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Abstract

We investigate the nonuniform motion of straight dislocations in infinite media
using the theory of incompatible elastodynamics. The equations of motion are de-
rived for nonuniformly moving screw dislocation, gliding edge and climbing edge
dislocations. The exact closed-form solutions of the elastic fields are calculated.
The fields of the elastic velocity and elastic distortion surrounding the arbitrarily
moving dislocations are given explicitely in the form of integral representations free
of non-integrable singularities. The elastic fields describe the response in the form
of nonuniformly moving elastic waves caused by the dislocation motion.

Keywords: dislocation dynamics; nonuniform motion; elastodynamics.

1 Introduction

The investigation of the nonuniform motion of dislocations has attracted the interest of
researchers in different fields such as material science, continuum mechanics, seismology
and earthquake engineering (see, e.g., [1, 2]). Dislocation movements can be considered

∗
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as one of the dominant wavesources. It should be emphasized that the problem consid-
ered in this paper is important for the understanding of several physical phenomena such
as acoustic emission signals, dislocation avalanches and elastic waves in geophysics (see,
e.g., [3]). The motion of dislocations is usually investigated in the framework of incom-
patible elastodynamics where the dislocation density and dislocation current tensors are
given as source terms of the elastic fields (see, e.g., [4, 5, 6, 7, 8, 9]). It is known that in
continuum elastodynamics the behaviour of a dislocation is somehow particular, because
at any time the fields are determined not only by the instantaneous values of the velocity
(or higher derivatives of the position with respect to time), but also by the values in the
past [10, 11]. As Eshelby [10] succinctly put it: ‘The dislocation is haunted by its past’.
This fact is based on the physical property that Huygens’ principle is not valid in two
dimensions (see, e.g., [12]).

Using an electromagnetic analogy, Eshelby [11] derived simple solutions of inhomo-
geneous wave equations for the velocity and elastic distortion fields in terms of ‘stress
functions’ of a nonuniformly moving screw dislocation. The solution is given in the form
of time integrals. Eshelby [11] pointed out that the displacement field is of less physical
importance than the elastic fields of a moving screw dislocation. The direct solution of
the elastic fields given in [11] involves much simpler integrals than the integrals occurring
for the displacement of a nonuniformly moving screw dislocation given by Eshelby [10]
and Nabarro [13]. Later, Kiusalaas and Mura [14] found solutions in terms of ‘stress (or
potential) functions’ for the velocity and elastic distortion fields for a gliding edge disloca-
tion moving nonuniformly (see also [1, 9]). Weertman and Weertman [1] pointed out that
the problem of the climbing edge dislocation which moves at an arbitrary velocity has not
been considered in any published paper. Furthermore, to the knowledge of the author of
this paper a similar solution for a nonuniformly climbing edge dislocation has been still
lacking in the literature. Thus, the case of a climbing edge dislocation is an outstand-
ing problem. In addition, a systematic presentation of the elastic fields produced by the
nonuniform motion of screw and edge dislocations is missing is the literature so far. Even
in standard books of dislocation theory [6, 15, 16, 17, 18] this topic is not covered. This
is surprising because the nonuniform motion of dislocations is a fundamental problem in
dislocation theory like the Liénard-Wiechert potentials in electromagnetodynamics. The
reason lies in the complexity of the nonuniform motion of dislocations. In the present
paper, we give a clear derivation for the elastic fields of nonuniformly moving dislocations
using the ‘improved’ Mura equations. We investigate a screw dislocation, a gliding edge
dislocation and a climbing edge dislocation. For the first time, we give the elastic fields
of a nonuniformly climbing edge dislocation.

Markenscoff [19] (see also [21]) pointed out that some care is necessary in the cal-
culation of the elastic fields produced by nonuniformly moving dislocations in order to
avoid non-integrable singularities. Markenscoff [19] proved that the general expressions
for the velocity and elastic distortion fields of dislocations given by Mura [4, 5] are not
free of non-integrable singularities. The reason is that the integration and differentiation
cannot be changed in these cases. As a consequence the differentiation has to be outside
the integral in order to obtain correct results. In the application to screw and gliding
edge dislocations, Kiusalaas and Mura [14, 22] used the correct interpretation with a
differentiation outside the integrals.

2

Page 2 of 17

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

The paper is organized as follows: in Section 2, we present the framework of incom-
patible elastodynamics and we give the equations of motion, Mura’s integral expressions
for the elastic velocity and elastic distortion fields as well as the two-dimensional Green
tensors. The elastic fields of nonuniformly moving screw dislocation, gliding edge and
climbing edge dislocations are presented in Sections 3, 4 and 5, respectively. The static
limit of the elastic fields of the nonuniformly moving dislocations is given in Section 6.

2 Equations of motion of dislocations

In this section, we give the equations of motion for dislocations in the framework of
incompatible elastodynamics (see, e.g., [4, 5, 6, 23]). In elasticity without external forces,
the equilibrium condition reads1

ṗi = σij,j , (1)

where p and σ are the linear momentum vector and the force stress tensor, respectively.
In the incompatible linear elasticity, the momentum vector p and the stress tensor σ can
be expressed in terms of the incompatible elastic velocity vector v and the incompatible
elastic distortion tensor β by means of the following constitutive relations

pi = ρ vi , (2)

σij = Cijkl βkl , (3)

where ρ is the mass density and Cijkl is the tensor of elastic moduli. The tensor Cijkl

possesses the following symmetry properties

Cijkl = Cjikl = Cijlk = Cklij . (4)

If we substitute the constitutive relations (2) and (3) in Eq. (1), we obtain the equilibrium
condition expressed in terms of the elastic fields v and β

ρ v̇i = Cijklβkl,j . (5)

The presence of dislocations makes the elastic fields incompatible which means that they
are not anymore simple gradients or time derivatives of a displacement vector u. In the
incompatible elasticity, the elastic fields can be given in terms of the displacement field
u, the plastic distortion βP and the plastic velocity vP [24, 25]

βij = ui,j − βP
ij , (6)

vi = u̇i − vP

i . (7)

The plastic distortion βP is a well-known quantity in the dislocation theory. The plas-
tic velocity vP was introduced by Kossecka [24] and its existence has not been widely
recognized. However, for elasto-plastic deformations caused by dislocations a part of the

1We use the usual notation βij,k := ∂kβij and β̇ij := ∂tβij .

3

Page 3 of 17

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

motion may be of plastic nature [26]. In general, the plastic fields may be the discon-
tinuous parts of the total fields. Nowadays, the plastic fields can be better understood
as gauge fields in the framework of dislocation gauge theory [27, 28]. In contrast to the
displacement field and the plastic fields, the elastic fields are physical state quantities of
dislocations. For that reason, we deal only with the calculation of the elastic fields in this
paper.

The dislocation density and dislocation current tensors are defined by

Tijk = βik,j − βij,k , (8)

Iij = β̇ij − vi,j , (9)

or they read in terms of the plastic fields

Tijk = −βP

ik,j + βP

ij,k , (10)

Iij = −β̇P

ij + vP

i,j (11)

and Tijk = −Tikj . Moreover, they fulfill the Bianchi identities

ǫjkl Tijk,l = 0 , (12)

Ṫijk + Iij,k − Iik,j = 0 , (13)

which are ‘conservation’ laws. Here ǫjkl denotes the Levi-Civita tensor. Eq. (12) states
that dislocations cannot end inside the medium and Eq. (13) means that the time evolution
of the dislocation density tensor T is determined by the ‘curl’ of the dislocation current
tensor I. For straight dislocations we have also the relation

Iij = Vk Tijk , (14)

where Vk denotes the velocity of the moving dislocation.
By differentiating Eq. (5) with respect to xm and substituting Eqs. (8) and (9) into it,

we find the dynamic elasticity-theory equation for the determination of the incompatible
elastic distortion tensor β

ρ β̈im − Cijkl βkm,jl = Cijkl Tkml,j + ρİim . (15)

This is the equation of motion for β where the dislocation density and the dislocation
current tensors are the sources. Eq. (15) is an anisotropic tensorial Navier equation for
β.

Similarly, performing the differentiation of Eq. (5) with respect to time and using
Eq. (9), we obtain the dynamic elasticity-theory equation for the determination of the
incompatible elastic velocity vector v

ρ v̈i − Cijkl vk,jl = Cijkl Ikl,j . (16)

Eq. (16) is the equation of motion for v with the dislocation current tensor as source
term. Eq. (16) is an anisotropic vectorial Navier equation for v.
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The solutions of Eqs. (15) and (16) can be represented as convolution integrals [4, 5,
24, 29]. In an unbounded medium and under the assumption of zero initial conditions,
which means that β(r, t0) and v(r, t0) and their first time derivative are zero for t0 → −∞,
the solutions of β and v are given in terms of the Green tensor. Therefore, the convolution
integrals for the elastic fields, which are free of non-integrable singularities, are given by
(see also [19])

βim(r, t) = ∂k

∫ t

−∞

∫

∞

−∞

Cjkln Gij(r − r′, t − t′) Tlmn(r
′, t′) dr′ dt′

+ ∂t

∫ t

−∞

∫

∞

−∞

ρ Gij(r − r′, t − t′) Ijm(r′, t′) dr′ dt′ (17)

and

vi(r, t) = ∂k

∫ t

−∞

∫

∞

−∞

Cjklm Gij(r − r′, t − t′) Ilm(r′, t′) dr′ dt′ . (18)

Here, Gij is the dynamic Green tensor of the anisotropic Navier equation defined by
[

δik ρ ∂tt − Cijkl∂j∂l

]

Gkm = δim δ(t)δ(r) , (19)

where δ(.) denotes the Dirac delta function and Gij = Gji. The expressions for the
elastic fields given in Eqs. (17) and (18) differ from the expressions given by Mura [4,
5, 6], Kossecka [24] and Teodosiu [29] in that the differentiation is outside the integral,
as required to obtain correct results for dislocations. In the expressions given by Mura
[4, 5, 6] the differentiation of the Green tensor leads to non-integrable singularities as
pointed out by Markenscoff [19]. We would like to mention that Mura [4, 5], Bross
[7], Teodosiu [29] and Markenscoff [19] assumed vP = 0, so that they made no distinction
between v and u̇.

For an isotropic material the tensor of elastic moduli reduces to

Cijkl = λ δijδkl + µ
(

δikδjl + δilδjk) , (20)

where λ and µ being the Lamé constants. Substituting Eq. (20) in Eq. (19), we obtain
the isotropic Navier equation for the dynamic Green tensor

[

δik ρ ∂tt − δik µ ∆ − (λ + µ) ∂i∂k

]

Gkm = δim δ(t)δ(r) , (21)

where ∆ denotes the Laplacian. For the calculation of the elastic fields of straight disloca-
tions, the problem is two-dimensional (plane strain and anti-plane strain), consequently
we need the two-dimensional Green tensors. If the material is infinitely extended, the
dynamic Green tensor of plane strain reads [30, 31]

Gik =
1

2πρ

{

xixk

r4

(

[

2t2 − r2/c2
L

]

√

t2 − r2/c2
L

H
(

t − r/cL

)

−

[

2t2 − r2/c2
T

]

√

t2 − r2/c2
T

H
(

t − r/cT

)

)

−
δik

r2

(

√

t2 − r2/c2
L
H

(

t − r/cL

)

−
t2

√

t2 − r2/c2
T

H
(

t − r/cT

)

)

}

(22)
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and the dynamic Green tensor of anti-plane strain is given by

Gzz =
1

2πρc2
T

H
(

t − r/cT

)

√

t2 − r2/c2
T

, (23)

where H(.) denotes the Heaviside step function and r =
√

x2 + y2. The constants cL

and cT denote the velocities of the longitudinal and transversal elastic waves (sometimes
called P and S-waves). The sound velocities can be given in terms of the Lamé constants
(cT < cL)

cL =

√

2µ + λ

ρ
, cT =

√

µ

ρ
. (24)

Let us now discuss some important properties of the Green tensors of plane strain and
anti-plane strain. The Green tensor of anti-plane strain Gzz diverges to +∞ at r → cTt−

and converges to 1/(2πρc2
T|t|) at r → 0 (see Fig. 1a). On the other hand, the Green tensor

of plane strain (22) consists of two characteristic pieces. Note that the expression

1

r2

(

[

2t2 − r2/c2
L

]

√

t2 − r2/c2
L

H
(

t − r/cL

)

−

[

2t2 − r2/c2
T

]

√

t2 − r2/c2
T

H
(

t − r/cT

)

)

diverges to +∞ at r → cLt− and it converges to 0 at r → 0. At r = cTt it possesses
a jump: it diverges to −∞ at r → cTt− and converges to a finite-limit value of (2c2

L −
c2
T)/(c2

Lc2
T

√

(c2
L
− c2

T
)/c2

L
|t|) as r → cTt+ (see Fig. 1b). Thus, discontinuities exist for

both wavefronts. The piece

1

r2

(

t2
√

t2 − r2/c2
T

H
(

t − r/cT

)

−
√

t2 − r2/c2
L
H

(

t − r/cL

)

)

converges to 0 at r → cLt− and converges to a finite-limit value of (c2
L + c2

T)/(2c2
Lc2

T|t|) at
r → 0. At r = cTt it possesses a jump: it diverges to +∞ at r → cTt− and converges to
a finite-limit value of −1/(c2

T|t|)
√

(c2
L
− c2

T
)/c2

L
as r → cTt+ (see Fig. 1c). Therefore, a

discontinuity exists for the wavefront at r = cTt. The combination of the two pieces gives
a finite value at r = cTt and at r = cLt it diverges to +∞ (see Fig. 1d). A discontinuity
exists only for the wavefront at r = cLt. Thus, in general, at the wavefronts r = cTt and
r = cLt the Green tensors possess singularities and discontinuities and for small r they
possess a long tail of the typical two-dimensional pulse. Physically, there is afterglow
implying that Huygens’ principle is not valid in two dimensions. Although two waves
with the velocities cL and cT exist, there is never complete separation between the two.
These properties of the Green tensors will influence also the properties of the ‘potential
functions’ (retarded potentials) and the elastic fields of dislocations in that way that
they are influenced or haunted by their past. Thus, the expression (22) shows that the
disturbances are propagated with the velocities cT and cL. At the wavefronts r = cTt and
r = cLt the Green tensor (22) shows algebraic singularities. In Fig. 1 the Green tensors
Gzz, Gxy for ϕ = π/4, Gxx for ϕ = π/2 and Gxx for ϕ = 0 are plotted over r for fixed
time t.

It should be noted that for the calculation of the elastic fields produced by dislocation
loops and curved dislocations the three-dimensional Green tensor Gij is needed (see also
[20, 21]).
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Figure 1: Two-dimensional Green tensors as functions of r for fixed time t: (a) Gzz, (b)
Gxy for ϕ = π/4 , (c) Gxx for ϕ = π/2 and (d) Gxx for ϕ = 0 . In the plots we used
cT = 1 and cL = 2 for numeric convenience.

3 Screw dislocation

Let us consider a nonuniformly moving screw dislocation at the position (ξ(t), η(t)) at
time t. The dislocation line and the Burgers vector bz are parallel to the z-axis. The
components of the dislocation velocity are: Vx = ξ̇(t), Vy = η̇(t). The non-vanishing
components of the dislocation density and dislocation current tensors are

Tzxy = bz δ(x − ξ(t))δ(y − η(t)) , (25)

Izx = Vy Tzxy , (26)

Izy = −Vx Tzxy . (27)
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For a screw dislocation, Eqs. (17) and (18) reduce to the non-vanishing components of
the elastic fields

vz(r, t) = ∂x

∫ t

−∞

∫

∞

−∞

Czxzx Gzz(r − r′, t − t′) Izx(r
′, t′) dr′ dt′

+ ∂y

∫ t

−∞

∫

∞

−∞

Czyzy Gzz(r − r′, t − t′) Izy(r
′, t′) dr′ dt′ , (28)

βzx(r, t) = ∂y

∫ t

−∞

∫

∞

−∞

Czyzy Gzz(r − r′, t − t′) Tzxy(r
′, t′) dr′ dt′

+ ∂t

∫ t

−∞

∫

∞

−∞

ρ Gzz(r − r′, t − t′) Izx(r
′, t′) dr′ dt′ , (29)

βzy(r, t) = ∂x

∫ t

−∞

∫

∞

−∞

Czxzx Gzz(r − r′, t − t′) Tzyx(r
′, t′) dr′ dt′

+ ∂t

∫ t

−∞

∫

∞

−∞

ρ Gzz(r − r′, t − t′) Izy(r
′, t′) dr′ dt′ . (30)

Substituting Eqs. (20), (23) and (25)–(27) into Eqs. (28)–(30) and carrying out the inte-
gration in r′, we find the following time integral representations

vz = Ay,x − Ax,y , (31)

βzx = φ,y +
1

c2
T

Ȧy , (32)

βzy = −
(

φ,x +
1

c2
T

Ȧx

)

, (33)

where the ‘potential’ functions are defined by

Ai = µbz

∫ t

−∞

Vi(t
′) Gzz(r − r′′(t′), t − t′) dt′ , (34)

φ = µbz

∫ t

−∞

Gzz(r − r′′(t′), t − t′) dt′ (35)

with r′′ = (ξ, η). Substituting the Green function (23) in Eqs. (34) and (35), the ‘potential’
functions read

Ax =
bz

2π

∫ tT

−∞

Vx(t
′)

ST

dt′ , (36)

Ay =
bz

2π

∫ tT

−∞

Vy(t
′)

ST

dt′ , (37)

φ =
bz

2π

∫ tT

−∞

1

ST

dt′ (38)

with the notations

x̄ = x − ξ(t′) , ȳ = y − η(t′) t̄ = t − t′ , R̄2 = x̄2 + ȳ2 ,

S2

T = t̄2 −
R̄2

c2
T

, tT = t −
R̄

cT

. (39)
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The ‘potential’ functions (36)–(38) play the physical role of the retarded potentials of a
screw dislocation moving nonuniformly. Note that tT is called retarded time, which is
the root of the equation S2

T = 0 and is less than t, and (x̄, ȳ) is the distance between
the field point (x, y) and the position (ξ, η) of the dislocation. Here, ξ(t′) and η(t′) are
the positions in the x and y directions of the dislocation at time t′, Vx(t

′) and Vy(t
′) are

the velocity components of the dislocation at the same time t′. The retarded time tT is
the time before t, when the dislocation caused an excitation of the elastic field, which
moves from (ξ, η) to (x, y) in the time R̄/cT. Thus, t − tT = R̄/cT is the time if the
elastic dislocation fields move from (ξ, η) to (x, y) with velocity cT. Eqs. (31)–(38) agree
with the expressions given by Eshelby [11] (see also [9, 17]). Eshelby [11] derived the
elastic fields using an electromagnetic analogy. Here we derived the elastic fields in a
more straightforward manner as solutions of the equations of motion (15) and (16). The
solutions (31)–(38) on the position (x, y) at time t depend on all contributions emitted at
all times t′ from −∞ up to tT. That is why Eshelby [10] said: ‘The dislocation is haunted
by its past’. The physical interpretation is that disturbances from remote positions on the
dislocation line continue to arrive at other positions on the line as the dislocation moves
forward. Thus, the motion of a screw dislocation produces only transversal elastic waves.

4 Gliding edge dislocation

In this section, we investigate the problem of an edge dislocation at the position (ξ(t), 0)
at time t gliding in x-direction with arbitrary dislocation velocity Vx(t) = ξ̇(t) and Burg-
ers vector bx. The non-vanishing components of the dislocation density and dislocation
current tensors read

Txxy = bx δ(x − ξ(t))δ(y) , (40)

Ixy = −Vx Txxy . (41)

For a gliding edge dislocation, Eqs. (17) and (18) reduce to the non-vanishing components

vx(r, t) = ∂y

∫ t

−∞

∫

∞

−∞

Cxyxy Gxx(r − r′, t − t′) Ixy(r
′, t′) dr′ dt′

+ ∂x

∫ t

−∞

∫

∞

−∞

Cyxxy Gxy(r − r′, t − t′) Ixy(r
′, t′) dr′ dt′ , (42)

vy(r, t) = ∂x

∫ t

−∞

∫

∞

−∞

Cyxxy Gyy(r − r′, t − t′) Ixy(r
′, t′) dr′ dt′

+ ∂y

∫ t

−∞

∫

∞

−∞

Cxyxy Gyx(r − r′, t − t′) Ixy(r
′, t′) dr′ dt′ (43)
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and

βxx(r, t) = ∂y

∫ t

−∞

∫

∞

−∞

Cxyxy Gxx(r − r′, t − t′) Txxy(r
′, t′) dr′ dt′

+ ∂x

∫ t

−∞

∫

∞

−∞

Cyxxy Gxy(r − r′, t − t′) Txxy(r
′, t′) dr′ dt′ , (44)

βyx(r, t) = ∂y

∫ t

−∞

∫

∞

−∞

Cxyxy Gyx(r − r′, t − t′) Txxy(r
′, t′) dr′ dt′

+ ∂x

∫ t

−∞

∫

∞

−∞

Cyxxy Gyy(r − r′, t − t′) Txxy(r
′, t′) dr′ dt′ , (45)

βxy(r, t) = ∂x

∫ t

−∞

∫

∞

−∞

Cxxxx Gxx(r − r′, t − t′) Txyx(r
′, t′) dr′ dt′

+ ∂y

∫ t

−∞

∫

∞

−∞

Cyyxx Gxy(r − r′, t − t′) Txyx(r
′, t′) dr′ dt′

+ ∂t

∫ t

−∞

∫

∞

−∞

ρ Gxx(r − r′, t − t′) Ixy(r
′, t′) dr′ dt′ , (46)

βyy(r, t) = ∂x

∫ t

−∞

∫

∞

−∞

Cxxxx Gyx(r − r′, t − t′) Txyx(r
′, t′) dr′ dt′

+ ∂y

∫ t

−∞

∫

∞

−∞

Cyyxx Gyy(r − r′, t − t′) Txyx(r
′, t′) dr′ dt′

+ ∂t

∫ t

−∞

∫

∞

−∞

ρ Gyx(r − r′, t − t′) Ixy(r
′, t′) dr′ dt′ . (47)

Substituting Eqs. (20), (22), (40) and (41) in Eqs. (42)–(47) and carrying out the inte-
gration in r′, we find the following time integral representations for the elastic fields of a
gliding edge dislocation

vx = −
bxc

2
T

2π

(

Axy,x + Axx,y

)

, (48)

vy = −
bxc

2
T

2π

(

Ayy,x + Ayx,y

)

, (49)

and

βxx =
bxc

2
T

2π

(

φxy,x + φxx,y

)

, (50)

βyx =
bxc

2
T

2π

(

φyy,x + φyx,y

)

, (51)

βxy = −
bxc

2
L

2π

(

φxx,x + φxy,y

)

+
bxc

2
T

π
φxy,y −

bx

2π
Ȧxx , (52)

βyy = −
bxc

2
L

2π

(

φyx,x + φyy,y

)

+
bxc

2
T

π
φyy,y −

bx

2π
Ȧyx , (53)

10

Page 10 of 17

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

where the following ‘potential’ functions are defined by

Aij = 2πρ

∫ t

−∞

Vx(t
′) Gij(r − r′′(t′), t − t′) dt′ , (54)

φij = 2πρ

∫ t

−∞

Gij(r − r′′(t′), t − t′) dt′ (55)

with r′′ = (ξ, 0), Aij = Aji and φij = φji. Substituting the Green tensor (22), they finally
read

Axx =

∫ tL

−∞

Vx(t
′)

R̄4

(

x̄2t̄2

SL

− ȳ2SL

)

dt′ +

∫ tT

−∞

Vx(t
′)

R̄4

(

ȳ2t̄2

ST

− x̄2ST

)

dt′ , (56)

Ayy =

∫ tL

−∞

Vx(t
′)

R̄4

(

ȳ2t̄2

SL

− x̄2SL

)

dt′ +

∫ tT

−∞

Vx(t
′)

R̄4

(

x̄2t̄2

ST

− ȳ2ST

)

dt′ , (57)

Axy =

∫ tL

−∞

Vx(t
′)

R̄4
x̄ȳ

(

t̄2

SL

+ SL

)

dt′ −

∫ tT

−∞

Vx(t
′)

R̄4
x̄ȳ

(

t̄2

ST

+ ST

)

dt′ , (58)

with

x̄ = x − ξ(t′) , ȳ = y t̄ = t − t′ , R̄2 = x̄2 + ȳ2 ,

S2

T = t̄2 −
R̄2

c2
T

, tT = t −
R̄

cT

, S2

L = t̄2 −
R̄2

c2
L

, tL = t −
R̄

cL

. (59)

The explicit expressions for φij can be obtained from the corresponding expressions for Aij

if Vx(t
′) is replaced by 1. If we do this replacement, we observe the relations: vx(Vx(t

′) =
1) = −βxx and vy(Vx(t

′) = 1) = −βyx. The potential functions Aij and φij are the retarded
potentials for a gliding edge dislocation. The elastic fields of a gliding edge dislocation are
given as time integrals and they are more complicated than the expressions for a screw
dislocation. The elastic fields contain terms proportional to ST, SL, 1/ST and 1/SL. The
appearance of two velocities of elastic waves cT and cL makes the results more complicated
and is also the reason of two retarded times tT and tL which are the roots of S2

T = 0 and
S2

L = 0, respectively. Eqs. (48)–(58) agree with the expressions given by Kiusalaas and
Mura [14]. For the calculation of the elastic fields, Kiusalaas and Mura [14] used the three-
dimensional Green tensor in contrast to the two-dimensional Green tensor (22) that is
used in the present paper thereby making the calculation easier and more straightforward
as well as appropriate for the calculation of the elastic fields of a climbing edge dislocation.
The structure of the potential functions (56)–(58) is immediately a consequence of the
form of the two-dimensional Green tensor (22). It is clear that the gliding of the edge
dislocation causes transversal as well as longitudinal elastic waves with the velocities cT

and cL, respectively.

5 Climbing edge dislocation

In this section, for the first time we investigate the problem of a climbing edge dislocation
at the position (0, η(t)) at time t climbing in y-direction with arbitrary dislocation velocity
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Vy(t) = η̇(t) and Burgers vector bx. The non-vanishing components of the dislocation
density and dislocation current tensors are given by

Txxy = bx δ(x)δ(y − η(t)) , (60)

Ixx = Vy Txxy . (61)

Thus, for a climbing edge dislocation, Eqs. (17) and (18) reduce to the non-vanishing
components of the elastic fields

vx(r, t) = ∂x

∫ t

−∞

∫

∞

−∞

Cxxxx Gxx(r − r′, t − t′) Ixx(r
′, t′) dr′ dt′

+ ∂y

∫ t

−∞

∫

∞

−∞

Cyyxx Gxy(r − r′, t − t′) Ixx(r
′, t′) dr′ dt′ , (62)

vy(r, t) = ∂x

∫ t

−∞

∫

∞

−∞

Cxxxx Gyx(r − r′, t − t′) Ixx(r
′, t′) dr′ dt′

+ ∂y

∫ t

−∞

∫

∞

−∞

Cyyxx Gyy(r − r′, t − t′) Ixx(r
′, t′) dr′ dt′ (63)

and

βxx(r, t) = ∂y

∫ t

−∞

∫

∞

−∞

Cxyxy Gxx(r − r′, t − t′) Txxy(r
′, t′) dr′ dt′

+ ∂x

∫ t

−∞

∫

∞

−∞

Cyxxy Gxy(r − r′, t − t′) Txxy(r
′, t′) dr′ dt′

+ ∂t

∫ t

−∞

∫

∞

−∞

ρ Gxx(r − r′, t − t′) Ixx(r
′, t′) dr′ dt′ , (64)

βyx(r, t) = ∂y

∫ t

−∞

∫

∞

−∞

Cxyxy Gyx(r − r′, t − t′) Txxy(r
′, t′) dr′ dt′

+ ∂x

∫ t

−∞

∫

∞

−∞

Cyxxy Gyy(r − r′, t − t′) Txxy(r
′, t′) dr′ dt′

+ ∂t

∫ t

−∞

∫

∞

−∞

ρ Gyx(r − r′, t − t′) Ixx(r
′, t′) dr′ dt′ , (65)

βxy(r, t) = ∂x

∫ t

−∞

∫

∞

−∞

Cxxxx Gxx(r − r′, t − t′) Txyx(r
′, t′) dr′ dt′

+ ∂y

∫ t

−∞

∫

∞

−∞

Cyyxx Gxy(r − r′, t − t′) Txyx(r
′, t′) dr′ dt′ , (66)

βyy(r, t) = ∂x

∫ t

−∞

∫

∞

−∞

Cxxxx Gyx(r − r′, t − t′) Txyx(r
′, t′) dr′ dt′

+ ∂y

∫ t

−∞

∫

∞

−∞

Cyyxx Gyy(r − r′, t − t′) Txyx(r
′, t′) dr′ dt′ . (67)

If we substitute Eqs. (20), (22), (60) and (61) in Eqs. (62)–(67) and we carry out the
integration in r′, we obtain the following time integral representations for the elastic fields
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of a climbing edge dislocation

vx =
bxc

2
L

2π

(

Axx,x + Axy,y

)

−
bxc

2
T

π
Axy,y , (68)

vy =
bxc

2
L

2π

(

Ayx,x + Ayy,y

)

−
bxc

2
T

π
Ayy,y , (69)

and

βxx =
bxc

2
T

2π

(

φxy,x + φxx,y

)

+
bx

2π
Ȧxx , (70)

βyx =
bxc

2
T

2π

(

φyy,x + φyx,y

)

+
bx

2π
Ȧyx , (71)

βxy = −
bxc

2
L

2π

(

φxx,x + φxy,y

)

+
bxc

2
T

π
φxy,y , (72)

βyy = −
bxc

2
L

2π

(

φyx,x + φyy,y

)

+
bxc

2
T

π
φyy,y , (73)

where the ‘potential’ functions are defined by

Aij = 2πρ

∫ t

−∞

Vy(t
′) Gij(r − r′′(t′), t − t′) dt′ , (74)

φij = 2πρ

∫ t

−∞

Gij(r − r′′(t′), t − t′) dt′ , (75)

where r′′ = (0, η), Aij = Aji and φij = φji. After substituting the Green tensor (22), they
read

Axx =

∫ tL

−∞

Vy(t
′)

R̄4

(

x̄2t̄2

SL

− ȳ2SL

)

dt′ +

∫ tT

−∞

Vy(t
′)

R̄4

(

ȳ2t̄2

ST

− x̄2ST

)

dt′ , (76)

Ayy =

∫ tL

−∞

Vy(t
′)

R̄4

(

ȳ2t̄2

SL

− x̄2SL

)

dt′ +

∫ tT

−∞

Vy(t
′)

R̄4

(

x̄2t̄2

ST

− ȳ2ST

)

dt′ , (77)

Axy =

∫ tL

−∞

Vy(t
′)

R̄4
x̄ȳ

(

t̄2

SL

+ SL

)

dt′ −

∫ tT

−∞

Vy(t
′)

R̄4
x̄ȳ

(

t̄2

ST

+ ST

)

dt′ , (78)

with

x̄ = x, ȳ = y − η(t′) t̄ = t − t′ , R̄2 = x̄2 + ȳ2 ,

S2

T = t̄2 −
R̄2

c2
T

, tT = t −
R̄

cT

, S2

L = t̄2 −
R̄2

c2
L

, tL = t −
R̄

cL

. (79)

The explicit expressions for φij can be obtained from the corresponding expressions for
Aij replacing Vy(t

′) by 1. Using this replacement, we observe the relations: vx(Vy(t
′) =

1) = −βxy and vy(Vy(t
′) = 1) = −βyy . Let us now discuss qualitatively the results. The

expressions for a climbing edge dislocation (68)–(78) are similar to, but also different in
some sense than, the expressions of a gliding edge dislocation (48)–(58). In particular, the
elastic fields contain terms again proportional to ST, SL, 1/ST and 1/SL. In the potential
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functions (76)–(78) the dislocation velocity is Vy(t
′) similar to Vx(t

′) in Eqs. (56)–(58). The
complexity and the type of integrals for a climbing edge dislocation in Eqs. (76)–(78) are
the same as for a gliding edge dislocation in Eqs. (56)–(58). The structure of entering of the
potential functions φij in Eqs. (70)–(73) is the same as in Eqs. (50)–(53). However, there
are some differences concerning the structure of entering of the potential functions Aij

in Eqs. (68)–(73) compared with Eqs. (48)–(53). Of course, the differences in the elastic
fields (50)–(53) and (70)–(73) are expected due to the kind (gliding - climbing) of the edge
dislocation. The difference between the elastic fields of a gliding edge dislocation and a
climbing edge dislocation is mainly based on the specific component of the dislocation
current tensor for gliding and climbing. For the gliding edge dislocation the component
Ixy (see Eq. (41)) enters the Eqs. (42), (43), (46) and (47). However, for the climbing
edge dislocation the component Ixx (see Eq. (61)) enters the Eqs. (62)–(65). What is
also interesting and should be noted is the difference in the expressions for the velocity
fields. In Eqs. (48) and (49) for the gliding edge dislocation only the transversal velocity
cT appears in the prefactors while in the prefactors of Eqs. (68) and (69) for the climbing
edge dislocation both velocities cT and cL appear. Finally, the elastic fields of a climbing
edge dislocation represent transversal and longitudinal elastic waves with the velocities
cT and cL, respectively.

6 Static limit

In this section, we give the static limit of the elastic distortions of nonuniformly moving
dislocations as a check of the above results and to show the connection between the
dynamic solutions in this paper and the static solutions given by deWit [32]. Because all
the potential functions (34), (35), (54), (55), (74) and (75) are defined as integrals of the
Green tensors of plane strain and anti-plane strain, we will carry out the static limit for
the Green tensors. The static limit of the Green tensors is defined by (see, e.g., [6])

Gij(r − r′) = lim
t→∞

∫ t

−∞

Gij(r − r′, t − t′) dt′ . (80)

Although the obtained results provide the solutions of the elastic fields to the general
motion of straight dislocations, their application to explicit problems demands some care
to avoid the occurrence of divergent integrals. For the static limit it is possible to do this
by supposing a limit −T instead of −∞. Then although Gzz in Eq. (23) and Gij in Eq. (22)
diverge if we let T → ∞, their derivatives do not, so that the elastic distortions are well-
defined in the static limit. The static limit of the derivative of the Green tensor (22) is
calculated with

Gij,k(r − r′) = lim
T→∞

∂k

∫ t

−T

Gij(r − r′, t − t′) dt′ (81)

as

Gij,k(r − r′) = −
1

8πµ(1 − ν)

[

(3 − 4ν) δij

Rk

R2
− δik

Rj

R2
− δjk

Ri

R2
+ 2

RiRjRk

R4

]

, (82)
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where R = r − r′, ν is Poisson’s ratio and λ = 2µν/(1 − 2ν). For the derivative of the
Green function Gzz

Gzz,k(r − r′) = lim
T→∞

∂k

∫ t

−T

Gzz(r − r′, t − t′) dt′ , (83)

we obtain

Gzz,k(r − r′) = −
1

2πµ

Rk

R2
. (84)

From Eq. (17) we recover the static Mura formula [4]

βim(r) =

∫

∞

−∞

Cjkln Gij,k(r − r′) Tlmn(r′) dr′ . (85)

Substituting Eqs. (82) and (84) and the dislocation densities Tzxy = bz δ(x)δ(y) and
Txxy = bx δ(x)δ(y) into Eq. (85), we recover the expressions of the elastic distortion
given by deWit [32]. The non-vanishing components of the elastic distortion of a screw
dislocation are given by

βzx = −
bz

2π

y

r2
, (86)

βzy =
bz

2π

x

r2
, (87)

which are the static limits of Eqs. (32) and (33). The non-vanishing components of the
elastic distortion tensor of an edge dislocation are obtained as

βxx = −
bx

4π(1 − ν)

y

r2

[

(1 − 2ν) + 2
x2

r2

]

, (88)

βyx = −
bx

4π(1 − ν)

x

r2

[

(1 − 2ν) + 2
y2

r2

]

, (89)

βxy =
bx

4π(1 − ν)

x

r2

[

(3 − 2ν) − 2
y2

r2

]

, (90)

βyy = −
bx

4π(1 − ν)

y

r2

[

(1 − 2ν) − 2
x2

r2

]

, (91)

which are the static limits of the gliding edge dislocation (50)–(53) and the climbing edge
dislocation (70)–(73).
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