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Abstract

We introduce the entropy rate of multidimensional cellular automata.
This number is invariant under shift–commuting isomorphisms; as op-
posed to the entropy of such CA, it is always finite. The invariance
property and the finiteness of the entropy rate result from basic results
about the entropy of partitions of multidimensional cellular automata.
We prove several results that show that entropy rate of 2-dimensional
automata preserve similar properties of the entropy of one dimensional
cellular automata. In particular we establish an inequality which involves
the entropy rate, the radius of the cellular automaton and the entropy of
the d-dimensional shift. We also compute the entropy rate of permutative
bi–dimensional cellular automata and show that the finite value of the en-
tropy rate (like the standard entropy of for one–dimensional CA) depends
on the number of permutative sites. Finally we define the topological en-
tropy rate and prove that it is an invariant for topological shift-commuting
conjugacy and establish some relations between topological and measure–
theoretic entropy rates.

1 Introduction

A cellular automaton (CA) is a continuous self-map F on the configuration

space AZ
d

, commuting with the group of shifts on this space. CA are sim-
ple computational devices for computer scientists and they are nice models for
physicists. Mathematicians view them as an interesting family of topological
and measurable dynamical systems.

The entropy of a CA map F acting on some full shift AZ
d

, in its measure-

theoretic as well as its topological versions (hµ(A
Z
d

, F ) and h(AZ
d

, F ) respec-
tively) is an important measure of the local unpredictability of the map. Each
of the two entropies is an invariant under the suitable kind of conjugacy.

∗E-mail address: francois.blanchard@univ-mlv.fr
†E-mail address: pierre.tisseur@ufabc.edu.br
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The entropy of 1-dimensional CA is always finite. But when d > 1 this
measure is a crude one. Already in the two-dimensional case the entropy of
a cellular automaton is often infinite. This is true for whole families of CA,
the dynamics of which is especially tractable. For instance it is shown in [3]

that for the class of additive two-dimensional CA on {0, 1}Z2

, which may be
seen as a subclass of two-dimensional permutative CA, defined in Section 5,
the entropy is alway infinite. It was conjectured by Shereshevsky that for a
two-dimensional CA the entropy could be 0 or infinite. In [6] Meyerovitch has
shown that there exist non-trivial examples of two-dimensional CA with finite
positive entropy. To finish with the entropy of two-dimensional CA, we can say
that it look impossible to establish some inequalities between the entropy of the
automaton and the entropy of the group of shifts since for this last value we
need to divide by some square of the number of iterations (see definitions done
by equality 5 ).

Here we introduce entropy rate for CA acting on AZ
2

. It is not hard to obtain

similar results for CA on AZ
d

, d > 2, with proper changes in the definition of
entropy rate. It is derived from partial values of the entropy of the CA and can
be expressed as follows for an F -invariant measure µ which is also invariant for
the group of shifts:

ERµ(A
Z
2

, F ) = lim sup
n→∞

1

n
hµ(Sn, F ),

where Sn is the clopen partition of AZ
2

according to the values of the coordinates
in the square of side 2n + 1 centred at the origin. It is finite for any CA. It
is very deeply grounded in the shift structure of the configuration space; as a
consequence it is mostly significant when µ is also invariant under the group
of shifts, and in this case it is an invariant for shift-commuting isomorphisms.
Note that lim supn→∞

1
n
hµ(Sn, F ) defined for all F -invariant measure µ is an

invariant for continuous and shift-invariant isomorphisms only (see subsection
3.1). The topological entropy rate

ER(AZ
2

, F ) = lim sup
n→∞

1

n
h(Sn, F )

has similar properties and similar limitations.
One could define the entropy rate of one-dimensional cellular automata: it

is equal to their usual entropy, up to some multiplicative constant, and does
not bring any further information about the dynamics. On the other hand, the
entropy of a CA in higher dimensions is often infinite, whereas its entropy rate
is always finite, like the entropy in one dimension, so entropy rate turns out to
be more sensitive than entropy when d ≥ 2. In particular, it makes it possible
to obtain inequalities, as shown in Section 4 and 5.

Let A be a finite set of cardinality #A. We denote by AZ
d

, the set of
configurations or maps from Z

d to A. In this paper we mainly restrict our

study to the case d = 2. We note that AZ
d

endowed with the product topology
of the discrete topologies on the sets A is a compact space. Let Σ be the group
generated by the the d shifts σj (1 ≤ j ≤ d).

Note that it is possible to generalize the Curtis-Hedlund-Lyndon theorem
(see [4]) and state that for every cellular automaton F there exists an integer
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r called the radius of the CA and a block map f from A(2r+1)d to A such that
F (x(i1, . . . , id)) = f(x([i1 − r, i1 + r], . . . , [id − r, id + r]).

Entropy The entropy (metrical (hµ(T )) or topological h(T )) is an isomor-
phism invariant that measures the complexity of the dynamical system (X,µ, T )
or (X,T ). For each one-dimensional cellular automaton F of radius r it is well
known that hµ(F ) ≤ h(F ) ≤ 2r ln(#A). In the ergodic setting (for the shift or
the CA F ) it was shown (see [8]) that hµ(F ) ≤ (λ+ + λ−) · hµ(σ) ≤ 2r · hµ(σ)
where σ is the shift on AZ and λ± are discrete Lyapunov exponents. In Propo-
sition 8 we show that the last inequality hµ(F ) ≤ 2r · hµ(σ) remains true for
shift and F -invariant measure µ for the one-dimensional case. There exist some
strong relations between dynamical properties of the CA like equicontinuity and
the fact that the entropy is equal to zero (see [1] and [10]). Is there exists similar
results for the entropy rate of two dimensional CA? In the class of permutative
one-dimensional CA the entropy rate is easy to compute. For instance when F
is a CA of radius r permutative in coordinates −r and r the value of the en-
tropy is h(F ) = 2r× ln(#A). For two dimensional permutative CA, the entropy
hµ(F ) = +∞.

The Variational Principle (see for instance [12]) which states that h(F ) =
supµ hµ(F ) implicitly introduces the question of the existence of a set of mea-
sures of maximum entropy: may it be empty? May it contain more than one
measure? As far as we know those questions are open even when d = 1. Note
that for the permutative class this set is not empty and contains the uniform
measure.

In this paper we introduce a formal definition of the entropy rate that is
derived directly from the definition of the entropy. A first tentative and incom-
plete definition of measurable entropy rate was given by the second author in
[9] as a draft; a little later in [5] Lakshtanov and Langvagen introduced some
similar notions for the topological case. None of those two definitions allow to
prove invariance under some class of isomorphisms.

New definition and results

In this paper we introduce the notion of entropy rate of partition P de-
noted by ERµ(P ,F) and define the measurable entropy rate ERµ(A

Z
2

, F ) as
the supremum over all the finite partitions of the entropy rate of a partition
(see Definition 1, 2 and 3). Using some particular properties of the entropy of
bi-dimensional cellular automata (see Lemma 1) we show in Proposition 2 that

there exists a partition S0 such that ER(AZ
2

, F ) = ERµ(S0, F ) when µ is an
F -invariant and shift commuting measure and establish in Proposition 1 that
the the entropy rate is finite (ERµ(A

Z
2

, F ) = ERµ(S0, F ) ≤ 8r ln(#A)).
Next we show that for an F and shift-invariant measure the entropy rate

denoted by ERµ(A
Z
2

, F ) is an invariant for the class of shift commuting iso-
morphism (see Proposition 3). In Subsection 3.1 we prove that entropy rate of
the partition S0: ERµ(S0, F ) is an invariant for continuous and shift-invariant
isomorphism for all F -invariant measure µ.

We also prove that for any CA F : AZ
2 → AZ

2

of radius r permutative at the
four sides of the square Er used to define the local rule f (see Definition 5) we

can compute explicitly the entropy rate and obtain ERµλ
(AZ

2

, F ) = 8r ln(#A)

where µλ is the uniform measure on AZ
2

. When there is less than 4 sides
of the square Er with permutatives points we compute the entropy rate for
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the subclass of additive cellular automata and show that the entropy rate is
proportional with the number of permutative points (see Proposition 11). This
result could be compared with the entropy of additive one dimensional CA where
there is also a proportion between the entropy and the number of permutative
points (see [3]).

Moreover we also note that the uniform measure on AZ
2

is a measure of max-
imum entropy rate for the classe of permutative CA whereas the uniform mea-
sure on AZ is a measure of maximum entropy for permutative one-dimensional
CA. More generaly we show in Theorem 1 that for any bi-dimensional cellular
automaton F and measure µ invariant by F and by the group of shift Σ on
AZ

2

we have ERµ(A
Z
2

, F ) ≤ 8r · hµ(A
Z
2

, σ) where hµ(A
Z
2

, σ) is the entropy
of the two-dimensional shift. This result could be compared with the fact that
hµ(A

Z, F ) ≤ 2r · hµ(A
Z, σ) proved in Proposition 8 with the same setting for

the measure. We note that the last inequality is optimal in a sense that it is
an equality in the permutative case and that it is not possible to establish an
analog one linking the entropy of the two dimensional shift and the entropy of
the CA. Moreover the proof requires the use of many properties of the entropy
and conditional entropy.

In Section 6 we introduce the topological entropy rate and show that like the
measurable entropy rate, it is finite (Proposition 12) and that it is an invariant

for shift commuting homeomorphisms of AZ
2

(Proposition 15). Next we show

that for all positive integer k ≥ 1 one has ER(AZ
2

, F ) = k · ER(AZ
2

, F ). This
property is also shared by the entropy and the measurable entropy rate. Then
we give a relation between the two entropy rate showing (see Proposition 17 )
that

ER(AZ
2

, F ) ≥ sup
µ∈M(F,σ)

{ERµ(A
Z
2

, F )}

and
ER(S0, F ) ≥ sup

µ∈M(F )

{ERµ(S0, F )

where M(F ) is the set of F -invariant measures and M(F, σ) the subset of M(F )

of measures invariant for the group of shift Σ on AZ
2

.

Another result shows (see Proposition 19) that topological entropy rate de-
pends mainly on the local rule of the CA and not on the dimension of the CA
space. More precisely when a CA acts on a two-dimensional space but its block
map can be reduced to a one-dimensional one, its topological entropy rate is
equal (up to some multiplicative constant) to the entropy of the corresponding
one-dimensional CA.

All the presents results seem to show that entropy rate is a rather well
extended notion of entropy for multi-dimensional cellular automata and could
be used to make progress in the understanding of these particular dynami-
cal systems. Some drawback could appear, for example the definition use a
limit superior (ERµ(S0, F ) = lim supn→∞

1
n
hµ(Sn, F )) instead of the entropy

that appears like a simple limit. Nevertheless the entropy rate of permuta-
tive CA came from a limit (see Remark 5 and Proposition 10) and the values
lim supn→∞

1
n
hµ(Sn, F ) and lim infn→∞

1
n
hµ(Sn, F ) differ only no maximum of

a factor 8 (see Proposition 4 and Proposition 16 (ii) for the topological case).
Moreover this last property gives more meaning to the properties ERµ(F ) = 0
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and ER(F ) = 0 that could be linked with some dynamical properties of the two
dimensional CA as it occurs for the properties hµ(F ) = 0 and h(F ) = 0 (see for
instance [1], [2] and [10]).

Note that those results (for the topological and measurable case) can easily
be extended to dimensions higher than two using more complex notations.

2 Definitions and background

2.1 Symbolic spaces and cellular automata

Let A be a finite set or alphabet; its cardinality is denoted by #A. For an integer

d ≥ 1 let AZ
d

be the set of all maps x:Zd → A; any such map x ∈ AZ
d

is called
a configuration. Given a finite subset C of Zd, one defines a pattern on C as
a map P :C → A, in other words, an element of AC . When d > 1 the usual
concatenation of words can be extended to some patterns in the following way:
given C, C′ ⊂ Z

d such that C ∩C′ = ∅ and two patterns, P on C and P ′ on C′,
the pattern P • P ′ on C ∪C′ is the one such that (P • P ′)(z) = P (z) for z ∈ C
and (P • P ′)(z) = P ′(z) for z ∈ C′. Again for C ⊂ Z

d, the pattern xC is just
the restriction of the map x to the set of coordinates C.

The configuration space AZ
d

is endowed with the product of the discrete

topologies on the various coordinates. For this topology AZ
d

is a compact
metric space. For z = (i, j) ∈ Z

2 put |z| =
√

i2 + j2; a metric compati-
ble with this topology is defined by the distance d(x, y) = 2−h where h =

min{|z| such that xz 6= yz}. The shift maps σi,j :AZ
d → AZ

d

, i, j ∈ Z are
defined by σi,j(x)k,l = (xk+i,l+j), k, l ∈ Z. For t ∈ Z and v = (i, j) ∈ Z

2

put t.v = (ti, tj). The shift maps form a group. It is worth while to consider

this group of shifts Σ = {σi,j |i, j ∈ Z} as acting on AZ
d

; the dynamical system

(AZ
d

,Σ) is often called the full shift of dimension d.

All probability measures µ on AZ
d

that we consider are defined on the Borel

sigma-algebra B generated by the topology of AZ
d

.
The Curtis-Hedlund-Lyndon theorem states that for every cellular automa-

ton F there is a finite set C ⊂ Z
d and a map f from the set of patterns on C

to A such that for z ∈ Z
d one has F (x)z = f(xC+z); f is called the local map

of the CA F . One easily sees that equivalently there exist r ∈ N, Er being the
square centered at the origin of size 2r+1 and a map f from the set of patterns
on Er to A with the same property. This is the form we are going to use. In
this case the integer r is called the radius of F . Recall that the uniform measure

on AZ
d

is invariant under a cellular automaton F , i.e., µ ◦ F = µ, if and only if
F is onto [4].

2.2 Entropy

Given some probability space (X,A, µ) let F(X) be the set of all finite A-
measurable partitions of X . If P = {P1, . . . , Pn} and Q = {Q1, . . . , Qm} are
two measurable partitions of X , denote by P ∨ Q the partition {Pi ∩ Qj ; 1 ≤
i ≤ n; 1 ≤ j ≤ m}. If for all 1 ≤ i ≤ n there exists a subset J ⊂ [1, . . . ,m] such
that Pi = ∪j∈JQj we write that P 2 Q.
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Put Hµ(P) =
∑

P∈P µ(P ) log µ(P ). Hµ is sub-additive, that is, Hµ(P∨Q) ≤
Hµ(P)+Hµ(Q). Whenever P , Q ∈ F(X) and P 2 Q one has Hµ(P) ≤ Hµ(Q).
By ([12, Theorem 4.3])

(i) Hµ(P ∨ Q/R) = Hµ(P/R) +Hµ(Q/P ∨R ≤ Hµ(P/R) +Hµ(Q/ ∨R)
(ii) Hµ(P ∨ Q) = Hµ(P) +Hµ(Q/P) ≤ Hµ(P) +Hµ(Q).

(1)
Let T be a measurable transformation of X leaving µ invariant: µ ◦ T = µ.

The entropy of the partition P with respect to T is defined as hµ(P , T ) =
limn→∞

1
n
Hµ(∨n−1

i=0 T
−iP). Remark that hµ(P , T ) is well-defined because by

sub-additivity of Hµ the sequence 1
n
Hµ(∨n−1

i=0 T
−i(P)) is non-increasing with

n; in particular this implies that hµ(P , T ) ≤ Hµ(P). Finally the entropy of
(X,T, µ) is hµ(T ) = supP∈F(X) hµ(P , T ). Recall that Hµ(T

−iP) = Hµ(P) and
by [12, Theorem 4.12]

hµ(Q, T ) ≤ hµ(P , T ) +Hµ(Q|P). (2)

An isomorphism between two measure-theoretic dynamical systems (X,A, µ, T )
and (X ′,A′, µ′, T ′) is a 1-to-1, bi-measurable map ϕ between two sets E ∈ A
and E′ ∈ A′ such that µ(E) = µ′(E′) = 1 and that ϕ ◦ T = T ′ ◦ ϕ on the set
E. When such a map exists hµ(T ) = hµ′(T ′), in other words the entropy is
invariant under isomorphisms.

Now for the topological setting. If U , V are open covers of a compact space
X their join U ∨ V is the open cover consisting of all sets of the form A ∩ B
where A ∈ U and B ∈ V . An open cover U is coarser than an open cover V ,
or U 2 V , if every element of V is a subset of an element of U . If U � V and
U ′ � V ′ then U ∨ U ′ 2 V ∨ V ′.

When U is an open cover of X , put H(U) = ln(N(U)), where N(U) denotes
the smallest cardinality of a finite subcover of U . Like Hµ the function H is
sub-additive, in this case, H(U ∨V) ≤ H(U) +H(V). Whenever V 2 U one has
H(V) ≤ H(U).

Let T be a surjective continuous map of X . By sub-additivity of H the
sequence 1

n
H(∨n−1

i=0 T
−i(U)) is non-increasing with n; the topological entropy of

the cover U with respect to T is defined as h(U , T ) = limn→∞
1
n
H(∨n−1

i=0 T
−i(U))

and the entropy of (X,T ) is h(X,T ) = supU h(U , T ) on the set R(AZ
2

) of all
finite open covers of X . When U is an open cover h(U , T ) ≤ H(U); when V � U
are two open covers one has h(V , T ) ≤ h(U , T ). Another important inequality
is

h(U ∨ V , T ) ≤ h(U , T ) + h(V , T ). (3)

Of course topological entropy is invariant under (topological) conjugacy, that is,
if ϕ: (X,T ) → (X ′, T ′) is a one-to-one continuous map such that ϕ ◦T = T ′ ◦ϕ,
then h(X,T ) = h(X ′, T ′).

3 Entropy rate for a measure

Here we define the entropy rate of a cellular automaton F for an F -invariant
measure µ. Then some of its basic properties are explored.

We first introduce two families of finite subsets of Z2 (En was less formally
introduced in the first Section):

6



Definition 1. En ⊂ Z
2 is defined to be the square of size 2n+ 1 centred at the

origin: En = {v = (i, j) ∈ Z
2 | − n ≤ i, j ≤ n}.

For n ≥ r, where r is the radius of the CA, E′
n is the outer band of width r of

En: E′
n = En \ En−r.

To a finite measurable partition P ∈ F(AZ
2

) one associates two other finite
partitions with the help of En and E′

n,:

Definition 2. For P ∈ F(AZ
2

) one defines

Pn =
∨

v∈En

σv(P) (for n ∈ N)

and
P ′
n =

∨

v∈E′

n

σv(P) (for n ≥ r).

When setting P = S0, where S0 is the clopen partition according to the
value of the 0th coordinate, one has a particular expression for (S0)n, which we
denote by Sn:

Sn =
∨

v∈En

σv(S0) = ({x ∈ AZ
2 | x|En

= c} | c ∈ AEn).

Likewise put

S ′
n =

∨

v∈E′

n

σv(S0) = ({x ∈ AZ
2 | x|E′

n
= c} | c ∈ AE′

n).

The partitions Pn and P ′
n have been introduced here in their general form

for proving Propositions 2 and 3. Apart from this technical use we do not un-
derstand their meaning well. In the sequel we use them mostly in one particular
case, when P = Sk or S ′

k for some k; in this case they are clopen partitions
according to local patterns, a classical tool in symbolic dynamics.

Two properties of the partitions Sn, n ∈ N do not hold for the partitions S ′
n:

by the definitions (Si)j = Si+j ; and the partitions Sn, n ∈ N generate increasing

algebras that converge to the Borel σ-algebra on AZ
2

. The last property implies
in particular that if F is a CA and µ is an F -invariant measure on AZ

2

one has
hµ(A

Z
2

, F ) = limn→∞ hµ(Sn, F ) [12]. As Sn is also an open cover of AZ
2

, and
since for any finite open cover U there is N such that U 2 SN , one also has
h(AZ

2

, F ) = limn→∞ h(Sn, F ) [12].

Definition 3. Let F be a cellular automaton on AZ
2

with radius r, and let µ
be a probability measure on AZ

2

, invariant under F . If P is a finite measurable
partition of AZ

2

, its entropy rate is

ERµ(P , F ) = lim sup
n→∞

1

n
hµ(P ′

n, F );

the entropy rate of the dynamical system (AZ
2

, F ) endowed with the measure µ
is the non-negative real number

ERµ(A
Z
2

, F ) = sup{ERµ(P , F ) | P ∈ F(AZ
2

)}.
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The first step for investigating entropy rate consists in remarking that en-
tropy rate is the same for partitions Sn and S ′

n, and also the same for Sn and
Sm, m 6= n.

Lemma 1. Let F be a cellular automaton with radius r acting on AZ
2

, and µ
be an F -invariant measure.
(i) Whenever n ≥ r one has

hµ(S ′
n, F ) = hµ(Sn, F ),

(ii) for n ≥ r and m ∈ N one has

ERµ(Sn, F ) = ERµ(S ′
n, F ) and ERµ(Sm) = ERµ(S0, F )

Proof. (i) By the definition of entropy and since Sn = S ′
n ∨ Sn−r,

hµ(Sn, F ) = hµ(S ′
n ∨ Sn−r, F ) = lim

N→∞

1

N
Hµ

(

N−1
∨

i=0

F−i(S ′
n)

N−1
∨

i=0

F−i(Sn−r)

)

.

(4)
Because F is a cellular automaton with radius r, the vth coordinate of F (x),
v ∈ Z

2, is determined by all coordinates of x that are within the square Er + v.
In particular all coordinates of F (x) in En−r are completely determined by the
coordinates of x in En = E′

n ∪ En−r, that is to say, Sn−r 2 F−1(S ′
n ∨ Sn−r)

and more generally F−i(Sn−r) 2 F−i−1(S ′
n ∨Sn−r). Applying F−1 inductively

and using this remark each time one gets

N−1
∨

i=0

F−i(S ′
n)

N−1
∨

i=0

F−i(Sn−r) =

N−1
∨

i=0

F−i(S ′
n) ∨ F−N+1(Sn−r).

Inject this simpler form into (4) and then apply (1(ii)). This yields:

hµ(Sn, F ) ≤ lim
N→∞

1

N
Hµ

(

N−1
∨

i=0

F−i(S ′
n)

)

+ lim
N→∞

1

N
Hµ

(

F−N+1(Sn−r)
)

,

hence

hµ(Sn, F ) ≤ hµ(S ′
n, F ) + lim

N→∞

1

N
Hµ(F

−N+1(Sn−r)).

Now since µ is F -invariant the real number Hµ(F
−N+1(Sn−r)) = Hµ(Sn−r) =

K does not depend on N , so that in the end

hµ(Sn, F ) ≤ hµ(S ′
n, F ) + lim

N→∞

1

N
K = hµ(S ′

n, F ).

The reverse inequality is obvious since S ′
n 2 Sn. This establishes the first claim.

(ii) Fix i ≥ 0: because of the obvious identity (S0)i = Si one has

ERµ(Si, F ) = lim sup
n→∞

1

n
hµ(Sn+i, F ) = lim sup

n→∞

1

n+ i
hµ(Sn+i, F ) = ERµ(S0, F ).

Using (i) the equality ERµ(Sm, F ) = ERµ(S ′
m, F ) immediately follows.

With the help of this Lemma one shows that the entropy rate of the ‘square’
partitions Sn is finite and does not depend on n.
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Proposition 1. For any cellular automaton F acting on AZ
2

, any F -invariant
measure µ, any i ≥ 0

ERµ(Si, F ) = ERµ(S0, F ) ≤ 8r log(#A) < ∞.

Proof. By Lemma 1(i), since S ′
n =

∨

v∈E′

n
σv(S0), and by (1(ii))

ERµ(S0, F ) = lim sup
n→∞

1

n
hµ(S ′

n, F ) = lim sup
n→∞

1

n
hµ(

∨

v∈E′

n

(σv(S0, F ))

≤ lim sup
n→∞

1

n

∑

v∈E′

n

hµ(σ
v(S0), F ).

Now as σv(S0) is the partition according to the coordinate v, by elementary
upper bounds one gets

hµ(σ
v(S0), F ) ≤ Hµ(σ

v(S0)) ≤ log(#A).

Combined with the above upper bound for ERµ(S0, F ) and since the cardinality
of E′

n is less than or equal to 8rn this yields

ERµ(S0, F ) ≤ lim sup
n→∞

1

n
· 8rn log(#A) = 8r log(#A).

In view of Lemma 1(ii) this finishes the proof .

Of course this result would be false without the factor 1
n
in the definition of

ERµ(P , F ).
In order to prove that entropy rate is a natural notion, one must make a

new assumption: the measure µ should be shift-invariant, in addition to the
previous requirement of being F -invariant. Call bi-invariant any measure that
is invariant both under F and under the group of shifts.

Proposition 2. Let µ be a bi-invariant measure. For any finite measurable
partition P of AZ

2

one has

ERµ(P , F ) ≤ ERµ(S0, F ),

and therefore

ERµ(A
Z
2

, F ) = ERµ(S0, F ).

Proof. Given a finite measurable partition P fix some ǫ > 0. Since the parti-
tions S ′

n converge to the discrete partition as n → ∞, the conditional entropy
Hµ(P|S ′

n) goes to 0 as n → ∞: choose k such that Hµ(P|S ′
k) ≤ ǫ.

From this inequality, keeping in mind that (S ′
k)n = S ′

n+k, one derives another
one for Hµ(Pn|S ′

n+k) in the following way. By definition Pn =
∨

v∈En
σv(P), so

Hµ(Pn|S ′
n+k) = Hµ(

∨

v∈En

σv(P)|S ′
n+k) ≤

∑

v∈En

Hµ(σ
v(P)|S ′

n+k).

Note that S ′
n+k is a refinement of σv(S ′

k) for every v ∈ En, because the set Ek+
v ⊂ Z

2 is a subset of En+k. Thus Hµ(σ
v(P)|S ′

n+k) ≤ Hµ(σ
v(P)|σv(S ′

k)). Due

9



to the fact that µ is invariant under the shifts, Hµ(σ
v(P)|σv(S ′

k)) = Hµ(P|S ′
k).

Then it results from the former majoration of Hµ(Pn|S ′
n+k) that

Hµ(Pn|S ′
n+k) ≤

∑

v∈En

Hµ(P|S ′
k) ≤ 8rnǫ.

This, together with inequality 2, allows us to bound the dynamical entropy
of Pn from above:

hµ(Pn, F ) ≤ hµ(Pn ∨ Sn+k, F ) ≤ hµ(Sn+k, F ) +Hµ(Pn|Sn+k)

≤ hµ(Sn+k, F ) + 8rnǫ,

hence

ERµ(P , F ) = lim sup
n→∞

1

n
hµ(Pn, F ) ≤ lim sup

n→∞

1

n
(hµ(S ′

n+k, F ) + 8rnǫ)

= ERµ(S ′
k, F ) + 8rǫ.

Letting ǫ go to 0 (or equivalently letting k go to infinity) this implies that for
any finite partition P

ERµ(P , F ) ≤ ERµ(S ′
k, F ).

As was noted in Proposition 1, ERµ(S ′
k, F ) = ERµ(S0, F ) for any k. Since

S0 ∈ F(AZ
2

) one thus gets ERµ(A
Z
2

, F ) = ERµ(S0, F ), which finishes the
proof.

Question 1. Is there exist a CA F , a F -invariant measure µ and a partition
P such that ERµ(P , F ) > ERµ(S0, F )?

Remark 1. From the proof of the last Proposition every measure µ which sat-
isfies the property ∀ǫ > 0 , ∃k ∈ N such that ∀v ∈ Z

2 Hµ(σ
v(P)|σv(S ′

k)) ≤ ǫ

for P ∈ F(AZ
2

) verifies ERµ(A
Z
2

, F ) = ERµ(S0, F ). This simple remark al-
lows us to extend easily the set of probability measures µ where the entropy rate
equals ERµ(S0, F ). For instance each measure invariant for the group gener-

ated by some iterations of the bi-dimensional shift also satisfies ERµ(A
Z
2

, F ) =
ERµ(S0, F ).

The last result has two consequences. The first is straightforward: for a CA
with radius r on the alphabet A and a bi-invariant measure µ, the entropy rate
of any finite partition is bounded by 8r log(#A), which is not as obvious as the
corresponding coarse upper bound for entropy in the one-dimensional setting.
The second is the following

Proposition 3. Let (AZ
2

, F, µ) and (BZ
2

, G, ν) be two cellular automata en-
dowed with their respective bi-invariant measures. If there exists a measurable
map ϕ:AZ

2 → BZ
2

such that

1. ϕ commutes with any shift,

2. ϕ ◦ F = G ◦ ϕ and

3. ϕµ = ν,

10



one has
ERµ(A

Z
2

, F ) ≥ ERν(B
Z
2

, G).

In particular entropy rate is an invariant for the class of shift-commuting iso-
morphisms of CA.

Proof. The proof is an elementary application of the assumptions and of the
previous results; we give it in some detail in order to show how it relies upon
the various hypotheses on the isomorphism map φ.

Lift any partition P ∈ F(BZ
2

) into F(AZ
2

) by ϕ−1: then
(1) Hµ(ϕ

−1(P)) = Hν(P), since ϕµ = ν;
(2) this, and the fact that ϕ◦G = F ◦ϕ, imply that hµ(ϕ

−1(P), F ) = hν(P , G);
(3) one also has ϕ−1(P ′

n) = (ϕ−1(P))′n because ϕ commutes with the group of
shift.

Applying (3) to P = S0(B
Z
2

) and then (2), one gets for any n > r

hµ((ϕ
−1(S0(B

Z
2

))′n), F ) = hµ(ϕ
−1(S ′

n(B
Z
2

)), F ) = hν(S ′
n(B

Z
2

), G).

Carried into the definitions of ERµ and ERν this implies

ERµ(ϕ
−1(S0(B

Z
2

)), F ) = lim sup
n→∞

hµ((ϕ
−1(S0(B

Z
2

))′n), F )

n

= lim sup
n→∞

hµ(ϕ
−1(S ′

n(B
Z
2

)), F )

n
=

= lim sup
n→∞

hν(S ′
n(B

Z
2

), G)

n
= ERµ(ϕ

−1(S0(B
Z
2

)), F ) = ERν(S0(B
Z
2

), G);

ϕ is a measurable map, so that ϕ−1(S0(B
Z
2

)) ∈ F(AZ
2

); taking this into

account, we get ERµ(A
Z
2

, F ) ≥ ERµ(ϕ
−1(S0(B

Z
2

)), F ) = ERν(S0(B
Z
2

), G).

Since ν is a bi-invariant measure from Proposition 2 we obtain ERµ(A
Z
2

, F ) ≥
ERν(S0(B

Z
2

), G) = ERν(B
Z
2

, G).
Finally when ϕ is an isomorphism the inequality we just obtained applies in

the two directions and the two entropy rate are equal.

It looks unlikely that one could obtain the same result after relaxing any of
the invariance or commutation assumptions in this proposition. All of them are
used somewhere.

The following result implies that if the measure is bi-invariant, the positivity

of sequences of type
(

1
un

hµ(Sun
, F )

)

n∈N

is independent of the subsequence un

which shows that the definition of the entropy rate seems rather robust.

Proposition 4. For all two-dimensional cellular automata and bi-invariant
measure µ one has:

lim sup
n→∞

hµ(Sn, F )

n
≤ 8× lim inf

n→∞
hµ(Sn, F )

n
.

11



Proof. Roughly the proof use the fact that a square E′
np is a union of 8n squares

of type E′
p without its central part situated at more than r coordinates of the

near side of the big square. Let (un)n∈N and (vn)n∈N two sequence of increasing
positive integers such that

lim inf
hµ(Sn, F )

n
= lim

hµ(Sun
, F )

un

and lim sup
hµ(Sn, F )

n
= lim

hµ(Svn , F )

vn
.

Fix p ≥ r and m ∈ N such that vm ≥ up. Putting n = ⌊ vm
up

⌋ we have

(Sup
)′n+1 =

n
∨

i=−n

σ(n,i)Sup

rn
∨

i=−n

σ(−n,i)Sup

n
∨

i=−n

σ(i,n)Sup

n
∨

i=−n

σ(i,−n)Sup

It follows that

hµ

(

(Sup

)′
n+1

, F ) ≤
n
∑

i=−n

hµ(σ
(n,i)Sup

, F ) +
n
∑

i=−n

hµ(σ
(−n,i)Sup

, F )

+

n
∑

i=−n

hµ(σ
(i,n)Sup

, F ) +

n
∑

i=−n

hµ(σ
(i,−n)Sup

, F )

and using the shift invariance of µ we obtain hµ((Sup
)′n+1, F ) ≤ 8n ·hµ(Sup

, F ).
Since (Sup

)′n+1 � S ′
vm

we get

hµ(S
′
vm

, F )

vm
· vm
(n+ 1)up

≤ hµ((Sup
)′n+1, F )

(n+ 1)up

≤ 8n
hµ(Sup

, F )

(n+ 1)up

.

Letting m → ∞ with n = ⌊ vm
up

⌋ and using Lemma 1 which say that hµ(S
′
n, F ) =

hµ(Sn, F ) we obtain

lim sup
hµ(Sn, F )

n
= lim

hµ(Svn , F )

vn
≤ 8 · hµ(Sup

, F )

up

.

Since this last equality is true for all integer p ≥ r we can conclude writing

lim sup
hµ(Sn, F )

n
≤ 8 · lim

p→∞

hµ(Sup
, F )

up

= lim inf
hµ(Sn, F )

n
.

For all µ-invariant map we have hµ(T
k) = k · hµ(T ). The next result show

that entropy rate share this property.

Proposition 5. For all cellular automaton F on AZ
2

, k ∈ N and bi-invariant
measure µ we have ERµ(A

Z
2

, F k) = k ·ERµ((A
Z
2

, F ) .

Proof. From Proposition 2 we only need to show that ERµ(S0, F
k) = k ·

ERµ(S0, F ). Since F is a cellular automaton of radius r we have ∨k−1
i=0 F

−i(S0) 2
Skr and consequently ∨k−1

i=0 F
−i(Sn) 2 Sn+kr . Hence

lim sup
n→∞

hµ(Sn, F
k)

n
≤ lim sup

n→∞

hµ(∨k−1
i=0 F

−i(Sn), F
k)

n
≤ lim sup

n→∞

hµ(Sn+kr , F
k)

n
.
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Since lim supn→∞
hµ(Sn,F

k)
n

= lim supn→∞
hµ(Sn+kr,F

k)
n

= ERµ(S0, F
k) and

since hµ(∨k−1
i=0 F

−i(Sn), F
k) = k · hµ(Sn, F ) (see [12]) we can conclude writing

ER(S0, F
k) = lim sup

n→∞

hµ(∨k−1
i=0 F

−i(Sn), F
k)

n
= k ·ERµ(S0, F ).

.

Remark 2. More generally one can extend Lemma 1, Proposition 2, 3 and 5
and obtain similar results for Proposition 1 and 4 using the following definition
for the d-dimensional case:

ERµ(F ) = sup{ERµ(P , F )|P ∈ F (AZ
d

)}

= sup{lim sup
n→∞

1

nd−1
hµ(P ′

n, F )|P ∈ F (AZ
d

)}.

In the d dimensional case P ′
n =

∨

v∈E
′d
n
σvP where E

′d
n is a d dimensional empty

hypercube of side n and width r.

3.1 Entropy rate with respect to the partition S0, an in-

variant for continuous and shift invariant isomorphism

The following sequence of elementary results shows that for all F -invariant
measure µ the entropy rate ERµ(S0, F ) share several properties (but not all)

with ERµ(A
Z
2

, F ) and is an invariant for continuous and shift-invariant isomor-
phism. Note that we call cylinder any element of a partition Sk (k ∈ N).

Definition 4. A sliding bock code is a continuous map φ : AZ
2 → BZ

2

such that
any element σA of the group of the shift on AZ

2

there exists σB the corresponding
element in the group of the shift on BZ

2

such that φ ◦ σA = σB ◦ φ.

Proposition 6. For all bi-dimensional cellular automata F and invariant mea-
sure µ one has ERµ(S0, F ) = supCY (F ){ERµ(Q,F )} where CY (F ) is the set

of partitions by finite union of cylinders of AZ
2

.

Proof. From the definition of CY (F ), for all Q ∈ CY (F ) there exists an integer
k ∈ N such that Q 2 Sk. It follows that for all n ∈ N we have hµ(Qn, F ) ≤
hµ(Sk+n, F ) which implies that ERµ(Q, F ) ≤ ERµ(Sk, F ) = ERµ(S0, F ) by
Lemma 1.

Remark 3. By the proof of Proposition 6 and Lemma 1 it is straightforward
that for all bi-dimensional cellular automata F one has

ERµ(S0, F ) = sup
CY (F )

{

lim sup
hµ(Qn, F )

n

}

= sup
CY (F )

{

lim sup
hµ(Q′

n, F )

n

}

.

The next result shows that ERµ(S0, F ) is a invariant for continuous and
shift commuting isomorphism for each F -invariant probability measure µ.

13



Proposition 7. Let (AZ
2

, F, µ) and (BZ
2

, G, ν) be two cellular automata en-
dowed with their respective invariant measures. If there exists a bijective sliding
block code ϕ:AZ

2 → BZ
2

such that Hµ(ϕ
−1(P)) = Hν(P), ϕµ = ν and ϕµ = ν

then ERµ

(

S0(A
Z
2

), F
)

= ERν

(

S0(B
Z
2

), G
)

.

Proof. With these assumptions we can follow exactly the proof of Proposition
3 until the argument that ϕ is a measurable map (line 14 of the proof ) and
substitute it by ϕ is a continuous and shift-invariant isomorphism or a one to
one and onto sliding block code from AZ

2

to BZ
2

. Using simple compactness
arguments (see the Curtis Hedlund Lindon Theorem [4]) we can show that
ϕ−1(S0) ⊂ CY (F )) which by Proposition 6 implies that

ERµ

(

S0(B
Z
2

), F
)

≥ ERµ

(

ϕ−1(S0)(B
Z
2

), F
)

= ERν

(

S0(B
Z
2

), G
)

.

Finally since ϕ is am isomorphism the inequality we obtained applies in the two
directions and the two entropies rate are equal.

Note that Proposition 5 is clearly true for ERµ(S0, F ) but Proposition 4
that gives more meaning to the definition of the entropy rate using a limsup
requires the shift invariance of the measure µ. If we compare ERµ(A

Z
2

, F ) with

ERµ(S0, F ) we can say that ERµ(A
Z
2

, F ) is significant when ERµ(A
Z
2

, F ) =
ERµ(S0, F ) which is mainly for shift-invariant measure and ERµ(S0, F ) is only
an invariant for continuous isomorphism.

4 An upper bound for the entropy rate

The following basic result for one dimensional CA is similar to several inequal-
ities (that involved discrete Lyapunov exponents in [8] and [10]) in the ergodic
setting but is not written anywhere.

Proposition 8. When F is a one-dimensional cellular automaton of radius r
and µ is a bi-invariant measure one has the inequality hµ(A

Z, F ) ≤ 2r·hµ(A
Z, σ).

Proof. Let α0 be the partition of AZ by the central coordinate and αp =
∨n
i=−nσ

−i(α0). Using the fact that µ is a F -invariant measure and limp→+∞ αp

is the whole Borel σ-algebra B we obtain:

hµ(F ) = lim
p→+∞

hµ(F, αp) = lim
p→+∞

lim
n→+∞

Hµ(∨n−1
i=0 F

−iαp)

n

Using the definition of a one-dimensional CA of radius r, for all p ∈ N we can

state that ∨n−1
i=0 F

−iαp 2 ∨r(n−1)
i=−r(n−1)σ

i(αp) which implies that:

hµ(F ) = lim
p→+∞

hµ(F, αp) ≤ lim
p→+∞

lim
n→+∞

Hµ

(

∨r(n−1)
i=−r(n−1)σ

i(αp)
)

n
.

It follows that

hµ(F ) = lim
p→+∞

hµ(F, αp) ≤ lim
p→+∞

lim
n→+∞

Hµ

(

∨r(n−1)
i=−r(n−1)σ

i(αp)
)

2rn+ 1− 2r
·2rn+ 1− 2r

n
.
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Since (αp)p∈N is a generating sequence for the transformation σ and µ a shift-
invariant measure we can state that for all p ∈ N

hµ(σ) = hµ(σ, αp) = lim
n→+∞

Hµ

(

∨r(n−1)
i=−r(n−1)σ

i(αp)
)

2rn+ 1− 2r

which allows us to conclude.

The next results can be seen as a two-dimensional analogue of this inequality,
but its proof is not as simple. It is also a refinement of the coarse upper bound
in Proposition 1.

The entropy hµ(A
Z
2

, σ) of the two-dimensional group of shifts for an invari-
ant measure µ was introduced in [11]. As a function of the partitions Sn one
may write it as:

hµ(A
Z
2

, σ) = lim
n→∞

Hµ (∨v∈En
σv(S0))

(2n+ 1)2
= lim

n→∞
Hµ(Sn)

(2n+ 1)2
. (5)

Theorem 1. Let F be a two-dimensional cellular automaton. If µ is a bi-
invariant measure on AZ

2

one has:

ERµ(A
Z
2

, F ) ≤ 8r × hµ(A
Z
2

, σ).

Proof. First we claim that for any n ≥ r the quantity 1
p
Hµ(∨p−1

i=0 F
−i(S ′

n)|Sn−r)
tends to a limit as p → ∞ and that

lim
p→∞

Hµ(∨p−1
i=0 F

−i(S ′
n)|Sn−r)

p
= hµ(S ′

n, F ). (6)

Indeed since the equality

Hµ(Q|P) = Hµ(P ∨Q)−Hµ(P)

holds for all finite partitions P , Q, one has

Hµ

(

p−1
∨

i=0

F−i(S ′
n)|Sn−r

)

= Hµ

(

p−1
∨

i=0

F−i(S ′
n) ∨ Sn−r

)

−Hµ(Sn−r),

which, taking into account the fact that
∨p−1

i=0 F−i(S ′
n) 2

∨p−1
i=0 F−i(S ′

n) ∨
Sn−r 2

∨p−1
i=0 F−i(Sn) and dividing by p, yields

1

p
(Hµ(

p−1
∨

i=0

F−i(S ′
n))−Hµ(Sn−r)) ≤

1

p
Hµ(

p−1
∨

i=0

F−i(S ′
n)|Sn−r)

≤ 1

p
(Hµ(

p−1
∨

i=0

F−i(Sn))−Hµ(Sn−r)).

Passing to the limit as p → ∞, the term 1
p
Hµ(Sn−r) vanishes, and the lower

bound and the upper bound converge to hµ(S ′
n, F ) and hµ(Sn, F ) respectively.

Those two quantities are equal by Lemma 1. One thus gets

lim
p→∞

Hµ(∨p−1
i=0 F

−i(S ′
n)|Sn−r)

p
= hµ(Sn, F ) = hµ(S ′

n, F ).
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Equation 6 is proven.

Applying (1(i)) iteratively we note that
(

Hµ(∨p−1
i=0 F

−iS ′
n|Sn−r)

)

p∈N

is a

subadditive sequence and it follows that

hµ(S ′
n, F )

n
= lim

p→∞
Hµ(∨p−1

i=0 F
−iS ′

n|Sn−r)

pn
≤ Hµ(∨⌊√n⌋−1

i=0 F−iS ′
n|Sn−r)

n⌊√n⌋ .

where ⌊x⌋ is the integer part of x ∈ R. This implies that

ERµ(A
Z
2

, F ) ≤ lim sup
n→∞

Hµ(∨⌊√n⌋−1
i=0 F−i(S ′

n)|Sn−r)

n⌊√n⌋ . (7)

Observe that as F is a cellular automaton of radius r, what happens from
time 0 to time ⌊√n⌋− 1 in the square band E′

n is completely determined by the
coordinates in the square band Dn = E′

n+r⌊√n⌋ \ E′
n−r⌊√n⌋ at time 0; in other

words
⌊√n⌋−1
∨

i=0

F−i(S ′
n) 2

∨

v∈Dn

σv(S0).

Recall that S0 is the partition according to the value of the (0, 0) coordinate.
The last inequation implies that

Hµ

(

∨⌊√n⌋−1
i=0 F−i(S ′

n)|Sn−r

)

≤ Hµ (∨v∈Dn
σvS0)|Sn−r) .

Put Gn = En+r⌊√n⌋ \En−r, then Dn = Gn ∪ (En−r \En−r⌊√n⌋); injecting this
into the latter entropy inequality one gets

Hµ

(

∨⌊√n⌋−1
i=0 F−i(S ′

n)|Sn−r

)

≤ Hµ (∨v∈Gn
σvS0|Sn−r) + 0,

hence obviously

Hµ

(

∨⌊√n⌋−1
i=0 F−i(S ′

n)|Sn−r

)

≤ Hµ (∨v∈Gn
σvS0) . (8)

In order to obtain a convenient upper bound for the right-hand term in the
last inequality, note that as a square band the set Gn is the union of 4 rectangles
of length 2(n+ r⌊√n⌋) + 1 and of width r(⌊√n⌋+ 1).

Let χ(n) ∈ {0, 1} and k(n) ∈ N be such that r(⌊√n⌋+1)+χ(n) is odd (when
r is even χ(n) = 1, but when r is odd χ(n) varies with n) and k(n) = 1

2 (r(⌊
√
n⌋+

1)+χ(n)−1). Each of the four rectangles above is covered (not disjointly!) by at

most ⌊ 2n+1+r⌊√n⌋
r(⌊√n⌋+1)+χ(n)

⌋+1 squares of size r(⌊√n⌋+1)+χ(n), each one of them a

translate of the square Ek(n). A consequence is that the partition
∨

v∈Gn
σvS0

is coarser than the supremum of the partitions generated by all coordinates
belonging to at least one of those squares of size r(⌊√n⌋+ 1) + χ(n).

Since µ is preserved under the group of shifts, for every v ∈ Z
2 one has

Hµ(σ
v(Sk(n)) = Hµ(Sk(n)). The inequality

Hµ

(

∨

v∈Gn

σvS0

)

≤ 4

(

⌊ 2n+ 1 + r⌊√n⌋
r(⌊√n⌋+ 1) + χ(n)

⌋+ 1

)

×Hµ(Sk(n))
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immediately follows, hence by a straightforward computation

1

n⌊√n⌋Hµ

(

∨

v∈Gn

σvS0

)

≤
(

8

r(⌊√n⌋)2 +
1

n
O(n)

)

×Hµ(Sk(n))

which, passing to the lim sup, implies that

lim sup
n→∞

1

n⌊√n⌋Hµ

(

∨

v∈Gn

σvS0

)

≤ lim sup
n→∞

(

8

rn

)

×Hµ(Sk(n)). (9)

By (5), since k(n) → ∞ as n → ∞,

hµ(A
Z
2

, σ) = lim
n→∞

Hµ(Sk(n))

(2k(n) + 1)2
;

replacing k(n) by its value and carrying the latter inequality into (9) one gets

lim sup
n→∞

1

n⌊√n⌋Hµ

(

∨

v∈Gn

σvS0

)

≤ lim sup
n→∞

8

rn
(r(⌊√n⌋+1)+χ(n))2

Hµ(Sk(n))

(2k(n) + 1)2

= 8r × hµ(A
Z
2

, σ).

The desired inequality follows by (7) and (8):

ERµ(A
Z
2

, F ) ≤ 8r × hµ(A
Z
2

, σ).

Remark 4. Using the more general definition for a d-dimensional CA given in
Remark 2 one can easily extend the last proof (using more complex notations)
and show that

ERµ(A
Z
d

, F ) ≤ (∂Sr)× hµ(A
Z
d

, σ)

where ∂Sr is the surface of the hypercube of side 2r + 1.

5 Permutative CA

Computing the entropy hµ(F ) of a cellular automaton is a difficult work in
general. For some examples it is possible to show that hµ(F ) = 0 (for instance
see [10] or [2]). Another exception is the permutative and additive case where
(see [3]) exact computation is much easier (tractable). In the multidimensional
case, the entropy of permutative CA is not finite [3]. In this section we show
how to compute the exact value of their entropy rate in the two-dimensional
case.

Recall that patterns and the concatenation P •P ′ of disjoint patterns P and
P ′ are defined in Subsection 2.1.

Definition 5. Let F be a two-dimensional cellular automaton of radius r, let
f : A(2r+1)2 → A be the block map defining F . Choose a position (i, j) ∈ Er.
The cellular automaton F is called permutative at (i, j) if for any a ∈ A, any
given pattern P on Er \ {(i, j)} there exists b ∈ A such that f(P • ({(i, j)} →
b)) = a.
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In other words, F is permutative at (i, j) if, given a pattern P on Er \{(i, j)}
and some letter a, one can choose a letter b such that a is the output of f for
P completed by b at (i, j).

Let µλ be the uniform measure on AZ
2

. By definition for all finite set E ∈ Z
2

and element a ∈ S0 one has µλ(
⋂

v∈E σ−va) = A−(#E). Since #S0 = #A and
each element of (

∨

v∈E σ−vS0) have the same measure we have (see [12])

Hµλ
(
∨

v∈E

σ−vS0) = #E · log(#A). (10)

Denote by Pt = {p1, p2, p3, p4} the set of points situated at the centers of
the four sides of the square Er (p1 = (0, r), p2 = (0,−r), p3 = (−r, 0) and
p4 = (r, 0) ).

Proposition 9. If a cellular automata F of radius r is permutative at all the
points in Pt the entropy of F with respect to the uniform measure µλ is

ERµλ
(AZ

2

, F ) = 8× r × log(#A).

Proof. We note that µλ is a F -invariant measure since it was shown by Winston
in [13] that a cellular automaton permutative at only one point p ∈ Er is
invariant by the uniform measure. Since µλ is invariant with respect to the
group of shift by Proposition 2 we have ERµλ

(AZ
2

, F ) = ERµλ
(S0, F ). Hence

using Proposition 1 we can finish the proof showing that for all p ∈ N and n ∈ N

one has
ERµλ

(AZ
2

, F ) ≥ 8r × log(#A).

For all 1 ≤ s ≤ 4 and p ∈ N let Rp
s (1 ≤ s ≤ 4) be the four sides of the square

E′
p = ∪4

s=1R
p
s . More formally Rp

1 = {(i, j) ∈ Z
2|p− r ≤ i ≤ p and −p ≤ j ≤ p},

Rp
2 = {(i, j) ∈ Z

2| − p ≤ i ≤ p − 1 and p − r ≤ j ≤ p}, Rp
3 = {(i, j) ∈

Z
2| − p+ r ≤ i ≤ −p and − p ≤ j ≤ p− 1} and Rp

4 = {(i, j) ∈ Z
2| − p+1 ≤ i ≤

p− 1 and − p+ r ≤ j ≤ p}. For all 1 ≤ s ≤ 4 define Rp
s =

∨

v∈R
p
s
σ−iS0. Using

the commutativity of F and σ we can write that for all positive integer n one
has

n−1
∨

i=0

F−i(S ′
p) =

n−1
∨

i=0

F−i

(

4
∨

s=1

Rp
s

)

=

4
∨

s=1

(

∨n−1
i=0 F

−i(Rp
s)
)

.

Since F is permutative at (r, 0) one has

n−1
∨

i=0

F−i(Rp
1) 3

(n−1)r
∨

i=0

σ(−i,0)(Rp
1).

More generaly since F is permutative at (r, 0), (0, r), (−r, 0) and (0,−r) one
has

n−1
∨

i=0

F−i(S ′
p) 3

(n−1)r
∨

i=0

σ(−i,0)(Rp
1)

(n−1)r
∨

i=0

σ(0,−i)(Rp
2)

(n−1)r
∨

i=0

σ(i,0)(Rp
3)

(n−1)r
∨

i=0

σ(0,i)(Rp
4)

=

4
∨

s=1





∨

Rs(n,p)

σvS0





18



where R1(n, p) = Z
2 ∩ {−p + 1 ≤ j ≤ p and p − r ≤ i ≤ p + (n − 1)r},

R2(n, p) = Z
2 ∩ {−p+ 1 ≤ i ≤ p− 1 and p− r ≤ j ≤ p+ (n− 1)r}, R3(n, p) =

Z
2∩{−p ≤ j ≤ p and −p−(n−1)r ≤ i ≤ −p+r} and R4(n, p) = Z

2∩{−p+1 ≤
i ≤ p and − p− (n− 1)r ≤ j ≤ −p+ r}.

From equality 10 we get

Hµλ
(∨n−1

i=0 F
−iS ′

p) ≥ Hµλ





4
∨

s=1





∨

Rs(n,p)

σvS0







 = 8rnp log(#A) (11)

which finish the proof.

Using the same techniques of proof it is possible to compute the entropy rate
of CA permutative at (i, r), (j,−r), (−r, k), (r, l) with (−r < i, j, k, l < r).

Remark 5. Note that if F is permutative at all points in Pt equation 11 implies
that

(

1
n
hµ(Sn, F )

)

n∈N
is a converging sequence. Recall that Proposition 4 brings

some basic informations about this sequence and the following result show that
the limit also exists for CA permutative at only two points in Pt ⊂ Er.

Proposition 10. If F is a CA of radius r permutative at (0, r) and (−r, 0) or at
(r, 0) and (0,−r) then

(

1
n
hµλ

(Sn, F )
)

n∈N
is a converging sub-additive sequence.

Proof. Since F is permutative at (0, r) and (−r, 0) or at (r, 0) and (0,−r) we
get for all m ≥ ⌈p

r
⌉

Sn+p 2 ∨m−1
i=0 F−i

(

σ(p,p)Sn

)

∨ σ(−p,−p)Sp.

Since µλ is a shift invariant measure we get

Hµ(Sn+p) ≤ Hµ(∨m−1
i=0 F−iSn) +Hµ(Sp)

and for all k ∈ N we have

Hµ(∨k−1
i=0 Sn+p) ≤ Hµ(∨k+m−2

i=0 F−iSn) +Hµ(∨k−1
i=0 F

−iSp)

which, dividing by k and then letting k go to ∞, implies that hµ(Sn+p, F ) ≤
hµ(Sn, F ) + hµ(Sp, F ).

It follows that
(

1
n
hµ(Sn, F )

)

n∈N
is a non-increasing sub-additive converging

sequence

When a CA is not permutative at the four sides of the square Er the cal-
culous of the entropy rate is more complicated. Nevertheless for the subclass
of additive CA like for the one dimensional case for the entropy (see [3]) we

can compute explicitly the value of ERµλ
(AZ

2

, F ) and show that the entropy
is proportional to the number of ”additive sites”. Note that an additive CA
is cellular automaton defined thanks to an additive local rule. To simplify the
notations we will restrict our results to the space {0, 1}Z2

.
Call F(1,2) the CA defined thanks the local rule f(1,2)(Er) = x(r,0)+x(0,r)mod 2,

F(3,4) the CA defined by f(3,4)(Er) = x(−r,0) + x(0,−r)mod 2, F(1,3) the CA de-
fined by f(1,2)(Er) = x(r,0) +x(0,r)mod 2 and F(1) the CA defined by f(1)(Er) =
x(r,0)mod 2.
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Proposition 11. We have ERµλ

(

{0, 1}Z2

, F(1,2)

)

= ERµλ

(

{0, 1}Z2

, F(3,4)

)

= ERµλ

(

{0, 1}Z2

, F(1,3)

)

= 4r ln(2) and ERµλ

(

{0, 1}Z2

, F(1)

)

= 2r ln(2).

Proof. We first show that ERµλ

(

{0, 1}Z2

, F(1,2)

)

= 4r ln(2).We use the same

notation than in the proof of Proposition 9 where (Rp
s) (1 ≤ s ≤ 4) represent the

four sides of the empty square E′
p and Rp

s =
∨

v∈R
p
s
σv(S0). Since S ′

p = ∨4
s=1Rp

s .
it is easily seen that

n−1
∨

i=0

F−i
(1,2)(S ′

p) 3

n−1
∨

i=0

F−i
(1,2)(

4
∨

s=3

Rp
s) =

4
∨

s=3

(

n−1
∨

i=0

F−i
(1,2)(Rp

s)

)

3

(n−1)r
∨

i=0

σ(−i,0)(Rp
1)

(n−1)r
∨

i=0

σ(0,−i)(Rp
2) =

∨

v∈R1(n,p)∪R2(n,p)

σv(S0).

Using Equality 10 we obtain Hµ(∨n−1
i=0 F

−i
(1,2)Sp) ≥ 4rnp log(#2) which implies

that ERµλ

(

{0, 1}Z2

, F(1,2)

)

≥ 4r ln(2). To obtain the reverse inequality note

that since F is permutative at (r, 0) and (0, r) we get for all k ∈ N

2k+1
∨

i=0

F−i
(1,2)(Rk

3

∨

Rk
4) 3 Sk.

From Lemma 1 and basic properties of the entropy (see [12]) we can assert that
∀n ∈ N

hµ

(

Sn, F(1,2)

)

≤ hµ

(

2n+1
∨

i=0

F−i
(1,2)(Rn

3

∨

Rn
4 ), F(1,2)

)

= hµ

(

Rn
3

∨

Rn
4 , F(1,2)

)

.

Following the same argument than in the proof of Proposition 1 we get

ERµλ

(

{0, 1}Z2

, F(1,2)

)

≤ lim sup
n→∞

1

n
hµ(Rn

3

∨

Rn
4 , F(1,2)) = lim sup

n→∞

1

n
hµ(

∨

v∈Rn
3
∪Rn

4

(σv(S0, F(1,2)))

≤ lim sup
n→∞

1

n

∑

v∈Rn
3
∪Rn

4

hµ(σ
v(S0), F(1,2))

≤ lim sup
n→∞

1

n

∑

v∈Rn
3
∪Rn

4

Hµ(σ
v(S0)) ≤ 4r ln(2)

which finally bring that ERµλ

(

{0, 1}Z2

, F(1,2)

)

= 4r ln(2). Using the same

arguments for F(3,4) and F(1,3) we obtain

ERµλ

(

{0, 1}Z2

, F(3,4)

)

= ERµλ

(

{0, 1}Z2

, F(1,3)

)

= 4r ln(2).

Using only the side Rp
1 of the empty squares E′

p it is easily seen that

ERµλ

(

{0, 1}Z2

, F(1)

)

= 2r ln(2).
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6 Topological Entropy rate

Here we introduce entropy rate in the topological setting. Recall that rele-
vant properties of the entropy function and of topological entropy are given in
Subsection 2.2.

Denote by R(AZ
2

) the set of all finite open covers of AZ
2

. In the same way

as for partitions in Section 3, for C ∈ R(AZ
2

) put C′
n =

∨

v∈E′

n
σv(C) (for n ≥ r)

and Cn =
∨

v∈En
σv(C). Recall that the partitions Sn and S ′

n introduced in the

same Section are also open covers of the set AZ
2

.

Definition 6. Let F be a cellular automaton on AZ
2

with radius r. The entropy
rate of C ∈ R(AZ

2

) is defined as

ER(C, F ) = lim sup
n→∞

1

n
h(C′

n, F );

The entropy rate of the topological dynamical system (AZ
2

, F ) is the non-negative
real number

ER(AZ
2

, F ) = sup
C∈R(AZ2)

{ER(C, F )}.

6.1 First results about topological entropy rate

Lemma 2. Let U , V be two open covers of AZ
2

with U 2 V. Then ER(U , F ) ≤
ER(V , F ).

Proof. For v ∈ Z
2, owing to the fact that σv is a homeomorphism σv(U) and

σv(V) are also open covers of AZ
2

and σv(U) 2 σv(V). For n ∈ N it follows
that U ′

n 2 V ′
n and this implies that h(U ′

n, F ) ≤ h(V ′
n, F ), hence ER(U , F ) ≤

ER(V , F ).

The next result is a topological analogue of Lemma 1 together with Propo-
sition 1. The proofs are similar.

Proposition 12. For any cellular automaton F of radius r acting on AZ
2

,
any integer n ≥ r one has h(Sn, F ) = h(S ′

n, F ) and for any n ∈ N one
has ER(Sn, F ) = ER(S0, F ). Moreover for all k ∈ N we have ER(Sk, F ) =
ER(S0, F ) ≤ 8r log(#A).

Proof. Since the topological entropy function H has the same sub-additivity
property as Hµ, and since for every finite open cover C one has h(C, F ) ≤ H(C)
(see section 2), we can use the same arguments as in the proofs of Lemma 1 and
Proposition 3.5 to obtain this result.

The next result is the topological analogue of Proposition 2.

Proposition 13. For any cellular automaton F on AZ
2

one has ER(AZ
2

, F ) =
ER(S0, F ).

Proof. The common diameter of the elements of Sk goes to 0 as k → ∞. By
the Lebesgue Covering Lemma, for any cover C ∈ R(AZ

2

) there exists a positive
integer k such that C 2 Sk. By Lemma 2 it follows that ER(C, F ) ≤ ER(Sk, F ).
By Proposition 12 ER(Sk, F ) = ER(S0, F ), which means that any open cover C
has entropy rate less than or equal to ER(S0, F ). Since S0 ∈ R(AZ

2

) the result
follows.
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The next result shows that since it has the same properties it is possible to
choose another definition for the entropy rate of an open cover C: ER(C, F ) =
lim supn→∞

1
n
h(Cn, F ). Note that since for any n ∈ N Cn 3 C′

n

ER(C, F ) = lim sup
n→∞

1

n
h(Cn, F ) ≥ lim sup

n→∞

1

n
h(C′

n, F ) = ER(C, F ).

Note that we have chosen ER(C, F ) for its similarity with the measurable case.

Proposition 14. For any cellular automaton F on AZ
2

one has

sup
C∈R(AZ2)

{ER(C, F )} = sup
C∈R(AZ2)

{ER(C, F )} = ER(S0, F ) = ER(AZ
2

, F ).

Proof. Following the arguments of the proof of Lemma 2 we can assert that
for any open covers V 3 U one has h(Un, F ) ≤ h(Vn, F ). Since for any cover

C ∈ R(AZ
2

) there exists a positive integer k such that C 2 Sk it follows that
lim supn→∞

1
n
h(Cn, F ) ≤ lim supn→∞

1
n
h(Sn+k, F ) = lim supn→∞

1
n
h(S ′

n+k, F )

= ER(S0, F ) = ER(AZ
2

, F ) from Propositions 12 and 13.

Question 2. Is it possible to obtain similar results of Proposition 14 for some
class of non trivial measure in the measurable case?

Recall that a sliding block is a continuous map from AZ
2 → BZ

2

that com-
mute with all shifts.

Proposition 15. Let (AZ
2

, F ) and (BZ
2

, G) be two cellular automata. If there

exists a sliding block code ϕ : AZ
2 → BZ

2

such that ϕ ◦ F = G ◦ ϕ then

ER(AZ
2

, F ) ≥ ER(BZ
2

, G).

More particularly topological entropy rate is an invariant for the class of bijective
sliding block codes ϕ : AZ

2 → BZ
2

.

Proof. Since ϕ ◦ F = G ◦ ϕ for all n ∈ N and open cover C we have

h(ϕ−1(Cn(BZ
2

)), F ) = h(Cn(BZ
2

), G).

Moreover since ϕ commute with the group of shift one has
[

ϕ−1(S0)
]

n
=

ϕ−1[(S0)n]. Using Proposition 12 we get

ER(AZ
2

, F ) ≥ ER
(

ϕ−1
(

S0(B
Z
2

)
)

, F
)

= lim sup
n→∞

h
([

ϕ−1(S0(B
Z
2

)
]

n
, F
)

n

= lim sup
n→∞

h
(

ϕ−1
[

(S0(B
Z
2

)n

]

, F
)

n
= lim sup

n→∞

h(S0(B
Z
2

)n, G)

n
= ER(S0(B

Z
2

), G).

Using Proposition 13 which states that ER(BZ
2

, G) = ER(S0(B
Z
2

), G) we can
conclude.
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The first part of the following results shows that entropy rate exhibit similar
properties than entropy and the second gives more meaning to the definition of
the entropy rate and to the property ER(AZ

2

, F ) = 0.

Proposition 16.

(i) For all cellular automaton F on AZ
2

and positive integer k we have

ER(AZ
2

, F k) = k ·ER(AZ
2

, F ).

(ii) For all two-dimensional cellular automata one has:

lim sup
n→∞

h(Sn, F )

n
≤ 8× lim inf

n→∞
h(Sn, F )

n
.

Proof. (i) Similar to the proof of Proposition 5.

Proof. (ii) Since by definition F commute with the group of shift h(σv(C), F ) =
h(C, F ) for any open cover C. Using this equality we can follows the same proof
than for the measurable case for shift invariant measure (see Proposition 4).

6.2 Relation between topological and measurable entropy

rate

Proposition 17. Let F be a cellular automaton from AZ
2 → AZ

2

. Then

ER(AZ
2

, F ) ≥ sup
µ∈M(F,σ)

{ERµ(A
Z
2

, F )} and ER(AZ
2

, F ) ≥ sup
µ∈M(F )

{ERµ(S0, F )}

where M(F ) is the set of F -invariant measures and M(F, σ) the set of all bi-
invariant measures.

Proof. Since each set Sn (n ∈ N) is a partition and also an open cover, the
lowest cardinality of any finite subcover of Sn is equal to the cardinality of the
finite partition Sn (N(Sn) = #(Sn)).

Since for all finite partition α and measure µ one has Hµ(α) ≤ log(#α) (see
[12]) we can assert that for all integer p ≥ 0 for all F -invariant measure one has

Hµ(∨p−1
i=0 F

−iSn) ≤ log
(

N(∨p−1
i=0 F

−iSn)
)

which implies that for all n ∈ N we have hµ(Sn, F ) ≤ h(Sn, F ) and allow us to
state the following inequality

ERµ(S0, F ) ≤ lim sup
h(Sn, F )

n
= ER(S0, F )

that prove the second statement of this Proposition. From Theorem 2 and
Proposition 13 one hasERµ(A

Z
2

, F ) = ERµ(S0, F ) andER(S0, F ) = ER(AZ
2

, F )
which allows to conclude.

It seems not clear if in general there exists some variational principle between
the topological entropy rate ER(AZ

2

, F ) = ER(S0, F ) and ERµ(S0, F ) (not

ERµ(A
Z
2

, F )) because in order to show that ERµ(S0, F ) ≥ ER(S0, F ) we can
note use classical arguments of the standard variational principle’s proof. For
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instance using some arguments of standard proof of the variational principle
(see [12]) we can show that given any open cover β there exist a finite partition
ξ and measure µ such that hµ(ξ, F ) ≥ h(β, F ). This can not implies that
ER(S0, F ) ≥ ERµ(S0, F ).

We believe that the quantity ER(AZ
2

, F ) − supµ∈M(F ){ERµ(S0, F )} rep-
resents some rate of none scale invariance dynamic for the multi-dimensional
cellular automaton. Note that this value is equal to zero for permutative CA
(see Proposition 18).

Definition 7. If an F -invariant measure µ verifies ER(AZ
2

, F ) = ERµ(A
Z
2

, F )
we say that µ is a maximum entropy rate measure.

Proposition 18. The uniform measure on AZ
2

is a measure of maximum rate
entropy for all bi-dimensional cellular automata F permutative at the points
(0, r), (0,−r). (−r, 0) and (r, 0).

Proof. The proof is straightforward from Proposition 9, 12 and 13.

Note that the uniform measure is a measure of maximum entropy for one
dimensional permutative CA.

Question 3. In [6] Meyerovitch shows that there exist bi-dimensional CA with
finite and positive entropy. We wonder if there exists some bi-dimensional CA
such that h(F ) = ∞ and ER(F ) = 0.

6.3 Entropy rate and CA’extensions

In the following we give another rather basic argument that underline that the
notion of entropy rate could be better than entropy to quantify the complexity
of multidimensional CA. Recall that in dimension one the entropy rate is equal
to the entropy up to a multiplicative constant.

In Subsection 2.1 we remind the reader that for any cellular automaton F
there exists a unique associated block map that defines it completely. In the
following we show that when a CA acts on a two-dimensional space but its
block map can be reduced to a one-dimensional one, its entropy rate is equal
(up to some multiplicative constant) to the entropy of the corresponding one-
dimensional CA.

Definition 8. If F is a one-dimensional CA with corresponding block map
f : A2r+1 → A; the extension of F to dimension 2 is the two-dimensional CA
F defined by the local map f : A(2r+1)2 → A such that for any pattern P on Er

one has f(P ) = f(p), where p = P(0,−r)P(0,−r+1) . . . P(0,r).

In other words the local map f , instead of reading all the coordinates in the
square Er, only reads those of the form (0, i), −r ≤ i ≤ r, and its action is that
of f on those coordinates.

Proposition 19. If F is a one dimensional CA and F is its extension to
dimension 2 one has

ER(AZ
2

, F ) = 2 · h(AZ, F ).
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Proof. From Proposition 12 one has

ER(AZ
2

, F ) = ER(S0, F ) = lim sup
n→∞

h(, Cn, F )

n

with C0 = S0. For all n ∈ N define αn = ∨n
i=−nσ

(i,0)S0 and note that the open

cover (which is also a partition) Cn = Sn = ∨n
j=−nσ

(0,j)αn. Using the shift
commutativity of F we obtain for all k ∈ N

H(∨k−1
i=0 F

−iCn) = H(∨k−1
i=0 F

−i
(∨n

j=−nσ
(0,j)αn)) = H(∨n

j=−nσ
(0,j)(∨k−1

i=0 F
−i
αn)).

From the definition of F we can assert that for all i ∈ N one has F
(−i)

(αn) =
F (−i)αn 2 αn+ri where r is the radius of the CA F . Since for all j ∈ Z − {0}
one has σ(0,j)αn ⊥ αn it follows that ∀k ∈ N one has

H(∨k−1
i=0 F

−iCn) = H(∨n
j=−nσ

(0,j)(∨k−1
i=0 F

−iαn)) = (2n+ 1)H(∨k−1
i=0 F

−iαn)

which implies that h(Cn, F ) = (2n+ 1)h(αn, F ). Since (αn)n∈N is a generating
sequence limn→∞ h(αn, F ) = h(F ) which allows us to conclude.

Remark 6. When the dimension d > 1 we can use a more general definition
(likewise that given in Remark 2 for the measurable case ) to extend Proposition
19 and show that :

ER(AZ
d

, F ) = 2d−1 · h(AZ, F )

where F is the extension in dimension d of the one-dimensional CA F .

References

[1] F. Blanchard, P. Tisseur, Some properties of cellular automata with
equicontinuity points, Ann. Inst. Henri Poincar, Probabilits et Statistiques
36(5) (2000), 569-582.

[2] X. Bressaud, P. Tisseur, On a zero speed sensitive cellular automaton,
Nonlinearity 20 (2007), 1-19.

[3] M. D’amico, G. Manzini and L. Margara. On computing the entropy of
cellular automata. Theoret. Comput. Sci., 290(3) (2003), 1629-1646.

[4] G.A. Hedlund, Endomorphisms and automorphisms of the shift dynamical
system, Math. Syst. Theory 3 (1969) 320-375.

[5] E. L. Lakshtanov and E. S. Langvagen, Entropy of multidimensional cellu-
lar automata, Problems of Information Transmission 42(1) (2005), 38-45.

[6] T. Meyerovitch, Finite entropy for multidimensional cellular automata.
Ergodic Theory Dynam. Systems 28(4) (2008), 1243-1260.

[7] Mark A. Shereshevsky. Expansiveness, entropy and polynomial growth for
groups acting on subshifts by automorphisms. Indag. Math. (N.S.),4(2)
(1993), 203-210.

25



[8] P. Tisseur, Cellular automata and Lyapunov exponents, Nonlinearity 13

(2000) 1547-1560.

[9] P. Tisseur, Always Finite Entropy and Lyapunov exponents of two-
dimensional cellular automata, arXiv:math/0502440 (2005).

[10] P. Tisseur, Density of periodic points, invariant measures and almost
equicontinuous points of cellular automata, Advances in Applied Mathe-
matics 42 (2009), 504-518.

[11] Y. Katznelson and B. Weiss, Commuting measure-preserving transforma-
tions 12(2) (1972), 161-173.

[12] P. Walters, An introduction to ergodic theory. Springer, Berlin-
Heidelberg-New York, 1982.

[13] S. J. Willson, On the ergodic theory of cellular automata, Theory of Com-
puting Systems Volume 9(2) (1975), 132-141.

26


