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 and the best weight function σ for practical use is proposed in the last Section.

Introduction

For any given set of datapoints {P 1 , . . . , P M } ⊆ R N in any dimension N ≥ 1, real numbers F 1 , . . . , F M ∈ R and fixed weight function σ : R + → R + we investigate the generalized Shepard operator S σ : R N → R + defined for any P ∈ R N as

S (M ) σ (P ) := M i=1 F i σ (d (P, P i )) M i=1 σ (d (P, P i ))
, where d : R N × R N → R is any distance function on R N . (For simplicity we omit the superscript M whenever it is clear from the context.)

The main advantage of the above simple formula is that it is applicable for any set of points {P 1 , . . . , P M } ⊆ R N (which is not our choice in general in practice). Let us highlight our main point of view: we consider S σ for constructing a surface matching any given set of data 1) {(P 1 , F 1 ) , . . . , (P M , F M )}, i.e., we do not consider S σ for approximating any pre-given function f : R N → R.

This method is widely applied, e.g., in geography for dimension N = 2 (see, e.g., [START_REF] Katona | Constructing Digital Elevation Models[END_REF]]).

For exact approximation (that is S σ (P i ) = F i for all i ≤ M ) σ must satisfy lim d→0+ σ(d) = +∞.

(1)

Further we require lim

d→+∞ σ(d) = 0 (2)
since in our investigations M → ∞ and so d → ∞ (see [Szalkai (1999b)]).

In the present paper we restrict ourselves to dimension N = 1. However, the results we obtain can be used for any dimension, since any distortion of higher dimensional surfaces (defined by S σ ) can be detected in a suitable onedimensional intersection.

The starting point of our investigation was the surprising diagram of S 1/d , shown in Fig. 1 (in dimension N = 1): Black dots in the above figure show the pairs (P i , F i ) for i ≤ M . What disturbs us is that the approximating formula S σ (P ) has big differences ("waves") in many places despite the almost linear dataset. (In other words: S σ tends to the average F := F1+...+F M M not only when P → ∞ but even when P is inside the convex hull of the dataset {P 1 , . . . , P M }.)

In this note we show that these "bumps" (big differences) are present almost in all cases. More precisely, we calculate the rate of these differences for several weight functions σ:

σ 1 (d) := 1/d α (α > 0) (Shepard's original formula), σ 2 (d) := 1/d α exp(-λd β ) (α, β, λ > 0), σ 3 (d) := 1 ln β (d+1) (β > 0), σ 4 (d) := 1/d α 1 ln β (d+1) (α, β > 0)
(σ 1 is the original weight function of [START_REF] Gordon | Shepard's Method of "Metric Interpolation" to Bivariate and Multivariate Interpolation[END_REF]]. The others are our candidates for better approximation. We do not have so many choices since we have to ensure (1).)

For most of the investigated cases, the size of the differences goes to infinity when the number of the datapoints M tends to infinity. This latter assumption requires infinite domain for the approximation. This is why we investigate lim M →∞ in Questions 1 through 3.

Though everyday approximations are done on finite intervals, in most cases we cannot choose as many datapoints P i as we like as, e.g., in the application [START_REF] Katona | Constructing Digital Elevation Models[END_REF]]. This could result in the unexpected waves as in Fig. 1.

In the literature, numerous excellent properties of Shepard's original and generalized formulae are justified, see, e.g., in [START_REF] Allasia | A Class of Interpolating Positive Operators: Theory & Computational Aspects[END_REF]], [START_REF] Bojanic | On the Approximation of Bounded Functions with Discontinuities of the First Kind by Generalized Shepard Operators[END_REF]], [DellaVecchia et al. (1996)], [DellaVecchia et al. (2004)], [START_REF] Farwig | Rate of Convergence of Shepard's Global Interpolation Formula[END_REF]], [START_REF] Gál | On the Preservation of Global Smoothness by Some Interpolation Operators[END_REF]], [START_REF] Gordon | Shepard's Method of "Metric Interpolation" to Bivariate and Multivariate Interpolation[END_REF]], [START_REF] Hoschek | Scattered Data Interpolation und Approximation, Computer Aided Geometric Design[END_REF]], [START_REF] Mastroianni | Balázs-Shepard Operators on Infinite Intervals II[END_REF]], [START_REF] Szabados | Direct and Converse Approximation Theorems for the Shepard Operator[END_REF]], [Szalkai (1999a[Szalkai ( ), (1999b))] or [Zhou (1998)]. These good approximation properties are proven either assuming a special set of datapoints {P 1 , . . . , P M }, or by investigating the limit-approximation in the case when the number of the datapoints M tends to infinity on a fixed finite interval. Elimination of these restrictions is the main improvement of our analysis with respect to other investigations.

[ [START_REF] Katona | Constructing Digital Elevation Models[END_REF]], [START_REF] Láng-Lázi | Spline Functions in Chemistry: Approximation of Surfaces Over Triangle-Domain[END_REF]] and [START_REF] Szalkai | SALT3DIM.exe -A Program for Handling 4 Component Mixtures[END_REF][Szalkai ( ), (2000))] tried to apply Shepard's original formula in practice. We suggest using the weight functions that we will select in the Section "Conclusions". 

(that is P i ∈ R are in N = 1-dimension).
We investigate the difference of S σ from the straight line (x)

(x) = F 1 + τ u for x = P 1 + τ v (τ ∈ R)
( connects all the points (P i , F i )) at the point x τ ∈ (P 1 , P 2 )

x τ = P 1 + τ v (τ ∈ (0, 1)), that is we calculate ∆(x τ ) = S σ (x τ ) -(x τ )
for various weight functions σ. Our set of data {(P i , F i ), i = 1, . . . , M } is equidistant, other sets of data are investigated in [Szalkai (1999b), Section 4.2].

The difference is

∆(x τ ) = S σ (x τ ) -(x τ ) = F 1 σ(τ v) + M i=2 (F 1 + (i -1)u) σ ((i -1 -τ )v) σ(τ v) + M i=2 σ ((i -1 -τ )v) -(F 1 + τ u) = u      M -1 j=1 jσ ((j -τ )v) σ(τ v) + M -1 j=1 σ ((j -τ )v) -τ      . ( 4 
)
We investigate the following questions for fixed τ ∈ (0, 1) (i.e., x τ ∈ (P 1 , P 2 ) is fixed 3) ):

Question 1: Is lim M →∞ ∆(x τ ) = ∞ or lim M →∞ ∆(x τ ) < ∞ ?
In the latter case: what is the value of lim

M →∞ ∆(xτ ) u approximatively?
Question 2: For which weight functions σ do we have lim

M →∞ S σ (x τ ) > F 2
for some x τ ∈ (P 1 , P 2 )? (This inequality is equivalent to lim

M →∞ ∆(xτ ) u > 1 -τ ) Question 3: For which point x τ ∈ (P 1 , P 2 ) is lim M →∞ ∆(xτ ) u maximal?
3 ) The assumption 0 < τ < 1 is not a restriction in fact, since the limit lim

M →∞ ∆(x * )
we are discussing in this paper is the same for any fixed point x * ∈ (P 0 , ∞). This is why we may restrict ourselves to the interval (P 0 , P 1 ). Similar questions might be investigated for the approximation in the finite interval [0, a] (S σ is invariant for vertical translation but not for vertical zooming).

The following well known results will be useful to our work:

Lemma 0: Let a 0 , a 1 , . . . ∈ R + with a j → 0. Then the fractions M j=0 ja j M j=0 a j have a finite limit for M → ∞ if and only if ∞ j=0 ja j < ∞ .

Investigating the Weight Functions

Now we investigate the weight functions σ 1 through σ 4 in detail.

The weight function σ

1 (d) = 1/d α Since σ now is homogeneous, we have ∆(x τ ) u = M -1 j=1 jσ (j -τ ) σ(τ ) + M -1 j=1 σ (j -τ ) -τ = M -1 j=1 j (j-τ ) α 1 τ α + M -1 j=1 1 (j-τ ) α -τ.
It is well known that the denominator is convergent iff α > 1 while the numerator is convergent iff α > 2.

This means that Shepard's original formula

S α (P ) := M i=1 F i 1 (d(P,Pi)) α M i=1 1 (d(P,Pi)) α
must have as large bumps as one likes for all 1 < α ≤ 2, while the size of bumps is bounded for 2 < α: Proof: In the case of α > 2 in order to approximate the value of lim

Theorem 1. For all 1 < α ≤ 2 the limit lim M →∞ ∆(xτ ) u = ∞ diverges, while for α > 2 we have 1 (1-τ ) α + ζ(α -1) -1 1 τ α + 1 (1-τ ) α + ζ(α) -τ ≤ lim M →∞ ∆(x τ ) u ≤ 1 (1-τ ) α + ζ(α -1) + ζ(α) 1 τ α + 1 (1-τ ) α + ζ(α) -1 -τ, ( 
M →∞ ∆(xτ ) u
we write for the denominator

1 τ α + 1 (1 -τ ) α + M -1 j=2 1 j α < 1 τ α + M -1 j=1 1 (j -τ ) α < 1 τ α + 1 (1 -τ ) α + M -1 j=2 1 (j -1) α , i.e., 1 τ α + 1 (1 -τ ) α + ζ(α) -1 ≤ lim M →∞ (den) ≤ 1 τ α + 1 (1 -τ ) α + ζ(α)
and for the numerator

1 (1 -τ ) α + M -1 j=2 j j α < M -1 j=1 j (j -τ ) α < 1 (1 -τ ) α + M -1 j=2 j -1 + 1 (j -1) α , i.e., 1 (1 -τ ) α + ζ(α -1) -1 ≤ lim M →∞ (num) ≤ 1 (1 -τ ) α + ζ(α -1) + ζ(α),
which implies the estimation (5), answering Question 1.

Question 2 could be answered by the inequality

1 -τ ≤ 1 (1-τ ) α + ζ(α -1) -1 1 τ α + 1 (1-τ ) α + ζ(α) -τ, i.e., 1 τ α + 1 (1 -τ ) α + ζ(α) ≤ 1 (1 -τ ) α + ζ(α -1) -1, or by the much simpler one 1 τ α + 1 ≤ ζ(α -1) -ζ(α). (6) 
For each fixed α the left hand side has minimal value for τ = 1, so (6) admits a solution for

τ iff 2 ≤ ζ(α -1) -ζ(α). (7) 
From our computational experiments we learned that (7) holds for 2 < α < 2.3617 and does not hold for 1 < α < 2 or α > 2.3617.

For Question 3 we should find the maximal value(s) of

∆ (x τ ) u := 1 (1-τ ) α + ζ(α -1) -1 1 τ α + 1 (1-τ ) α + ζ(α) -τ
where τ ∈ (0, 1) for each fixed α > 2. In this case ∆(xτ ) u reads as

∆(x τ ) u = M -1 j=1 j exp(-λ((j-τ )v) β ) ((j-τ )v) α exp(-λ(τ v) β ) (τ v) α + M -1 j=1 exp(-λ((j-τ )v) β ) ((j-τ )v) α -τ = M -1 j=1 j E (j-τ ) β (j-τ ) α E τ β τ α + M -1 j=1 E (j-τ ) β (j-τ ) α -τ (8)
where E := exp(-λv β ) (v was defined in (3)).

Since 0 < E, τ < 1 we can easily prove Theorem 2. lim

M →∞ ∆(xτ ) u
is convergent for all α, β, λ > 0, τ ∈ (0, 1).

Proof. We use Lemma 0 for the sequence

a j = E (j-τ ) β (j-τ ) α (1 ≤ j), a 0 = E τ β τ α .
The assumptions a j > 0 and a j → 0 clearly hold since |E| < 1 and 1 ≤ j. The numerator can be estimated as

∞ j=1 j E (j-τ ) β (j -τ ) α ≤ a 1 + ∞ j=2 jE (j-1) β = a 1 + ∞ i=1 (i + 1) E i β . ( 9 
)
Using the fact that

lim i→∞ i β log 1 E (i) = ∞,
we can find i 0 ∈ N such that i β > 3 log 1 E (i) for i > i 0 . This proves (9) since

∞ i=1 (i + 1) E i β ≤ i0 i=1 (i + 1) E i β + ∞ i=i0 (i + 1) E 3 log 1 E (i) ≤ c + ∞ i=i0 i + 1 i 3 ,
which clearly converges. The denominator does not exceed the numerator so it converges as well.

Now we present detailed calculations for the case α = β = 1 (calculations for the general case of α and β are lengthy). In this case the numerator of ( 8) is where

M -1 j=1 j E (j-τ ) (j -τ ) = M -1 j=1 1 + τ j -τ E (j-τ ) = E -τ M -1 j=1 E j + τ M -1 j=1 E (j-τ ) j -τ = E E τ E M -1 -1 E -1 + τ I M (E, τ ) ,
I M (E, τ ) := M -1 j=1 E (j-τ ) (j -τ ) = E 1-τ 1 -τ + M -1 j=2 0 E (j-τ -1) dE = E 1-τ 1 -τ + 0 E 1-τ M -3 J=0 E J dE = E 1-τ 1 -τ + 0 E 1-τ E M -2 -1 E -1 dE = E 1-τ 1 -τ + E 0 x 1-τ x M -2 -1 x -1 dx, which has limit (M → ∞) I ∞ (E, τ ) := E 1-τ 1 -τ + E 0 x 1-τ 1 1 -x dx.
So we finally get:

Theorem 3. L(E, τ ) := lim M →∞ ∆(x τ ) u = E 1-τ 1-E + τ I ∞ (E, τ ) E τ τ + I ∞ (E, τ ) -τ for α = β = 1. ( 10 
)
This answers Question 1.

It is easy to see that

x 1-τ 1 1 -x dx = x 1-τ 2 F 1 (1 -τ ; 1; 2 -τ ; x) -1 1 -τ ,
with 2 F 1 (w, z, y, x) being the hypergeometric function, so that Let us note that formula (10) for L (E, τ ) can be also written as

I ∞ (E, τ ) = E 1-τ 1 -τ 2 F 1 (1 -τ ; 1; 2 -τ ; E). (11 
L (E, τ ) = τ E τ τ + I (E, τ ) + E 1-τ 1-E -E τ E τ τ + I (E, τ ) -τ = E 1-τ 1-E -E τ E τ τ + E 1-τ 1-τ + E 0 x 1-τ 1-x dx = τ (1 -τ ) E 1-τ -(1 -E) E τ (1 -E) (1 -τ )E τ + τ E 1-τ + τ (1 -τ ) E 0 x 1-τ 1-x dx .
It is easy to see that, for fixed E ∈ (0, 1)

lim τ →0 L(E, τ ) = 0 and lim τ →1 L(E, τ ) = 0, which correspond to the fact that S σ is exact (that is S σ (P i ) = F i ).
For Question 2 we should solve the inequality that is

E 1-τ 1-E + τ I (E, τ ) E τ τ + I (E, τ ) -τ > 1 -τ, 9 
E 1-τ 1 -E + τ E 1-τ 1 -τ + E 0 x 1-τ 1 -x dx > E τ τ + E 1-τ 1 -τ + E 0 x 1-τ 1 -x dx, i.e., E 1-τ 1 -E E - E τ τ > (1 -τ ) E 0 x 1-τ 1 -x dx, or, using the hypergeometric function 2 F 1 , E 1 -E - E 2τ -1 τ > 2 F 1 (1 -τ ; 1; 2 -τ ; E) -1.
Some more computer experiments are necessary for solving this inequality, we do not include them here. 

∆(x τ ) u = M -1 j=1 j ln β ((j-τ )v+1) 1 ln β (τ v+1) + M -1 j=1 1 ln β ((j-τ )v+1) -τ. Since ∞ j=1 1 ln β ((j -τ ) v + 1) ≥ ∞ j=2 1 ln β (j 2 ) -c = ∞
we see that In this case we have

∆(x τ ) u = M -1 j=1 j (j-τ ) α v α ln β ((j-τ )v+1) 1 τ α v α ln β (τ v+1) + M -1 j=1 1 (j-τ ) α v α ln β ((j-τ )v+1) -τ = M -1 j=1 j (j-τ ) α ln β ((j-τ )v+1) 1 τ α ln β (τ v+1) + M -1 j=1 1 (j-τ ) α ln β ((j-τ )v+1) -τ.
We will use the following fact from elementary calculus:

Lemma 5. The sum L(α, β, v) := ∞ j=1 jv =1 1 j α ln β (jv) , (v > 0 fixed)
is convergent iff either α = 1 and β > 1 or α > 1 and β > 0.

Now we can start answering Question 1: is convergent if and only if either α = 2 and β > 1 or α > 2 and β > 0.

∞ j=1 1 (j -τ ) α ln β ((j -τ ) v + 1) ≥ ∞ j=1 1 j α ln β (j (v + 1)) = L(α, β, v + 1), ∞ j=1 1 (j -τ ) α ln β ((j -τ ) v + 1) ≤ 1 (1 -τ ) α ln β ((1 -τ ) v + 1) + ∞ j=2 (j-1)v =1 1 (j -1) α ln β ((j -1) v) = 1 (1 -τ ) α ln β ((1 -τ ) v + 1) + L(α, β, v) and M -1 j=1 j (j -τ ) α ln β ((j -τ ) v + 1) ≥ ∞ j=1 1 j α-1 ln β (j (v + 1)) = L(α -1, β, v + 
∞ j=1 j (j -τ ) α ln β ((j -τ ) v + 1) ≤ 1 (1 -τ ) α ln β ((1 -τ ) v + 1) + ∞ j=2 (j-1)v =1 j -1 (j -1) α ln β ((j -1) v) + ∞ j=2 (j-1)v =1 1 (j -1) α ln β ((j -1) v) = 1 (1 -τ ) α ln β ((1 -τ ) v + 1) + L(α -1, β, v) + L(α, β, v),
In the above cases we have

L(α -1, β, v + 1) 1 τ α ln β (τ v+1) + 1 (1-τ ) α ln β ((1-τ )v+1) + L(α, β, v) -τ ≤ lim M →∞ ∆(x τ ) u and lim M →∞ ∆(x τ ) u ≤ 1 (1-τ ) α ln β ((1-τ )v+1) + L(α -1, β, v) + L(α, β, v) 1 τ α ln β (τ v+1) + L(α -1, β, v + 1) -τ.

Conclusions

In the previous sections we have seen that for most of the weight functions σ the relative size ∆(xτ ) u of the bumps may be convergent or divergent depending on its parameters. In general, the quicker σ(d) tends to 0 as d → ∞, the smaller could be acceptably small for suitable λ.

For practical applications we recommend first to estimate the largest, or the most common values of v (the distances of the measuring datapoints, see (3)), then to choose λ as exp(-λv) < 0.6. Though we used the dataset (3) for our computations, we think that our conclusions above are valid also for any other dataset, since the "smoothness" of S σ depends on the rate of (1) and ( 2) which is influenced by λ and v above rather than by the dataset.

In conclusion, we present some graphs of S σ for some σ. In all examples in Figures 5 through 8, M = 100, P i = i, F i = i (1 ≤ i ≤ M ). 

Figure 1 :

 1 Figure 1: The graph of S σ for σ(d) = 1/d in dimension N = 1.(A computer program for demonstrating and investigating different approximation methods is also in preparation in[START_REF] Nagy | A computer-help for demonstrating and investigating approximating methods[END_REF]].)
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  ζ is Riemann's zeta function.

6

  Page weight function σ 2 (d) = 1/d α exp(-λd β )
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)Figure 2 :

 2 Figures 2-4 below show 3D views and intersections of L vs. E and τ in different scaling. The hypergeometric function at the right-hand-side of (11) was computed by means of a routine included in the package of special functions by[Jin, Zhang (1996)]. Points 0 and 1 are excluded from the plots.Since we are looking for the best approximating function S σ including E = exp(-λv β ), we can conclude in the case α = β = 1 that:

Figure 3 :

 3 Figure 3: Plot lim ∞ ∆(x τ )/u vs. τ and E, scale [-0.3, 0.4].

Figure 4 :

 4 Figure 4: Plot lim ∞ ∆(x τ )/u vs. τ for E = 0.1, 0.2, . . . , 0.9.

Theorem 4 :

 4 For the weight function σ(d) = 1 ln β (d+1) we have for all β

  For the weight function σ(d) = 1/d α 1 ln β (d+1) the limit lim M →∞ ∆(xτ ) u

  Among the investigated weight functions σ 1 through σ 4 we found σ 2 (d) := 1/d exp(-λd) to be "smoothest", i.e., lim M →∞ ∆(xτ ) u

(

  In the present paper we could make detailed computations only in the case α = β = 1 for the function σ 2 .)

Figure 5 :

 5 Figure 5: The graph of S σ for σ(d) = 1/d 2.01 .

Figure 6 :

 6 Figure 6: The graph of S σ for σ(d) = exp(-d)/d.

Figure 7 :

 7 Figure 7: The graph of S σ for σ(d) = 1 ln 3 (d+1) .

Figure 8 :

 8 Figure 8: The graph of S σ for σ(d) = 1 d 2 ln 1.5 (d+1) .
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