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Abstract

In this paper, we investigate the difference of Shepard’s generalized
operators Sσ from the approximated set of data for various weight func-
tions σ. Bounds are given for the sizes of the “bumps” shown in Fig. 1
and the best weight function σ for practical use is proposed in the last
Section.

Keywords: Interpolation, Approximation, Generalized Shepard-method,
AMS classification: 41A05, 41A20, 41A36

1 Introduction

For any given set of datapoints {P1, . . . , PM} ⊆ RN in any dimension N ≥ 1,
real numbers F1, . . . , FM ∈ R and fixed weight function σ : R+ → R+ we
investigate the generalized Shepard operator Sσ : RN → R+ defined for any
P ∈ RN as

S(M)
σ (P ) :=

M∑
i=1

Fiσ (d (P, Pi))

M∑
i=1

σ (d (P, Pi))

,

where d : RN × RN → R is any distance function on RN . (For simplicity we
omit the superscript M whenever it is clear from the context.)

The main advantage of the above simple formula is that it is applicable for
any set of points {P1, . . . , PM} ⊆ RN (which is not our choice in general in prac-
tice). Let us highlight our main point of view: we consider Sσ for constructing

1

Page 1 of 16

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
a surface matching any given set of data1) {(P1, F1) , . . . , (PM , FM )}, i.e., we do
not consider Sσ for approximating any pre-given function f : RN → R.

This method is widely applied, e.g., in geography for dimension N = 2 (see,
e.g., [Katona (2002)]).

For exact approximation (that is Sσ(Pi) = Fi for all i ≤M) σ must satisfy

lim
d→0+

σ(d) = +∞. (1)

Further we require
lim

d→+∞
σ(d) = 0 (2)

since in our investigations M →∞ and so d→∞ (see [Szalkai (1999b)]).

In the present paper we restrict ourselves to dimension N = 1. However,
the results we obtain can be used for any dimension, since any distortion of
higher dimensional surfaces (defined by Sσ) can be detected in a suitable one-
dimensional intersection.

The starting point of our investigation was the surprising diagram of S1/d,
shown in Fig. 1 (in dimension N = 1):

Figure 1: The graph of Sσ for σ(d) = 1/d in dimension N = 1.

(A computer program for demonstrating and investigating different approx-
imation methods is also in preparation in [Nagy (2010)].)

1) in practice, these data are obtained by measuring and not by using a formula

2
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Black dots in the above figure show the pairs (Pi, Fi) for i ≤M . What dis-

turbs us is that the approximating formula Sσ(P ) has big differences (“waves”)
in many places despite the almost linear dataset. (In other words: Sσ tends to
the average F̄ := F1+...+FM

M not only when P → ∞ but even when P is inside
the convex hull of the dataset {P1, . . . , PM}.)

In this note we show that these “bumps” (big differences) are present almost
in all cases. More precisely, we calculate the rate of these differences for several
weight functions σ:

σ1(d) := 1/dα (α > 0) (Shepard’s original formula),

σ2(d) := 1/dα exp(−λdβ) (α, β, λ > 0),

σ3(d) := 1
lnβ(d+1)

(β > 0),

σ4(d) := 1/dα 1
lnβ(d+1)

(α, β > 0)

(σ1 is the original weight function of [Gordon and Wixom (1978)]. The others
are our candidates for better approximation. We do not have so many choices
since we have to ensure (1).)

For most of the investigated cases, the size of the differences goes to infinity
when the number of the datapoints M tends to infinity. This latter assumption
requires infinite domain for the approximation. This is why we investigate
limM→∞ in Questions 1 through 3.

Though everyday approximations are done on finite intervals, in most cases
we cannot choose as many datapoints Pi as we like as, e.g., in the application
[Katona (2002)]. This could result in the unexpected waves as in Fig. 1.

In the literature, numerous excellent properties of Shepard’s original and
generalized formulae are justified, see, e.g., in [Allasia (1995)], [Bojanic et al.
(1999)], [DellaVecchia et al. (1996)], [DellaVecchia et al. (2004)], [Farwig (1986)],
[Gál and Szabados (1999)], [Gordon and Wixom (1978)], [Hoschek and Lasser
(1993)], [Mastroianni and Szabados (1997)], [Szabados (1991)], [Szalkai (1999a),
(1999b)] or [Zhou (1998)]. These good approximation properties are proven
either assuming a special set of datapoints {P1, . . . , PM}, or by investigating the
limit-approximation in the case when the number of the datapoints M tends to
infinity on a fixed finite interval. Elimination of these restrictions is the main
improvement of our analysis with respect to other investigations.

[Katona (2002)], [Láng-Lázi et al. (2006)] and [Szalkai (1996), (2000)] tried
to apply Shepard’s original formula in practice. We suggest using the weight
functions that we will select in the Section “Conclusions”.

1.1 Preliminary definitions

We are treating the N = 1-dimensional case2). In the present investigation
let us define the set of datapoints to be equidistant (they form an arithmetic
progression), that is we fix u, v > 0 and we let

Pi := P1 + (i− 1)v and Fi := F1 + (i− 1)u, for i = 1, . . . ,M (3)

2) which can be embedded in some higher dimensional space

3
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(that is Pi ∈ R are in N = 1-dimension).

We investigate the difference of Sσ from the straight line `(x)

`(x) = F1 + τu for x = P1 + τv (τ ∈ R)

(` connects all the points (Pi, Fi)) at the point xτ ∈ (P1, P2)

xτ = P1 + τv (τ ∈ (0, 1)),

that is we calculate
∆(xτ ) = Sσ(xτ )− `(xτ )

for various weight functions σ. Our set of data {(Pi, Fi), i = 1, . . . ,M} is
equidistant, other sets of data are investigated in [Szalkai (1999b), Section 4.2].

The difference is

∆(xτ ) = Sσ(xτ )− `(xτ )

=

F1σ(τv) +
M∑
i=2

(F1 + (i− 1)u)σ ((i− 1− τ)v)

σ(τv) +
M∑
i=2

σ ((i− 1− τ)v)

− (F1 + τu)

= u


M−1∑
j=1

jσ ((j − τ)v)

σ(τv) +
M−1∑
j=1

σ ((j − τ)v)

− τ

 . (4)

We investigate the following questions for fixed τ ∈ (0, 1) (i.e., xτ ∈ (P1, P2)
is fixed3)):

Question 1: Is lim
M→∞

∆(xτ ) =∞ or lim
M→∞

∆(xτ ) <∞ ?

In the latter case: what is the value of lim
M→∞

∆(xτ )
u approximatively?

Question 2: For which weight functions σ do we have lim
M→∞

Sσ(xτ ) > F2

for some xτ ∈ (P1, P2)?

(This inequality is equivalent to lim
M→∞

∆(xτ )
u > 1− τ)

Question 3: For which point xτ ∈ (P1, P2) is lim
M→∞

∆(xτ )
u maximal?

3) The assumption 0 < τ < 1 is not a restriction in fact, since the limit lim
M→∞

∆(x∗)

we are discussing in this paper is the same for any fixed point x∗ ∈ (P0,∞). This is why we
may restrict ourselves to the interval (P0, P1).

4
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Similar questions might be investigated for the approximation in the finite

interval [0, a] (Sσ is invariant for vertical translation but not for vertical zoom-
ing).

The following well known results will be useful to our work:

Lemma 0: Let a0, a1, . . . ∈ R+ with aj → 0. Then the fractions

M∑
j=0

jaj

M∑
j=0

aj

have a finite limit for M →∞ if and only if
∞∑
j=0

jaj <∞ . �

2 Investigating the Weight Functions

Now we investigate the weight functions σ1 through σ4 in detail.

2.1 The weight function σ1(d) = 1/dα

Since σ now is homogeneous, we have

∆(xτ )

u
=

M−1∑
j=1

jσ (j − τ)

σ(τ) +
M−1∑
j=1

σ (j − τ)

− τ =

M−1∑
j=1

j
(j−τ)α

1
τα +

M−1∑
j=1

1
(j−τ)α

− τ.

It is well known that the denominator is convergent iff α > 1 while the
numerator is convergent iff α > 2.

This means that Shepard’s original formula

Sα(P ) :=

M∑
i=1

Fi
1

(d(P,Pi))
α

M∑
i=1

1
(d(P,Pi))

α

must have as large bumps as one likes for all 1 < α ≤ 2, while the size of bumps
is bounded for 2 < α:

Theorem 1. For all 1 < α ≤ 2 the limit lim
M→∞

∆(xτ )
u = ∞ diverges, while

for α > 2 we have

1
(1−τ)α + ζ(α− 1)− 1

1
τα + 1

(1−τ)α + ζ(α)
−τ ≤ lim

M→∞

∆(xτ )

u
≤

1
(1−τ)α + ζ(α− 1) + ζ(α)

1
τα + 1

(1−τ)α + ζ(α)− 1
−τ, (5)

5
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where ζ is Riemann’s zeta function.

Proof: In the case of α > 2 in order to approximate the value of lim
M→∞

∆(xτ )
u

we write for the denominator

1

τα
+

1

(1− τ)α
+

M−1∑
j=2

1

jα
<

1

τα
+

M−1∑
j=1

1

(j − τ)
α <

1

τα
+

1

(1− τ)
α +

M−1∑
j=2

1

(j − 1)
α ,

i.e.,

1

τα
+

1

(1− τ)α
+ ζ(α)− 1 ≤ lim

M→∞
(den) ≤ 1

τα
+

1

(1− τ)
α + ζ(α)

and for the numerator

1

(1− τ)α
+

M−1∑
j=2

j

jα
<

M−1∑
j=1

j

(j − τ)
α <

1

(1− τ)
α +

M−1∑
j=2

j − 1 + 1

(j − 1)
α ,

i.e.,

1

(1− τ)α
+ ζ(α− 1)− 1 ≤ lim

M→∞
(num) ≤ 1

(1− τ)
α + ζ(α− 1) + ζ(α),

which implies the estimation (5), answering Question 1. �

Question 2 could be answered by the inequality

1− τ ≤
1

(1−τ)α + ζ(α− 1)− 1

1
τα + 1

(1−τ)α + ζ(α)
− τ,

i.e.,
1

τα
+

1

(1− τ)
α + ζ(α) ≤ 1

(1− τ)α
+ ζ(α− 1)− 1,

or by the much simpler one

1

τα
+ 1 ≤ ζ(α− 1)− ζ(α). (6)

For each fixed α the left hand side has minimal value for τ = 1, so (6) admits
a solution for τ iff

2 ≤ ζ(α− 1)− ζ(α). (7)

From our computational experiments we learned that (7) holds for

2 < α < 2.3617

and does not hold for 1 < α < 2 or α > 2.3617.

For Question 3 we should find the maximal value(s) of

∆ (xτ )

u
:=

1
(1−τ)α + ζ(α− 1)− 1

1
τα + 1

(1−τ)α + ζ(α)
− τ

where τ ∈ (0, 1) for each fixed α > 2.

6
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2.2 The weight function σ2(d) = 1/dα exp(−λdβ)

In this case ∆(xτ )
u reads as

∆(xτ )

u
=

M−1∑
j=1

j exp(−λ((j−τ)v)β)
((j−τ)v)α

exp(−λ(τv)β)
(τv)α +

M−1∑
j=1

exp(−λ((j−τ)v)β)
((j−τ)v)α

−τ =

M−1∑
j=1

j E
(j−τ)β

(j−τ)α

Eτ
β

τα +
M−1∑
j=1

E(j−τ)β

(j−τ)α

−τ (8)

where
E := exp(−λvβ)

(v was defined in (3)).

Since 0 < E, τ < 1 we can easily prove

Theorem 2. lim
M→∞

∆(xτ )
u is convergent for all α, β, λ > 0, τ ∈ (0, 1).

Proof. We use Lemma 0 for the sequence aj = E(j−τ)β

(j−τ)α (1 ≤ j),

a0 = Eτ
β

τα . The assumptions aj > 0 and aj → 0 clearly hold since |E| < 1 and
1 ≤ j.
The numerator can be estimated as

∞∑
j=1

j
E(j−τ)β

(j − τ)
α ≤ a1 +

∞∑
j=2

jE(j−1)β = a1 +

∞∑
i=1

(i+ 1)Ei
β

. (9)

Using the fact that

lim
i→∞

iβ

log 1
E

(i)
=∞,

we can find i0 ∈ N such that iβ > 3 log 1
E

(i) for i > i0 . This proves (9) since

∞∑
i=1

(i+ 1)Ei
β

≤
i0∑
i=1

(i+ 1)Ei
β

+

∞∑
i=i0

(i+ 1)E
3 log 1

E
(i)

≤ c+

∞∑
i=i0

i+ 1

i3
,

which clearly converges. The denominator does not exceed the numerator so it
converges as well. �

Now we present detailed calculations for the case α = β = 1 (calculations
for the general case of α and β are lengthy). In this case the numerator of (8)
is
M−1∑
j=1

j
E(j−τ)

(j − τ)
=

M−1∑
j=1

(
1 +

τ

j − τ

)
E(j−τ) = E−τ

M−1∑
j=1

Ej + τ

M−1∑
j=1

E(j−τ)

j − τ

=
E

Eτ
EM−1 − 1

E − 1
+ τIM (E, τ) ,

7
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where

IM (E, τ) :=

M−1∑
j=1

E(j−τ)

(j − τ)
=
E1−τ

1− τ
+

M−1∑
j=2

∫
0

E(j−τ−1)dE

=
E1−τ

1− τ
+

∫
0

E1−τ
M−3∑
J=0

EJdE =
E1−τ

1− τ
+

∫
0

E1−τ E
M−2 − 1

E − 1
dE

=
E1−τ

1− τ
+

∫ E

0

x1−τ x
M−2 − 1

x− 1
dx,

which has limit (M →∞)

I∞ (E, τ) :=
E1−τ

1− τ
+

∫ E

0

x1−τ 1

1− x
dx.

So we finally get:

Theorem 3.

L(E, τ) := lim
M→∞

∆(xτ )

u
=

E1−τ

1−E + τI∞ (E, τ)
Eτ

τ + I∞ (E, τ)
− τ for α = β = 1. (10)

This answers Question 1. �

It is easy to see that∫
x1−τ 1

1− x
dx =

x1−τ
2F1(1− τ ; 1; 2− τ ;x)− 1

1− τ
,

with 2F1 (w, z, y, x) being the hypergeometric function, so that

I∞ (E, τ) =
E1−τ

1− τ 2F1(1− τ ; 1; 2− τ ;E). (11)

Figures 2–4 below show 3D views and intersections of L vs. E and τ in different
scaling. The hypergeometric function at the right-hand-side of (11) was com-
puted by means of a routine included in the package of special functions by [Jin,
Zhang (1996)]. Points 0 and 1 are excluded from the plots.

Since we are looking for the best approximating function Sσ including
E = exp(−λvβ), we can conclude in the case α = β = 1 that:

After estimating the largest or most common values of v we must choose λ
such that

E = exp(−λv) < 0.6

which will make limM→∞
∆(xτ )
u very small!

8
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Figure 2: Plot lim∞∆(xτ )/u vs. τ and E, scale [−1, 5].

Let us note that formula (10) for L (E, τ) can be also written as

L (E, τ) =
τ
[
Eτ

τ + I (E, τ)
]

+ E1−τ

1−E − E
τ

Eτ

τ + I (E, τ)
− τ =

E1−τ

1−E − E
τ

Eτ

τ + E1−τ

1−τ +
∫ E

0
x1−τ

1−x dx

=
τ(1− τ)

[
E1−τ − (1− E)Eτ

]
(1− E)

[
(1− τ)Eτ + τE1−τ + τ(1− τ)

∫ E
0

x1−τ

1−x dx
] .

It is easy to see that, for fixed E ∈ (0, 1)

lim
τ→0
L(E, τ) = 0 and lim

τ→1
L(E, τ) = 0,

which correspond to the fact that Sσ is exact (that is Sσ(Pi) = Fi).

For Question 2 we should solve the inequality

E1−τ

1−E + τI (E, τ)
Eτ

τ + I (E, τ)
− τ > 1− τ,

9
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Figure 3: Plot lim∞∆(xτ )/u vs. τ and E, scale [−0.3, 0.4].

that is

E1−τ

1− E
+ τ

(
E1−τ

1− τ
+

∫ E

0

x1−τ

1− x
dx

)
>
Eτ

τ
+
E1−τ

1− τ
+

∫ E

0

x1−τ

1− x
dx,

i.e.,
E1−τ

1− E
E − Eτ

τ
> (1− τ)

∫ E

0

x1−τ

1− x
dx,

or, using the hypergeometric function 2F1,

E

1− E
− E2τ−1

τ
> 2F1(1− τ ; 1; 2− τ ;E)− 1.

Some more computer experiments are necessary for solving this inequality,
we do not include them here.

10
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Figure 4: Plot lim∞∆(xτ )/u vs. τ for E = 0.1, 0.2, . . . , 0.9.

2.3 The weight function σ3(d) = 1
lnβ (d+1)

Now ∆(xτ )
u reads as

∆(xτ )

u
=

M−1∑
j=1

j
lnβ((j−τ)v+1)

1
lnβ(τv+1)

+
M−1∑
j=1

1
lnβ((j−τ)v+1)

− τ.

Since
∞∑
j=1

1

lnβ ((j − τ) v + 1)
≥
∞∑
j=2

1

lnβ (j2)
− c =∞

we see that

Theorem 4: For the weight function σ(d) = 1
lnβ (d+1)

we have for all β > 0

lim
M→∞

∆(xτ )

u
=∞,

answering Question 1. �
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2.4 The weight function σ4(d) = 1/dα 1

lnβ (d+1)

In this case we have

∆(xτ )

u
=

M−1∑
j=1

j
(j−τ)αvα lnβ((j−τ)v+1)

1
ταvα lnβ(τv+1)

+
M−1∑
j=1

1
(j−τ)αvα lnβ((j−τ)v+1)

− τ

=

M−1∑
j=1

j
(j−τ)α lnβ((j−τ)v+1)

1
τα lnβ(τv+1)

+
M−1∑
j=1

1
(j−τ)α lnβ((j−τ)v+1)

− τ.

We will use the following fact from elementary calculus:

Lemma 5. The sum

L(α, β, v) :=

∞∑
j=1
jv 6=1

1

jα lnβ(jv)
, (v > 0 fixed)

is convergent iff either α = 1 and β > 1 or α > 1 and β > 0. �

Now we can start answering Question 1:

∞∑
j=1

1

(j − τ)
α

lnβ ((j − τ) v + 1)
≥
∞∑
j=1

1

jα lnβ (j (v + 1))
= L(α, β, v + 1),

∞∑
j=1

1

(j − τ)
α

lnβ ((j − τ) v + 1)

≤ 1

(1− τ)
α

lnβ ((1− τ) v + 1)
+

∞∑
j=2

(j−1)v 6=1

1

(j − 1)
α

lnβ ((j − 1) v)

=
1

(1− τ)
α

lnβ ((1− τ) v + 1)
+ L(α, β, v)

and

M−1∑
j=1

j

(j − τ)
α

lnβ ((j − τ) v + 1)
≥
∞∑
j=1

1

jα−1 lnβ (j (v + 1))
= L(α− 1, β, v + 1),
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∞∑
j=1

j

(j − τ)
α

lnβ ((j − τ) v + 1)

≤ 1

(1− τ)
α

lnβ ((1− τ) v + 1)
+

∞∑
j=2

(j−1)v 6=1

j − 1

(j − 1)
α

lnβ ((j − 1) v)

+

∞∑
j=2

(j−1)v 6=1

1

(j − 1)
α

lnβ ((j − 1) v)

=
1

(1− τ)
α

lnβ ((1− τ) v + 1)
+ L(α− 1, β, v) + L(α, β, v),

which implies

Theorem 6: For the weight function σ(d) = 1/dα 1
lnβ (d+1)

the limit lim
M→∞

∆(xτ )
u

is convergent if and only if either α = 2 and β > 1 or α > 2 and β > 0.

In the above cases we have

L(α− 1, β, v + 1)
1

τα lnβ(τv+1)
+ 1

(1−τ)α lnβ((1−τ)v+1)
+ L(α, β, v)

− τ ≤ lim
M→∞

∆(xτ )

u

and

lim
M→∞

∆(xτ )

u
≤

1
(1−τ)α lnβ((1−τ)v+1)

+ L(α− 1, β, v) + L(α, β, v)

1
τα lnβ(τv+1)

+ L(α− 1, β, v + 1)
− τ. �

3 Conclusions

In the previous sections we have seen that for most of the weight functions σ

the relative size ∆(xτ )
u of the bumps may be convergent or divergent depending

on its parameters. In general, the quicker σ(d) tends to 0 as d→∞, the smaller
∆(xτ )
u . In other words:

Conclusion: Among the investigated weight functions σ1 through σ4 we
found

σ2(d) := 1/d exp(−λd)

to be “smoothest”, i.e., limM→∞
∆(xτ )
u could be acceptably small for suitable

λ.
For practical applications we recommend first to estimate the largest, or the

most common values of v (the distances of the measuring datapoints, see (3)),
then to choose λ as

exp(−λv) < 0.6.
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(In the present paper we could make detailed computations only in the case
α = β = 1 for the function σ2.)

Though we used the dataset (3) for our computations, we think that our
conclusions above are valid also for any other dataset, since the ”smoothness”
of Sσ depends on the rate of (1) and (2) which is influenced by λ and v above
rather than by the dataset.

In conclusion, we present some graphs of Sσ for some σ. In all examples in
Figures 5 through 8, M = 100, Pi = i, Fi = i (1 ≤ i ≤M).

Figure 5: The graph of Sσ for σ(d) =
1/d2.01.

Figure 6: The graph of Sσ for σ(d) =
exp(−d)/d.

Figure 7: The graph of Sσ for σ(d) =
1

ln3(d+1)
.

Figure 8: The graph of Sσ for σ(d) =
1

d2 ln1.5(d+1)
.

Computational experiments were made by Derive 4.0 and Maple (Scientific
Workplace 3.0).
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