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A conditional limit theorem for random walks under extreme deviation

This paper explores a conditional Gibbs theorem for a random walkinduced by i.i.d. (X 1 , .., X n ) conditioned on an extreme deviation of its sum (S n

It is proved that when the summands have light tails with some additional regulatity property, then the asymptotic conditional distribution of X 1 can be approximated in variation norm by the tilted distribution at point a n , extending therefore the classical LDP case.

Introduction

Let X n 1 := (X 1 , .., X n ) denote n independent unbounded real valued random variables and S n 1 := X 1 + .. + X n denote their sum. The purpose of this paper is to explore the limit distribution of the generic variable X 1 conditioned on extreme deviations (ED) pertaining to S n 1 . By extreme deviation we mean that S n 1 /n is supposed to take values which are going to infinity as n increases. Obviously such events are of infinitesimal probability. Our interest in this question stems from a first result which assesses that under appropriate conditions, when the sequence a n is such that lim n→∞ a n = ∞ then there exists a sequence ε n which tends to 0 as n tends to infinity such that

lim n→∞ P ( ∩ n i=1 (X i ∈ (a n -ε n , a n + ε n ))| S n 1 /n > a n ) = 1 (1.1)
which is to say that when the empirical mean takes exceedingly large values, then all the summands share the same behaviour. This result obviously requires a number of 1 hypotheses, which we simply quote as "light tails" type. We refer to [START_REF] Broniatowski | Stretched random walks and the behaviour of their summands[END_REF] for this result and the connection with earlier related works.

The above result is clearly to be put in relation with the so-called Gibbs conditional Principle which we recall briefly in its simplest form.

Consider the case when the sequence a n = a is constant with value larger than the expectation of X 1 . Hence we consider the behaviour of the summands when (S n 1 /n > a) , under a large deviation (LD) condition about the empirical mean. The asymptotic conditional distribution of X 1 given (S n 1 /n > a) is the well known tilted distribution of P X with parameter t associated to a. Let us introduce some notation to put this in light. The hypotheses to be stated now together with notation are kept throughout the entire paper.

It will be assumed that P X , which is the distribution of X 1 , has a density p with respect to the Lebesgue measure on R. The fact that X 1 has a light tail is captured in the hypothesis that X 1 has a moment generating function Φ(t) := E exp tX 1 which is finite in a non void neighborhood N of 0. This fact is usually refered to as a Cramer type condition.

Defined on N are the following functions. are the expectation and the three first centered moments of the r.v. X t with density

π t (x) := exp tx Φ(t) p(x)
which is defined on R and which is the tilted density with parameter t. When Φ is steep, meaning that lim t→t + m(t) = ∞ where t + := ess sup N then m parametrizes the convex hull of the support of P X . We refer to Barndorff-Nielsen (1978) for those properties. As a consequence of this fact, for all a in the support of P X , it will be convenient to define

π a = π t
where a is the unique solution of the equation m(t) = a.

We now come to some remark on the Gibbs conditional principle in the standard above setting. A phrasing of this principle is:

As n tends to infinity the conditional distribution of X 1 given (S n 1 /n > a) is Π a , the distribution with density π a .

Indeed we prefer to state Gibbs principle in a form where the conditioning event is a point condition (S n 1 /n = a) . The conditional distribution of X 1 given (S n 1 /n = a) is a well defined distribution and Gibbs conditional principle states that this conditional distribution converges to Π a as n tends to infinity. In both settings, this convergence holds in total variation norm. We refer to [START_REF] Diaconis | Conditional Limit Theorems for Exponential Families and Finite Versions of de Finetti's Theorem[END_REF] for the local form of the conditioning event; we will mostly be interested in the extension of this form in the present paper.

For all α (depending on n or not) we will denote p α the density of the random vector X k 1 conditioned upon the local event (S n 1 = nα) . The notation p α X k 1 = x k 1 is sometimes used to denote the value of the density p α at point x k 1 . The same notation is used xhen X 1 , .., X n are sampled under some Π α , namely π α (X k 1 = x k 1 ). In [START_REF] Broniatowski | Long runs under a conditional limit distribution[END_REF] some extension of the above Gibbs principle has been obtained. When a n = a > EX 1 a second order term provides a sharpening of the conditioned Gibbs principle, stating that

lim n→∞ |p a (x) -g a (x)| dx) = 0 (1.2)
where g a (x) := Cp(x)n a, s 2 n , x .

(1.3)

Hereabove n (a, s n , x) denotes the normal density function at point x with expectation a, with variance s 2 n , and s 2 n := s 2 (t)(n-1). In the above display, C is a normalizing constant. Obviously developing in this display yields g a (x) = π a (x) (1 + o(1)) which proves that (1.2) is a weak form of Gibbs principle, with some improvement due to the second order term.

The paper is organized as follows. Notation and hypotheses are stated in Section 2 , along with some necessary facts from asymptotic analysis in the context of light tailed densities. Section 3 provides a local Gibbs conditional principle under EDP, namely producing the approximation of the conditional density of X 1 , .., X k conditionally on ((1/n) (X 1 + .. + X n ) = a n ) for sequences a n which tend to infinity, and where k is fixed, independent on n. The approximation is local. This result is extended in Section 4 to typical paths under the conditional sampling scheme, which in turn provides the approximation in variation norm for the conditional distribution; in this extension, k is equal 1, although the result clearly also holds for fixed k > 1. The method used here follows closely the approach by [START_REF] Broniatowski | Long runs under a conditional limit distribution[END_REF]. Discussion of the differences between the Gibbs principles in LDP and EDP are discussed. Section 5 states similar results in the case when the conditioning event is (

(1/n) (X 1 + .. + X n ) > a n ).
The main tools to be used come from asymptotic analysis and local limit theorems, developped from [START_REF] Feller | An introduction to probability theory and its applications[END_REF] and [START_REF] Bingham | Regular Variation[END_REF]; we also have borrowed a number of arguments from [START_REF] Juszczak | Local large deviation theorem for sums of i.i.d. random vectors when the Cramer condition holds in the whole space[END_REF]. A number of technical lemmas have been postponed to the appendix.

Notation and hypotheses

In this paper, we consider the uniformly bounded density function p(x)

p(x) = c exp -g(x) -q(x) x ∈ R + , (2.1) 
where c is some positive normalized constant. Define h(x) := g ′ (x). We assume that for some And there exists some positive constant ϑ , for large x, it holds

sup |v-x|<ϑx |q(v)| ≤ 1 xh(x) . (2.2) 
The function g is positive and satisfies

g(x) x -→ ∞, x → ∞. (2.3)
Not all positive g's satisfying (2.3) are adapted to our purpose. Regular functions g are defined as follows. We define firstly a subclass R 0 of the family of slowly varying function. A function l belongs to R 0 if it can be represented as

l(x) = exp x 1 ǫ(u) u du , x ≥ 1, (2.4) 
where ǫ(x) is twice differentiable and ǫ(x) → 0 as x → ∞. We follow the line of Juszczak and Nagaev [START_REF] Juszczak | Local large deviation theorem for sums of i.i.d. random vectors when the Cramer condition holds in the whole space[END_REF] to describe the assumed regularity conditions of h.

Class R β : h(x) ∈ R β , if, with β > 0 and x large enough, h(x) can be represented as

h(x) = x β l(x),
where l(x) ∈ R 0 and in (2.4) ǫ(x) satisfies lim sup

x→∞ x|ǫ ′ (x)| < ∞, lim sup x→∞ x 2 |ǫ ′′ (x)| < ∞. (2.5) Class R ∞ : Further, l ∈ R 0 , if, in (2.4), l(x) → ∞ as x → ∞ and lim x→∞ xǫ ′ (x) ǫ(x) = 0, lim x→∞ x 2 ǫ ′′ (x) ǫ(x) = 0, (2.6) 
and, for some η ∈ (0, 1/4) lim inf

x→∞ x η ǫ(x) > 0. (2.7)
We say that h ∈ R ∞ if h is increasing and strictly monotone and its inverse function ψ defined through

ψ(u) := h ← (u) := inf {x : h(x) ≥ u} (2.8) belongs to R 0 . Denote R : = R β ∪ R ∞ .
In fact, R covers one large class of functions, although, R β and R ∞ are only subsets of Regularly varying and Rapidly varying functions, respectively.

Remark 2.1. The rôle of (2.4) is to make h(x) smooth enough. Under (2.4) the third order derivative of h(x) exists, which is necessary in order to use a Laplace methode for the asymptotic evaluation of the moment generating function Φ(t) as t → ∞, where

Φ(t) = ∞ 0 e tx p(x)dx = c ∞ 0 exp K(x, t) + q(x) dx, t ∈ (0, ∞) in which K(x, t) = tx -g(x).
If h ∈ R, K(x, t) is concave with respect to x and takes its maximum at x = h ← (t). The evaluation of Φ(t) for large t follows from an expansion of K(x, t) in a neighborhood of x; this is Laplace's method. This expansion yields

K(x, t) = K(x, t) - 1 2 h ′ (x) x -x 2 - 1 6 h ′′ (x) x -x 3 + ǫ(x, t),
where ǫ(x, t) is some error term. Conditions (2.6) (2.7) and (2.5) guarantee that ǫ(x, t) goes to 0 when t tends to ∞ when x belongs to some neighborhood of x.

Example 2.1. Weibull Density. Let p be a Weibull density with shape parameter k > 1 and scale parameter 1, namely

p(x) = kx k-1 exp(-x k ), x ≥ 0 = k exp -x k -(k -1) log x .
Take g(x) = x k -(k -1) log x and q(x) = 0. Then it holds

h(x) = kx k-1 - k -1 x = x k-1 k - k -1 x k . Set l(x) = k -(k -1)/x k , x ≥ 1, then (2.4) holds, namely, l(x) = exp x 1 ǫ(u) u du , x ≥ 1, with ǫ(x) = k(k -1) kx k -(k -1)
.

The function ǫ is twice differentiable and goes to 0 as x → ∞. Additionally, ǫ satisfies condition (2.5). Hence we have shown that h ∈ R k-1 .

Example 2.2. A rapidly varying density. Define p through p(x) = c exp(-e x-1 ), x ≥ 0.

Then g(x) = h(x) = e x and q(x) = 0 for all non negative x. We show that h ∈ R ∞ . It holds ψ(x) = log x + 1. Since h(x) is increasing and monotone, it remains to show that ψ(x) ∈ R 0 . When x ≥ 1, ψ(x) admits the representation of (2.4) with ǫ(x) = log x + 1. Also conditions (2.6) and (2.7) are satisfied. Thus h ∈ R ∞ .

Throughout the paper we use the following notation. When a r.v. X has density p we write p(X = x) instead of p(x). This notation is useful when changing measures. For example π a (X = x) is the density at point x for the variable X generated under π a , while p(X = x) states for X generated under p. This avoids constant changes of notation.

Conditional Density

We inherit of the definition of the tilted density π a defined in Section 1, and of the corresponding definitions of the functions m, s 2 and µ 3 . Because of (2.1) and on the various conditions on g those functions are defined as t → ∞. The following Theorem is basic for the proof of the remaining results. Theorem 3.1. Let p(x) be defined as in (2.1) and h(x) ∈ R. Denote by

m(t) = d dt log Φ(t), s 2 (t) = d dt m(t), µ 3 (t) = d 3 dt 3 log Φ(t),
then with ψ defined as in (2.8)it holds as t → ∞

m(t) ∼ ψ(t), s 2 (t) ∼ ψ ′ (t), µ 3 (t) ∼ M 6 -3 2 ψ ′′ (t),
where M 6 is the sixth order moment of standard normal distribution.

The proof of this result relies on a series of Lemmas. Lemmas (7.2), (7.3), (7.4) and (7.5) are used in the proof. Lemma (7.1) is instrumental for Lemma (7.5). The proof of Theorem 3.1 and these Lemmas are postponed to Appendix. Corollary 3.1. Let p(x) be defined as in (2.1) and h(x) ∈ R. Then it holds as t → ∞

µ 3 (t) s 3 (t) -→ 0. ( 3.1) 
Proof: Its proof relies on Theorem 2.1 and is also put in Appendix.

Edgeworth expansion under extreme normalizing factors

With π an defined through

π an (x) = e tx p(x) Φ(t) ,
and t determined by a n = m(t), define the normalized density of π an by πan (x) = s n π an (s n x + a n ), and denote the n-convolution of πan (x) by πan n (x). Denote by ρ n the normalized density of n-convolution πan n (x),

ρ n (x) := √ nπ an n ( √ nx).
The following result extends the local Edgeworth expansion of the distribution of normalized sums of i.i.d. r;v's to the present context, where the summands are generated under the density πan . Therefore the setting is that of a triangular array of row wise independent summands; the fact that a n → ∞ makes the situation unusual. We mainly adapt Feller's proof (Chapiter 16, Theorem 2 [START_REF] Feller | An introduction to probability theory and its applications[END_REF]).

Theorem 4.1. With the above notation, uniformly upon x it holds

ρ n (x) = φ(x) 1 + µ 3 6 √ ns 3 x 3 -3x + o 1 √ n .
where φ(x) is standard normal density.

Proof:

Step 1: In this step, we will express the following formula G(x) by its Fourier transform. Let

G(x) := ρ n (x) -φ(x) - µ 3 6 √ ns 3 n x 3 -3x φ(x). From φ(x) = 1 2π ∞ -∞ e -iτ x e -1 2 τ 2 dτ, (4.1) 
it follows that

φ ′′′ (x) = - 1 2π ∞ -∞ (iτ ) 3 e -iτ x e -1 2 τ 2 dτ. (4.2)
On the other hand

φ ′′′ (x) = -(x 3 -3x)φ(x),
which, together with (4.2), gives

(x 3 -3x)φ(x) = 1 2π ∞ -∞ (iτ ) 3 e -iτ x e -1 2 τ 2 dτ. (4.3) 
Let ϕ an (τ ) be the characteristic function (c.f) of πan ; the c.f of

ρ n is ϕ an (τ / √ n) n .
Hence it holds by Fourier inversion theorem

ρ n (x) = 1 2π ∞ -∞ e -iτ x ϕ an (τ / √ n) n dτ. (4.4) 
Using (4.1), (4.3) and (4.4), we have

G(x) = 1 2π ∞ -∞ e -iτ x ϕ an (τ / √ n) n -e -1 2 τ 2 - µ 3 6 √ ns 3 (iτ ) 3 e -1 2 τ 2 dτ.
Hence it holds

ρ n (x) -φ(x) - µ 3 6 √ ns 3 x 3 -3x φ(x) ≤ 1 2π ∞ -∞ ϕ an (τ / √ n) n -e -1 2 τ 2 - µ 3 6 √ ns 3 (iτ ) 3 e -1 2 τ 2 dτ. (4.5) 
Step (4.6). Furthermre, ϕ an (τ ) is not periodic, hence the second inequality of (4.6) holds from Lemma 4 (Chapiter 15, section 1) of [START_REF] Feller | An introduction to probability theory and its applications[END_REF].

Step 3: In this step, we complete the proof by showing that when n → ∞

∞ -∞ ϕ an (τ / √ n) n -e -1 2 τ 2 - µ 3 6 √ ns 3 (iτ ) 3 e -1 2 τ 2 dτ = o 1 √ n . (4.8) 
For arbitrarily positive sequence a n we have sup

an∈R + ϕ an (τ ) = sup an∈R + ∞ -∞ e iτ x πan (x)dx ≤ sup an∈R + ∞ -∞ e iτ x πan (x) dx = 1.
In 

ϕ an (τ / √ n) n -e -1 2 τ 2 - µ 3 6 √ ns 3 (iτ ) 3 e -1 2 τ 2 dτ ≤ √ n |τ |>ω √ n ϕ an (τ / √ n) n dτ + √ n |τ |>ω √ n e -1 2 τ 2 + µ 3 6 √ ns 3 (iτ ) 3 e -1 2 τ 2 dτ ≤ √ nN n-2 ω |τ |>ω √ n ϕ an (τ / √ n) 2 dτ + √ n |τ |>ω √ n e -1 2 τ 2 1 + µ 3 τ 3 6 √ ns 3 dτ. (4.10)
where the first term of the last line tends to 0 when n → ∞, since

√ nN n-2 ω |τ |>ω √ n ϕ an (τ / √ n) 2 dτ = exp 1 2 log n + (n -2) log N ω + log |τ |>ω √ n ϕ an (τ / √ n) 2 dτ -→ 0, (4.11) 
where the last step holds from (4.6) and (4.9). As for the second term of (4.10), by Corollary (3.1), when n → ∞, we have

|µ 3 /s 3 | → 0. Hence it holds when n → ∞ √ n |τ |>ω √ n e -1 2 τ 2 1 + µ 3 τ 3 6 √ ns 3 dτ ≤ √ n |τ |>ω √ n e -1 2 τ 2 |τ | 3 dτ = √ n |τ |>ω √ n exp - 1 2 τ 2 + 3 log |τ | dτ = 2 √ n exp -ω 2 n/2 + o(ω 2 n/2) -→ 0, (4.12) 
where the second equality holds from, for example, Chapiter 4 of [START_REF] Bingham | Regular Variation[END_REF]. (4.10), (4.11) and (4.12) implicate that, when n → ∞

|τ |>ω √ n ϕ an (τ / √ n) n -e -1 2 τ 2 - µ 3 6 √ ns 3 (iτ ) 3 e -1 2 τ 2 dτ = o 1 √ n . (4.13) If |τ | ≤ ω √ n, it holds |τ |≤ω √ n ϕ an (τ / √ n) n -e -1 2 τ 2 - µ 3 6 √ ns 3 (iτ ) 3 e -1 2 τ 2 dτ = |τ |≤ω √ n e -1 2 τ 2 ϕ an (τ / √ n) n e 1 2 τ 2 -1 - µ 3 6 √ ns 3 (iτ ) 3 dτ = |τ |≤ω √ n e -1 2 τ 2 exp n log ϕ an (τ / √ n) + 1 2 τ 2 -1 - µ 3 6 √ ns 3 (iτ ) 3 dτ. (4.14)
The integrand in the last display is bounded through

|e α -1 -β| = |(e α -e β ) + (e β -1 -β)| ≤ (|α -β| + 1 2 β 2 )e γ , (4.15) 
where γ ≥ max(|α|, |β|); this inequalityfollows replacing e α , e β by their power series, for real or complex α, β. Denote by

γ(τ ) = log ϕ an (τ ) + 1 2 τ 2 .
Since γ ′ (0) = γ ′′ (0) = 0, the third order Taylor expansion of γ(τ ) at τ = 0 yields

γ(τ ) = γ(0) + γ ′ (0)τ + 1 2 γ ′′ (0)τ 2 + 1 6 γ ′′′ (ξ)τ 3 = 1 6 γ ′′′ (ξ)τ 3 ,
where 0 < ξ < τ . Hence it holds

γ(τ ) - µ 3 6s 3 (iτ ) 3 = γ ′′′ (ξ) - µ 3 s 3 n i 3 |τ | 3 6 .
Here γ ′′′ is continuous; thus we can choose ω small enough such that |γ ′′′ (ξ)| < ρ for |τ | < ω. Meanwhile, for n large enough, according to Corollary (3.1) , we have

|µ 3 /s 3 | → 0.
Hence it holds for n large enough

γ(τ ) - µ 3 6s 3 (iτ ) 3 ≤ |γ ′′′ (ξ)| + ρ |τ | 3 6 < ρ|τ | 3 . (4.16) 
Choose ω small enough, such that for n large enough it holds for |τ | < ω

µ 3 6s 3 (iτ ) 3 ≤ 1 4 τ 2 , |γ(τ )| ≤ 1 4 τ 2 .
For this choice of ω, when |τ | < ω we have max

µ 3 6s 3 (iτ ) 3 , |γ(τ )| ≤ 1 4 τ 2 . (4.17) Replacing τ by τ / √ n, it holds for |τ | < ω √ n n log ϕ an (τ / √ n) + 1 2 τ 2 - µ 3 6 √ ns 3 (iτ ) 3 = n log ϕ an (τ / √ n) + 1 2 τ √ n 2 - µ 3 6s 3 iτ √ n 3 = n γ τ √ n - µ 3 6s 3 iτ √ n 3 < ρ|τ | 3 √ n , (4.18) 
where the last inequality holds from (4.16). In a similar way, with (4.17), it also holds for

|τ | < ω √ n max n log ϕ an (τ / √ n) + 1 2 τ 2 , µ 3 6 √ ns 3 (iτ ) 3 = n max γ τ √ n , µ 3 6s 3 iτ √ n 3 ≤ 1 4 τ 2 . (4.19)
Apply (4.15) to estimate the integrand of last line of (4.14), with the choice of ω in (4.16) and (4.17), using (4.18) and (4.19) we have for

|τ | < ω √ n exp n log ϕ an (τ / √ n) + 1 2 τ 2 -1 - µ 3 6 √ ns 3 (iτ ) 3 ≤ n log ϕ an (τ / √ n) + 1 2 τ 2 - µ 3 6 √ ns 3 (iτ ) 3 + 1 2 µ 3 6 √ ns 3 (iτ ) 3 2 × exp max n log ϕ an (τ / √ n) + 1 2 τ 2 , µ 3 6 √ ns 3 (iτ ) 3 ≤ ρ|τ | 3 √ n + 1 2 µ 3 6 √ ns 3 (iτ ) 3 2 exp τ 2 4 = ρ|τ | 3 √ n + µ 2 3 τ 6 72ns 6 exp τ 2 4
.

Use this upper bound to (4.14), we obtain

|τ |≤ω √ n ϕ an (τ / √ n) n -e -1 2 τ 2 - µ 3 6 √ ns 3 (iτ ) 3 e -1 2 τ 2 dτ ≤ |τ |≤ω √ n exp - τ 2 4 ρ|τ | 3 √ n + µ 2 3 τ 6 72ns 6 dτ = ρ √ n |τ |≤ω √ n exp - τ 2 4 |τ | 3 dτ + µ 2 3 72ns 6 |τ |≤ω √ n exp - τ 2 4 τ 6 dτ,
where both the first integral and the second integral are finite, and ρ is arbitrarily small; additionally, by Corollary (3.1), µ 2 3 /s 6 → 0 when n large enough, hence it holds when n → ∞

|τ |≤ω √ n ϕ an (τ / √ n) n -e -1 2 τ 2 - µ 3 6 √ ns 3 (iτ ) 3 e -1 2 τ 2 dτ = o 1 √ n . (4.20) 
Now (4.13) and (4.20) give (4.8). Further, coming back to (4.5), using (4.8), we obtain

πan n (x) -φ(x) - µ 3 6 √ ns 3 x 3 -3x φ(x) = o 1 √ n ,
which concludes the proof.

Gibbs' conditional principles under extreme events

We now explore Gibbs conditional principles under extreme events. The first result is a pointwise approximation of the conditional density p an y k 1 on R k for fixed k. As a by-product we also address the local approximation of p An where

p An y k 1 := p X k 1 = y k 1 S n 1 > na n .
However tese local approximations are of poor interest when comparing p an to its approximation.

We consider the case k = 1. For Y n 1 a random vector with density p an we first provide a density g an on R such that

p an (Y 1 ) = g an (Y 1 ) (1 + R n )
where R n is a function of the vector Y n 1 which goes to 0 as n tends to infinity. The above statement may also be written as

p an (y 1 ) = g an (y 1 ) 1 + o Pa n (1) (5.1)
where P an is the joint probability measure of the vector Y n 1 under the condition (S n 1 = na n ) . This statement is of a different nature with respect to the above one, since it amounts to prove the approximation on typical realisations under the conditional sampling scheme. We will deduce from (5.1) that the L 1 distance between p an and g an goes to 0 as n tends to infinity. It would be interesting to extend these results to the case when k = k n is close to n, as done in [START_REF] Broniatowski | Long runs under a conditional limit distribution[END_REF] in all cases from the CLT to the LDP ranges. The extreme deviation case is more envolved, which led us to restrict this study to the case when k = 1 (or k fixed, similarly).

A local result in R k

Fix y k 1 := (y 1 , .., y k ) in R k and define s j i := y i + .. + y j for 1

≤ i < j ≤ k. Define t i through m(t i ) := na n -s i 1 n -i . (5.2)
For the sake of brevity, we write m i instead of m(t i ), and define s 2 i := s 2 (t i ). We have the following conditional density.

Consider the following condition

lim n→∞ ψ(t k ) 2 nψ ′ (t k ) = 0, (5.3) 
which can be seen as a growth condition on a n , avoiding too large increases of this sequence. For 0

≤ i ≤ k -1 < n, define z i through z i = m i -y i+1 s i √ n -i -1 . Lemma 5.1. Assume that p(x) satisfies (2.1) and h(x) ∈ R. Let t i is defined in (5.2).
Assume that a n → ∞ as n → ∞ and that (5.3) holds. then it holds as a n → ∞

lim n→∞ sup 0≤i≤k-1 z i = 0. Proof: When n → ∞, it holds z i ∼ m i /s i √ n -i -1 ∼ m i /(s i √ n).
From Theorem 3.1, it holds m(t) ∼ ψ(t) and s(t) ∼ ψ ′ (t). Hence we have

z i ∼ ψ(t i ) nψ ′ (t i ) .
(5.4)

By (5.2), m i ∼ m k as n → ∞. Consider m k ∼ ψ(t k ). Then it holds m i ∼ ψ(t k ).
In addition, m i ∼ ψ(t i ) by Theorem 3.1, this implies it holds

ψ(t i ) ∼ ψ(t k ).
(5.5)

Case 1: if h(x) ∈ R β . We have h(x) = x β l 0 (x), l 0 (x) ∈ R 0 , β > 0. Hence h ′ (x) = x β-1 l 0 (x) β + ǫ(x) , set x = ψ(t), we get h ′ ψ(t) = ψ(t) β-1 l 0 ψ(t) β + ǫ ψ(t) . (5.6) 
Notice that it holds ψ ′ (t) = 1/h ′ ψ(t) , combine (5.5) with (5.6), we obtain

ψ ′ (t i ) ψ ′ (t k ) = h ′ ψ(t k ) h ′ ψ(t i ) = ψ(t k ) β-1 l 0 ψ(t k ) β + ǫ ψ(t k ) ψ(t i ) β-1 l 0 ψ(t i ) β + ǫ ψ(t i ) -→ 1,
where we use the slowly varying propriety of l 0 . Thus it holds

ψ ′ (t i ) ∼ ψ ′ (t k ),
which, together with (5.5), is put into (5.4) to yield

z i ∼ ψ(t k ) nψ ′ (t k ) .
Hence we have under condition (5.3)

z 2 i ∼ ψ(t k ) 2 nψ ′ (t k ) = ψ(t k ) 2 √ nψ ′ (t k ) 1 √ n = o 1 √ n ,
which implies further z i → 0. Note that the final step is used in order to relax the strength of the growth condition on a n .

Case 2: if h(x) ∈ R ∞ . By (5.2), it holds m(t k ) ≥ m(t i ) as n → ∞. Since the function t → m(t) is increasing, we have t i ≤ t k . The function t → ψ ′ (t) is decreasing, since ψ ′′ (t) = - ψ(t) t 2 ǫ(t) 1 + o(1) < 0 as t → ∞. Therefore it holds as n → ∞ ψ ′ (t i ) ≥ ψ ′ (t k ),
which, combined with (5.4) and (5.5), yields

z i ∼ ψ(t k ) nψ ′ (t i ) ≤ 2ψ(t k ) nψ ′ (t k ) ,
hence we have

z 2 i ≤ 4ψ(t k ) 2 nψ ′ (t k ) = 4ψ(t k ) 2 √ nψ ′ (t k ) 1 √ n = o 1 √ n ,
where the last step holds from condition (5.3). Further it holds z i → 0.

Theorem 5.1. With the above notation and hypotheses, assuming (5.3), it holds

p an (y k 1 ) = p(X k 1 = y k 1 |S n 1 = na n ) = g m (y k 1 ) 1 + o(1) . with g m (y k 1 ) = k-1 i=0 π m i (X i+1 = y i+1 ) .
Proof: Using Bayes formula,

p an y k 1 := p(X k 1 = y k 1 |S n 1 = na n ) = p(X 1 = y 1 |S n 1 = na n ) k-1 i=1 p(X i+1 = y i+1 |X i 1 = y i 1 , S n 1 = na n ) = k-1 i=0 p(X i+1 = y i+1 |S n i+1 = na n -s i 1 ). (5.7)
We make use of the following invariance property:For all y k 1 and all α > 0

p(X i+1 = y i+1 |X i 1 = y i 1 , S n 1 = na n ) = π α (X i+1 = y i+1 |X i 1 = y i 1 , S n 1 = na n )
where on the LHS, the r.v's X i 1 are sampled i.i.d. under p and on the RHS, sampled i.i.d. under π α .Itthusholds

p(X i+1 = y i+1 |S n i+1 = na n -S i 1 ) = π m i (X i+1 = y i+1 |S n i+1 = na n -s i 1 ) = π m i (X i+1 = y i+1 ) π m i (S n i+2 = na n -s i+1 1 ) π m i (S n i+1 = na n -s i 1 ) = √ n -i √ n -i -1 π m i (X i+1 = y i+1 ) π n-i-1 ( m i -y i+1 s i √ n-i-1 ) π n-i (0) , (5.8) 
where π n-i-1 is the normalized density of S n i+2 under i.i.d. sampling under π m i ;correspondingly, π n-i is the normalized density of S n i+1 under the same sampling. Note that a r.v. with density π mi has expectation m i and variance

s 2 i . Write z i = m i -y i+1 s i √ n-i-1
, and perform a third-order Edgeworth expansion of π n-i-1 (z i ), using Theorem 4.1. It follows

π n-i-1 (z i ) = φ(z i ) 1 + µ i 3 6s 3 i √ n -1 (z 3 i -3z i ) + o 1 √ n , (5.9) 
The approximation of π n-i (0) is obtained from (5.9)

π n-i (0) = φ(0) 1 + o 1 √ n .
(5.10) Put (5.9) and (5.10) into (5.8) to obtain

p(X i+1 = y i+1 |S n i+1 = na n -S i 1 ) = √ n -i √ n -i -1 π m i (X i+1 = y i+1 ) φ(z i ) φ(0) 1 + µ i 3 6s 3 i √ n -1 (z 3 i -3z i ) + o 1 √ n = 2π(n -i) √ n -i -1 π m i (X i+1 = y i+1 )φ(z i ) 1 + R n + o(1/ √ n) , (5.11) 
where

R n = µ i 3 6s 3 i √ n -1 (z 3 i -3z i ).
Under condition (5.3), using Lemma 5.1, it holds z i → 0 as a n → ∞, and under Corollary (3.1), µ i 3 /s 3 i → 0. This yields

R n = o 1/ √ n ,
which, combined with (5.11), gives

p(X i+1 = y i+1 |s n i+1 = na n -S i 1 ) = 2π(n -i) √ n -i -1 π m i (X i+1 = y i+1 )φ(z i ) 1 + o(1/ √ n) = √ n -i √ n -i -1 π m i (X i+1 = y i+1 ) 1 -z 2 i /2 + o(z 2 i ) 1 + o(1/ √ n) ,
where we use one Taylor expansion in second equality. Using once more Lemma 5.1, under conditions (5.3), we have as a n → ∞

z 2 i = o(1/ √ n), hence we get p(X i+1 = y i+1 |S n i+1 = na n -s i 1 ) = √ n -i √ n -i -1 π m i (X i+1 = y i+1 ) 1 + o(1/ √ n) ,
which together with (5.7) yields

p(X k 1 = y k 1 |S n 1 = na n ) = k-1 i=0 √ n -i √ n -i -1 π m i (X i+1 = y i+1 ) 1 + o(1/ √ n) = k-1 i=0 π m i (X i+1 = y i+1 ) k-1 i=0 √ n -i √ n -i -1 k-1 i=0 1 + o 1 √ n = 1 + o 1 √ n k-1 i=0 π m i (X i+1 = y i+1 ) ,
The proof is completed. nψ ′ (t) = 0, (5.12) then for fixed k, an equivalent statement is Theorem 5.2. Under the same hypotheses as in the previous Theorem

p an (y k 1 ) = p(X k 1 = y k 1 |S n 1 = na n ) = g an (y k 1 ) 1 + o 1 √ n .
with

g an (y k 1 ) = k i=1 π an (X i = y i ) .
Proof: Using the notations of Theorem 5.1, by (5.7), we obtain

p(X k 1 = y k 1 |S n 1 = na n ) = k-1 i=0 p(X i+1 = y i+1 |S n i+1 = na n -S i 1 ). (5.13) (5.8) is replaced by p(X i+1 = y i+1 |S n i+1 = na n -S i 1 ) = √ n -i √ n -i -1 π an (X i+1 = y i+1 ) π an n-i-1 ( (i+1)an-S i+1 1 s √ n-i-1 ) π an n-i ian-S i 1 s √ n-i , (5.14) where π an n-i-1 ((i + 1)a n -y i+1 /s i √ n -i -1) is the normalized density of π an (S n i+2 = na n - S i+1
1 ), and π an has the expectation a n and variance s. Correspondingly,

π an n-i (ia n -S i 1 )/s √ n -i is the normalized density of π an (S n i+1 = na n -S i 1 ). Write z i = (i+1)an-S i+1 1 s √ n-i-1
, by Theorem 4.1 one three-order Edgeworth expansion yields

π an n-i-1 (z i ) = φ(z i ) 1 + R i n + o 1 √ n , (5.15) 
where

R i n = µ 3 6s 3 √ n -1 (z 3 i -3z i ).
Set i = i -1, the approximation of π an n-i is obtained from (5.15)

π n-i (z i-1 ) = φ(z i-1 ) 1 + R i+1 n + o 1 √ n . (5.16) When a n → ∞, using Theorem 3.1, it holds sup 0≤i≤k-1 z 2 i ∼ (i + 1) 2 a 2 n s 2 n ≤ 2k 2 a 2 n s 2 n = 2k 2 (m(t)) 2 s 2 n ∼ 2k 2 (ψ(t)) 2 ψ ′ (t)n = 2k 2 (ψ(t)) 2 √ nψ ′ (t) 1 √ n = o 1 √ n , (5.17) 
where last step holds under condition (5.12). Hence it holds z i → 0 uniformly in i as a n → ∞, and by Corollary (3.1), µ 3 /s 3 → 0, then it follows

R i n = o 1/ √ n R i+1 n = o 1/ √ n ,
then put (5.15) and (5.16) into (5.14), we obtain

p(X i+1 = y i+1 |S n i+1 = na n -S i 1 ) = √ n -i √ n -i -1 π an (X i+1 = y i+1 ) φ(z i ) φ(z i-1 ) 1 + o(1/ √ n) = √ n -i √ n -i -1 π m i (X i+1 = y i+1 ) 1 -(z 2 i -z 2 i-1 )/2 + o(z 2 i -z 2 i-1 ) 1 + o(1/ √ n) ,
where we use one Taylor expansion in second equality. Using (5.17), we have as

a n → ∞ |z 2 i -z 2 i-1 | = o(1/ √ n), hence we get p(X i+1 = y i+1 |S n i+1 = na n -S i 1 ) = √ n -i √ n -i -1 π an (X i+1 = y i+1 ) 1 + o(1/ √ n) ,
which together with (5.13) yields

p(X k 1 = y k 1 |S n 1 = na n ) = k-1 i=0 π an (X i+1 = y i+1 ) n n -k k-1 i=0 1 + o 1 √ n = 1 + o 1 √ n k-1 i=0 π an (X i+1 = y i+1 ) . (5.18) 
This completes the proof.

Remark 5.1. The above result shows that asymptotically the point condition (S n 1 = na n ) leaves blocks of k of the X ′ i s independent. Obviously this property does not hold for large values of k, close to n. A similar statement holds in the LDP range, conditioning either on (S n 1 = na) (see Diaconis and Friedman 1988)), or on (S n 1 ≥ na); see Csiszar 1984 for a general statement on asymptotic conditional independence.

Using the same proof as in Theorem (5.2), we obtain the following corollary. 

p a (y k 1 ) = p(X k 1 = y k 1 |S n 1 = na n ) = g a (y k 1 ) 1 + o k √ n . with g a (y k 1 ) = k i=1 π a (X i = y i ) .

Strenghtening of the local Gibbs conditional principle

We now turn to a stronger approximation of p an . Consider Y n 1 with density p an and the resulting random variable p an (Y 1 ) . We prove the following result Theorem 5.3. With all the above notation and hypotheses it holds

p an (Y 1 ) = g an (Y 1 ) (1 + R n )
where g an = π an the tilted density at point a n , and where R n is a function of

Y n 1 such that P an (|R n | > δ √ n) → 0 as n → ∞ for any positive δ.
This result is of much greater relevance than the previous ones. Indeed under P an the r.v. Y 1 may take large values. At the contrary simple approximation of p an by g an on R + only provides some knowledge on p an on sets with smaller and smaller probability under p an . Also it will be proved that as a consequence of the above result, the L 1 norm between p an and g an goes to 0 as n → ∞, a result out of reach through the aforementioned results.

In order to adapt the proof of Theorem *** to the present setting it is necessary to get some insight on the plausible values of Y 1 under P an . It holds Lemma 5.2. Under P an it holds

Y 1 = O Pa n (a n )
Proof: This is a consequence of Markov Inequality:

P ( Y 1 > u| S n 1 = na n ) ≤ E ( Y 1 | S n 1 = na n ) u =
a n u which goes to 0 for all u = u n such that lim n→∞ u n /a n = ∞.

We now turn back to the proof of our result, replacing y k 1 by Y 1 in (5.14). It holds

P ( X 1 = Y 1 | S n 1 = na n ) = P (X 1 = Y 1 ) P (S n 2 = na n -Y 1 ) P (S n 1 = na n ) in
which the tilting substitution of measures is performed, with tilting density π an , followed by normalization. Now if the growth condition (5.3) holds, namely

lim n→∞ ψ(t) nψ ′ (t) = 0
with m(t) = a n it follows that

P ( X 1 = Y 1 | S n 1 = na n ) = π an (Y 1 ) (1 + R n )
as claimed where the order of magnitude of R n is o Pa n (1/ √ n). We have proved Theorem 5.3.

Denote the conditional probabilities by P an and G an which correspond to the density functions p an and g an , respectively.

Gibbs principle in variation norm

We now consider the approximation of P an by G an in variation norm.

The main ingredient is the fact that in the present setting approximation of p an by g an in probability plus some rate implies approximation of the corresponding measures in variation norm. This approach has been developped in [START_REF] Broniatowski | Long runs under a conditional limit distribution[END_REF]; we state a first lemma which states that wether two densities are equivalent in probability with small relative error when measured according to the first one, then the same holds under the sampling of the second.

Let R n and S n denote two p.m's on R n with respective densities r n and s n .

Lemma 5.3. Suppose that for some sequence ε n which tends to 0 as n tends to infinity

r n (Y n 1 ) = s n (Y n 1 ) (1 + o Rn (ε n )) (5.19) as n tends to ∞. Then s n (Y n 1 ) = r n (Y n 1 ) (1 + o Sn (ε n )) .
(5.20)

Proof. Denote A n,εn := {y n 1 : (1 -ε n )s n (y n 1 ) ≤ r n (y n 1 ) ≤ s n (y n 1 ) (1 + ε n )} .
It holds for all positive δ

lim n→∞ R n (A n,δεn ) = 1. Write R n (A n,δεn ) = 1 A n,δεn (y n 1 )
r n (y n 1 ) s n (y n 1 )

s n (y n 1 )dy n 1 . Since R n (A n,δεn ) ≤ (1 + δε n )S n (A n,δεn ) it follows that lim n→∞ S n (A n,δεn ) = 1,
which proves the claim.

Applying this Lemma to the present setting yields

g an (Y 1 ) = p an (Y 1 ) 1 + o Ga n 1/ √ n as n → ∞.
This fact entails, as in [START_REF] Broniatowski | Long runs under a conditional limit distribution[END_REF] Theorem 5.4. Under all the notation and hypotheses above the total variation norm between P an and G an goes to 0 as n → ∞.

The proof goes as follows For all δ > 0, let Remark 5.2. This result is to be paralleled with Theorem 1.6 in Diaconis and Freedman [START_REF] Diaconis | Conditional Limit Theorems for Exponential Families and Finite Versions of de Finetti's Theorem[END_REF] and Theorem 2.15 in Dembo and Zeitouni [START_REF] Dembo | Refinements of the Gibbs conditioning principle[END_REF] which provide a rate for this convergence in the LDP range.

E δ := y ∈ R : p an (y) -g an (y) g an (y) < δ which lim n→∞ P an (E δ ) = lim n→∞ G an (E δ ) = 1. (5.21) It holds sup C∈B(R) |P an (C ∩ E δ ) -G an (C ∩ E δ )| ≤ δ sup C∈B(R) C∩E δ g an (y) dy ≤ δ.

The asymptotic location of X the conditioned distribution

This section intends to provide some insight on the behaviour of X 1 under the condition (S n 1 = na n ) ; this will be extended further on to the case when (S n 1 ≥ na n ) and to be considered in parallel with similar facts developped in [START_REF] Broniatowski | Long runs under a conditional limit distribution[END_REF] for larger values of a n .

It will be seen that conditionally on (S n 1 = na n ) the marginal distribution of the sample concentrates around a n . Let X t be a r.v. with density π an where m(t) = a n and a n satisfies (5.3). Recall that EX t = a n andVarX t = s 2 . We evaluate the moment generating function of the normalized variable

(X t -a n ) /s. It holds log E exp λ (X t -a n ) /s = -λa n /s + log Φ t + λ s -log Φ (t) .
A second order Taylor expansion in the above display yields

log E exp λ (X t -a n ) /s = λ 2 2 s 2 t + θλ s s 2
where θ = θ(t, λ) ∈ (0, 1) . It holds Proof: Case 1: if h(t) ∈ R β . By Theorem 3.1, it holds s 2 ∼ ψ ′ (t) with ψ(t) ∼ t 1/β l 1 (t), where l(t) is some slowly varying function. And we have also ψ ′ (t) = 1/h ′ ψ(t) , hence by (??) it follows

1 s 2 ∼ h ′ ψ(t) = ψ(t) β-1 l 0 ψ(t) β + ǫ ψ(t) ∼ βt 1-1/β l 1 (t) β-1 l 0 ψ(t) = o(t),
which implies that for any u ∈ K it holds

u s = o(t), s 2 (t + u/s) s 2 ∼ ψ ′ (t + u/s) ψ ′ (t) = ψ(t) β-1 l 0 ψ(t) β + ǫ ψ(t) ψ(t + u/s) β-1 l 0 ψ(t + u/s) β + ǫ ψ(t + u/s) ∼ ψ(t) β-1 ψ(t + u/s) β-1 ∼ t 1-1/β l 1 (t) β-1 (t + u/s) 1-1/β l 1 (t + u/s) β-1 -→ 1. 2: if h(t) ∈ R ∞ . Then we have in this case ψ(t) ∈ R 0 , hence it holds 1 st ∼ 1 t ψ ′ (t) = 1 tψ(t)ǫ(t)
-→ 0, which last step holds from condition (2.7). Hence for any u ∈ K, we get as n → ∞

u s = o(t),
thus using the slowly varying propriety of ψ(t) we have

s 2 (t + u/s) s 2 ∼ ψ ′ (t + u/s) ψ ′ (t) = ψ(t + u/s)ǫ(t + u/s) t + u/s t ψ(t)ǫ(t) ∼ ǫ(t + u/s) ǫ(t) = ǫ(t) + O ǫ ′ (t)u/s ǫ(t) -→ 1,
where we use one Taylor expansion in the second line, and last step holds from condition (2.6). This completes the proof.

Applying the above Lemma it follows that the normalized r.v's (X ta n ) /s converge to a standard normal variable N(0, 1) in distribution, as n → ∞. This amount to say that X t = a n + sN(0, 1) + o Π an (1).

Recall that lim n→∞ s = 0, which implies that X t concentrates around a n with rate s. Due to Theorem 5.4 the same holds for X 1 under (S n 1 = na n ) .

Differences between Gibbs principle under LDP and under extreme deviation

It is of interest to confront the present results with the general form of the Gibbs principle under linear contraints in the LDP range. We recall briefly and somehow unformally the main classical facts in a simple setting similar as the one used in this paper. Let X 1 , .., X n denote n i.i.d. real valued r.v's with distribution P and density p and let f : R → R be a measurable function such that Φ f (λ) := E exp λf (X 1 ) is finite for λ in a non void neighborhood of 0 (the so-called Cramer condition). Denote m f (λ) and s 2 f (λ) the first and second derivatives of log Φ f (λ). Consider the point set condition E n := 1 n n i=1 f (X i ) = 0 and let Ω be the set of all probability measures on R such that f (x)dQ(x) = 0.

The classical Gibbs conditioning principle writes as follows:

The limiting distribution P * of 1 conditioned on the family of events E n exists and is defined as the unique minimizer of the Kullback-Leibler distance between P and Ω, namely P * = arg min {K(Q, P ), Q ∈ Ω} where K(Q, P ) := log dQ dP dQ whenever Q is absolutely continuous w.r.t. P , and K(Q, P ) = ∞ otherwise. Also it can be proved that P * has a density, which is defined through

p * (x) = exp λf (x) Φ f (λ) p(x)
with λ the unique solution of the equation m f (λ) = 0. Take f (x) = xa with a fixed to obtain p * (x) = π a (x)

with the current notation of this paper. and the limit density of

X 1 under ( n i=1 X 2 i = na) is p * X (y) := exp tx 2 E exp tX 2 1 p X (y)
whereas, when a n → ∞ its limit distribution is degenerate and concentrates around a n . As a consequence the distribution of X 1 under the condition ( n i=1 X 2 i = na n ) concentrates sharply at -√ a n and + √ a n .

EDP under exceedance

The following proposition states the marginally conditional density under condition A n = {S n ≥ na n }, we denote this density by p An to differentiate it from p an which is under condition {S n = na n }. For the purpose of proof, we need the following lemma, based on Theorem 6.2.1 of Jensen [START_REF] Jensen | Saddlepoint approximations[END_REF], to provide one asymptotic estimation of tail probability P (S n ≥ na n ) and n-convolution density p(S n /n = u) for u > a n . 

I(x) := xm -1 (x) -log Φ m -1 (x) . ( 6 
(x) ∈ R. Set m(t n ) = a n . Suppose when n → ∞, if it holds ψ(t n ) 2 √ nψ ′ (t n ) -→ 0, (6.2)
then it holds

P (S n ≥ na n ) = exp(-nI(a n )) √ 2π √ nt n s(t n ) 1 + o 1 √ n . (6.3)
Let further

H n (u) := √ n exp -nI(u) √ 2πs(t u )
It then holds

sup u>an p(S n /n = u) H n (u) = 1 + o 1/ √ n . ( 6 

.4)

Proof: For the density p(x) defined in (2.1), we show g(x) is convex when x is large enough. If h(x) ∈ R β , it holds for x large enough

g ′′ (x) = h ′ (x) = h(x) x β + ǫ(x) > 0. (6.5) If h(x) ∈ R ∞ , its reciprocal function ψ(x) ∈ R 0 . Set x = ψ(u), hence we have for x large enough g ′′ (x) = h ′ (x) = 1 ψ ′ (u) = u ψ(u)ǫ(u) > 0, (6.6)
where the inequality holds since ǫ(u) > 0 under condition (2.7) when u is large enough. (6.5) and (6.6) imply that g(x) is convex for x large enough. Therefore, the density p(x) with h(x) ∈ R satisfies the conditions of Jensen's Theorem 6.2.1 ( [START_REF] Jensen | Saddlepoint approximations[END_REF]). Denote by p n the density of X = (X 1 + ... + X n )/n. We obtain with the third order's Edgeworth expansion from formula (2.2.6) of ( [START_REF] Jensen | Saddlepoint approximations[END_REF])

P (S n ≥ na n ) = Φ(t n ) n exp(-nt n a n ) √ nt n s(t n ) B 0 (λ n ) + O µ 3 (t n ) 6 √ ns 3 (t n ) B 3 (λ n ) , (6.7) 
where λ n = √ nt s(t n ), B 0 (λ n ) and B 3 (λ n ) are defined by

B 0 (λ n ) = 1 √ 2π 1 - 1 λ 2 n + o( 1 λ 2 n ) , B 3 (λ n ) ∼ - 3 √ 2πλ n .
We show, under condition (6.2), it holds as a n → ∞

1 λ 2 n = o 1 n . (6.8) Since n/λ 2 n = 1/(t 2 n s 2 (t n )), (6.8) is equivalent to show t 2 n s 2 (t n ) -→ ∞. (6.9) By Theorem 3.1, m(t n ) ∼ ψ(t n ) and s 2 (t n ) ∼ ψ ′ (t n ), combined with (??), it holds t n ∼ h(a n ). If h ∈ R β , notice that it holds ψ ′ (t n ) = 1 h ′ (ψ(t n )) = ψ(t n ) h ψ(t n ) β + ǫ(ψ(t n )) ∼ a n h(a n ) β + ǫ(ψ(t n )) ,
hence we have

t 2 n s 2 (t n ) ∼ h(a n ) 2 a n h(a n ) β + ǫ(ψ(t n )) = a n h(a n ) β + ǫ(ψ(t n )) -→ ∞. (6.10) If h ∈ R ∞ , then ψ(t n ) ∈ R 0 , thus it follows t 2 n s 2 (t n ) ∼ t 2 n ψ(t n )ǫ(t n ) t n = t n ψ(t n )ǫ(t n ) -→ ∞, (6.11) 
where last step holds from condition (2.7). We have showed (6.8) , therefore it holds

B 0 (λ n ) = 1 √ 2π 1 + o( 1 n ) .
By (6.9), λ n goes to ∞ as a n → ∞, which implies further B 3 (λ n ) → 0. On the other hand, by (3.1) it holds µ 3 /s 3 → 0. Hence we obtain from (6.7)

P (S n ≥ na n ) = Φ(t n ) n exp(-nt n a n ) √ 2πnt n s(t n ) 1 + o 1 √ n ,
which together with (6.1) gives (6.3). By Jensen's Theorem 6.2.1 ( [START_REF] Jensen | Saddlepoint approximations[END_REF]) and formula (2.2.4) in [START_REF] Jensen | Saddlepoint approximations[END_REF] it follows that

p(S n = na n ) = √ nΦ(t n ) n exp(-nt n a n ) √ 2πs(t n ) 1 + o 1 √ n ,
which, together with (6.1), gives (6.4).

6.1. X 1 , ..., X n are i.i.d. random variables with density p(x) defined in (2.1) and h(x) ∈ R. Suppose when n → ∞, if it holds

ψ(t n ) 2 √ nψ ′ (t n )
-→ 0, (6.12)

and

η n → 0, log n nh(a n )η n → ∞, (6.13) then p An (y 1 ) = p(X 1 = y 1 |S n ≥ na n ) = g An (y 1 ) 1 + o 1 √ n ,
where g An (y 1 ) = nt n s(t n )e nI(an) an+ηn an g τ (y 1 ) exp -nI(τ )log s(t τ ) dτ , g τ (y 1 ) is defined as g an (y 1 ) in Theorem (5.1) on replacing a n by τ .

Proof: We can denote p An (y 1 ) by the integration of p an (y 1 )

p An (y 1 ) = ∞ an p(X 1 = y 1 |S n = nτ )p(S n = nτ |S n ≥ na n )dτ = p(X 1 = y 1 ) ∞ an p(S n 2 = nτ -y 1 )dτ p(S n ≥ na n ) = p(X 1 = y 1 ) p(S n ≥ na n ) P 1 1 + P 2 P 1 ,
where the second equality is obtained by Bayes formula, and

P 1 = an+ηn an p(S n 2 = nτ - y 1 )dτ , P 2 = ∞ an+ηn p(S n 2 = nτ -y 1 )dτ , S n 2 = X 2 + ... + X n .
In fact P 2 is one infinitely small term with respect to P 1 , which is proved below. Further we have

P 2 = 1 n P S n 2 ≥ n(a n + η) -y 1 = 1 n P S n 2 ≥ (n -1)c n , P 1 + P 2 = 1 n P S n 2 ≥ na n -y 1 = 1 n P S n 2 ≥ (n -1)d n ,
where c n = n(a n + η n )y 1 /(n -1) and d n = (na ny 1 )/(n -1). Denote t cn = m -1 (c n ) and t dn = m -1 (d n ). Using Lemma (6.1), it holds

P 2 P 1 + P 2 = 1 + o 1 √ n t dn s(t dn ) t cn s(t cn ) exp -(n -1) I(c n ) -I(d n ) , (6.14)
Using the convexity of the function it holds exp -(n -1)

I(c n ) -I(d n ) ≤ exp -(n -1)(c n -d n )m -1 (d n ) = exp -nη n m -1 (d n ) Consider u → m -1 (u) is increasing, since d n ≤ a n as a n → ∞, it holds m -1 (d n ) ≥ m -1 (a n ), hence we get exp -(n -1) I(c n ) -I(d n ) ≤ exp -nη n m -1 (a n ) . (6.15) Using Theorem 3.1, we have m -1 (a n ) ∼ ψ -1 (a n ) = h(a n ), thus under condition (6.13) it holds as a n → ∞ exp -(n -1) I(c n ) -I(d n ) -→ 0.
Then we show it holds

t dn s(t dn ) t cn s(t cn ) -→ 1. (6.16) By definition, c n /d n → 1 as a n → ∞. if h ∈ R β , by (6.10) 
, it holds

t dn s(t dn ) t cn s(t cn ) 2 ∼ d n h(d n ) β + ǫ ψ(d n ) 2 β + ǫ ψ(c n ) c n h(c n ) 2 ∼ h(d n ) h(c n ) 2 -→ 1. ( 6 

.17)

If h ∈ R ∞ , notice the function t → tψ(t)ǫ(t) is increasing and continuous as t large enough. By (6.11), it holds

t 2 s 2 (t) ∼ tψ(t)ǫ(t), (6.18) 
consider d n → c n as n → ∞, hence we have

t dn s(t dn ) t cn s(t cn ) 2 ∼ d n ψ(d n )ǫ(d n ) c n ψ(c n )ǫ(c n ) -→ 1. (6.19) 
Using (6.14), (6.15) and (6.16), we obtain

P 2 P 1 + P 2 ≤ 2 exp -nm -1 (a n )η n ,
which, together with condition (6.13), it holds

P 2 P 1 = o 1 √ n .
we can approximate p An (y 1 ) by

p An (y 1 ) = 1 + o 1 √ n an+ηn an p(X 1 = y 1 |S n = nτ )p(S n = nτ |S n ≥ na n )dτ. (6.20) According to Lemma 6.1, it follows when τ ∈ [a n , a n + η n ] p(S n = nτ |S n ≥ na n ) = 1 + o 1 √ n nm -1 (a n )s(t n ) s(t τ ) exp -n(I(τ ) -I(a n )) , (6.21) 
where m(t n ) = a n , m(t τ ) = τ . Inserting (6.20) into (6.21), we obtain

p An (y 1 ) = 1 + o 1 √ n nt n s(t n )e nI(an) an+ηn an g τ (y 1 ) exp -nI(τ ) -log s(t τ ) dτ,
this completes the proof.

Appendix

For density functions p(x) defined in (2.1) satisfying also h(x) ∈ R, denote by ψ(x) the reciprocal function of h(x) and

σ 2 (v) = h ′ (v) -1 , v ∈ R + .
For brevity, we write x, σ, l instead of x(t), σ ψ(t) , l(t). When t is given, K(x, t) attain its maximum at x = ψ(t). The fourth order Taylor expansion of K(x, t) on x ∈ [xσl, x + σl] yields

K(x, t) = K(x, t) - 1 2 h ′ (x) x -x 2 - 1 6 h ′′ (x) x -x 3 + ǫ(x, t), (7.1) 
with some θ ∈ [0, 1]

ǫ(x, t) = - 1 24 h ′′′ x + θ(x -x) (x -x) 4 . (7.2) Lemma 7.1. For p(x) in (2.1), h(x) ∈ R, it holds when t → ∞, | log σ ψ(t) | t 1 ψ(u)du -→ 0. ( 7.3) 
Proof: If h(x) ∈ R β , by Theorem (1.5.12) of [START_REF] Bingham | Regular Variation[END_REF], there exists some slowly varying function such that it holds ψ(x) ∼ x 1/β l 1 (x). Hence it holds as t → ∞(see [START_REF] Feller | An introduction to probability theory and its applications[END_REF], Chapter 8)

t 1 ψ(u)du ∼ t 1+ 1 α l 1 (t). (7.4) 
On the other hand, h ′ = x β-1 l(x) β + ǫ(x) , thus we have as

x → ∞ | log σ(x)| = log h ′ (x) -1 2 = 1 2 (β -1) log x + log l(x) + log(β + ǫ(x)) ≤ 1 2 (β + 1) log x, set x = ψ(t), then when t → ∞, it holds x < 2t 1/β l 1 (t) < t 1/β+1 , hence we have | log σ ψ(t) | < (β + 1) 2 2β log t,
which, together with (7.4), yields (7.22). If h(x) ∈ R ∞ , then by definition ψ(x) ∈ R 0 is slowly varying as x → ∞. Hence it holds as t → ∞(see [START_REF] Feller | An introduction to probability theory and its applications[END_REF], Chapter 8)

t 1 ψ(u)du ∼ tψ(t). (7.5) 
And now we have h

′ (x) = 1/ψ ′ (v) with x = ψ(v). Therefore it follows | log σ(x)| = log h ′ (x) -1 2 = 1 2 | log ψ ′ (v)|, Set x = ψ(t), then v = t, consider ψ(t) ∈ R 0 , thus we have | log σ ψ(t) | = 1 2 | log ψ ′ (t)| = 1 2 log ψ(t) ǫ(t) t = 1 2 log ψ(t) + log ǫ(t) -log t ≤ log t + 1 2 | log ǫ(t)| ≤ 2 log t, (7.6) 
where last inequality follows from (2.6). (7.5) and (7.6) imply (7.22). This completes the proof.

Lemma 7.2. For p(x) in (2.1), h ∈ R, then for any varying slowly function l(t) → ∞ as t → ∞, it holds

sup |x|≤σl h ′′′ (x + x)σ 4 l 4 -→ 0 as t → ∞. (7.7) Proof: Case 1: h ∈ R β . We have h(x) = x β l 0 (x), l 0 (x) ∈ R 0 , β > 0. Hence it holds h ′′ (x) = β(β -1)x β-2 l 0 (x) + 2βx β-1 l ′ 0 (x) + x β l ′′ 0 (x). (7.8) h ′′′ (x) = β(β -1)(β -2)x β-3 l 0 (x) + 3β(β -1)x β-2 l ′ 0 (x) + 3βx β-1 l ′′ 0 (x) + x β l ′′′ 0 (x). (7.9) 
Consider l(x) ∈ R 0 , it is easy to obtain

l ′ 0 (x) = l 0 (x) x ǫ(x), l ′′ 0 (x) = l 0 (x) x 2 ǫ 2 (x) + xǫ ′ (x) -ǫ(x) , (7.10) 
and

l ′′′ 0 (x) = l 0 (x) x 3 ǫ 3 (x) + 3xǫ ′ (x)ǫ(x) -3ǫ 2 (x) -2xǫ ′ (x) + 2ǫ(x) + x 2 ǫ ′′ (x) .
Under condition (2.5), there exists some positive constant Q such that it holds

|l ′′ 0 (x)| ≤ Q l 0 (x) x 2 , |l ′′′ 0 (x)| ≤ Q l 0 (x) x 3 ,
which, together with (7.9), yields with some positive constant

Q 1 |h ′′′ (x)| ≤ Q 1 h(x) x 3 . (7.11) 
By definition, we have σ 2 (x) = 1/h ′ (x) = x/ h(x)(β + ǫ(x)) , thus it follows

σ 2 = σ 2 (x) = x h(x)(β + ǫ(x)) = ψ(t) t(β + ǫ(ψ(t))) = ψ(t) βt 1 + o(1) , (7.12) 
this implies σl = o(ψ(t)) = o(x). Thus we get with (7.11)

sup |x|≤σl |h ′′′ (x + x)| ≤ sup |x|≤σl Q 1 h(x + x) (x + x) 3 ≤ Q 2 t ψ 3 (t) , (7.13) 
where Q 2 is some positive constant. Combined with (7.12), we obtain

sup |x|≤σl |h ′′′ (x + x)|σ 4 l 4 ≤ Q 2 t ψ 3 (t) σ 4 l 4 = Q 2 l 4 β 2 tψ(t) -→ 0, as sought. Case 2: h ∈ R ∞ . Since x = ψ(t), we have h(x) = t. Thus it holds h ′ (x) = 1 ψ ′ (t) and h ′′ (x) = - ψ ′′ (t) ψ ′ (t) 3 , (7.14) 
further we get

h ′′′ (x) - ψ ′′′ (t)ψ ′ (t) -3 ψ ′′ (t) 2 ψ ′ (t) 4 . (7.15) Notice if h(x) ∈ R ∞ , then ψ(t) ∈ R 0 . Therefore we obtain ψ ′ (t) = ψ(t) t ǫ(t), (7.16) 
and

ψ ′′ (t) = - ψ(t) t 2 ǫ(t) 1 -ǫ(t) - tǫ ′ (t) ǫ(t) = - ψ(t) t 2 ǫ(t) 1 + o(1) as t → ∞, (7.17) 
where last equality holds from (2.6). Using (2.6) once again, we have also ψ ′′′ (t)

ψ ′′′ (t) = ψ(t) t 3 ǫ(t) 2 + ǫ 2 (t) + 3tǫ ′ (t) -3ǫ(t) - 2tǫ ′ (t) ǫ(t) + t 2 ǫ ′′ (t) ǫ(t) = ψ(t) t 3 ǫ(t) 2 + o(1)
as t → ∞. (7.18) Put (7.16) (7.17) and (7.18) into (7.15) we get

h ′′′ (x) = 1 ψ 2 (t)ǫ 2 (t) 1 + o(1)
Thus by (2.7) it holds as t → ∞

sup |v|≤t/4 h ′′′ ψ(t + v) = sup |v|≤t/4 1 ψ 2 (t + v)ǫ 2 (t + v) 1 + o(1) ≤ sup |v|≤t/4 2 √ t + v ψ 2 (t + v) ≤ 3 √ t ψ 2 (t) , (7.19) 
where last inequality holds from the slowly varying propriety: 

ψ(t + v) ∼ ψ(t). Using σ = h ′ (x) -1/2 , it holds sup |v|≤t/4 h ′′′ ψ(t + v) σ 4 ≤ 3 √ t ψ 2 (t) 1 (h ′ (x)) 2 = 3 √ t ψ 2 (t) ψ 2 (t)ǫ 2 (t) t 2 = 3ǫ 2 (t) t 3/2 -→ 0, ǫ ( 
h ′′′ ψ(t + v) = sup |ζ|≤[ζ 1 ,ζ 2 ] h ′′′ (x + ζ),
where

ζ 1 = ψ(3t/4) -x, ζ 2 = ψ(5t/4) -x.
Hence we have showed sup

|ζ|≤[ζ 1 ,ζ 2 ] h ′′′ (x + ζ)σ 4 l 4 -→ 0.
For completing the proof, it remains to show

σl ≤ min(|ζ 1 |, ζ 2 ) as t → ∞. (7.20) 
Perform first order Taylor expansion of ψ(3t/4) at t, for some α ∈ [0, 1], it holds 

ζ 1 = ψ(3t/4) -x = ψ(3t/4) -ψ(t) = -ψ ′ t -
(x) = β(β -1) + o(1) x β-2 l 0 (x) as x → ∞, where l 0 (x) ∈ R 0 . Hence it holds h ′′ (x) = β(β -1) + o(1) ψ(t) β-2 l 0 (ψ(t)), (7.24) 
which, together with (7.12) and (7.13), yields with some positive constant

Q 3 sup |x|≤σl h ′′′ (x + x) h ′′ (x) σl ≤ Q 3 t ψ 3 (t) 1 ψ(t) β-2 l 0 (ψ(t)) ψ(t) βt l = Q 3 √ β √ t ψ(t) β+1/2 l 0 (ψ(t)) l.
Notice ψ(t) ∼ t 1/β l 1 (t) for some slowly varying function l 1 (t), then it holds √ tl = o ψ(t) β+1/2 . Hence we get (7.22). From (7.12) and (7.24), we obtain as t → ∞ h ′′ (x)σ 3 l = β(β -1) + o(1) ψ(t) β-2 l 0 (ψ(t)) ψ(t) βt

3/2 l = β(β -1) + o(1) ψ(t) β-1/2 β 3/2 t 3/2 l 0 (ψ(t))l ≤ 1 √ t , (7.25) 
where last inequality holds since ψ(t) β-1/2 /t 3/2 ∼ l 1 (t) β-1/2 /t 1/2+1/2β as t → ∞. This implies (7.23) holds.

Case 2: Using (7.14) and (7.17) we obtain 

h ′′ (x) = - ψ ′′ (t) ψ ′ (t) 3 = t ψ 2 (t)ǫ 2 (t) 1 + o(1
Ψ(t, α) := ∞ 0 (x -x) α e tx p(x)dx,
then there exists some slowly varying function l(t) such that it holds as t → ∞

Ψ(t, α) = cσ α+1 e K(x,t) T 1 (t, α) 1 + o(1) ,
where Given a slowly varying function l with l(t) → ∞ and define the interval I t as follows

T 1 (t, α) = l 1/3 √ 2 -l 1/3 √ 2 y α exp - y 2 2 dy - h ′′ (x)σ 3 6 l 1/3 √ 2 -l 1/3
I t := - l 1/3 σ √ 2 , l 1/3 σ √ 2 .
For large enough τ , when t → ∞ we can partition R + as

R + = {x : 0 < x < τ } ∪ {x : x ∈ x + I t } ∪ {x : x ≥ τ, x / ∈ x + I t },
where τ large enough such that it holds for x > τ p(x) < 2ce -g(x) . (7.28)

Obviously, for fixed τ , {x : 0 < x < τ } ∩ {x : x ∈ x + I t } = Ø since for large t we have min x : x ∈ x + I t → ∞ as t → ∞. Hence it holds 

Ψ(t, α) = τ 0 (x -x) α e tx p(x)dx + x∈x+It (x -x) α e tx p(x)dx + x / ∈x+It,x>τ (x -x) α e tx p(x)dx := Ψ 1 (t, α) + Ψ 2 (t, α) + Ψ 3 (t, α). ( 7 
σ -α-4 t -1 xα e tτ h ′′ (x) -1 = o(e K(x,t) ), which is implied by exp -(α + 4) log σ -log t + α log x + τ t -log h ′′ (x) = o(e K(x,t) ).
By Lemma (7.1), we know log σ = o(e K(x,t) ) as t → ∞. So it remains to show t = o(e K(x,t) ), log x = o(e K(x,t) ) and log h ′′ (x) = o(e K(x,t) ). Since x = ψ(t), it holds

K(x, t) = tψ(t) -g(ψ(t)) = t 1 ψ(u)du + ψ(1) -g(1), (7.32) 
where the second equality can be easily verified by the change of variable u = h(v).

If h(x) ∈ R β , by Theorem (1.5.12) of [START_REF] Bingham | Regular Variation[END_REF], it holds ψ(x) ∼ x 1/β l 1 (x) with some slowly varying function l 1 (x). (7.4) and (7.32) yield t = o(e K(x,t) ). In addition, log x = log ψ(t) ∼ (1/β) log t = o(e K(x,t) ). By (7.24), it holds log h ′′ (x) = o(t). Thus (7.31) holds. If h(x) ∈ R ∞ , ψ(x) ∈ R 0 is slowly varying as x → ∞. Therefore, by (7.5) and (7.32), it holds t = o(e K(x,t) ) and log x = log ψ(t) = o(e K(x,t) ). Using (7.26), we have log h ′′ (x) ∼ log t -2 log x -2 log ǫ(t). Under condition (2.7), log ǫ(t) = o(t), thus it holds log h ′′ (x) = o(t). We get (7.31). (7.30) and (7.31) yield together

|Ψ 1 (t, α)| = o(σ α+1 e K(x,t) h ′′ (x)σ 3 ). ( 7 

.33)

Step 2: Notice min x : x ∈ x + I t → ∞ as t → ∞, which implies both ǫ(x, t) and q(x) go to 0 when x ∈ x + I t . Using (2.1) and (7.1), then it holds as t → ∞

Ψ 2 (t, α) = x∈x+It (x -x) α c exp K(x, t) + q(x) dx = x∈x+It (x -x) α c exp K(x, t) - 1 2 h ′ (x) x -x 2 - 1 6 h ′′ (x) x -x 3 + ξ(x, t) dx,
where ξ(x, t) = ǫ(x, t) + q(x). Make the change of variable y = (xx)/σ, it holds Hence we obtain

Ψ 2 (t, α) = cσ α+1 exp K(x, t) l 1/3 √ 2 -l 1/3 √ 2 y α exp - y 2 2 - h ′′ ( 
l 1/3 √ 2 -l 1/3 √ 2 y α exp - y 2 2 - h ′′ (x)σ 3 6 y 3 + ξ(σy + x, t) dy = l 1/3 √ 2 -l 1/3 √ 2 1 - h ′′ (x)σ 3 6 y 3 + ξ(σy + x, t) + o 1 (t, y) y α exp - y 2 2 dy = l 1/3 √ 2 -l 1/3 √ 2 y α exp - y 2 2 dy - h ′′ (x)σ 3 6 l 1/3 √ 2 -l 1/3 √ 2 y 3+α exp - y 2 2 dy + l 1/3 √ 2 -l 1/3 √ 2 ξ(σy + x, t) + o 1 (t, y) y α exp - y 2 2 dy.
Define T 1 (t, α) and T 2 (t, α) as follows

T 1 (t, α) = l 1/3 √ 2 -l 1/3 √ 2 y α exp - y 2 2 dy - h ′′ (x)σ 3 6 l 1/3 √ 2 -l 1/3 √ 2 y 3+α exp - y 2 2 dy, T 2 (t, α) = l 1/3 √ 2 -l 1/3 √ 2 ξ(σy + x, t) + o 1 (t, y) y α exp - y 2 2 dy. (7.35) for T 2 (t, α), it holds |T 2 (t, α)| ≤ l 1/3 √ 2 -l 1/3 √ 2 |ξ(σy + x, t)| + |o 1 (t, y)| |y| α exp - y 2 2 dy ≤ sup y∈[-l,l] |ξ(σy + x, t)| l 1/3 √ 2 -l 1/3 √ 2 |y| α exp - y 2 2 dy + l 1/3 √ 2 -l 1/3 √ 2 |o 1 (t, y)||y| α exp - y 2 2 dy ≤ sup y∈[-l,l] |ξ(σy + x, t)| l 1/3 √ 2 -l 1/3 √ 2 |y| α exp - y 2 2 dy + l 1/3 √ 2 -l 1/3 √ 2 o h ′′ (x)σ 3 6 y 3 + o ξ(σy + x, t) |y| α exp - y 2 2 dy ≤ 2 sup y∈[-l,l] |ξ(σy + x, t)| l 1/3 √ 2 -l 1/3 √ 2 |y| α exp - y 2 2 dy + |o(h ′′ (x)σ 3 )| l 1/3 √ 2 -l 1/3 √ 2 |y| 3+α exp - y 2 2 dy = |o(h ′′ (x)σ 3 )| l 1/3 √ 2 -l 1/3 √ 2 |y| α exp - y 2 2 dy + l 1/3 √ 2 -l 1/3 √ 2 |y| 3+α exp - y 2 2 dy ,
where last equality holds from Lemma 7.4. Since the integrals in the last equality are both bounded, it holds as t → ∞

T 2 (t, α) = o(h ′′ (x)σ 3 ).
When α is even, the second term of T 1 (t, α) vanishes. When α is odd, the first term of T 1 (t, α) vanishes. Obviously, T 1 (t, α) is at least the same order than h ′′ (x)σ 3 . Therefore it follows as t → ∞ T 2 (t, α) = o(T 1 (t, α)).

(7.36) Using (7.34), (7.35) and (7.36) we get

Ψ 2 (t, α) = cσ α+1 exp K(x, t) T 1 (t, α) 1 + o(1) . ( 7 

.37)

Step 3: Given h ∈ R, for any t, K(x, t) as a function of x (x > τ ) is concave since

K ′′ (x, t) = -h ′ (x) < 0.
Thus we get for x / ∈ x + I t and x > τ

K(x, t) -K(x, t) ≤ K(x + l 1/3 σ √ 2 sgn(x -x), t) -K(x, t) l 1/3 σ √ 2 sgn(x -x) (x -x), (7.38) 
where

sgn(x -x) = 1 x ≥ x, -1 if x < x.
Using (7.1), we get

K(x + l 1/3 σ √ 2 sgn(x -x), t) -K(x, t) ≤ - 1 8 h ′ (x)l 2/3 σ 2 = - 1 8 l 2/3 ,
which, combined with (7.38), yields

K(x, t) -K(x, t) ≤ - √ 2 8 l 1/3 σ -1 |x -x|.
We obtain

|Ψ 3 (t, α)| ≤ 2c x / ∈x+It,x>τ |x -x| α exp K(x, t) dx ≤ 2c |x-x|> l 1/3 σ √ 2 |x -x| α exp K(x, t) dx ≤ 2ce K(x,t) |x-x|> l 1/3 σ √ 2 |x -x| α exp - √ 2 8 l 1/3 σ -1 |x -x| dx = 2ce K(x,t) σ α+1 |y|> l 1/3 √ 2 |y| α exp - √ 2 8 l 1/3 |y| dy = 2ce K(x,t) σ α+1 |y|> l 1/3 √ 2 exp - √ 2 8 l 1/3 |y| + α log |y| dy = 2ce K(x,t) σ α+1 2e -l 2/3 /8 1 + o(1) ,
where last equality holds when l → ∞ (see e.g. Theorem 4.12.10 of [START_REF] Bingham | Regular Variation[END_REF]). With (7.37), we obtain

Ψ 3 (t, α) Ψ 2 (t, α) ≤ 8e -l 2/3 /8 |T 1 (t, α)| .
In Step 2, we know T 1 (t, α) has at least the order h ′′ (x)σ3 . Hence there exists some positive constant Q and l 2 (t) → ∞ such that it holds as t → ∞

Ψ 3 (t, α) Ψ 2 (t, α) ≤ Qe -l 2/3
example, we can take l 2 (t) = (log t) 

  Define t through m(t) = a n , replace condition (5.3) by lim n→∞ ψ(t)2 

Corollary 5 . 1 .

 51 It holds

By the above result ( 5

 5 |P an (C ∩ E δ ) -P an (C)| < η n and sup C∈B(R) |G an (C ∩ E δ ) -G an (C)| < η n for some sequence η n → 0 ; hence sup C∈B(R) |P an (C) -G an (C)| < δ + 2η n for all positive δ, which proves the claim. As a consequence, applying Scheffé's Lemma |p ang an | dx → 0 as n → ∞.

Lemma 5 . 4 .

 54 Under the above hypotheses and notation, for any compact set K,

  .1) Lemma 6.1. X 1 , ..., X n are i.i.d. random variables with density p(x) defined in (2.1) and h

  t) → 0 and ψ(t) varies slowly. Hence for any slowly varying function l(t) → ∞ it holds as t → ∞

	sup |v|≤t/4	h ′′′ ψ(t + v) σ 4 l 4 -→ 0.
	Consider ψ(t) ∈ R 0 , thus ψ(t) is increasing, we have the relation
	sup	
	|v|≤t/4	

  Lemma 7.5. For p(x) belonging to h(x) ∈ R, α ∈ N, denote by

	ǫ(t) → 0 and ψ(t) varies slowly. Hence for arbitrarily slowly varying function l(t) it holds as t → ∞ sup |v|≤t/4 h ′′′ ψ(t + v) h ′′ (x) σl -→ 0.
	Define ζ 1 , ζ 2 as in Lemma 7.2, we have showed	
	sup |ζ|≤[ζ 1 ,ζ 2 ]	h ′′′ (x + ζ) h ′′ (x)	σl -→ 0.
	(7.22) is obtained by using (7.20). Using (7.26), for any slowly varying function, it holds
	h ′′ (x)σ 3 l =		l ψ(t)ǫ(t)t	-→ 0.
	Hence the proof.						
	Lemma 7.4. For p(x) in (2.1), h ∈ R, then for any slowly varying function l(t) → ∞ as t → ∞ such that it holds sup y∈[-l,l] |ξ(σy + x, t)| h ′′ (x)σ 3 -→ 0,
	where ξ(x, t) = ǫ(x, t) + q(x).						
	Proof: For y ∈ [-l, l], by (7.2) and Lemma 7.3 it holds as t → ∞ |ǫ(σy + x, t)| h ′′ (x)σ 3 ≤ sup |x|≤σl h ′′′ (x + x) h ′′ (x) σl -→ 0.	(7.27)
	Under condition (2.2), set x = ψ(t), we get		
	sup |v-ψ(t)|≤ϑψ(t)	|q(v)| ≤	1 tψ(t)	,
	and it holds for any slowly varying function l(t) as t → ∞
	σl ϑψ(t)	=	ψ ′ (t)l ϑψ(t)	=	ǫ(t) tψ(t)	l ϑ	-→ 0,
	hence we obtain							) .	(7.26)
	Combine (7.19) and (7.26), using σ = h ′ (x) sup |v-ψ(t)|≤σl |q(v)| ≤ -1/2 , we have as t → ∞ 1 . tψ(t) sup |v|≤t/4 h ′′′ ψ(t + v) h ′′ (x) σ ≤ 4ǫ 2 (t) √ t 1 h ′ (x) = 4ǫ(t) 5/2 ψ(t) t Using this inequality and (7.26), when y ∈ [-l, l], it holds as t → ∞ |q(σy + x)| h ′′ (x)σ 3 = |q(σy + x)| ψ(t)ǫ(t)t ≤ sup |v-ψ(t)|≤σl |q(v)| ψ(t)ǫ(t)t ≤ ǫ(t) → 0, → 0,
	which, together with (7.27), completes the proof.

  .29) We estimate sequentially Ψ 1 (t, α), Ψ 2 (t, α), Ψ 3 (t, α) in Step 1,Step 2 and Step 3.

	show it holds for h ∈ R as t → ∞	
		t -1 xα e tτ = o(σ α+1 e K(x,t) h ′′ (x)σ 3 ).	(7.31)
	(7.31) is equivalent to				
	Step 1: Using (7.28), for τ large enough, we have	
		τ			τ
	|Ψ 1 (t, α)| ≤	0	|x -x| α e tx p(x)dx ≤ 2c τ	0	|x -x| α e tx-g(x) dx
	≤ 2c	0	xα e tx dx ≤ 2ct -1 xα e tτ .		(7.30)

  (x)σ 3 y 3 | ≤ |h ′′ (x)σ 3 l| → 0 as t → ∞. Perform the first order Taylor expansion, it holds as t → ∞

	On y ∈ -l 1/3	√	2, l 1/3 /	√	2 , by (7.23), |h
	exp -	h ′′ (x)σ 3 6	y 3 + ξ(σy + x, t) = 1 -	h ′′ (x)σ 3 6	y 3 + ξ(σy + x, t) + o 1 (t, y),
	where				
				o 1 (t, y) = o -	h ′′ (x)σ 3 6	y 3 + ξ(σy + x, t) .
						x)σ 3 6	y 3 + ξ(σy + x, t) dy.
						(7.34)

′′ 

  3 . If h ∈ R β , by(7.25), it is easy to know h ′′ (x)σ 3 ≥ 1/t 1+1/(2β) , thus we haveΨ 3 (t, α) Ψ 2 (t, α) ≤ Q explwhere last line holds since log ψ(t) = O(log t). The proof is completed by combining (7.29), (7.33), (7.37) and (7.39).Proof of Theorem 3.1: By Lemma 7.5, if α = 0, it holds T 1 (t, 0) ∼ √ 2π as t → ∞, hence for p(x) defined in (2.1), we can approximate X's moment generating function Φ(t) denotes the sixth order moment of standard normal distribution. Using (7.41), (7.43), and (7.46), we have as t → ∞ where last equality holds since ψ(t) ∼ t 1/β l 1 (t) for some slowly varying function l 1 . Obviously, h ′′ (x)σ 4 = o(x), thus we havem(t) ∼ x = ψ(t). ′′ (x)σ 4 ) 2 = o(σ 2 ). Therefore it follows s 2 (t) ∼ σ 2 = ψ ′ (t). (7.48) For µ 3 , it holds ′′ (x)σ 4 ) 3 = o(h ′′ (x)σ 6 ) since (h ′′ (x)σ 4 ) 3 h ′′ (x)σ 6 = h ′′ (x) 2 σ 6 = (β -1) 2 β ψ(t) 2β-1 l 0 (ψ(t)) 2 t 3 1 + o(1) -→ 0,where last step holds from the fact ψ(t) 2β-1 /t 3 ∼ l 1 (t) 2β-1 /t 1+1/β . We have It is straightforward that (7.14) holds for h ∈ R β , thus h ′′ (x)σ 6 = -ψ If h ∈ R ∞ , recall that we have obtained in (7.26) As regards to µ 3 (t), we have h ′′ (x)σ 4 3 ∼ 1/t 3 , but h ′′ (x)σ 6 ∼ ψ(t)ǫ(t)/t 2 , hence it holds h ′′ (x)σ 4 3 = o h ′′ (x)σ 6 . It follows Proof of Corollary 3.1 : Case 1: If h ∈ R β . By (7.48) and (7.49), it holds as t → ∞ holds since ψ(t) ∼ t 1/β l 1 (t) for some slowly varying function l 1 (t). (7.50) and (7.51) yields (3.1). Case 2: If h ∈ R ∞ . In (1) we have showed it holds By (7.16) and (7.17), we have as t → ∞

	Set α = 2, as t ∞, it follows using (7.24) and (7.12), we get for l 0 ∈ R 0
	2/3 2 /8 + (1 + 1/(2β)) log t -→ 0. If h ∈ R ∞ , using (7.26), then it holds as t → ∞ Ψ 3 (t, α) Ψ 2 (t, α) ≤ 2Q exp -l 2/3 2 /8 + log tψ(t)ǫ(t) = 2Q exp -l 2/3 2 /8 + (1/2) log t + log ψ(t) + log ǫ(t) -→ 0, Φ(t) = ∞ 0 e tx p(x)dx = c √ 2πσe K(x,t) 1 + o(1) . If α = 1, it holds as t → ∞, T 1 (t, 1) = -h ′′ (x)σ 3 6 l 1/3 √ 2 -l 1/3 √ 2 y 4 exp -y 2 2 dy = -√ 2πh ′′ (x)σ 3 2 1 + o(1) , hence we have with Ψ(t, α) defined in Lemma 7.5 Ψ(t, 1) = -c √ 2πσ 2 e K(x,t) h ′′ (x)σ 3 2 1 + o(1) = -Φ(t) h ′′ (x)σ 4 2 1 + o(1) , which, together with the definition of Ψ(t, α), yields ∞ 0 xe tx p(x)dx = Ψ(t, 1) + xΦ(t) = x -h ′′ (x)σ 4 2 1 + o(1) Φ(t). Hence we get m(t) = d log Φ(t) dt = ∞ 0 xe tx p(x)dx Φ(t) = x -h ′′ (x)σ 4 2 1 + o(1) . µ 3 s 3 ∼ 2 h ′′ (x)σ 3 . M 6 -3 Ψ(t, 2) = cσ 3 e K(x,t) l 1/3 √ 2 -l 1/3 √ 2 y 2 exp -y 2 2 dy 1 + o(1) = c √ 2πσ 3 e K(x,t) 1 + o(1) = σ 2 Φ(t) 1 + o(1) . Using (7.41), (7.43) and (7.44), we have ∞ 0 x -m(t) 2 e tx p(x)dx = ∞ 0 x -x + x -m(t) 2 e tx p(x)dx = ∞ 0 x -x h ′′ (x)σ 4 2 1 + o(1) + h ′′ (x)σ 4 2 2 Φ(t) 1 + o(1) (7.39) (7.40) (7.41) (7.42) (7.50) (7.43) (7.44) = σ 2 -(h ′′ (x)σ 4 ) 2 4 Φ(t) 1 + o(1) , thus we have s 2 (t) = d 2 log Φ(t) dt 2 = ∞ 0 x -m(t) 2 e tx p(x)dx Φ(t) = σ 2 -(h ′′ (x)σ 4 ) 2 4 1 + o(1) . (7.45) Set α = 3, the first term of T 1 (t, 3) vanishes, we obtain as t → ∞ Ψ(t, 3) = -c √ 2πσ 4 e K(x,t) h ′′ (x)σ 3 2 l 1/3 √ 2 -l 1/3 √ 2 1 √ 2π y 6 exp -y 2 2 dy = -cM 6 √ 2πe K(x,t) h ′′ (x)σ 7 2 1 + o(1) = -M 6 h ′′ (x)σ 6 2 Φ(t) 1 + o(1) , (7.46) 0 x -m(t) 3 e tx p(x)dx = ∞ 0 x -x + x -m(t) 3 e tx p(x)dx = ∞ 0 (x -x) 3 + 3(x -x) 2 x -m(t) + 3(x -x) x -m(t) 2 + x -m(t) 3 e tx p(x)dx h ′′ (x)σ 3 ∼ β(β -1)ψ(t) β-2 l 0 (ψ(t)) ψ(t) βt 3/2 = β -1 √ β l 0 (ψ(t)) ψ(t) β-1/2 t 3/2 -→ 0, (7.51) where M 6 ∞ = Ψ(t, 3) + 3 x -m(t) Ψ(t, 2) + 3 x -m(t) 2 Ψ(t, 1) + x -m(t) 3 Φ(t) = -M 6 h ′′ (x)σ 6 2 Φ(t) 1 + o(1) + (3/2)h ′′ (x)σ 4 (σ 2 Φ(t)) 1 + o(1) -3 h ′′ (x)σ 4 2 2 Φ(t) h ′′ (x)σ 4 2 1 + o(1) + h ′′ (x)σ 4 2 3 Φ(t) 1 + o(1) = 3 -M 6 2 h ′′ (x)σ 6 -(h ′′ (x)σ 4 ) 3 4 Φ(t) 1 + o(1) , hence we get µ 3 (t) = d 3 log Φ(t) dt 3 = ∞ 0 x -m(t) 3 e tx p(x)dx Φ(t) = 3 -M 6 2 h ′′ (x)σ 6 -(h ′′ (x)σ 4 ) 3 4 1 + o(1) . (7.47) Finally, we finish the proof by simplifying (7.43) (7.45) and (7.47). h ′′ (x)σ 4 = β -1 β ψ(t) β t 2 l 0 (ψ(t)) 1 + o(1) = β -1 β l 0 (ψ(t))l 1 (t) β t 1 + o(1) , It holds also as t → ∞ (h ′′ (x)σ 4 ) 2 σ 2 = (β -1) 2 l 0 (ψ(t)) 2 ψ(t) 2 1 + o(1) -→ 0, 3 -M 6 2 h ′′ (x)σ 6 . (7.49) ′′ (t)/(ψ ′ (t)) 3 * (ψ ′ (t)) 3 = -ψ ′′ (t) . We get µ 3 (t) ∼ M 6 -3 2 ψ ′′ (t). consider σ 2 = ψ µ 3 (t) ∼ M 6 -3 2 ψ ′′ (t). where last step µ 3 (t) s 3 (t) ∼ M 6 -3 2 ψ ′′ (t) ψ ′ (t) 3/2 . which implies (h µ 3 (t) ∼ Case 2: h ′′ (x) = -ψ ′′ (t) ψ ′ (t) 3 = t ψ 2 (t)ǫ 2 (t) 1 + o(1) , ψ ′′ (t) ψ ′ (t) 3/2 ∼ -ψ(t)ǫ(t) t 2 ψ(t)ǫ(t) t -3/2 = -1 tψ(t)ǫ(t) -→ 0,

2 

e tx p(x)dx + 2 xm(t)

∞ 0 (xx)e tx p(x)dx + xm(t) 2 Φ(t) = Ψ(t, 2) + 2 xm(t) Ψ(t, 1) + xm(t) 2 Φ(t) = σ 2 Φ(t) 1 + o(1)h ′′ (x)σ 4 Φ(t) Case 1: h ∈ R β .

We have gotten in (7.24)

h ′′ (x) = β(β -1) + o(1) ψ(t) β-2 l 0 (ψ(t)),

where l 0 ∈ R 0 . In (7.12), we have σ 2 ∼ ψ(t)/(βt), hence it holds ′ (t) = ψ(t)ǫ(t)/t, it holds

h ′′ (x)σ 4 = 1 t 1 + o(1) . Notice h ′′ (x)σ 4 = o(x) as t → ∞, hence it holds m(t) ∼ x = ψ(t).

And as t → ∞ it holds h ′′ (x)σ 4 2 ∼ 1/t 2 = o(σ 2 ), thus we obtain

s 2 (t) ∼ σ 2 = ψ ′ (t).

where last step holds under condition (2.7). Hence the proof.
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