǫ(t)
+
t2ǫ

′′
(t)

ǫ(t)

)

=
ψ(t)

t3
ǫ(t)

(
2 + o(1)

)
as t→ ∞. (7.18)

Put (7.16) (7.17) and (7.18) into (7.15) we get

h
′′′
(x̂) =

1

ψ2(t)ǫ2(t)

(
1 + o(1)

)

Thus by (2.7) it holds as t→ ∞

sup
|v|≤t/4

h′′′
(
ψ(t + v)

)
= sup
|v|≤t/4

1

ψ2(t+ v)ǫ2(t+ v)

(
1 + o(1)

)

≤ sup
|v|≤t/4

2
√
t + v

ψ2(t+ v)
≤ 3

√
t

ψ2(t)
, (7.19)

where last inequality holds from the slowly varying propriety: ψ(t + v) ∼ ψ(t). Using

σ =
(
h

′
(x̂)

)−1/2
, it holds

sup
|v|≤t/4

h
′′′(
ψ(t+ v)

)
σ4 ≤ 3

√
t

ψ2(t)

1

(h′(x̂))2
=

3
√
t

ψ2(t)

ψ2(t)ǫ2(t)

t2
=

3ǫ2(t)

t3/2
−→ 0,
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where ǫ(t) → 0 and ψ(t) varies slowly. Hence for any slowly varying function l(t) → ∞ it
holds as t→ ∞

sup
|v|≤t/4

h
′′′(
ψ(t + v)

)
σ4l4 −→ 0.

Consider ψ(t) ∈ R̃0, thus ψ(t) is increasing, we have the relation

sup
|v|≤t/4

h
′′′(
ψ(t+ v)

)
= sup
|ζ|≤[ζ1,ζ2]

h
′′′
(x̂+ ζ),

where

ζ1 = ψ(3t/4)− x̂, ζ2 = ψ(5t/4)− x̂.

Hence we have showed

sup
|ζ|≤[ζ1,ζ2]

h
′′′
(x̂+ ζ)σ4l4 −→ 0.

For completing the proof, it remains to show

σl ≤ min(|ζ1|, ζ2) as t→ ∞. (7.20)

Perform first order Taylor expansion of ψ(3t/4) at t, for some α ∈ [0, 1], it holds

ζ1 = ψ(3t/4)− x̂ = ψ(3t/4)− ψ(t) = −ψ′(
t− αt/4

) t
4
= −ψ

(
t− αt/4

)

4− α
ǫ
(
t− αt/4

)
,

thus using (2.7) and slowly varying propriety of ψ(t) we get as t→ ∞

|ζ1| ≥
ψ
(
t− αt/4

)

4
ǫ
(
t− αt/4

)
≥ ψ(t)

5
ǫ
(
t− αt/4

)
≥ ψ(t)

5t1/4
. (7.21)

On the other hand, we have σ =
(
h

′
(x̂)

)−1/2
=

(
ψ(t)ǫ(t)/t

)1/2
, which, together with

(7.21), yields

σ

|ζ1|
≤ 5

√
ǫ(t)

ψ(t)
√
t
−→ 0 as t→ ∞,

which implies for any slowly varying function l(t) it holds σl = o(|ζ1|). By the same way,
it is easy to show σl = o(ζ2). Hence (7.20) holds, as sought.

34



Lemma 7.3. For p(x) in (2.1), h ∈ R, then for any varying slowly function l(t) → ∞
as t→ ∞, it holds

sup
|x|≤σl

h′′′(x̂+ x)

h′′(x̂)
σl −→ 0 as t→ ∞. (7.22)

and

h
′′
(x̂)σ3l −→ 0. (7.23)

Proof: Case 1: Using (7.8) and (7.10), we get h
′′
(x) =

(
β(β − 1) + o(1)

)
xβ−2l0(x) as

x→ ∞, where l0(x) ∈ R0. Hence it holds

h
′′
(x̂) =

(
β(β − 1) + o(1)

)
ψ(t)β−2l0(ψ(t)), (7.24)

which, together with (7.12) and (7.13), yields with some positive constant Q3

sup
|x|≤σl

∣∣∣h
′′′(x̂+ x)

h′′(x̂)
σl
∣∣∣ ≤ Q3

t

ψ3(t)

1

ψ(t)β−2l0(ψ(t))

√
ψ(t)

βt
l =

Q3√
β

√
t

ψ(t)β+1/2l0(ψ(t))
l.

Notice ψ(t) ∼ t1/βl1(t) for some slowly varying function l1(t), then it holds
√
tl =

o
(
ψ(t)β+1/2

)
. Hence we get (7.22).

From (7.12) and (7.24), we obtain as t→ ∞

h
′′
(x̂)σ3l =

(
β(β − 1) + o(1)

)
ψ(t)β−2l0(ψ(t))

(ψ(t)
βt

)3/2

l

=
(
β(β − 1) + o(1)

)ψ(t)β−1/2
β3/2t3/2

l0(ψ(t))l ≤
1√
t
, (7.25)

where last inequality holds since ψ(t)β−1/2/t3/2 ∼ l1(t)
β−1/2/t1/2+1/2β as t → ∞. This

implies (7.23) holds.
Case 2: Using (7.14) and (7.17) we obtain

h′′(x̂) = − ψ′′(t)
(
ψ′(t)

)3 =
t

ψ2(t)ǫ2(t)

(
1 + o(1)

)
. (7.26)

Combine (7.19) and (7.26), using σ =
(
h

′
(x̂)

)−1/2
, we have as t→ ∞

sup
|v|≤t/4

h
′′′(
ψ(t + v)

)

h′′(x̂)
σ ≤ 4ǫ2(t)√

t

1√
h′(x̂)

=
4ǫ(t)5/2

√
ψ(t)

t
→ 0,
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where ǫ(t) → 0 and ψ(t) varies slowly. Hence for arbitrarily slowly varying function l(t)
it holds as t→ ∞

sup
|v|≤t/4

h
′′′(
ψ(t+ v)

)

h′′(x̂)
σl −→ 0.

Define ζ1, ζ2 as in Lemma 7.2, we have showed

sup
|ζ|≤[ζ1,ζ2]

h
′′′
(x̂+ ζ)

h′′(x̂)
σl −→ 0.

(7.22) is obtained by using (7.20). Using (7.26), for any slowly varying function, it holds

h
′′
(x̂)σ3l =

l√
ψ(t)ǫ(t)t

−→ 0.

Hence the proof.

Lemma 7.4. For p(x) in (2.1), h ∈ R, then for any slowly varying function l(t) → ∞
as t→ ∞ such that it holds

sup
y∈[−l,l]

|ξ(σy + x̂, t)|
h′′(x̂)σ3

−→ 0,

where ξ(x, t) = ǫ(x, t) + q(x).

Proof: For y ∈ [−l, l], by (7.2) and Lemma 7.3 it holds as t→ ∞
|ǫ(σy + x̂, t)|
h′′(x̂)σ3

≤ sup
|x|≤σl

∣∣∣h
′′′(x̂+ x)

h′′(x̂)

∣∣∣σl −→ 0. (7.27)

Under condition (2.2), set x = ψ(t), we get

sup
|v−ψ(t)|≤ϑψ(t)

|q(v)| ≤ 1√
tψ(t)

,

and it holds for any slowly varying function l(t) as t→ ∞

σl

ϑψ(t)
=

√
ψ′(t)l

ϑψ(t)
=

√
ǫ(t)

tψ(t)

l

ϑ
−→ 0,

hence we obtain

sup
|v−ψ(t)|≤σl

|q(v)| ≤ 1√
tψ(t)

.

Using this inequality and (7.26), when y ∈ [−l, l], it holds as t→ ∞
|q(σy + x̂)|
h′′(x̂)σ3

= |q(σy + x̂)|
√
ψ(t)ǫ(t)t ≤ sup

|v−ψ(t)|≤σl
|q(v)|

√
ψ(t)ǫ(t)t ≤

√
ǫ(t) → 0,

which, together with (7.27), completes the proof.
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Lemma 7.5. For p(x) belonging to (2.1), h(x) ∈ R, α ∈ N, denote by

Ψ(t, α) :=

∫ ∞

0

(x− x̂)αetxp(x)dx,

then there exists some slowly varying function l(t) such that it holds as t→ ∞

Ψ(t, α) = cσα+1eK(x̂,t)T1(t, α)
(
1 + o(1)

)
,

where

T1(t, α) =

∫ l1/3√
2

− l1/3√
2

yα exp
(
− y2

2

)
dy − h

′′
(x̂)σ3

6

∫ l1/3√
2

− l1/3√
2

y3+α exp
(
− y2

2

)
dy.

Proof: By Lemma 7.2, for any slowly varying function l(t) it holds as t→ ∞

sup
|x−x̂|≤σl

|ǫ(x, t)| → 0.

Given a slowly varying function l with l(t) → ∞ and define the interval It as follows

It :=
(
− l1/3σ√

2
,
l1/3σ√

2

)
.

For large enough τ , when t→ ∞ we can partition R+ as

R+ = {x : 0 < x < τ} ∪ {x : x ∈ x̂+ It} ∪ {x : x ≥ τ, x /∈ x̂+ It},

where τ large enough such that it holds for x > τ

p(x) < 2ce−g(x). (7.28)

Obviously, for fixed τ , {x : 0 < x < τ} ∩ {x : x ∈ x̂+ It} = Ø since for large t we have
min

(
x : x ∈ x̂+ It

)
→ ∞ as t→ ∞. Hence it holds

Ψ(t, α) =

∫ τ

0

(x− x̂)αetxp(x)dx+

∫

x∈x̂+It
(x− x̂)αetxp(x)dx+

∫

x/∈x̂+It,x>τ
(x− x̂)αetxp(x)dx

:= Ψ1(t, α) + Ψ2(t, α) + Ψ3(t, α). (7.29)

We estimate sequentially Ψ1(t, α),Ψ2(t, α),Ψ3(t, α) in Step 1, Step 2 and Step 3.
Step 1: Using (7.28), for τ large enough, we have

|Ψ1(t, α)| ≤
∫ τ

0

|x− x̂|αetxp(x)dx ≤ 2c

∫ τ

0

|x− x̂|αetx−g(x)dx

≤ 2c

∫ τ

0

x̂αetxdx ≤ 2ct−1x̂αetτ . (7.30)
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We show it holds for h ∈ R as t→ ∞
t−1x̂αetτ = o(σα+1eK(x̂,t)h

′′
(x̂)σ3). (7.31)

(7.31) is equivalent to

σ−α−4t−1x̂αetτ
(
h

′′
(x̂)

)−1
= o(eK(x̂,t)),

which is implied by

exp
(
− (α + 4) log σ − log t + α log x̂+ τt− log h

′′
(x̂)

)
= o(eK(x̂,t)).

By Lemma (7.1), we know log σ = o(eK(x̂,t)) as t→ ∞. So it remains to show t = o(eK(x̂,t)),
log x̂ = o(eK(x̂,t)) and log h

′′
(x̂) = o(eK(x̂,t)). Since x̂ = ψ(t), it holds

K(x̂, t) = tψ(t)− g(ψ(t)) =

∫ t

1

ψ(u)du+ ψ(1)− g(1), (7.32)

where the second equality can be easily verified by the change of variable u = h(v).
If h(x) ∈ Rβ, by Theorem (1.5.12) of [1], it holds ψ(x) ∼ x1/βl1(x) with some slowly

varying function l1(x). (7.4) and (7.32) yield t = o(eK(x̂,t)). In addition, log x̂ = logψ(t) ∼
(1/β) log t = o(eK(x̂,t)). By (7.24), it holds log h

′′
(x̂) = o(t). Thus (7.31) holds.

If h(x) ∈ R∞, ψ(x) ∈ R̃0 is slowly varying as x → ∞. Therefore, by (7.5) and
(7.32), it holds t = o(eK(x̂,t)) and log x̂ = logψ(t) = o(eK(x̂,t)). Using (7.26), we have
log h

′′
(x̂) ∼ log t− 2 log x̂− 2 log ǫ(t). Under condition (2.7), log ǫ(t) = o(t), thus it holds

log h
′′
(x̂) = o(t). We get (7.31).

(7.30) and (7.31) yield together

|Ψ1(t, α)| = o(σα+1eK(x̂,t)h
′′
(x̂)σ3). (7.33)

Step 2: Notice min
(
x : x ∈ x̂ + It

)
→ ∞ as t → ∞, which implies both ǫ(x, t) and

q(x) go to 0 when x ∈ x̂+ It. Using (2.1) and (7.1), then it holds as t→ ∞

Ψ2(t, α) =

∫

x∈x̂+It
(x− x̂)αc exp

(
K(x, t) + q(x)

)
dx

=

∫

x∈x̂+It
(x− x̂)αc exp

(
K(x̂, t)− 1

2
h′(x̂)

(
x− x̂

)2

− 1

6
h′′(x̂)

(
x− x̂

)3
+ ξ(x, t)

)
dx,

where ξ(x, t) = ǫ(x, t) + q(x). Make the change of variable y = (x− x̂)/σ, it holds

Ψ2(t, α) = cσα+1 exp
(
K(x̂, t)

) ∫ l1/3√
2

− l1/3√
2

yα exp
(
− y2

2
− h

′′
(x̂)σ3

6
y3 + ξ(σy + x̂, t)

)
dy.

(7.34)
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On y ∈
(
− l1/3/

√
2, l1/3/

√
2
)
, by (7.23), |h′′

(x̂)σ3y3| ≤ |h′′
(x̂)σ3l| → 0 as t→ ∞. Perform

the first order Taylor expansion, it holds as t→ ∞

exp
(
− h

′′
(x̂)σ3

6
y3 + ξ(σy + x̂, t)

)
= 1− h

′′
(x̂)σ3

6
y3 + ξ(σy + x̂, t) + o1(t, y),

where

o1(t, y) = o
(
− h

′′
(x̂)σ3

6
y3 + ξ(σy + x̂, t)

)
.

Hence we obtain

∫ l1/3√
2

− l1/3√
2

yα exp
(
− y2

2
− h

′′
(x̂)σ3

6
y3 + ξ(σy + x̂, t)

)
dy

=

∫ l1/3√
2

− l1/3√
2

(
1− h

′′
(x̂)σ3

6
y3 + ξ(σy + x̂, t) + o1(t, y)

)
yα exp

(
− y2

2

)
dy

=

∫ l1/3√
2

− l1/3√
2

yα exp
(
− y2

2

)
dy − h

′′
(x̂)σ3

6

∫ l1/3√
2

− l1/3√
2

y3+α exp
(
− y2

2

)
dy

+

∫ l1/3√
2

− l1/3√
2

(
ξ(σy + x̂, t) + o1(t, y)

)
yα exp

(
− y2

2

)
dy.

Define T1(t, α) and T2(t, α) as follows

T1(t, α) =

∫ l1/3√
2

− l1/3√
2

yα exp
(
− y2

2

)
dy − h

′′
(x̂)σ3

6

∫ l1/3√
2

− l1/3√
2

y3+α exp
(
− y2

2

)
dy,

T2(t, α) =

∫ l1/3√
2

− l1/3√
2

(
ξ(σy + x̂, t) + o1(t, y)

)
yα exp

(
− y2

2

)
dy. (7.35)
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As for T2(t, α), it holds

|T2(t, α)| ≤
∫ l1/3√

2

− l1/3√
2

(
|ξ(σy + x̂, t)|+ |o1(t, y)|

)
|y|α exp

(
− y2

2

)
dy

≤ sup
y∈[−l,l]

|ξ(σy + x̂, t)|
∫ l1/3√

2

− l1/3√
2

|y|α exp
(
− y2

2

)
dy +

∫ l1/3√
2

− l1/3√
2

|o1(t, y)||y|α exp
(
− y2

2

)
dy

≤ sup
y∈[−l,l]

|ξ(σy + x̂, t)|
∫ l1/3√

2

− l1/3√
2

|y|α exp
(
− y2

2

)
dy

+

∫ l1/3√
2

− l1/3√
2

(∣∣o
(h′′

(x̂)σ3

6
y3
)∣∣+

∣∣o
(
ξ(σy + x̂, t)

)∣∣
)
|y|α exp

(
− y2

2

)
dy

≤ 2 sup
y∈[−l,l]

|ξ(σy + x̂, t)|
∫ l1/3√

2

− l1/3√
2

|y|α exp
(
− y2

2

)
dy + |o(h′′

(x̂)σ3)|
∫ l1/3√

2

− l1/3√
2

|y|3+α exp
(
− y2

2

)
dy

= |o(h′′
(x̂)σ3)|

(∫ l1/3√
2

− l1/3√
2

|y|α exp
(
− y2

2

)
dy +

∫ l1/3√
2

− l1/3√
2

|y|3+α exp
(
− y2

2

)
dy

)
,

where last equality holds from Lemma 7.4. Since the integrals in the last equality are
both bounded, it holds as t→ ∞

T2(t, α) = o(h
′′
(x̂)σ3).

When α is even, the second term of T1(t, α) vanishes. When α is odd, the first term of
T1(t, α) vanishes. Obviously, T1(t, α) is at least the same order than h

′′
(x̂)σ3. Therefore

it follows as t→ ∞

T2(t, α) = o(T1(t, α)). (7.36)

Using (7.34), (7.35) and (7.36) we get

Ψ2(t, α) = cσα+1 exp
(
K(x̂, t)

)
T1(t, α)

(
1 + o(1)

)
. (7.37)

Step 3: Given h ∈ R, for any t, K(x, t) as a function of x (x > τ) is concave since

K ′′(x, t) = −h′(x) < 0.

Thus we get for x /∈ x̂+ It and x > τ

K(x, t)−K(x̂, t) ≤
K(x̂+ l1/3σ√

2
sgn(x− x̂), t)−K(x̂, t)

l1/3σ√
2
sgn(x− x̂)

(x− x̂), (7.38)
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where

sgn(x− x̂) =

{
1 if x ≥ x̂,

−1 if x < x̂.

Using (7.1), we get

K(x̂+
l1/3σ√

2
sgn(x− x̂), t)−K(x̂, t) ≤ −1

8
h′(x̂)l2/3σ2 = −1

8
l2/3,

which, combined with (7.38), yields

K(x, t)−K(x̂, t) ≤ −
√
2

8
l1/3σ−1|x− x̂|.

We obtain

|Ψ3(t, α)| ≤ 2c

∫

x/∈x̂+It,x>τ
|x− x̂|α exp

(
K(x, t)

)
dx

≤ 2c

∫

|x−x̂|> l1/3σ√
2

|x− x̂|α exp
(
K(x, t)

)
dx

≤ 2ceK(x̂,t)

∫

|x−x̂|> l1/3σ√
2

|x− x̂|α exp
(
−

√
2

8
l1/3σ−1|x− x̂|

)
dx

= 2ceK(x̂,t)σα+1

∫

|y|> l1/3√
2

|y|α exp
(
−

√
2

8
l1/3|y|

)
dy

= 2ceK(x̂,t)σα+1

∫

|y|> l1/3√
2

exp
(
−

√
2

8
l1/3|y|+ α log |y|

)
dy

= 2ceK(x̂,t)σα+1
(
2e−l

2/3/8
(
1 + o(1)

))
,

where last equality holds when l → ∞ (see e.g. Theorem 4.12.10 of [1]). With (7.37), we
obtain

∣∣∣Ψ3(t, α)

Ψ2(t, α)

∣∣∣ ≤ 8e−l
2/3/8

|T1(t, α)|
.

In Step 2, we know T1(t, α) has at least the order h
′′
(x̂)σ3. Hence there exists some

positive constant Q and l2(t) → ∞ such that it holds as t→ ∞
∣∣∣Ψ3(t, α)

Ψ2(t, α)

∣∣∣ ≤ Qe−l
2/3
2

/8

h′′(x̂)σ3
.
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For example, we can take l2(t) = (log t)3.
If h ∈ Rβ, by (7.25), it is easy to know h

′′
(x̂)σ3 ≥ 1/t1+1/(2β), thus we have

∣∣∣Ψ3(t, α)

Ψ2(t, α)

∣∣∣ ≤ Q exp
(
− l

2/3
2 /8 + (1 + 1/(2β)) log t

)
−→ 0.

If h ∈ R∞, using (7.26), then it holds as t→ ∞
∣∣∣Ψ3(t, α)

Ψ2(t, α)

∣∣∣ ≤ 2Q exp
(
− l

2/3
2 /8 + log

√
tψ(t)ǫ(t)

)

= 2Q exp
(
− l

2/3
2 /8 + (1/2)

(
log t+ logψ(t) + log ǫ(t)

))

−→ 0, (7.39)

where last line holds since logψ(t) = O(log t). The proof is completed by combining
(7.29), (7.33), (7.37) and (7.39).

Proof of Theorem 3.1: By Lemma 7.5, if α = 0, it holds T1(t, 0) ∼
√
2π as t→ ∞,

hence for p(x) defined in (2.1), we can approximate X ’s moment generating function Φ(t)

Φ(t) =

∫ ∞

0

etxp(x)dx = c
√
2πσeK(x̂,t)

(
1 + o(1)

)
. (7.40)

If α = 1, it holds as t→ ∞,

T1(t, 1) = −h
′′
(x̂)σ3

6

∫ l1/3√
2

− l1/3√
2

y4 exp
(
− y2

2

)
dy = −

√
2πh

′′
(x̂)σ3

2

(
1 + o(1)

)
,

hence we have with Ψ(t, α) defined in Lemma 7.5

Ψ(t, 1) = −c
√
2πσ2eK(x̂,t)h

′′
(x̂)σ3

2

(
1 + o(1)

)
= −Φ(t)

h
′′
(x̂)σ4

2

(
1 + o(1)

)
, (7.41)

which, together with the definition of Ψ(t, α), yields

∫ ∞

0

xetxp(x)dx = Ψ(t, 1) + x̂Φ(t) =
(
x̂− h

′′
(x̂)σ4

2

(
1 + o(1)

))
Φ(t). (7.42)

Hence we get

m(t) =
d log Φ(t)

dt
=

∫∞
0
xetxp(x)dx

Φ(t)
= x̂− h

′′
(x̂)σ4

2

(
1 + o(1)

)
. (7.43)
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Set α = 2, as t→ ∞, it follows

Ψ(t, 2) = cσ3eK(x̂,t)

∫ l1/3√
2

− l1/3√
2

y2 exp
(
− y2

2

)
dy

(
1 + o(1)

)

= c
√
2πσ3eK(x̂,t)

(
1 + o(1)

)
= σ2Φ(t)

(
1 + o(1)

)
. (7.44)

Using (7.41), (7.43) and (7.44), we have

∫ ∞

0

(
x−m(t)

)2
etxp(x)dx =

∫ ∞

0

(
x− x̂+ x̂−m(t)

)2
etxp(x)dx

=

∫ ∞

0

(
x− x̂

)2
etxp(x)dx+ 2

(
x̂−m(t)

) ∫ ∞

0

(x− x̂)etxp(x)dx+
(
x̂−m(t)

)2
Φ(t)

= Ψ(t, 2) + 2
(
x̂−m(t)

)
Ψ(t, 1) +

(
x̂−m(t)

)2
Φ(t)

= σ2Φ(t)
(
1 + o(1)

)
− h

′′
(x̂)σ4

(
Φ(t)

h
′′
(x̂)σ4

2

)(
1 + o(1)

)
+
(h′′

(x̂)σ4

2

)2

Φ(t)
(
1 + o(1)

)

=
(
σ2 − (h

′′
(x̂)σ4)2

4

)
Φ(t)

(
1 + o(1)

)
,

thus we have

s2(t) =
d2 log Φ(t)

dt2
=

∫∞
0

(
x−m(t)

)2
etxp(x)dx

Φ(t)
=

(
σ2 − (h

′′
(x̂)σ4)2

4

)(
1 + o(1)

)
. (7.45)

Set α = 3, the first term of T1(t, 3) vanishes, we obtain as t→ ∞

Ψ(t, 3) = −c
√
2πσ4eK(x̂,t)h

′′
(x̂)σ3

2

∫ l1/3√
2

− l1/3√
2

1√
2π
y6 exp

(
− y2

2

)
dy

= −cM6

√
2πeK(x̂,t)h

′′
(x̂)σ7

2

(
1 + o(1)

)
= −M6

h
′′
(x̂)σ6

2
Φ(t)

(
1 + o(1)

)
, (7.46)

whereM6 denotes the sixth order moment of standard normal distribution. Using (7.41), (7.43),
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(7.44) and (7.46), we have as t→ ∞
∫ ∞

0

(
x−m(t)

)3
etxp(x)dx =

∫ ∞

0

(
x− x̂+ x̂−m(t)

)3
etxp(x)dx

=

∫ ∞

0

(
(x− x̂)3 + 3(x− x̂)2

(
x̂−m(t)

)
+ 3(x− x̂)

(
x̂−m(t)

)2
+
(
x̂−m(t)

)3)
etxp(x)dx

= Ψ(t, 3) + 3
(
x̂−m(t)

)
Ψ(t, 2) + 3

(
x̂−m(t)

)2
Ψ(t, 1) +

(
x̂−m(t)

)3
Φ(t)

= −M6
h

′′
(x̂)σ6

2
Φ(t)

(
1 + o(1)

)
+ (3/2)h

′′
(x̂)σ4(σ2Φ(t))

(
1 + o(1)

)

− 3
(h′′

(x̂)σ4

2

)2

Φ(t)
h

′′
(x̂)σ4

2

(
1 + o(1)

)
+
(h′′

(x̂)σ4

2

)3

Φ(t)
(
1 + o(1)

)

=
(3−M6

2
h

′′
(x̂)σ6 − (h

′′
(x̂)σ4)3

4

)
Φ(t)

(
1 + o(1)

)
,

hence we get

µ3(t) =
d3 log Φ(t)

dt3
=

∫∞
0

(
x−m(t)

)3
etxp(x)dx

Φ(t)
=

(3−M6

2
h

′′
(x̂)σ6 − (h

′′
(x̂)σ4)3

4

)(
1 + o(1)

)
.

(7.47)

Finally, we finish the proof by simplifying (7.43) (7.45) and (7.47).
Case 1: h ∈ Rβ. We have gotten in (7.24)

h
′′
(x̂) =

(
β(β − 1) + o(1)

)
ψ(t)β−2l0(ψ(t)),

where l0 ∈ R0. In (7.12), we have σ2 ∼ ψ(t)/(βt), hence it holds

h′′(x̂)σ4 =
β − 1

β

ψ(t)β

t2
l0(ψ(t))

(
1 + o(1)

)
=
β − 1

β

l0(ψ(t))l1(t)
β

t

(
1 + o(1)

)
,

where last equality holds since ψ(t) ∼ t1/βl1(t) for some slowly varying function l1. Obvi-
ously, h′′(x̂)σ4 = o(x̂), thus we have

m(t) ∼ x̂ = ψ(t).

It holds also as t→ ∞
(h′′(x̂)σ4)2

σ2
= (β − 1)2

l0(ψ(t))
2

ψ(t)2
(
1 + o(1)

)
−→ 0,

which implies (h′′(x̂)σ4)2 = o(σ2). Therefore it follows

s2(t) ∼ σ2 = ψ
′
(t). (7.48)
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For µ3, it holds (h
′′
(x̂)σ4)3 = o(h

′′
(x̂)σ6) since

(h
′′
(x̂)σ4)3

h′′(x̂)σ6
= h

′′
(x̂)2σ6 =

(β − 1)2

β

ψ(t)2β−1l0(ψ(t))
2

t3
(
1 + o(1)

)
−→ 0,

where last step holds from the fact ψ(t)2β−1/t3 ∼ l1(t)
2β−1/t1+1/β . We have

µ3(t) ∼
3−M6

2
h

′′
(x̂)σ6. (7.49)

It is straightforward that (7.14) holds for h ∈ Rβ, thus h
′′
(x̂)σ6 = −ψ′′

(t)/(ψ
′
(t))3 ∗

(ψ
′
(t))3 = −ψ′′

(t) . We get

µ3(t) ∼
M6 − 3

2
ψ

′′
(t).

Case 2: If h ∈ R∞, recall that we have obtained in (7.26)

h′′(x̂) = − ψ′′(t)
(
ψ′(t)

)3 =
t

ψ2(t)ǫ2(t)

(
1 + o(1)

)
,

consider σ2 = ψ
′
(t) = ψ(t)ǫ(t)/t, it holds

h′′(x̂)σ4 =
1

t

(
1 + o(1)

)
.

Notice h′′(x̂)σ4 = o(x̂) as t→ ∞, hence it holds

m(t) ∼ x̂ = ψ(t).

And as t→ ∞ it holds
(
h′′(x̂)σ4

)2 ∼ 1/t2 = o(σ2), thus we obtain

s2(t) ∼ σ2 = ψ
′
(t).

As regards to µ3(t), we have
(
h′′(x̂)σ4

)3 ∼ 1/t3, but h′′(x̂)σ6 ∼ ψ(t)ǫ(t)/t2, hence it holds(
h′′(x̂)σ4

)3
= o

(
h′′(x̂)σ6

)
. It follows

µ3(t) ∼
M6 − 3

2
ψ

′′
(t).

Proof of Corollary 3.1 : Case 1: If h ∈ Rβ. By (7.48) and (7.49), it holds as t→ ∞

µ3

s3
∼ M6 − 3

2
h

′′
(x̂)σ3. (7.50)
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Then using (7.24) and (7.12), we get for l0 ∈ R0

h
′′
(x̂)σ3 ∼ β(β − 1)ψ(t)β−2l0(ψ(t))

(ψ(t)
βt

)3/2

=
β − 1√

β
l0(ψ(t))

ψ(t)β−1/2

t3/2
−→ 0, (7.51)

where last step holds since ψ(t) ∼ t1/βl1(t) for some slowly varying function l1(t). (7.50)
and (7.51) yields (3.1).

Case 2: If h ∈ R∞. In (1) we have showed it holds

µ3(t)

s3(t)
∼ M6 − 3

2

ψ
′′
(t)

ψ′(t)3/2
.

By (7.16) and (7.17), we have as t→ ∞

ψ
′′
(t)

ψ′(t)3/2
∼ −ψ(t)ǫ(t)

t2

(ψ(t)ǫ(t)
t

)−3/2
= − 1√

tψ(t)ǫ(t)
−→ 0,

where last step holds under condition (2.7). Hence the proof.
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