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Abstract

We study the propagation of an acoustic wave in a moving fluid in the
high frequency regime. We calculate a high-frequency approximation of
the solution of this problem using an Eulerian method.

The model retained is a linearized Euler system around a mean fluid
flow. For any regular mean flow, we derive a conservative transport equa-
tion for the geometrical optics approximation. We introduce the stretch-

ing matrix corresponding to this system, from which we deduce the ge-
ometrical spreading, key tool for computing the geometrical optics ap-
proximation.

Finally, we construct and implement a numerical scheme in the Eule-
rian framework for the eikonal equation. This Eulerian formulation ap-
plies also for the transport equation on the stretching matrix.
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1 Introduction

In this paper, we study the propagation of aeroacoustic perturbations, around
a given mean flow, in the high frequency regime.

There are different ways of simulating the acoustic propagation using vari-
ous formulations of the problem. One has, apart from the direct numerical sim-
ulation of the Partial Differential Equation (PDE), the integral equation method
(where one solves through finite element methods a problem on the bound-
ary [8]), the variational formulation (Discontinuous Galerkin method [35]), the
Galbrun’s equation (where, under suitable hypothesis on the mean flow, one
obtains a scalar equation on the displacement field [28])... To have an accurate
approximation of the solution in all these approaches, one must have, from a
practical point of view, at least ten grid points per wavelength. Hence, in the
high frequency regime, the number of unknowns is large, and the direct nu-
merical simulation becomes very expensive. When the given mean flow and the
sound velocity are slowly varying in space and time, an alternative is to use the
Linear Geometrical Optics in the high frequency regime (see [22]), that we will
outline now. It consists in replacing the solution by a (x ,k )e i (kψ(x )−ωt ), where
a (x ,k ) ∼

∑
j∈Na j (x )(i k )−j . Substituing this expansion into the wave equation,

and setting to zero all the terms in powers of i k , we obtain a nonlinear equation
for the phaseψ called the Eikonal equation which is an Hamilton-Jacobi equa-
tion. The coefficients a j of the asymptotic expansion are determined iteratively
by an evolution equation with source terms. There is a substantial literature in
the resolution of the wave equation in the high frequency regime, and the arti-
cle of Engquist and Runborg [10] provides a useful overview and a good source
for references.

In the linear geometrical optics approximation, it is generally also assumed
that the wavelength is small compared to the structure scale. However, one
can find results that take into account geometric singularities: the diffraction
problems for electromagnetic waves (Bouche and Molinet [4]) or the scattering
theory for hyperbolic systems (Keller [23]).

The ratio between the wavelength and the characteristic length of the phe-
nomena studied is also important. When it is of order 1, the Linear Geometrical
Optics breaks down. The difficulty is due to the fact that the proposed approx-
imations of the solutions satisfy the equations up to a remainder term that is
not really small compared to the physical scale. In this case, one can use the
Nonlinear Geometrical Optics ([16, 20, 21] among many references). Our paper
does not address this limit.
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Together with theoretical analysis, finding an efficient numerical scheme to
solve the equations, obtained under the high frequency approximation, is also
a very active field of research. There are mainly two approaches. The first clas-
sical trend consists in determining the trajectory of the rays and then solve the
eikonal and the transport equations along these rays as ordinary differential
equations. The second trend is to solve directly the eikonal and the transport
equations as PDEs. This second approach to calculate solutions of Hamilton-
Jacobi equations has been used in a wide range of applications: the optimal
control (Crandall, Lions [7]), the shape-from-shading problem (Rouy, Tourin
[37]), the electromagnetics wave propagation in the high frequency regime (Be-
namou et al. [2]).... The study of the numerical methods, for solving the Hamilton-
Jacobi equation as a PDE, is an active area of research.

This contribution is devoted to the study of high-frequency propagation of
the acoustic wave in a moving flow. We use an Eulerian approach. The mathe-
matical representation chosen to model this problem is the system of Entropic-
Euler equations. The unknown of the problem is a perturbation of a mean flow,
which leads naturally to consider the linearized equations. The mean velocity is
assumed to be smooth and subsonic, it can be non-uniform or non-potential.
The system on the perturbation is hyperbolic symmetrizable of order 1 in the
sense of Friedrichs [11]. It is also equivalent, for smooth solutions, to the usual
system of Euler equations for conservation of mass, momentum, and total en-
ergy (Landau and Lifchitz [25]). In the sequel, this system and equivalent sys-
tems will be called the Euler equations.

The construction of the asymptotic solutions for such a system was given
first in the article of Lax [26], and a complete synthesis can be read in the book
of Rauch [36]. We apply these general results to our system. We give the explicit
equations that one has to solve for the computation of the geometrical optics
approximation of the perturbation, namely the eikonal equation on the phase,
and the transport equation on the leading term of the asymptotic expansion.
We show here that the latter turns into a scalar conservative transport equation
along the group velocity. This generalizes a known result of the high frequency
acoustics in the absence of flow in the high frequency regime (see Theorem
2.11). We do not use this conservative transport equation for the numerical
resolution but rather an equivalent approach using the geometrical spreading
introduced in a natural fashion by Benamou et al. [3] for the wave equation,
and which appears to be the key tool also in this more general situation. It is
straightforward to deduce from this geometrical spreading the acoustic pres-
sure and the acoustic velocity perturbations.
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The article is organized as follows. In section 1, we derive a conservative
scalar transport equation along the group velocity. Then we compute, for any
type of regular mean flow, the leading order term of the asymptotic expanstion
of the acoustic perturbation. In section 2, we introduce the geometrical spread-
ing related to our system. A transport equation in the Eulerian formulation is
derived. In section 3, we develop a numerical scheme of second order in space
and time to approximate the solution of the eikonal equation on the phase.
This scheme is tested and the convergence order verified. We perform a de-
tailed comparaison between the analytical solution and the numerical solution
in non trivial cases. In section 4, we develop a method for computing the geo-
metrical spreading, through the introduction of a matrix, called the stretching
matrix, which characterizes the spreading of rays. A comparaison with non triv-
ial analytical solutions is also presented for the computation of the amplitude.

2 Conservative transport equation

Assume that the fluid is a inviscid perfect gas. Assume that we choose the
Froude number such that the gravity is negligible, and that there is no thermal
diffusion. The Entropic-Euler equations for mass, momentum, and entropy
density are written:





∂tρ+divx (ρu ) = 0

∂t (ρu )+divx

�
ρu ⊗u +p Id

�
= 0

∂t (ρs )+divx (ρs u ) = 0

, (1)

where ρ denotes the mass density, u = (u 1, · · · ,u d ) the velocity of the fluid, s

the entropy, and p = ργe s the pressure, γ being the perfect gas constant. The
space-time variable is denoted by y = (t ,x ) ∈ Rt × Rd with t = y0 and x =

(x1, · · · ,xd ).

2.1 Linearization of Euler equations

The aeroacoustic model is based on perturbations of a reference solution W0 =

(ρ0,ρ0u 0,ρ0s0)
t of the system (1). Throughout this paper, we assume that the

mean profile W0 is a smooth function. The perturbed quantities, or acoustic
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quantities, W = (̺,q ,��)t are defined through





ρ =ρ0+̺

ρu =ρ0u 0+q

ρs =ρ0s0+�� . (2)

The linear system obtained by linearization of the Euler equations around
the given reference solution W0 is:





∂t̺+divx q = 0

∂t q +divx

�
u 0⊗q +q⊗u 0−̺u 0⊗u 0

�
+∇x

��
c2

0−
p0s0

ρ0

�
̺+

p0

ρ0
���= 0

∂t ��+divx

���u 0+ s0q − s0̺u 0
�
= 0

,

(3)

where c0 =

Ç
γp0

ρ0
is the sound velocity. We assume that the mean flow is sub-

sonic, i.e. |u 0|< c0.
The equations above on the perturbed quantities can be rewritten

L(y ,∂y )W = 0, (4)

where L(y ,∂y ) is the linear differential matricial operator of order 1, with coef-
ficients (A i )1≤i≤d (real square (d + 2)× (d + 2) matrices cf. (10)) depending on
the mean profile W0 = (ρ0,ρ0u 0,ρ0s0)

t , given by

L(y ,∂y ) = Id+2∂t +

d∑

i=1

A i (y )∂x i
+

d∑

i=1

∂x i
A i (y ).

Remark 2.1. Notice that the operator L(y ,∂y ) is symmetrizable hyperbolic in

the sense of Friedrichs [11], i.e. there exists a symmetric positive definite matrix

A0 and regular in its arguments such that the matrices (A0A i )1≤i≤d are symmet-

ric.

Throughout this paper, we denote by Γi nc a smooth hypersurface inRd , and
letΩ be the open subset ofRd which lies on one side of Γi nc . SetT =Rt×Ω, and
define Σi nc =Rt ×Γi nc . We shall also use the notation y0 = (t ,x0) for x0 ∈ Γi nc .

The tangent bundle of T is TT . A fiber over y ∈ T of this bundle is the
tangent vector space TyT of T at y . In the same way, the cotangent bundle
T ∗T (or phase space) consists of fibers over y each of which is the dual vector
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space to TyT . The cotangent bundle admits a canonical symplectic structure
given by w = dα where α is the Liouville form, we denote its coordinates by
(y ,η)≡ (t ,x ,τ,ξ).

We require the inflow condition on Γi nc , i.e. u 0.ν > 0 where ν is the inward
normal to Ω.

We consider the equations (4) in T together with the incident boundary
condition on Σi nc :

�
ρ

q

�
(y0) =

�
a+i nc

b+
i nc

�
(y0,k )e i kϕ+i nc (y0)+

�
a−i nc

b−
i nc

�
(y0,k )e i kϕ−i nc (y0), (5)

where ϕ±i nc , a±i nc , and b±
i nc

are functions in C∞(Σi nc ). Moreover, a±i nc , and b±
i nc

have an asymptotic expansion of the form (7), and k >> 1 is the wave number.
The incident phase ϕi nc satisfies the compatibility conditions (H.a) given be-
low, and the leading term of the asymptotic expansion of b±

i nc
(.,k ) satisfies the

polarisation condition (16) given later. Furthermore, the terms of the asymp-
totic expansion of b±

i nc
(.,k ) and a±i nc (.,k ) must verify some compatibility con-

ditions that we will not specify here (see [36]).

Note that the surface Γi nc is not characteristic. Indeed the characteristic
polynomial of the matrix Aν =

∑d

j=1νj A j , where νj are the components of ν , is
(see proof of Proposition 2.4):

det (Aν −λId+2) = (u 0.ν −λ)d
�
(u 0.ν −λ)2− c 2

0

�
.

Under the hypothesis mentionned above, the matrix Aν is invertible and its
eigenvalues are:

• λ0 = u 0.ν > 0 with multiplicity d .

• the simple eigenvalues: λ+ = u 0.ν + c0 > 0 and λ− = u 0.ν − c0 < 0.

Also, note that from [12], the hyperbolic boundary value problem (4)-(5) is
well posed.

2.2 High frequency approximation

In the high frequency regime, the oscillatory behavior of the solution makes
too expensive to perform the direct numerical simulation. However, when the
wave number k is much larger than the magnitude of the variations of the mean
quantities, the notion of asymptotic solution provides an alternative for the

7



prediction of the oscillatory behavior of the solution. In this subsection, we
present the equations governing the propagation of oscillating solutions of the
operator L(y ,∂y ). The rigorous study for the construction of asymptotic solu-
tions for hyperbolic systems was begun by the paper of Lax [26], also the works
of Keller [22] and Friedlander [14], and subsequently the work of Ludwig [30] for
the case of the caustics among many other authors. Under regularity assump-
tions on the mean flow W0, there is existence and uniqueness of the asymptotic
solution of type (6) below for the operator L(y ,∂y )with oscillating Cauchy data.

Definition 2.2. We say that W (y ,k ) is an asymptotic solution of the operator

L(y ,∂y ) if:

L(y ,∂y )W (y ,k ) =O(k−∞),

where k >> 1 and O(k−∞) denotes a function which is more quickly decreasing

than any power of k uniformly on any compact set of Rt ×Rd .

Here, we seek an asymptotic solution of the operator L(y ,∂y ) as a classical
Ansatz, i.e.

W (y ,k ) =



̺

q��  (y ,k )≃W (y ,k )e i kφ(y ), (6)

where the amplitudeW (.,k ) has an asymptotic expansion in inverse powers of
i k :

W (y ,k ) =

∞∑

j=0

1

(i k )j
Wj (y ) =

∞∑

j=0

1

(i k )j




a j (y )

b j (y )

d j (y )


 . (7)

The phaseφ, as well asWj , are assumed to be smooth real valued functions. We
also assume that∇yφ 6= 0 in the whole computational domain. The relation≃,
in the expression (6), is understood in the sense that for all J ∈N, for any multi-
index α ∈Ni , and for any compact set K of T , there exists a constant C (K , J ,α)
such that:

������
∂ α

y α


W (y ,k )−

J−1∑

j=0

1

(i k )j
Wj (y )e

i kφ(y )




������
≤C (K , J ,α)k−J , ∀y ∈ K . (8)

There is no requirement that the asymptotic series is convergent when j

tends to infinity, but it must approaches the W and all its derivatives with a
remainder term of the order of the truncation in the sense of (8). Note that this
asymptotic expansion is not unique (e.g. [19]).
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Definition 2.3. The geometrical optics approximation consists in considering

only the leading order term as a good approximation of the solution, i.e.

W (y ,k )≃
�
W0(y )+O(k−1)

�
e i kφ(y ).

Formally, replacing the acoustic perturbation by its asymptotic approxima-
tion (6) in (4) and ordering in powers of i k , we find that the terms of the asymp-
totic expansion satisfy the system of equations:





L 1(y ,∇yφ)W0 = 0 (9a)

L 1(y ,∇yφ)Wj+1+ L(y ,∂y )Wj = 0, j ≥ 0. (9b)

where L 1(y ,η) = τId+2 +

d∑

µ=1

ξµAµ(x ) is the principal symbol of the operator

L(y ,∂y ).

Introduce the setΛ0 =
�
(y ,η)∈ T ∗T \ {0} ; det(L 1(y ,η)) = 0

	
and the setΛφ =¦�

y ,∇yφ
�

; y ∈T
©

. The sets Λ0 and Λφ are respectively called the character-

istic variety associated to the operator L(y ,∂y ) and the Lagrangian manifold

generated by the phase φ.

It can be checked that

L 1(y ,η) =




τ tξ 0

�
c 2

0 −
p0s0

ρ0

�
ξ−
�

u 0.ξ
�

u 0 (τ+u 0.ξ)Id+u 0⊗ξ
p0

ρ0
ξ

−s0 u 0.ξ s0
tξ τ+u 0.ξ




,

(10)
where ⊗ denotes the tensor product

�
recall that the tensor product of two vec-

tors u and v is the matrix whose entries are (u ⊗ v )i ,j = u i v j

�
. Note that one

can obtain the matrices (A i )1≤i≤d from this expression.

For ε∈ {−1,0,1}, we introduce the HamiltonianH ε defined by:

H ε(y ,η) = τ+ξ.u 0(y )+εc0(y )|ξ|. (11)

For (y ,ξ) ∈T ×T ∗
x
Ω, we denote byτ(y ,ξ) an eigenvalue of the matrix

∑d

i=1ξi A i (y ),
i.e. there exists ε ∈ {−1,0,1} such thatH ε(y ,τ(y ,ξ),ξ) = 0. The group velocity

is then defined by v g =−∇ξτ(y ,ξ).
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Proposition 2.4. There exists a non trivial solution of (9a) if and only if there ex-

ists ε ∈ {−1,0,1} such that the phase φ is solution of the Hamilton-Jacobi equa-

tionH ε(y ,∇yφ(y )) = 0. The leading order term of (7) is thus an eigenvector of

the matrix
∑d

i=1ξi A i (y ) associated with the eigenvalue−∂tφ(y ).

Proof. This is simply due to the fact that the linear system has a non trivial
solutionW0 if and only if: det(L 1(y ,∇yφ)) =

�
H 0dH +H −

�
(y ,∇yφ) = 0, and

that the leading term is in the kernel of the matrix L 1(y ,∇yφ).

The equation on the phaseφ is called the Eikonal equation. We have:

• On the one hand, the equation (∂tφ+u 0.∇xφ)2 = c 2
0 |∇xφ|2, which char-

acterizes the acoustic modes (H ε(y ,∇yφ)) = 0 ; ε=±1).

• On the other hand, the equation ∂tφ+u 0.∇xφ = 0, which corresponds to
the vortical and entropic modes (H ε(y ,∇yφ)) = 0 ; ε= 0).

Remark 2.5. In what follows, we focus specifically on the acoustic modes. We

deal especially with their geometrical optics approximation. The entropic and

vortical modes are only convected by the mean flow, and we are not interested by

them in this study.

The following results of this section are written in the Hamiltonian formal-
ism. The classical results, recalled in what follows, are exposed with detailed
proofs in [41] or [18].

Definition 2.6. The bicharacteristics are the integral curves in T ∗T for the Hamil-

tonian field (Hη,−Hy ) that is:

¨
ẏ (s ,β ) = Hη(y (s ,β ),η(s ,β ))
η̇(s ,β ) = −Hy (y (s ,β ),η(s ,β ))

with

¨
y (0,β ) = y0(β )

η(0,β ) =η0(β )
, (12)

where ˙ denotes the derivative with respect to the parameter s along the bichar-

acteristics,Hη (resp.Hy ) is the derivative of the HamiltonianH with respect to

η (resp. to y ), β = (t0,α) ∈ Rt ×Rd−1 characterizes a point y0(β ) = (t0,x0(α)) on

the incident surface Σi nc (where x0 is a parameterization of Γi nc ), and η0(β ) ∈
T ∗y0(β )
T .

The rays are defined as the projection of the bicharacteristics on the con-
figuration space, i.e.

�
y (s ,β ),η(s ,β )

�
−→ y (s ,β ).

The Hamiltonian system (12) is coupled with the Lagrangian phaseϕwhich
verifies the equation

ϕ̇(s ,β ) =η(s ,β ).Hη(y (s ,β ),η(s ,β ))−H (y (s ,β ),η(s ,β )). (13)
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Remark 2.7. The Lagrangian phase ϕ is constant along the bicharacteristics for

an homogeneous HamiltonianH of degree 1 (i.e. H = η.Hη). This is the case

of the HamiltonianH ε. This property shall be the key tool of the calculus of an

explicit phase which will be our reference solution to test the numerical schemes

developed later.

Given the incident phase ϕi nc on Σi nc , we consider the boundary value
problem ϕ(0,β ) = ϕi nc (t0,x0(α)). We say that the initial condition η0 is com-

patible with the Lagrangian incident phaseϕi nc if:

((H.a).1) τ0(β ) = ∂tϕi nc (t0,x0(α)),

((H.a).2) for all x0(α) ∈ Γi nc and v ∈ Tx0(α)Γi nc , we have

dx0(α) eϕt0(v ) = ξ0(β ).v with eϕt0(x0(α)) =ϕi nc (t0,x0(α)) ,

((H.a).3)
�

y0(β ),η0(β )
�

belongs to the characteristic variety Λ0.

We assume the transversality condition, i.e.Hξ
�

y0(β ),η0(β )
�

is not tangent to
Γi nc at x0(α). Furthermore, we assume that the initial bicharacteristic is ingoing

into the domain T , i.e.

(H.b) Hξ(y0(β ),η0(β )).ν (x0(α))> 0, where ν is the inward normal to Ω.

Remark 2.8. If the incident boundary is given by the equation Ψ(x ) = 0 where

Ψ is a smooth function, the condition (H.b) is written {Ψ,H }|Ψ=H =0
> 0 where

{Ψ,H }=
∑d

i=1

�
∂x i
ΨH ∂x i

− ∂ξi
Ψ∂x i
H
�

is the Poisson bracket.

Under the transversality condition, there exist a neighborhoodU of (s ,β )∈
R×

�
Rt ×Rd−1

�
and a neighborhoodV ⊂T of y0(β )∈Σi nc such that the trans-

formation from Lagrangian to Eulerian coordinates, i.e. U ∋ (s ,β )→ y (s ,β ) ∈
V , is a diffeomorphism (e.g. [18]). Thus the Lagrangian phase ϕ defines lo-
cally an Eulerian phaseφ throughφ(y (s ,β )) =ϕ(s ,β ), andφ is solution of the
Hamilton-Jacobi equationH

�
y ,∇yφ(y )

�
= 0.

Recall the classical result below which allows to identify the gradient of the
solution of the eikonal equation with an element of T ∗Rd+1.

Proposition 2.9. If φ solves the Hamilton-Jacobi equationH
�

y ,∇yφ(y )
�
= 0,

and if a bicharacteristic intersects the Lagrangian submanifold Λφ associated to

φ, then it is contained in Λφ .
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Proof. Let
�

y (s ,β ),η(s ,β )
�
∈Λ0 be a bicharacteristic that intersects Λφ . Hence

there exist (s1,β 1) and (s2,β 2) inR× (Rt ×Rd−1) such that

�
y (s1,β 1),η(s1,β 1)

�
≡
�

y (s2,β 2)),∇yφ(y (s2,β 2))
�

. (14)

Let ỹ be the solution of the differential equation

˙̃y (s ,β 1) =Hη
�

ỹ (s ,β 1),∇yφ(ỹ (s ,β 1))
�

,

with the condition ỹ (s1,β 1) = y (s2,β 2). Denote by η̃(s ,β 1) = ∇yφ(ỹ (s ,β 1)).
Differentiate the equationH

�
ỹ (s ,β 1),∇yφ(ỹ (s ,β 1))

�
= 0 with respect to s , we

get ˙̃η(s ,β 1) = −Hy

�
ỹ (s ,β 1),η̃(s ,β 1)

�
. We deduce then that (y ,η) and (ỹ ,η̃)

are solutions of the same Hamiltonian system with the common point (14). We
conclude using the uniqueness of the solution of the ODE system.

Remark 2.10. Note that for the acoustic modes, the material derivative, i.e.

Dtφ± = ∂tφ± + u 0.∇xφ±, of the phase φ± along the mean flow u 0 is not zero,

that is ∇xφ± 6= 0. Indeed, if we suppose that Dtφ± = 0, it follows that ∇xφ± = 0
by the eikonal equationH ± = 0, then ∂tφ±= 0, and hence∇yφ±= 0 which is in

contradiction with the hypothesis∇yφ± 6= 0.

2.3 Conservative transport equation for the acoustic pressure

In what follows up to the end of this paper, we deal only with the geometrical
optics approximation of the acoustic modes in the Euler equations, although
some results have a more general scope and are not limited to this case. Re-
call that φ± is the solutions of the eikonal equations associated to the acoustic
modes, i.e.H ±(y ,∇yφ±) = 0.

Recall also that, from (9a), the leading order term W ±0 belongs to the ker-
nel matrix L 1(y ,∇yφ±). Hence, it is easy, thanks to Dtφ± 6= 0 (see Remark

2.10), to check that W ±0 = a±0

�
1,v ±

g
,s0

�t

, where the group velocity is written

v ±
g
= u 0+ c0w ±

g
and w ±

g
denotes the unit vector ± ∇xφ±

|∇xφ±|
. Note that the phase

velocity is c0w ±
g

. The calculation of the term of the approximation of geomet-

rical optics, for the acoustic modes, then reduces to the determination of a±0 .

To establish the equation satisfied by the scalar function a±0 , we introduce
the projector Π±(y ,∇yφ±) onto Ker(L 1(y ,∇yφ ±)) along Im(L 1(y ,∇yφ±)). Ac-
cording to the system of equations (9b), we have

L(y ,∂y )W ±0 + L 1(y ,∇yφ
±)W ±1 = 0,

12



applying the projector Π± to the equation above yields

Π±L(y ,∂y )W ±0 = 0. (15)

In the following Theorem, we prove that the equation (15) leads to a conser-
vative equation on a±0 . This corresponds to a well-known result for the scalar
wave equation and Maxwell’s equations, that we generalize here to a system
of coupled equations. But before that, we give the polarization condition of the
incident condition. For y0 ∈Σi nc , the polarization condition of the leading term
of the asymptotic expansion of b±

i nc
(.,k ) (given in (5)) is written:

b±
i nc
(y0,k ) = ā±

i nc
(y0)v

±
i nc
(y0)+O(k−1), (16)

with v±i nc (y0) = u 0(y0)± c0(y0)
ξ±0 (y0)

|ξ±0 (y0)|
where ξ±0 verifies the compatibility con-

ditions (H.a) with the incident phase ϕi nc , and ā±i nc is the leading term of the
asymptotic expansion of a±i nc (.,k ).

Theorem 2.11. Assume that the compatibility (H.a) and transversality (H.b)

conditions are verified, and that the hypothesis ∇yφ± 6= 0 is satisfied. Assume,

moreover, that the incident condition satisfies the polarization condition (16).

Hence, there exists one and only one scalar function a±0 , locally in vicinity of Σi nc ,

solution of the conservative equation

∂t

 
c0a±0

2

ρ0|∇xφ±|

!
+div

 
c0a±0

2

ρ0|∇xφ±|
v ±

g

!
= 0, (17)

with the incident condition a±0 |Σi nc
= ā±i nc , such that the leading terms of the acous-

tic modes are written asW ±0 = a±0

�
1 , v ±

g
, s0

�t

, and there exists C > 0 such that

��W (y ,k )−W ±0 (y )e
i kφ±(y )

��≤C k−1 for y ∈T .

Note that this formulation imposes compatibility conditions on all terms of
the asymptotic expansion of b±

i nc
(.,k ) (see (8)).

To prove Theorem 2.11, we need the following Lemma on the eikonal equa-
tion whose proof is given in appendix A:

13



Lemma 2.12. If φ± is a smooth solution of the eikonal equationH ± = 0 (equa-

tion (11) with ε=±1), then

∂t

�
1

|∇xφ±|

�
+ v ±

g
.∇x

�
1

|∇xφ±|

�
=

1

|∇xφ±|3
∇xφ

±.
�
∇xφ

±⊗∇x u 0

�
± 1

|∇xφ±|2
∇xφ

±.∇x c0.

Proof of Theorem 2.11. Recall that the leading term W ±0 of the asymptotic ex-

pansion of the acoustic modes isW ±0 = a±0 eΠ± , where eΠ± ≡
�

1,v ±
g

,s0

�t

is in the

kernel of the matrix L 1(y ,∇yφ±) such thatΠ±e Π± = e Π± .

Let e tΠ± be the unique element of Ker(tL 1(y ,∇yφ±)) such that

Π± =< e tΠ± , .> e Π± and < e tΠ± , e Π± >= 1. (18)

One can check that

e tΠ± =
1

2c0

�
c0−u 0.w ±

g
− s0c0

γ
,w ±

g
,

c0

γ

�t

∈Rd+2.

Using (18), the equation (15) turns into the following equation on a±0

∂t a±0 +

d∑

i=1

< e tΠ± ,A i e Π± > ∂i a±0+< e tΠ± , L(y ,∂y )e Π± > a±0 = 0.

We note that (see [36]) we have < e tΠ± ,A i e Π± >= v ±i where v ±i is the i th
component of the group velocity v±

g
. Indeed, the derivative of the equation

L 1
�

y ,τ(y ,ξ),ξ
�

e Π±
�

y ,τ(y ,ξ),ξ
�
= 0 with respect to ξi gives

∂ξi
τe Π± +A i e Π± = ∂ξi

L 1(y ,η)e Π± =−L 1(y ,η)∂ξi
e Π± ,

taking the scalar product of the equation above with e tΠ± yields the result owing
to vi =−∂ξi

τ.
It follows that

∂t a±0 + v±
g

.∇x a±0+< e tΠ± , L(y ,∂y )e Π± > a±0 = 0. (19)

On the one hand, we have ∂t e Π± =
�

0,∂t u 0+ ∂t (c0w ±
g
),∂t s0

�t

. On the other

hand, we have |w ±
g
|= 1, which implies

< e tΠ± ,∂t e Π± >=
w ±

g
.∂t u 0

2c0
+
∂t c0

2c0
+
∂t s0

2γ
. (20)

14



In the appendix B, we prove that

d∑

i=1

< e tΠ± ,∂i (A i e Π±)>=
divv ±

g

2
−

v ±
g

.∇xρ0

2ρ0
+

v ±
g

.∇x c0

2c0

+
w ±

g
.
�

w ±
g
⊗̄ ¯̄∇x u 0+∇x c0

�

2
− ∂tρ0

2ρ0
−

w ±
g

.∂t u 0

2c0
− ∂t s0

2γ
. (21)

Combining (20) and (21), we obtain

< e tΠ± , L(y ,∂y )e Π± >=
divv ±

g

2
−

v ±
g

.∇xρ0

2ρ0
+

v ±
g

.∇x c0

2c0

+
w ±

g
.
�

w ±
g
⊗̄ ¯̄∇x u 0+∇x c0

�

2
− ∂tρ0

2ρ0
+
∂t c0

2c0
. (22)

Moreover if the phaseφ± is solution of the eikonal equationH ± = 0, we get
by Lemma 2.12

w ±
g

.
�

w ±
g
⊗∇u 0+∇x c0

�

2
=
|∇xφ±|

2

�
∂t

�
1

|∇xφ±|

�
+ v±

g
.∇x

�
1

|∇xφ±|

��
.

We thus replace this result in (22) to obtain

< e tΠ± , L(y ,∂y )e Π± >=
divv ±

g

2
+

ρ0v ±
g

2c0|∇xφ±|−1
.∇x

�
c0|∇xφ±|−1

ρ0

�

+
ρ0

2c0|∇xφ±|−1
∂t

�
c0|∇xφ±|−1

ρ0

�
.

Therefore the equation (19) on a±0 becomes

∂t a±0 + v±
g

.∇x a±0 +
1

2
a±0 divv ±

g

+
ρ0|∇xφ±|

2c0

�
∂t

�
c0

ρ0|∇xφ±|

�
+ v ±

g
.∇x

�
c0

ρ0|∇xφ±|

��
= 0.

This yields the following conservative equation on a±0

∂t

 
a±0

2
c0

ρ0|∇xφ±|

!
+div

 
a±0

2
c0

ρ0|∇xφ±|
v ±

g

!
= 0.

The equation above is an ODE along the rays. For a regular mean flow, the
existence is assured by the classical ODE theory. The uniqueness comes from
the fact that transformation (s ,β ) −→ y (s ,β ) is is locally invertible under the
transversality condition.
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Remark 2.13. The above approach holds true for any hyperbolic operator L(y ,∂y )

provided that Ker
�

L 1(y ,∇yφ)
�

is of dimension one (see [24]). Nevertheless, we

must identify geometrically a function ν which is solution of the transport equa-

tion

∂t ν + v g .∇ν = (divv g −2S)ν ,

with S =< e tΠ± , L(y ,∂y )e Π± >. If so, we deduce the conservative transport equa-

tion

∂t

�
a 2

0

ν

�
+divx

�
a 2

0

ν
v g

�
= 0.

Remark 2.14. The acoustic perturbation of the velocity field is collinear to the

gradient of phase:

u a =
1

ρ0
q − ̺

ρ0
u 0 =±

a±0 c0

ρ0

∇xφ±

|∇xφ±|
e i kφ± +O(k−1),

i.e. u a is proportional to the phase velocity c0w ±
g

.

Corollary 2.15. For the acoustic modes, the leading term p±0 of the asymptotic

expansion of the acoustic pressure is solution of the transport equation:

∂t

 
p±0

2

ρ0c 3
0 |∇xφ±|

!
+div

 
p±0

2

ρ0c 3
0 |∇xφ±|

v±
g

!
= 0. (23)

Proof. The linearization of the acoustic pressure is given by:

p =

�
c 2

0 −
p0s0

ρ0

�
̺+

p0

ρ0
s .

Given that the the leading term of asymptotic expansion of the acoustic en-
tropy is given by d ±0 = s0a±0 , p±0 is written as a function of the main order term
of the asymptotic expansion of the acoustic mass density, i.e. p±0 = c 2

0 a±0 .

The transport equation on p±0 is then given by

∂t

 
p±0

2

ρ0c 3
0 |∇xφ±|

!
+div

 
p±0

2

ρ0c 3
0 |∇xφ±|

v±
g

!
= 0.
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3 Computation of the geometrical spreading

In this section, we shall introduce another formulation for the numerical com-
putation of the geometrical optics approximation for the acoustic modes. The
source term of the transport equation (17) depends on the second derivatives
of the phase through divv ±

g
. Its approximation, by a finite difference method,

requires a fairly precise calculation of the phaseφ±. An alternative approach to
this issue is to deduce from (17) a new transport equation where the calculation
of divv ±

g
is replaced with the calculation of a new quantity called the geometri-

cal spreading. It is the geometric quantity that measures the evolution of the
cross section of an elementary ray tube. This result generalizes, in the case of
non-uniform and non-potential mean flow, a well known result for the wave
equation [3], and it will be summarized in Proposition 3.4.

3.1 Lagrangian geometrical spreading

The Hamiltonian associated with the acoustic modes is given by

H ±(t ,x ,τ,ξ) = τ+H±(y ,ξ) where H±(y ,ξ) = u 0(y ).ξ± c0(y )|ξ|.

The Hamiltonian system corresponding toH ± is given by




ṫ (s ,β ) = 1
ẋ (s ,β ) = H ±ξ

�
y (s ,β ),η(s ,β )

�

τ̇(s ,β ) = −H ±
t

�
y (s ,β ),η(s ,β )

�

ξ̇(s ,β ) = −H ±
x

�
y (s ,β ),η(s ,β )

�
. (24)

Recall that t0 is the parameter such as t (s ,β ) = s + t0. Note that under the
compatibility conditions (H.a) and thanks to Proposition 2.9, we have

η(s ,β ) =∇yφ
± �y (s ,β )

�
.

Remark 3.1. We omit from now the index± in the expression of the bicharacter-

istics, even if we have a Hamiltonian system associated with each acoustic mode.

Definition 3.2. The lagrangian geometrical spreading is defined as the Jaco-

bian of the ray field with respect to the coordinates of rays, i.e.

J (s ,β ) = det
�
∂s y (s ,β ) , ∂βy (s ,β )

�
.

Proposition 3.3. The derivative of the geometrical spreading along the Hamil-

tonian field is:
∂ J

∂ s
(s ,β ) = J (s ,β ) divx vg .
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Proof. Since t (s ,β ) = s + t0, the Lagrangian geometrical spreading is:

J (s ,β ) =

����
1 1 t 0d−1

∂s x (s ,β ) ∂t0 x (s ,β ) ∂αx (s ,β )

���� .

Moreover, the derivative of space-time variables with respect to s verifies
the differential equation

∂ y

∂ s
(s ,β ) =

�
1

vg

�
y (s ,β )

�
�

,

where vg

�
y (s ,β )

�
=Hξ

�
y (s ,β ),∇yφ

�
y (s ,β )

��
is the group velocity.

If we denote by M J the Jacobian matrix of the transformation between the
Lagrangian and the Eulerian coordinates, i.e.

M J (s ,β ) =

�
1 1 t 0d−1

∂s x (s ,β ) ∂t0 x (s ,β ) ∂αx (s ,β )

�
,

it follows that its derivative with respect to s writes

∂M J

∂ s
(s ,β ) =




0 t 0d

∂t vg (y (s ,β )) ∇x vg (y (s ,β ))


M J (s ,β ). (25)

Notice that if a matrix M verifies the equation dM

ds
(s ) = N (s )M (s ), one gets

d
ds
(det M (s )) = trace(N (s ))det M (s ). We conclude that

∂ J

∂ s
(s ,β ) = J (s ,β ) divx vg .

By the above, we deduce the following Proposition.

Proposition 3.4. The quantity
a 0

2c0

ρ0|∇xφ|
|J | is conserved along the rays field.

Proof. If we denote C=
a 0

2c0

ρ0|∇xφ|
, we check that

∂

∂ s

�
C(y (s ,β ))

��J (s ,β )
���=

��J (s ,β )
��
 
∂ C

∂ s
(y (s ,β ))+

C(y (s ,β ))��J (s ,β )
��
∂ |J |
∂ s
(s ,β )

!
.

18



Thanks to the equation (17) and Proposition 3.3, it follows that
�
∂t C+ v g .∇x C

���J (s ,β )
��+div(v g )

��J (s ,β )
��C(y (s ,β )) = 0,

which gives the result.

This generalizes the classical result for the wave equation (which is the con-
servation of the product of the energy and the geometrical spreading along the
rays).

Finally, we have demonstrated that the quantity C|J | is constant along the
ray field. The calculation of the geometrical optics term turns therefore to the
calculation of the geometrical spreading J and the function C. The calculation
of J is equivalent to the calculation of ∂βx . Indeed, the quantities ∂s x are given
directly by Hξ(y ,∇xφ). This is made possible by the calculation of the phase φ
(first step of our numerical part).

Derivating with respect to β the Hamiltonian system associated with H ,
we obtain a transport equation for the derivative of the bicharacteristic with
respect to the parameterization of the incident surface Σi nc , i.e.

∂

∂ s

�
∂βy (s ,β )
∂βη(s ,β )

�
=

�
Hyη(y ,η) Hηη(y ,η)
−Hy y (y ,η) −Hηy (y ,η)

��
∂βy (s ,β )
∂βη(s ,β )

�
, (26)

with the initial condition
�
∂βy (0,β )
∂βη(0,β )

�
=

�
∂βy0(β )
∂βη0(β )

�
, (27)

whereη0 verifies the compatibility condition with the Lagrangian incident phase
ϕi nc . We can consider any incident wave (and not only a plane wave) and the
point (y ,η) is in the asymptotic wave front set of this incident wave.

Remark 3.5. Unlike the equation (25), the equation (26) will involve just the first

derivatives of the phase.

3.2 Eulerian geometrical spreading

In this section, we will calculate the quantity, that we called the geometrical
spreading, in the neighborhood of any point not belonging to a caustic. In
presence of a caustic, there exists N local diffeomorphisms between each point
y (not belonging to the caustic) and the associated Lagrangian coordinates�

sp ,β p

�
1≤p≤N

where y has N antecedents by the application y = y (s ,β ). Hence,
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for simplicity, we will place ourselves in the framework where rays do not cross.
The generalisation to the previous situation is straightforward.

Let beY0 the Eulerian function which gives the initial time t0 and the initial
positionα on the surface Γi nc , of the ray that passes through the point x at time
t , and the functionS0 which gives the curvilinear abscissa on the ray, i.e.

�
S0
�
t (s ,β ),x (s ,β )

�
,Y0(t (s ,β ),x (s ,β ))

�
≡
�

s ,β
�

.

We can thus define, from the Lagrangian quantities, the corresponding Eu-
lerian ones as follows

U (t ,x ) =

�
Θ(t ,x )

Λ(t ,x )

�
=

�
∂βy (S0(t ,x ),Y0(t ,x ))

∂βη (S0(t ,x ),Y0(t ,x ))

�
, (28)

which is a matrix of order (2(d + 1))× (d + 1). This matrix will be called, in the
sequel, the stretching matrix, because it shows the stretching of the rays.

The Eulerian geometrical spreading G is defined by

G (t ,x ) = J (S0(t ,x ),Y0(t ,x )) .

Proposition 3.6. For the acoustic modes, the computation of the leading term of

the asymptotic expansion is done through:

❶ the function U solution of the transport equation

∂t U (t ,x )+ v g .∇x U (t ,x ) =M (x ,∇xφ)U (t ,x ), (29)

The matrixM is given by the derivatives of the Hamiltonian with respect to the

coordinates in the phase space, i.e.

M (y ,∇yφ) =

�
Hyη(y ,∇yφ) Hηη(y ,∇yφ)

−Hy y (y ,∇yφ) −Hηy (y ,∇yφ)

�
.

❷ the functionC = a 0
2c0G

ρ0|∇xφ±|
solution of the transport equation:

∂tC (t ,x )+ v g .∇xC = 0. (30)

The incident condition on U is given by (27) and by ϕi nc and a i nc forC .
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Proof. By combining (28) and (26), we get the derivative of the function U along
the rays field:

∂

∂ s

�
U (y (s ,β ))

�
=M

�
y (s ,β ),∇xφ(y (s ,β ))

�
U
�

y (s ,β )
�

.

On the other hand, we have

∂ y

∂ s
(s ,β ) =

∂

∂ s

�
t (s ,β )
x (s ,β )

�
=

�
1

v g

�
y (s ,β ),η(s ,β )

�
�

,

which leads to (29) thanks to η(s ,β ) = ∇yφ(y (s ,β )) (by Proposition 2.9), and
having vi =Hξi

.

It remains to establish the equation on C . Owing to Proposition 3.4, the
material derivative ofC along the rays field is zero, i.e.

∂tC (t ,x )+

d∑

i=1

Hξi
(x ,∇xφ)∂x i

C (t ,x ) = 0,

or still ∂tC (t ,x )+ v g (t ,x ).∇xC (t ,x ) = 0.

4 Numerical scheme for the eikonal equation

We apply in this paper a numerical Eulerian method to calculate the solution
of the eikonal equations associated to the acoustic modes. This approach to
determine an approximation of the solution of Hamilton-Jacobi equations has
been used in several areas of applications, such as in electromagnetic in the
high frequency regime (see Benamou et al. [2]), the shape-from-shading prob-
lem (see Lions, Rouy, Tourin [34]), and optimal control (Crandall, Lions [7]).
Note that it differs from the usual ray method, which consists in solving ordi-
nary differential equations for unknowns along a Lagrangian trajectory. The
advantage of the method used here is that we compute the phase φ on a fixed
Eulerian grid.

We use a finite difference type methods and more precisely a class of mono-
tone schemes, investigated by Crandall and Lions [7], based upon a numerical
Hamiltonian. The numerical solutions calculated through monotone schemes
converge to a viscosity solution which belongs to a class of weak solutions of
Hamilton-Jacobi equations characterized by entropy inequalities (Barles [1]).
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This viscosity solution selects (when the phase is multivalued) what the geo-
physicists call usually the first-arrival travel time:

φ(y ) = min
{(s ,β )/y=y (s ,β )}

ϕ(s ,β ),

where ϕ is the Lagrangian phase solution of (13) with ϕ|Σi nc
=ϕi nc .

4.1 First order Eulerian numerical scheme

We consider the eikonal equations for the acoustics modes, i.e.

∂tφ+H±(x ,y ,∂xφ,∂yφ) = 0, (31)

where H±(x ,y ,ξ,ζ) = u 0(x ,y )ξ+ v0(x ,y )ζ± c0(x ,y )
p
ξ2+ζ2 is a convex (resp.

concave) function with respect to ξ and ζ for the acoustic mode+ (resp. -).

Remark 4.1. Throughout this study, unless otherwise stated, we will give the

incident condition, on the incident surface

Σi nc ≡R×Γi nc , where Γi nc =
�
(0,y0); y0 ∈ [ym i n ,ym ax ]⊂R

	
,

by the trace of the analytical solutions that will be calculated. We present the

various experiments carried out for which we have obtained the analytical solu-

tions, which here allowed us to test the validity of our numerical schemes.

To solve the equation (31), we define a uniform mesh of the rectangular
domain Ω ≡ [xm i n ,xm ax ] × [ym i n ,ym ax ] where △x and △y are the grid spac-
ings and△t is the time step that should satisfy the C.F.L. condition that will be
given later. Letφn

i ,j denote a numerical approximation to the viscosity solution
φn

i ,j =φ(tn ,x i ,y j ) at the grid point
�
i△x , j△j

�
and at the discrete time n△t .

The upwind derivative operators are:

u l =D−
x
φn

i ,j =
φn

i ,j −φn
i−1,j

△x
, u r =D+

x
φn

i ,j =
φn

i+1,j −φn
i ,j

△x

vl =D−
y
φn

i ,j =
φn

i ,j −φn
i ,j−1

△y
, vr =D+

y
φn

i ,j =
φn

i ,j+1−φn
i ,j

△y
.
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Figure 1: Stencil of upwind scheme around the vertex
�

i△x , j△y
�

.

We use a five point explicit finite difference scheme:

φn+1
i ,j =φ

n
i ,j −Ít Ĥ±(tn ,x i ,y j ,u l ,u r ,vl ,vr ), (32)

where Ĥ± is the numerical Hamiltonian associated with the Hamiltonian H±.

Crandall and Lions [7], and thereafter Souganidis [40] have proved the con-
vergence of the monotone scheme, for Hamilton-Jacobi equations, to the vis-
cosity solution. In [34], Osher and Shu have given the conditions on the numer-
ical Hamiltonian, which ensures the stability and convergence of the numerical
scheme:

Hypothesis:

(H.1) Ĥ is a continuous function in all its variables and Lipschitz in the
dual variables (u l ,u r ,vl ,vr ).
(H.2) Ĥ is consistent with the Hamiltonian H : Ĥ (u ,u ,v,v ) =H (u ,v ).
(H.3) Ĥ is monotone, in the sense that it is an increasing function with
respect to its first and third variables and decreasing with respect to its
second and fourth variables. Schematically we have Ĥ (↑,↓,↑,↓).
Under these conditions, we have the convergence of the numerical scheme

to the viscosity solution (see [34]):

||φv i s c (tn , x i , y j )−φ
n

i ,j
||L∞ ≤C
p

△t ,

where C is a positive constant independent of the time step.

The numerical Hamiltonian proposed in this paper to solve the equation
(31) is basically a modification of the numerical Hamiltonian of Godunov. In-
deed, the Hamiltonian H+ (resp. H−) is composed of a convex (resp. concave)
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part and a part convected by the mean flow. We are approximating the con-
vex or the concave part by the numerical Hamiltonian of Godunov and the
convected part by the upwind scheme in the direction of the mean flow field
through:

Ĥε(x ,y ,u l ,u r ,vl ,vr ) = u +0 (x ,y )u l −u −0 (x ,y )u r

+ v +0 (x ,y )vl − v −0 (x ,y )vr + F ε(x ,y ,u l ,u r ,vl ,vr ), (33)

with





F+(x ,y ,u l ,u r ,vl ,vr ) = c0(x ,y )
p

max2(u +l ,u −
r
)+max2(v +l ,v −

r
)

F−(x ,y ,u l ,u r ,vl ,vr ) =− c0(x ,y )
p

max2(u −l ,u +
r
)+max2(v −l ,v +

r
)

.

For x ∈R, we denoted by x+ =max(x ,0) and x− =max(−x ,0). We recall that the
numerical Hamiltonian of Godunov is giving by:

ĤG (x ,y ,u l ,u r ,vl ,vr ) = ext
v∈I (vl ,vr )

ext
u∈I (u l ,u r )

H (x ,y ,u ,v ),

where I (a ,b ) = [min(a ,b ),max(a ,b )]⊂R and ext=





min
a≤u≤b

if a ≤ b ,

max
b≤u≤a

if a > b
.

Proposition 4.2. Assume that the mean flow is regular, the numerical Hamilto-

nian (33) verifies the hypothesis (H.1)-(H.2), and the hypothesis (H.3) under the

C.F.L. condition:

△t

△x
||u 0||∞+

△t

△y
||v0||∞+

�△t

△x
+
△t

△y

�
||c0||∞ ≤ 1. (34)

Proof. For the sake of brevity, the proof is done just for the numerical Hamil-
tonian Ĥ+, and that for Ĥ− can be made in the same way. We shall prove that
Ĥ+ is a Lipschitz function in the dual variables, and after we shall discuss its
monotonicity.

Â Proof of Lipschitzity. We consider (u l 1 ,u r1 ,vl 1 ,vr1) and (u l 2 ,u r2 ,vl 2 ,vr2) on
R4. We have the inequality

(max(u +
l 1

,u −
r1
)−max(u +

l 2
,u −

r2
))2 ≤ (u l 1 −u l 2)

2+(u r1 −u r2)
2.

For proving that, we may study separately the two following cases:

• Case 1:

¨
max(u +l 1

,u −
r1
) = u l 1

max(u +l 2
,u −

r2
) = u l 2

or

¨
max(u +l 1

,u −
r1
) = −u r1

max(u +l 2
,u −

r2
) = −u r2

,
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• Case 2:

¨
max(u +l 1

,u −
r1
) = u l 1

max(u +l 2
,u −

r2
) = −u r2

or

¨
max(u +l 1

,u −
r1
) = −u r1

max(u +l 2
,u −

r2
) = u l 2

,

We then show the inequality

��Ĥ+(u l 1 ,u r1 ,vl 1 ,vr1)− Ĥ+(u l 2 ,u r2 ,vl 2 ,vr2)
��

≤λ
����(u l 1 ,u r1 ,vl 1 ,vr1)− (u l 2 ,u r2 ,vl 2 ,vr2)

����
R4

,

where λ= 3 max(||u 0||∞, ||v0||∞, ||c0||∞). Ã

Â Proof of monotonicity. The numerical scheme (32) can be written as:

φn+1
i ,j = Ĝ+(φn

i ,j ,φn
i+1,j ,φn

i ,j+1,φn
i−1,j ,φn

i ,j−1).

The numerical scheme is monotone if the function Ĝ+ is increasing with re-
spect to each of its variables. The monotonicity with respect toφn

i−1,j andφn
i ,j−1

is equivalent to show that Ĥ is increasing with respect to u l and vl , and it is de-
creasing with respect to u r and vr for the monotony with respect to φn

i ,j+1 and
φn

i+1,j .

One can show that Ĝ+ is unconditionally monotone with respect to φn
i±1,j

and φn
i ,j±1. It remains to give the condition which ensures the monotonicity of

Ĝ+ with respect toφn
i ,j . We have

∂ Ĝ+

∂ φn
i ,j

= 1−△t


u +0 +u −0
△x

+
v +0 + v −0
△y

+ c0

 
max(u +l ,u −

r
)

△x
p

max2(u +l ,u −
r
)+max2(v +l ,v −

r
)

+
max(v +l ,v −

r
)

△y
p

max2(u +l ,u −
r
)+max2(v +l ,v −

r
)

!
 .

Since |x |= x++x−, it follows that

∂ Ĝ+

∂ φn
i ,j

= 1−△t


 |u 0|
△x
+
|v0|
△y
+ c0

 
max(u +l ,u −

r
)

△x
p

max2(u +l ,u −
r
)+max2(v +l ,v −

r
)

+
max(v +l ,v −

r
)

△y
p

max2(u +l ,u −
r
)+max2(v +l ,v −

r
)

!
 .

It ensues that under the condition

△t

△x
||u 0||∞+

△t

△y
||v0||∞+

�△t

△x
+
△t

△y

�
||c0||∞ ≤ 1,
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the numerical Hamiltonian Ĥ+ is monotone with respect to φn
i ,j . Ã

One can easily verify that the numerical Hamiltonian Ĥ+ is consistent with
the Hamiltonian H+ and it is continuous. In conclusion, the numerical Hamil-
tonian Ĥ+ satisfies the assumptions given by Osher and Shu [34]. Thus, the
numerical scheme (32) converges to the viscosity solution of the eikonal equa-
tion(31).

4.2 Analytical boundary conditions

We recall here a basic test case (studied previously in [33]). We consider a two-
dimensional homogeneous medium (c0 ≡ 1) with a shear mean flow (i.e. flow
with zero vertical component v0 ≡ 0 and depending only on the transverse co-
ordinate):

u 0(y ) =M 0+M
′

0y .

The incident wave is a wave whose trace of the gradient of the phase on the
incidente surface Γi nc = {(0,y0)} is given by (cosα, sinα), α ∈ [0,π/2[ (no grazing
ray).

Figure 2: Shear flow, incident plane wave.

The analytical solution, for the eikonal equation associated to the acoustic
mode+, is (see [32]):

φ(t ,x ,y ) = x cosα+ y sinα−u 0(y )t cosα

+
sinα−M

′
0t cosα

2M
′
0 cosα

p
cos2α+(sinα−M

′
0t cosα)2

− cosα

2M
′
0

ln
�p

cos2α+(sinα−M
′
0t cosα)2− (sinα−M

′

0t cosα)
�

, (35)
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with the initial condition

φ0(x ,y ) = x cosα+ y sinα+
1

2M
′
0

�
tanα− cosα ln(1− sinα)

�
. (36)

Remark 4.3.

• In the case of shear flow with c0 ≡ 1, we note that we have uniqueness of the

viscosity solution of the Hamilton-Jacobi equationH + = 0 inR2 with the iniital

condition (36) (see Barles [1]), thanks to the inequality:

��H+(x1,y1,ξ,ζ)−H+(x2,y2,ξ,ζ)
��≤ |M ′

0|
�

1+
p
ξ2+ζ2

�
|y1− y2|.

• In the case of a static inhomogeneous medium (test cases developed later), i.e.

u 0 = v0 = 0 and c0 is not constant, we have also the uniqueness of the viscosity

solution of the equationH + = 0 in R2 together with a smooth initial condition

under the hypothesis that c0 is is continuous with bounded derivatives, thanks

to the iniquality:

��H+(x1,y1,ξ,ζ)−H+(x2,y2,ξ,ζ)
��≤L

�
1+
p
ξ2+ζ2

�����(x1,y1)−(x2,y2)
����
R2 ,

where L is a positive constant such that ||∇c0||L∞ ≤ L.

The ray field is given by:




x (s ,y0) =

�
u 0(y0)+

1

cosα

�
s+

sinα−M
′
0s cosα

2M
′
0 cos2α

p
cos2α+(sinα−M

′
0s cosα)2

− 1

2M
′
0

ln
�

sinα−M
′

0s cosα+
p

cos2α+(sinα−M
′
0s cosα)2

�

+
1

2M
′
0

ln(sinα+1)− sinα

2M
′
0 cos2α

,

y (s ,y0) =
1

M
′
0 cosα

�
1−

p
cos2α+(sinα−M

′
0s cosα)2

�
+ y0.

(37)

Remark 4.4. Along the ray field, the horizontal component of the group velocity

vanishes at s =M ′0 tanα, then there is a ym ax such that y (s ,y0) ≤ ym ax for all s .

For an initial position y0 ∈ Γi nc and an angle of incidence α, the point ym ax is

given by:

ym ax (y0,α) =
1− cosα

M
′
0 cosα

+ y0.

This phenomenon is well known in acoustic propagation in the atmosphere [5].

Under the effect of shear flow, the rays are deflected and can not exceed a maxi-

mum ordinate ym ax . This is illustrated by the next paragraph.
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We test firstly the first order interior scheme. For this, the unknown func-
tionφ is given in the whole boundary of Ω=]0,1[×]0,1[ by the Dirichlet condi-
tion obtained as the trace of the analytic phase (35). We have verified the mesh
convergence for two test cases. The error in the L∞ norm between the numer-
ical and analytical solutions of the eikonal equation (associated to the acoustic
mode +) is shown in table 1. It put in evidence an experimental convergence
order of 0.96 and 1.02 for the test case u0(y ) = 0.3+0.2y ,α=π/6 and the test
case u0(y ) = 0.1+0.4y ,α=π/7 respectively.

u0(y ) = 0.3+0.2y ,α=π/6 u0(y ) = 0.1+0.4y ,α=π/7
Mesh Iterations Error L∞ Mesh Iterations Error L∞

50×50 5000 0.001478 50×50 5000 0.0032
100×100 10000 0.00074 100×100 10000 0.0016
150×150 15000 0.00050 150×150 15000 0.0010
200×200 20000 0.00037 200×200 20000 0.0008
250×250 25000 0.000298 250×200 25000 0.0006
300×300 30000 0.000248] 300×200 30000 0.0005

E.C.O= 0.96 E.C.O= 1.02

Table 1: Error in L∞ norm at fixed time.
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Figure 3: Evolution of the error L∞ in logarithmic scale.

4.3 Parametric study for a shear flow

■ Influence of the parameters of the shear flow

E.C.O. denotes the Experimental Convergence Order
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In what follows, we represent the countour lines of the phase φ (given by
the numerical scheme) and the ray tracing (given by the analytical expression

(37)) for different values of the parameters of the shear flow and for α=
π

6
.

❚ u 0(y ) = 0.5 (uniform mean flow)
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Figure 4: Ray tracing Countour lines at t = 1.5s .

❚ u 0(y) = 0.6y
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Figure 5: Ray tracing Countour lines at t = 1.5s .

❚ u 0(y ) =−0.5+0.6y
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Figure 6: Ray tracing Countour lines at t = 1.5s .
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■ Influence of the incidence angle

We set the following mean flow profile: u 0(y ) = 0.6y , and we look at the
influence of the angle of incidence.

❚ α= 0◦
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Figure 7: Ray tracing Countour lines at t = 1.5s .

❚ α= 40◦
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Figure 8: Ray tracing Countour lines t at t = 1.5s .

❚ θ = 60◦
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Figure 9: Ray tracing Countour lines at t = 1.5s .
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4.4 Numerical boundary conditions

The previous results have validated the interior scheme. It remains to deal with
the scheme at the boundaries of the computational domain. Recall that the
eikonal equation is equivalent to an advection equation along the group veloc-
ity v±

g
. Indeed, we have:

∂tφ
±+u 0(x ).∇xφ

±± c0(x )|∇xφ
±|=∂tφ

±+

�
u 0(x )± c0(x )

∇xφ±

|∇xφ±|

�

︸ ︷︷ ︸
v ±

g

.∇xφ
±= 0.

By the interpretation with the characteristics, we need a given Dirichlet con-
dition on incoming boundaries Γi n (part of the boundary on which we have
v g .n < 0 where n is the outward normal vector to Γi n ). The incoming condi-
tions can be thought of as originating from a problem on a larger spatial do-
main.

The main goal will be to take into account the outgoing conditions. Two
cases arise: the case of an artificial boundary and the case of a physical bound-
ary. In the latter, one may generate reflected rays. We shall not consider this
case in the present paper. Our study concentrates on an artificial boundary
with outgoing condition.

In this subsection, we will present two approaches for the implementation
of the outgoing boundary conditions. Physically speaking, the rays are going
outside the domain Ω of the study without reflection. We will investigate the
following approaches:

(a) The first approach is based on an extrapolation of the values of the phase
on the boundary by its neighboring cells values (e.g. [2]).

(b) The second approach is to adapt the interior scheme at the boundaries.

• Outgoing boundary conditions by extrapolation

On the edges xm ax = I Í x , ym i n = 0, and ym ax = J Í y , we assume that the
rays are outgoing. The approach consists in adding fictitious points outside the
boundary on which the phase is calculated by extrapolation:

φn+1
I+1,j = 2φn+1

I ,j −φ
n+1
I−1,j , j ∈ ¹0, J +1º,

on the fictitious edges 0 and J +1, we proceed in the same way:

φn+1
i ,J+1 = 2φn+1

i ,J
−φn+1

i ,J−1, i ∈ ¹1, I +1º,
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φn+1
i ,0 = 2φn+1

i ,1 −φ
n+1
i ,2 , i ∈ ¹1, I +1º.

The following table gives the L∞ error, on the mesh points, between the
numerical phase and the analytical one (previously calculated for u 0(y ) = 0.1+
0.3y and α = π

4
) at time t = 50s , and the figure shows the mesh convergence

with a logarithmic scale.

u0(y ) = 0.1+0.3y ,α=π/4

Mesh Iterations Error L∞

10×10 1000 0.007366
20×20 2000 0.003733
30×30 3000 0.002501
50×50 5000 0.001507
70×70 7000 0.001079

100×100 10000 0.000756
200×200 20000 0.000379

E.C.O= 0.99

Table 2: Error in norm L∞.
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Figure 10: Mesh convergence in norm L∞.

• Adaptation of the first order scheme at the “outgoing boundaries”

In dimension d = 2, the equations of the rays are given by





ẋ (s ,y0) = u 0(x ,y )+ c0(x ,y )
∂xφ(t ,x ,y )

|∇φ(t ,x ,y )|
ẏ
�
s ,y0

�
= v0(x ,y )+ c0(x ,y )

∂yφ(t ,x ,y )

|∇φ(t ,x ,y )|

.

The rays are outgoing for the computational domain iff:
�
ẋ , ẏ

�
.n (x ,y ) > 0,

where n (x ,y ) is the outward normal unit vector at the boundary at the point
(x ,y ).

Remark 4.5. We suppose here that the rays are transversal to ∂ Ω. We exclude the

glancing case, i.e. v g .n |∂ Ω 6= 0.

By coupling the conditions above with the boundary conditions on the ve-
locity field of the mean flow: u 0.n |∂ Ω = 0, the scheme at the rigid boundary is
written:
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➣ On the edge ym i n : i ∈ ¹0, I º

φn+1
i ,0 =φ

n
i ,0−△t

�
u +0 u l −u −0 u r + c0

Æ
max2(u +l ,u −

r
)+ v −

r
2
�

|(x i ,y0)

.

➣ On the edge ym ax : i ∈ ¹0, I º

φn+1
i ,J
=φn

i ,J
−△t

�
u +0 u l −u −0 u r + c0

Æ
max2(u +l ,u −

r
)+ v +l

2
�

|(x i ,y J )

.

➣ On the edge xm ax : j ∈ ¹0, J º

On the edge {x = xm ax }, we require that the average flow is outgoing, i.e.

u 0.n |xm a x
> 0. So if the ray field is transversal to {x = xm ax }, the scheme is writ-

ten:

φn+1
I ,j =φ

n
I ,j −△t

�
u +0 u l + v +0 vl − v −0 vr + c0

Æ
u −l

2
+max2(v +l ,v −

r
)

�

|(xI ,yj )

.

We propose to test the adaptation of the interior scheme at the boundary
on the case of shear flow in a homogeneous medium (35). The velocity of the
mean field is in the form u 0(y ) = 0.1+0.3y , the incidence angle is α=π/4, and
the C.F.L. being 0.5.

u0(y ) = 0.1+0.3y ,α=π/4

Mesh Iterations Error L∞

10×10 1000 0.007462
20×20 2000 0.003761
30×30 3000 0.002515
50×50 5000 0.001512
70×70 7000 0.001081

100×100 10000 0.000758
200×200 20000 0.000379

E.C.O= 0.99

Table 3: Error in L∞ norm.
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Figure 11: Mesh convergence in norm L∞.

In order to illustrate the convergence of the approach presented in this para-
graph, the error in the L∞ norm, between the numerical phase and the analytic
one (35), was calculated. These results are presented in the table above, and the
figure is the logarithmic representation of this table.
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In conclusion, the numerical experiments show that both approaches (ex-
trapolation and adaptation) give the same order of error with a convergence of
order one. We will see later that the situation is not the same for the second
order scheme.

4.5 Numerical study of stability by mesh refinement

We consider that the incident wave is a plane wave given on the edge {x = 0}
with an incidence angle α = π/7, and outgoing conditions are imposed on the
other boundaries of the computational domain. The mean flow is a Poiseuille
type flow: u 0(y ) = 0.1+0.4y 2. We test here the stability of the scheme by mesh
refinement. Given a time t0, we thus compare the values of the phase computed
on two grids with 50× 50 and 200× 200 elements. The number of iterations is
chosen to match the same final time t0 of simulation.

Figure 12: Poiseuille type flow.

Figure 13: Left: 50×50 mesh,5000 iterations, Right: 200×200 mesh, 50000 iter-
ations.
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4.6 Second order Eulerian numerical scheme

It is shown (Harten et al. [17]) that monotone schemes in conservative form
are necessarily of order one. In order to increase the precision of the numerical
scheme (32) and preserve the monotony, we perform a construction by blocks
of the numerical Hamiltonian Ĥ , in which the first order approximations of
the gradient of the phase are replaced by approximations of type Essentially
Non Oscillatory (ENO) of high-order. To solve the whole problem, a second
order accuracy for the eikonal equation is necessary to have an approximation
of order one on the gradient of the phase in the transport equations (29) and
(30).

4.6.1 Description of the second order scheme

The ENO schemes have been adapted to Hamilton-Jacobi equations by Shu
and Osher in 1991. Here, we give the ENO construction of order two in space,
and we refer to [34] for details and extension to higher orders. For an explicit
scheme of second order in time, it is natural to calculate the phaseφ at time off-
set by half a time step by the Heun scheme (second order Runge-Kutta scheme).

The second order numerical scheme is written with the same numerical
Hamiltonian (33) and the approximation for the gradient of the phase is per-
formed at second order accuracy:

φn+1
i ,j =φ

n
i ,j −Ít Ĥ±(tn ,x i ,y j ,u l ,u r ,vl ,vr ), (38)

where:

•u l =D−xφn
i ,j +
Íx

2
minmod(D−x D−xφn

i ,j ,D+x D−xφn
i ,j ),

•u r =D+xφn
i ,j −
Íx

2
minmod(D+x D+xφn

i ,j ,D+x D−xφn
i ,j ),

•vl =D−yφn
i ,j +
Íy

2
minmod(D−y D−yφn

i ,j ,D+y D−yφn
i ,j ),

•vr =D+yφn
i ,j −
Íy

2
minmod(D+y D+yφn

i ,j ,D+y D−yφn
i ,j ),

with D−x and D+x denote the finite difference operator of first order, with re-
spect to the variable x , upwinded to the left and right (and similarly for y ), and
the slope limiter is defined by

minmod(u ,v ) =
sgn(u )+ sgn(v )

2
min(|u |, |v |),

35



where sgn is the sign function. For better readability, the numerical scheme
(38) is rewritten in the following way:

φn+1
i ,j = Ĝ (φn

i±2,j±2,φn
i±1,j±1,φn

i ,j ).

The space scheme has been performed with a second order accuracy. In
order to respect the same order on the temporal accuracy, the Heun scheme is
employed:

φn+1
i ,j =

φn
i ,j +

˜̃φi ,j

2
,

where ˜̃φi ,j = Ĝ (φ̃i±2,j±2,φ̃i±1,j±1,φ̃i ,j ) and φ̃i ,j = Ĝ (φn
i±2,j±2,φn

i±1,j±1,φn
i ,j ).

4.6.2 Numerical test cases of second order scheme

➣ Test case I: Shear flow in a homogeneous medium

Consider first the mean field profile developed in the previous section (35)
with u 0(y ) = 0.2y + 0.1. It always uses the trace of the analytical phase on the
edge {x = 0} as incident condition. The numerical phase on the other edges
is calculated by an adaptation to order one of the interior scheme (outgoing
conditions). We have compared the analytical solution (35) to the numerical
approximation for different meshes. The table below shows the mesh conver-
gence in L∞ norm, and the figure is a logarithmic representation of the table.
The results show convergence with order two.

u0(y ) = 0.1+0.2y ,α=π/4
Mesh Iterations Error L∞

10×10 1000 1.0×10−4

20×20 2000 2,5×10−5

40×40 4000 6,0×10−6

80×80 8000 1,5×10−6

160×160 16000 3,8×10−7

200×200 20000 2,5×10−7

E.C.O= 2.00

Table 4: Error in norm L∞.
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Figure 14: Mesh convergence in norm L∞.
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➣ Test case II: Analytical solution with outgoing conditions

We consider the domain [0,1]× [0,1], filled with a static inhomogeneous
medium, characterized by the speed of sound as follows:

c0(x ,y ) =
ax + b

2

�
y − 1

2

�2
+ c

Æ
a 2+b 2(y − 1

2
)2

,

Figure 15: Sound speed profile.
where a , b , and c are reals parameters.

One can verify that a solution to the eikonal equation ∂tφ+ c0(x ,y )|∇φ|= 0, is
given by

φ(t ,x ,y ) =−t + ln

�
ax +

b

2

�
y − 1

2

�2

+ c

�
. (39)

Remark 4.6. If the parameters a and b are strictly positive, this solution is out-

going on the edges {xm ax = 1}, {ym i n = 0}, and {ym ax = 1}.

The numerical experiment is performed with the following parameters: a =

1.5, b = 1.5 and c = 1. We take the C.F.L. condition equal to 0.5. The numerical
scheme was applied with three approaches for treating the outgoing conditions
on ∂ Ω \ Γi nc . Besides the two approaches explored previously (see subsection
4.4), we investigate a second order adaptation where we implement a scheme
of order two until to the “outgoing boundaries”.

In what follows, we verify the order of the scheme by mesh refinement for
the three approaches. The tables below represent the error in the L∞ norm as
a function of the number of cells at t = 1.2. We can see that for a ratio of two
between the number of cells in each direction, the error is divided by four to a
few percent which confirms the second order accuracy of the scheme. This fact
is verified by the figures who are the logarithmic illustrations of the tables. In-
deed, we note that all the errors behave as a straight of slope∼−2 as a function
of mesh refinement.
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• Extrapolation of the phase on the outgoing boundaries

Mesh Iterations Error L∞

15×15 1000 1,1×10−2

30×30 2000 2,6×10−3

60×60 4000 6,4×10−4

90×90 6000 2,8×10−4

120×120 8000 1,6×10−4

150×150 10000 9.8×10−5

E.C.O= 2.04

Table 5: Error in norm L∞.
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Figure 16: Mesh convergence in norm L∞.

• Adapting the scheme to the first order on the outgoing boundaries

Mesh Iterations Error L∞

15×15 1000 4,2×10−3

30×30 2000 1,3×10−3

60×60 4000 3,9×10−4

90×90 6000 1,8×10−4

120×120 8000 1,1×10−4

150×150 10000 7,2×10−5

E.C.O= 1.77

Table 6: Error in norm L∞.
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Figure 17: Mesh convergence in norm L∞.

• Adapting the scheme to the second order on the outgoing boundaries

Mesh Iterations Error L∞

15×15 1000 1,2×10−3

30×30 2000 3,2×10−4

60×60 4000 8,5×10−5

90×90 6000 3,8×10−5

120×120 8000 2,2×10−5

150×150 10000 1,4×10−5

E.C.O= 1.93

Table 7: Error in norm L∞.
10

2

10
−4

10
−3

10
−2

Mesh

E
rr

or

Figure 18: Mesh convergence in norm L∞.
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The results are in good agreement, for the three approaches, with the analytic
solution. However, in order to make a comparison between them, the conver-
gence rates for each approach, using other meshes, are presented in the figure
19. One can observe from this figure that, in agreement with the previous re-
sults, the order of the scheme is preserved for the three approaches. Note also
that the extrapolation approach is less accurate than both other ones. In con-
clusion, we can say that the adaptation to order one, of the interior scheme at
the “outgoing boundaries”, gives a good balance between the order of accuracy
and the easiness of numerical implementation. Also note that, for the second
order adaptation, not using slope limiter at the vicinity of the edge can generate
oscillations.
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Figure 19: Comparison of convergence rates.
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5 Computation of the stretching matrix

A new and important feature of this paper is to compute the geometrical optics
approximation of the acoustic perturbation using the Eulerian approach. For
this, the geometric spreading is calculated on a fixed grid by solving the trans-
port equation (29) with no integration of the Hamiltonian vector field. We recall
that, according to the subsection 3.2, the geometrical spreading G is given by

G =

������

1
Θ

v g

������
,

where Θ is the first matrix in the stretching matrix U =

�
Θ

Λ

�
defined in (28)

and solution of the equation (29).

Assume the numerical calculation of the phase φ has already been done,
the approximation of the group velocity v g is directly given by a discretized
gradient ofφ.

In what follows, we present a numerical scheme of order one in two dimen-
sions of space that allows all calculations of the high frequency approximation
of the acoustic quantities on an Eulerian grid by solving the transport equation
(29).

5.1 Construction of the numerical scheme

• Approximation of the gradient of the phase

We write an explicit first order scheme for the transport equation (29), i.e.

∂t U +Hξ(∇φ)∂xU +Hζ(∇φ)∂y U =M (∇φ)U ,

the advection field of the equation (29) is the group velocity while its source
term involves the second derivatives of the Hamiltonian H .

The advection field and source term of the equation (29) are functions of
the gradient of the phase φ. By eliminating the assumption of a privileged di-
rection of propagation, it seemed that the most natural choice was to make a
centered average gradient of the phase at the centers of the cells:
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(∂xφ)
n
(i+1/2,j+1/2)=

D−xφn
i+1,j+1+D−xφn

i+1,j

2
,

(∂yφ)
n
(i+1/2,j+1/2) =

D−yφn
i+1,j+1+D−yφn

i ,j+1

2
.

Figure 20: Staggered mesh for the computation of the geometrical spreading.

The equations (29) and (30) are approximated in a staggered mesh. In this
mesh, the geometrical spreading and the functionC , and thereafter the acous-

tic quantities are all calculated at the centers of the cells. Recall that the phase
φ was calculated at the grid points. Its value at the cell centers is approximated
by the averaging. Note that contrarily to the ray tracing method, one does

not need to calculate the bicharacteristics to obtain the geometrical optic ap-

proximation of the acoustic perturbation.

• Construction of the numerical scheme

The equation (29) involves two processes, namely advection and diffusion. Con-
ventionally, we split the advection-diffusion equation into an advection equa-
tion and an ordinary differential equation (ODE), each of which will be solved
separately (an advection step followed by a diffusion step). For the time in-
tegration of the diffusion part (step 1), we compute explicitly the exponential
matrix ofM . On the other hand, the advection part (step 2) is discretized by an
upwind scheme.
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Assuming that the discrete approximationU n , of the solution of (29) at time
tn = n△t , has been computed, the next approximation U n+1 is constructed as
following:

Step1:

∂t U ∗ =M (∇φ)U ∗ on [0,△t ], with U ∗(0) =U n

Step2:

∂t U ∗∗+Hξ(∇φ)∂xU ∗∗+Hζ(∇φ)∂y U ∗∗ = 0 on [0,△t ], with U ∗∗(0) =U ∗(△t )

and setting
U n+1 =U ∗∗(△t ).

Each of these two steps above are tested and validated before proceeding to
the test case on the full equation (29).

5.2 Scheme for the advection part

•Description of the scheme

The approximation of the advection equation is chosen simply by the upwind
scheme in the direction of the group velocity:

U n+1
i ,j −U n

i ,j

△t
+ s1Hξ(∇φn

i+1/2,j+1/2)
U n

i ,j −U n
i−s 1,j

△x

+ s2Hζ(∇φn
i+1/2,j+1/2)

U n
i ,j −U n

i ,j−s2

△y
= 0, (40)

where s1 = sgn(Hξ(∇φn
i+1/2,j+1/2)) and s2 = sgn(Hζ(∇φn

i+1/2,j+1/2)), with sgn is the
sign function.

• Test case for the advection step

The purpose of this numerical test case is to show that a more precise compu-
tation of the gradient of the phase does not improve the precision on U .

We consider a static fluid medium in which the speed of sound is affine:

c0(x ,y ) = ax +by + c .

By integration of the field of bicharacteristics and the fact that the phase is
preserved along the Hamiltonian flow, we compute an analytical solution of the
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eikonal equation in the acoustic mode+, given by:

φ(t ,x ,y ) =−t +
1

p
a 2+b 2

ln(ax +by + c ). (41)

By integrating the transport equation on U without the source term, i.e.

∂t U +Hξ(∇φ)∂xU +Hζ(∇φ)∂y U = 0,

along the ray field whose the incident phase is given by the trace of (41) on the
surface {x = 0}, we obtain an analytic expression for U :

U (t ,x ,y ) =




−ab
p

a 2+b 2

e 2t
p

a 2+b 2

(ax +by + c )2

−b 2

p
a 2+b 2

e 2t
p

a 2+b 2

(ax +by + c )2

−ab
p

a 2+b 2
e−2t
p

a 2+b 2
(ax +by + c )2

−b 2

p
a 2+b 2

e−2t
p

a 2+b 2
(ax +by + c )2




.

The table below represents the difference between the numerical approxi-
mation and the analytical solution in the L∞ norm. It can be seen that the order
1 of the scheme is validated.

Mesh Iterations Error U [1] Error U [2] Error U [3] Error U [4]

50×50 1000 2.5×10−3 1.3×10−3 1.0×10−5 5.3×10−6

100×100 2000 1.3×10−3 6.5×10−4 5.2×10−6 2.6×10−6

200×200 4000 6.7×10−4 3.3×10−4 2.6×10−6 1.3×10−6

400×400 8000 3.4×10−4 1.7×10−4 1.3×10−6 6.5×10−7

Table 8: Mesh convergence in norm L∞ at fixed time.

We have compared the results of the table aforementioned with those ob-
tained with an analytical gradient of the phase φ. For this, we deduce the gra-
dient of the phase explicitly from the analytical expression (41), and we have
injected it into the numerical scheme (40). We have observed that both ap-
proaches (analytical and numerical gradient) give the same order of magnitude
of the error on U . This can be explained by the fact that the error of the nu-
merical scheme is dominating compared to the error due to the calculation of
the advection field, which somewhat hides the improvement of computing the
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gradient of the phase. Therefore, even by increasing the order of the scheme for
solving the eikonal equation, this is not going to improve the accuracy on the
computation of U .

5.3 Scheme for the diffusion part

The matrixM is given explicitly by the second derivatives of the Hamiltonian
H . Then, the ordinary differential equation

∂t U =M (∇φ)U (42)

can be solved by computing the exponential matrix o fM at each time step
and at each grid point. In the following we give an explicit expression of the
exponential matrix ofM using its structure. However, this does not give us the
exact solution of (42) becauseM depends on the gradient of the phaseφ.

• Computation of the exponential matrix

The matrixM is of the form

M =

�
A B

C −A t

�
,

where C =C t and B = B t . It is precisely in the Lie algebra of the Hamiltonian

matrix. It follows that:

Lemma 5.1. If λ is an eigenvalue of the matrixM , then −λ, λ̄, and −λ̄ are also

eigenvalues ofM with the same multiplicity.

One deduces then that the characteristic polynomial pM of the matrixM is
an even polynomial, more precisely it is written as

pM (λ) =λ
4+αλ2+β , (43)

where




α = 2
�

HxξHy ζ−Hy ξHxζ

�
− (Hy ζ+Hxξ)

2+
c0(ξ2Hy y +ζ2Hx x −2ξζHx y )

(ξ2+ζ2)3/2

β =
�

HxξHy ζ−Hy ξHxζ

�2
+

c0

�
2Hx Hy Hx y −Hx x H 2

y
−Hy y H 2

x

�

(ξ2+ζ2)3/2
.

Two different cases arise:
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1. if the polynomial pM has simple roots (λi )1≤i≤4, the exponential matrix of
M is given nicely by eM = P eDP −1, where D = diag(λ1,λ2,λ3,λ4) with
P being the change of basis matrix.

2. if there is a double root of the polynomial pM , by the Cayley-Hamilton
theorem, there exist constants a k (α,β ) such that we have:

M 2k = a k (α,β )M 2+N , where N 2 = 0. (44)

Therefore, since exp(M ) =
+∞∑

k=0

M k

k !
, the exponential is calculated using

recurrence formula (44) following the table (10).

• Test case for the diffusion part

We interest ourselves in the basic shear flow of the form u 0(y ) =M 0 +M ′0y , in
a homogeneous medium (c0 = 1). By the explicit expressions (37) and (35), we
show that the matrixM is

M (∇φ) =




0 M
′
0

η2
2

(η2
2+η

2
1)

3
2

η2η1

(η2
2+η

2
1)

3
2

0 0
η2η1

(η2
2+η

2
1)

3
2

η2
1

(η2
2+η

2
1)

3
2

0 0 0 0
0 0 −M

′
0 0




,

where η1 = cosα and η2 = sinα−M
′
0t cosα.

One can verify that U (t ,x ,y ) =
�

C2M
′
0t +C1,C2,−η1,η2

�t
is a solution of

(42), where C1 and C2 are constants.

To check the order of the scheme in time, we set the mesh 50×50 and a time
T , and we refine the time step to arrive at time T :

∆t Nbre Iter ErrL∞ U[1] ErrL∞ U[2] ErrL∞ U[3] ErrL∞ U[4]

6×10−3 1000 6.31×10−4 3.1×10−3 0. 5.49×10−15

3×10−3 2000 3.17×10−4 1.59×10−3 0. 2.51×10−14

1.5×10−3 4000 1.59×10−4 7.98×10−4 0. 2.90×10−14

7.5×10−4 8000 7.9×10−5 3.99×10−4 0. 6.41×10−14

Table 9: Convergence in time.

We observe in the table above that the error is approximatively reduced by
a factor of 2 which confirms the order 1 of the scheme.
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Parameters Exponential matrix ofM

β = 0, α= 0 e tM = I4+ tM + t 2

2
M 2+

t 3

6
M 3

β = 0, α< 0 λ=
p
|α| , e tM = I4+ tM + cosh(λt )− 1

λ2 M 2+
sinh(λt )−λt

λ3 M 3.

β = 0, α> 0 λ=
p
α , e tM = I4+ tM − cos(λt )− 1

λ2 M 2− sin(λt )−λt

λ3 M 3.

β =
α2

4
, α< 0 λ=

Ç
|α|
2

, e tM =
2cosh(λt )−λt sinh(λt )

2
I4+

3sinh(λt )−λt cosh(λt )

2λ
M + t sinh(λt )

2λ
M 2+

λt cosh(λt )− sinh(λt )

2λ3 M 3.

β =
α2

4
, α> 0 λ=

Ç
α

2
, e tM =

2cos(λt )+λt sin(λt )

2
I4+

3sin(λt )−λt cos(λt )

2λ
M + t sin(λt )

2λ
M 2+

sin(λt )−λt cos(λt )

2λ3 M 3 .

0<β <
α2

4
, α< 0 λ=

 
−α+

p
α2− 4β

2

!1/2

, µ=

 
−α−

p
α2− 4β

2

!1/2

, e tM =P −1




e t λ 0 0 0
0 e−t λ 0 0
0 0 e tµ 0
0 0 0 e−tµ



P

0<β <
α2

4
, α> 0 µ=

 
α+

p
α2− 4β

2

!1/2

, ν =

p
2β

�
α+

p
α2− 4β

�1/2
, e tM =P −1




cos(µt ) sin(µt ) 0 0
−sin(µt ) cos(µt ) 0 0

0 0 cos(ν t ) sin(ν t )

0 0 −sin(ν t ) cos(ν t )



P .

α2

4
<β µ=

Æ
2
p
β −α

2
, ν =

Æ
2
p
β +α

2
, e tM =P −1




e tµcos(ν t ) e tµ sin(ν t ) 0 0
e tµ sin(−ν t ) e tµ cos(ν t ) 0 0

0 0 e−tµcos(ν t ) e−tµ sin(ν t )

0 0 e−tµ sin(−ν t ) e−tµ cos(ν t )



P .

β < 0 µ=

 
−α+

p
α2− 4β

2

!1/2

,ν =


−α−

p
α2− 4β

2



1/2

,e tM =P −1




e tµ 0 0 0
0 e−tµ 0 0
0 0 cos(t ν ) sin(t ν )
0 0 −sin(t ν ) cos(t ν )



P .

Table 10: The exponential matrix ofM according to the parameters values.
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5.4 Test case of the splitting scheme

In this subsection, we test the full scheme (advection and diffusion) on a nu-
merical test case in a inhomogeneous medium at rest. We examine the mesh
convergence, and we also give the error in the L∞ norm on the constant along
ray field and on the acoustic pressure.

• Analytical solution

In this test case, we derive an explicit expression for the zero order approxima-
tion of the acoustic quantities. For this, we study the acoustic propagation in a
inhomogeneous medium at rest in which the speed of sound is:

c0(x ,y ) =
(x +a )(y +b )

p
(x +a )2+(y +b )2

A solution of the eikonal equation associated with the acoustic mode+

∂tφ+ c0(x ,y )|∇φ|= 0

is given by
φ(t ,x ,y ) = e−t (x +a )(y +b ). (45)

Assume that the parameters a , b ≥ 1, and we position ourselves in the sub-
domain

�
x ≥ 0, y ≥ 0

	
. We take as usual the incident phase as the trace of the

analytical phase (45) on the incident surface Γi nc =
�
(0,y0); y0 ∈R

	
.

When the phase is of the form φ(t ,x ,y ) = φ1(t )φ2(x ,y ), Proposition C.1
(see Annexe C) assures us that the coordinates x and y are independent of the
parameter t0. As, on the other hand ṫ (s ,α) = 1, it follows that the time variable
can be considered as a curvilinear abscissa along the bicharacteristics.

Using the fact that the phase is conserved along the ray field, we deduce
that

e−t (x +a )(y +b ) = a (y0+b ). (46)

Since the ray field is solution of the system





d x

d t
= c0(x ,y )

y +b
p
(x +a )2+(y +b )2

d y

d t
= c0(x ,y )

x +a
p
(x +a )2+(y +b )2

,
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we show (by multiplying the first equation by x +a and the second equation by
y +b ) that :

(x +a )2− (y +b )2 = a 2− (y0+b )2. (47)

By deriving the equations (46) and (47) with respect to the initial position of
rays , we find:





∂ x

∂ y0
=

y +b

a [(x +a )2+(y +b )2]
(a 2e t − (x +a )2e−t )

∂ y

∂ y0
=

x +a

a [(x +a )2+(y +b )2]
(a 2e t +(y +b )2e−t )

.

Furthermore, we assume that the characteristic manifold and the Lagrangian
submanifold, consisting of the union of bicharacteristics, coincide at initial
time. By Proposition (2.9), they coincide at any time. This yields

¨
ξ(t ,y0) = ∂xφ(t ,x (t ,y0),y (t ,y0)) = e−t (y (t ,y0)+b )

ζ(t ,y0) = ∂yφ(t ,x (t ,y0),y (t ,y0)) = e−t (x (t ,y0)+a )
,

thus we can write ¨
∂y0ξ(t ,y0) = e−t ∂y0 y

∂y0ζ(t ,y0) = e−t ∂y0x
.

For the foregoing, we prove that a solution of the transport equation

∂t U +Hξ(∇φ)∂xU +Hζ(∇φ)∂y U =M (∇φ)U ,

associated with the phase (45), is given by

U (t ,x ,y ) =
1

a [(x +a )2+(y +b )2]




(y +b )[a 2e t − (x +a )2e−t ]

(x +a )[a 2e t +(y +b )2e−t ]

(x +a )[a 2+(y +b )2e−2t ]

(y +b )[a 2− (x +a )2e−2t ]




.

By Proposition C.1, the geometrical spreading is reduced to

G (t ,x (t ,y0),y (t ,y0)) =−

∂t x (t ,y0) ∂y0x (t ,y0)

∂t y (t ,y0) ∂y0y (t ,y0)

 ,

where ¨
∂t x (t ,y0) =Hξ(x ,y ,∇φ(t ,x ,y ))

∂t y (t ,y0) =Hζ(x ,y ,∇φ(t ,x ,y ))
.

We then find an expression for the Eulerian geometrical spreading

G (t ,x ,y ) =
(x +a )2(y +b )2e−t

a [(x +a )2+(y +b )2]
.
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Using Proposition 3.4, we find

a 0(t ,x ,y ) =

�
aρ0

�
(x +a )2+(y +b )2

�3

(x +a )3(y +b )3

� 1
2

.

where the functionC of Proposition 3.4 is equal to 1.

In conclusion, the analytical expression, of the leading order term of the
high frequency approximation, of the acoustic perturbation is expressed as:




̺

u

v

s



= a 0(t ,x ,y )cos

�
k e−t (x +a )(y +b )

�




1
(y +b )2(x +a )

p
(x +a )2+(y +b )2

(x +a )2(y +b )

(x +a )2+(y +b )2

s0




+O(k−1),

and the main term of the asymptotic expansion of the acoustic pressure is cal-
culated by

p (t ,x ,y ) = c 2
0 (x ,y )a 0(t ,x ,y )cos

�
k e−t (x +a )(y +b )

�
+O(k−1).

• Comparison with numerical solution

In the presentation below on a logarithmic scale, we note that all the errors, in
L∞ norm, behave as lines of slope ∼ −1 depending on the mesh refinement.
This confirms the order one of a scheme.

Mesh Iter U [1] U [2] U [3] U [4]
50×50 1000 1.88×10−3 1.25×10−3 4.94×10−4 1.×10−3

100×100 2000 1.01×10−3 6.99×10−4 2.8×10−4 5.18×10−4

200×200 4000 5.4×10−4 3.86×10−4 1.54×10−4 2.67×10−4

300×300 6000 3.6×10−4 2.71×10−4 1.07×10−4 1.80×10−4

400×400 8000 2.82×10−4 2.11×10−4 8.34×10−5 1.37×10−4

500×500 10000 2.3×10−4 1.75×10−4 6.96×10−5 1.10×10−4

E.C.O 0.91 0.85 0.85 0.95

Table 11: Mesh convergence in L∞ norm for the components of U .
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Mesh Iter C p

50×50 1000 1.42×10−2 3.61×10−3

100×100 2000 7.18×10−3 1.72×10−3

200×200 4000 3.6×10−3 8.4×10−4

300×300 6000 2.40×10−3 5.54×10−4

400×400 8000 1.8×10−3 4.15×10−4

500×500 10000 1.44×10−3 3.26×10−4

E.C.O 0.99 1.03

Table 12: Mesh convergence in L∞ forC and p .
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Figure 21: Mesh convergence in logarithmic scale.

(a) Analytical acoustic pressure. (b) Numerical acoustic pressure.

Figure 22: Countour lines of the analytical and the numerical acoustic pressure.
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6 Conclusion

We developed in this contribution a new approach for calculating the propaga-
tion of acoustic waves in the high frequency regime for any regular mean flow
without restricting ourselves to constant or potential flows. Another original
feature of this article, from a numerical point of view, is the choice of an Eu-
lerian method for solving both the eikonal equation on the phase φ and the
transport equation for the stretching matrix which is a more general tool from
what is already used in [3]. The latter is the key quantity for computing the ge-
ometrical optics approximation of the acoustic perturbation. Hence, we obtain
a generalization to a system of the results of Benamou et al. [2, 3] for a wave
equation with non-constant sound velocity.

A crucial point in our study is the geometrical identification of a conserved

quantity along the group velocity. We obtain that
a 2

0c0 J

ρ0 |∇φ| is conserved, where a 0

is the leading order term of the acoustic perturbation around the mean density
ρ0, c0 is the sound velocity, J being the geometrical spreading. We compute J

through the stretching matrix. Note that the existence of a conserved quantity
is true for any hyperbolic operator, even a non conservative one, provided that
we place ourselves on a leaf of the characteristic variety associated to a simple
eigenvalue of the principal symbol of this operator [24]. In future works, one
has to obtain a generic and geometric interpretation for this conserved quan-
tity for any hyperbolic operator with such features.

From a numerical point of view, we develop a numerical scheme of order
two for solving the eikonal equation. We achieved the implementation of this
scheme despite max-min (min-max) difficulties in the numerical Hamiltonian
of Godunov. Several test cases have been performed to find the more relevant
numerical Hamiltonian which provides a good balance between the numerical
diffusion and the monotony of the scheme. The scheme was validated, and the
order of convergence has been checked by comparison with analytical explicit
solutions.

Among the problems solved for the transport equation satisfied by the stretch-
ing matrix, the splitting between the advection and diffusion steps is crucial.
The numerical scheme for solving this transport equation is implemented us-
ing the cell centers of the mesh used for solving the eikonal equation. This
defines globally a fixed staggered mesh. This secondary grid has the advantage
of not being linked to a preferred direction of propagation.
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The numerical results obtained are extremely encouraging, especially when
comparing with exact analytical solutions. The cost-effectiveness of the method
should use cross validation with a direct solution method or with the ray trac-
ing method.

The method developed in this contribution can be generalized in the neigh-
borhood of a fold caustic. The analogous transport equation is presented in
[32] and [24], and will be the center point of forthcoming publications which
aim to calculate the amplitude of the solution in the presence of a fold caus-
tic. Among the other problems that seem reachable using our method, we may
mention the reflection of the acoustic wave by a boundary; preliminary results
are available in [32].

Appendix A: Proof of Lemma 2.12

Lemma 2.12 The eikonal equation on the phaseφ± is equivalent to the follow-

ing one:

∂t

�
1

|∇xφ±|

�
+ v ±

g
.∇x

�
1

|∇xφ±|

�

=
1

|∇xφ±|3
∇xφ

±.
�
∇xφ

±⊗∇x u 0

�
± 1

|∇xφ±|2
∇xφ

±.∇x c0.

Proof. First, we note that, for acoustic modes, the particle derivative of the
phase φ± along the mean flow velocity is non zero, which means it has no sta-
tionary points compared to the space variables (i.e. ∇xφ± 6= 0).

We assume that the phase φ± is a regular function. By deriving the eikonal
equation with respect to space variables, we find

∂t (∇xφ
±)+∇x u 0.∇xφ

±+∇x (∇xφ
±).u 0± |∇xφ

±|∇x c0± c0∇x (|∇xφ
±|) = 0,

taking the scalar product of the above equation with the gradient of the phase
φ±, we then obtain

∇xφ
±.∂t (∇xφ

±)+
�
∇x u 0.∇xφ

±
�

.∇xφ
±+

�
∇x

�
∇xφ

±� .u 0

�
.∇xφ

±

± |∇xφ
±|∇xφ

±.∇x c0± c0∇xφ
±.∇x

�
|∇xφ

±|
�
= 0.
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Under the condition that the phase φ± is regular, the bilinear form associ-
ated to the Hessian of the phase is symmetric, such that

�
∇x

�
∇xφ

±� .u 0

�
.∇xφ

± =
�
∇x

�
∇xφ

±� .∇xφ
±
�

.u 0.

It remains only to note that ∂µ

�
1

|∇xφ±|

�
=−

∂µ
�
∇xφ±

�
.∇xφ±

|∇xφ±|3
, which leads

to the following equation

−|∇xφ
±|∂t

�
1

|∇xφ±|

�
−|∇xφ

±|u 0.∇x

�
1

|∇xφ±|

�
+

1

|∇xφ±|2
∇xφ

±.
�
∇xφ

±⊗∇x u 0

�

± 1

|∇xφ±|
∇xφ

±.∇x c0∓ c0∇xφ
±.∇x

�
1

|∇xφ±|

�
= 0,

which can be written as

∂t

�
1

|∇xφ±|

�
+

�
u 0± c0

∇xφ±

|∇xφ±|

�

︸ ︷︷ ︸
v ±

g

.∇x

�
1

|∇xφ±|

�

=
1

|∇xφ±|3
∇xφ

±.
�
∇xφ

±⊗∇x u 0

�
± 1

|∇xφ±|2
∇xφ

±.∇x c0.

Appendix B: Source term of the equation (19)

Recall that W0 denote the mean flow profile. We begin by demonstrating that

< e tΠ± ,W0 >=
ρ0

2
, (48)

and
< e tΠ± ,A i W0 >=

ρ0vi

2
. (49)

First observe that the vector W0 can be decomposed as

W0 =ρ0e Π± −ρ0c0V ± where V ± =




0
w ±

g

0


 . (50)

We notice also that the vector e tΠ± is written as

e tΠ± =




1

2
− 1

ρ0
< ℓ±,W̄0 >

ℓ±




with W̄0 =



ρ0u 0

ρ0s0


∈Rd+1, ℓ± =




w ±
g

c0

γ



∈Rd+1.
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Trivially, we check < e tΠ± ,W0 >=
ρ0

2
. To prove the other identity, we note

that we have < e tΠ± ,A i e Π± >= v ±i , then using (50) we get:

< e tΠ± ,A i W0 >=ρ0v ±
i
−ρ0c0 < e tΠ± ,A iV ± > .

A direct calculation gives us

A iV ± =




w g i

w g i
u 0+u 0i

w ±
g

s0w g i


=

w i

ρ0
W0+u 0i

V ±.

Given that |w ±
g
|= 1 and using the first identity (48), we find

< e tΠ± ,A iV ± >=
w ±

g i

2
+

u 0i

2c0
=

v ±i
2c0

, (51)

which finally gives

< e tΠ± ,A i W0 >=ρ0v ±
i
−ρ0c0

v ±i
2c0
=
ρ0v ±i

2
.

Using the decomposition (50) and the identities (49)-(51), it follows that

< e tΠ± ,∂i (A i e Π±)>=
< e tΠ± ,∂i (A i W0)>

ρ0
−

v ±i ∂iρ0

2ρ0
+

v ±i ∂i c0

2c0
+c0 < e tΠ± ,∂i (A iV ±)> .

By the fact that the mean flow W0 is solution of the Euler equations and
according to the system (3), we verify that

d∑

i=1

∂i (A i W0) =




−∂tρ0

−∇x p0+∇x (c 2
0ρ0)− ∂t (ρ0u 0)

−∂t (ρ0s0)


 ,

and using the perfect gas law, it follows

d∑

i=1

∂i (A i W0) =




−∂tρ0

−p0∇x s0+2c0ρ0∇x c0− ∂t (ρ0u 0)

−∂t (ρ0s0)


 ,

this brings us to

d∑

i=1

< e tΠ± ,∂i (A i W0)>=−
p0w ±

g
.∇x s0

2c0
+ρ0w ±

g
.∇x c0−

∂tρ0

2
−
ρ0w ±

g
.∂t u 0

2c0
−ρ0∂t s0

2γ
.

(52)
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Always by (50), we have

∂i (A iV ±) = ∂i

�
w ±

g i

ρ0

�
W0+

w ±
g i

ρ0
∂i W0+ ∂i u 0i

V ±+u 0i
∂iV ±.

By a direct calculation, we obtain

< e tΠ± ,∂i W0 >=
∂iρ0

2
+
ρ0

2c0
∂i u 0.w ±

g
+

p0∂i s0

2
,

and thereafter

d∑

i=1

w ±
g i

ρ0
< e tΠ± ,∂i W0 >=

w ±
g

.∇xρ0

2ρ0
+

w ±
g

.
�

w ±
g
⊗̄ ¯̄∇x u 0

�

2c0
+

p0w ±
g

.∇x s0

2ρ0
. (53)

Using the fact that |w ±
g
|= 1 and therefore w ±

g
.∂i w ±

g
= 0, one gets

d∑

i=1

∂i u 0i
< e tΠ± ,V ± >= divu 0

2c0
and

d∑

i=1

u 0i
< e tΠ± ,∂iV ± >= 0. (54)

Combining (48), (53), and (54), we find

d∑

i=1

< e tΠ± ,∂i (A iV ±)>=
divv ±

g

2c0
+

w ±
g

.
�

w ±
g
⊗̄ ¯̄∇x u 0

�

2c0
+

p0w ±
g

.∇x s0

2ρ0
−

w ±
g

.∇x c0

2c0
.

(55)
Combining (52)and (55), we deduce

d∑

i=1

< e tΠ± ,∂i (A i e Π±)>=
divv ±

g

2
−

v ±
g

.∇xρ0

2ρ0
+

v ±
g

.∇x c0

2c0
+

w ±
g

.
�

w ±
g
⊗̄ ¯̄∇x u 0

�

2

+
w ±

g
.∇x c0

2
+−∂tρ0

2ρ0
−

w ±
g

.∂t u 0

2c0
− ∂t s0

2γ
,

which shows the desired result.

Appendix C: Reduced geometric spreading

Proposition C.1. If the mean flow is independent of the time, and if the solu-

tion of the eikonal equation is written as φ(t ,x ) = φ1(t ) +φ2(x ) or φ(t ,x ) =

φ̃1(t )φ2(x ) where φ̃1 is a strictly positive function, then the geometrical spread-

ing is reduced to:

J (s ,β ) =−|∂s x (s ,α) ∂αx (s ,α)| ,
whereβ ≡ (t0,α)∈R×Rd−1 is a parameterization of the incident surface Σi nc .
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Proof. In these cases, the equation on the ray field is written

∂ x

∂ s
(s ,β ) = u 0(x (s ,β ))+ c0(x (s ,β ))

∇xφ2(x (s ,β ))��∇xφ2(x (s ,β ))
�� ,

that can be written also as

∂ x

∂ s
(s ,β ) =F (x (s ,β )). (56)

By deriving the above equation with respect to t0, it follows that

∂

∂ s

�
∂t0 x

�
(s ,β ) =∇xF

�
x (s ,β )

�
.∂t0 x (s ,β ).

Given that x (0,β ) = (α,0), it ensues that ∂t0 x (0,β ) = 0d . By uniqueness of
the solution of the equation (56), we deduce that ∂t0 x (s ,β ) = 0d for all s .

It remains to note that the geometrical spreading is expressed as the sum of
two determinants:

J (s ,β ) =
��∂t0 x (s ,β ) ∂αx (s ,β )

��−
��∂s x (s ,β ) ∂αx (s ,β )

�� .

This completes the proof of Proposition.

In this case the function U simplifies to

U (t ,x ) =

�
∂αx (S0(t ,x ),Y0(t ,x ))

∂αξ (S0(t ,x ),Y0(t ,x ))

�
,

which is solution of the same transport equation (29), but where the second
derivatives of the HamiltonianH ± are replaced by those of the Hamiltonian
H±.
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