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Sufficient conditions for the existence and asymptotic behavior of solution to a quasilinear elliptic problem

Dragos-Patru Covei

In this article we study the existence and asymptotic behavior of the solutions for the following quasilinear elliptic problem

-∆ p u = λa(x)g(u) in D (Ω) , u > 0 in Ω, lim x→∂Ω u(x) = 0, (1) 
where 1 < p < ∞, λ > 0 is a parameter, ∆ p u := div(|∇u| p-2 ∇u) is the p-Laplacian operator of u, Ω ⊂ R N (N ≥ 2) is a bounded domain with smooth boundary ∂Ω.

A solution of the problem (1) will be a function u ∈ C 1 (Ω) which satisfies

Ω |∇u| p-2 ∇u∇ϕdx = Ω λa(x)g(u)ϕdx, ϕ ∈ C ∞ 0 (Ω), (2) 
u(x) > 0, for all x ∈ Ω (3)

lim x→∂Ω u(x) = 0. ( 4 
)
Such problems has been extensively studied for both bounded or unbounded domains: Ye-Zhou [18], Goncalves-Santos [9], the author [2], Hai-Wang [8], Chai-Zhao [1], Goncalves-Silva [10] and references therein. Our study is motivated by the recent works of [1,2,9,10] where the existence, non-existence and asymptotic behavior of solutions for the problem (1) are solved in Ω ⊆ R N .

For instance, when Ω ⊂ R N in [2] the problem (1) has been considered under the assumptions that λ = 1, the anisotropic potential function a : Ω → R satisfies the conditions (a1) a ∈ C 0,α (Ω) for some α ∈ (0, 1); (a2) a(x) > 0 for all x ∈ Ω, and that the non-linearity g : (0, ∞) → (0, ∞) is a C 1 function such that (g1) t → g(t) t p-1 is decreasing on (0, ∞); (g2) lim t 0 g(t) = τ 0 and lim

t ∞ g(t) t p-1 = τ ∞
where 0 ≤ τ ∞ < ∞ and 0 < τ 0 ≤ ∞.

The above result has been generalized by Chai-Zhao [1] and Miao-Yang [19] for more general class of functions. After these results Goncalves-Silva [10] deals with more general conditions for the function g but in the case Ω ⊂ R N they didn't obtain the property (4) for the solution u. In other words the function u is not an entire solution.

Inspired by the above mentioned works we study, in a natural way, the existence and asymptotic behavior of solution to the problem (1). By construction of a suitable lower and upper solution, we intent in this paper to discover more ideas and techniques that in [1], [2] in order to open the access for more general class of function as in [10] in any situation Ω ⊆ R N .

Our main result is the following:

Theorem 1.1 Let Ω ⊂ R N be a bounded domain with smooth boundary. Under hypotheses (a1), (a2), (g1) and (g2) there is a non-negative number Λ 0 such that for all λ ∈ (0, Λ 0 ] there is a positive number µ := µ (λ) and some functions u := u λ ∈ C 1 (Ω) ∩ L ∞ (Ω) with u ≤ µ satisfying (1) in the sense of distributions. Moreover, there exists constant l 1 > 0 such that the solution u satisfies u(x) p [g(u(x)/4)2 p-1 + 1] -1/(p-1) ≤ λ -1 p-1 l 1 µ p-1 • 2 [(p-1) 2 +p]/(p-1) d(x), x ∈ Ω, (5) where d(x) denote the distance from x ∈ Ω to the boundary ∂Ω.

Our main theorem apply to the class of functions g (u) = u -γ + u λ + τ ∞ u p-1 , γ > 0 and 0 < λ < p -1 where lim t 0

g(t) = ∞ and lim t ∞ g(t) t p-1 = τ ∞ .
The result of existence and asymptotic behavior is a generalization of the work [2] in the whole space done for the p-Laplacian equation and of the work [9] done in bounded sets for the Laplace problem. To prove the main result we use the approach of lower and upper solutions employed in [10] in [3] with some adaptation in the estimates. The key tool is an inequality for the p-Laplacian developed by Diaz-Saà in the 1987's (see reference [6]).

The rest of this paper is organized as follows: in Section 2, we collect several technical lemmas. Section 3 contains the proof of our main result.

Preliminary results

We present some results about the eigenvalues problem for the p-Laplacian.

Let Ω ⊂ R N be a bounded domain with smooth boundary.

Definition 2.1 We will say that ξ ∈ R is an eigenvalue, if there exists a function ω ∈ W 1,p (Ω), ω = 0, such that ω = 0 on ∂Ω and

Ω |∇ω (x)| p-2 ∇ω (x) ∇η (x) dx = Ω ξ |ω (x)| p-2 ω (x) η (x) dx, (6) 
for any η ∈ C ∞ 0 (Ω). Definition 2.2 The function ω which appears in ( 6) is called the eigenfunction corresponding to the eigenvalue ξ.

A first observation about problem ( 6) is:

Remark 1 If (ω, ξ
) is a solution of the problem (6) then for any α ∈ R the couple (αω, ξ) is the same a solution.

For 1 < p < ∞ the existence of ξ and ω has been first considered by Garcia Azorero and Peral Alonzo [15]. They showed that there exists an increasing subset {ξ k } k≥1 of eigenvalue which are strictly positive and such that ξ k → ∞ for k → ∞.

It is well-known that the first eigenvalue which appears in ( 6) is

ξ 1 := inf Ω |∇ω| p dx Ω |ω| p dx ω ∈ W 1,p 0 (Ω), ω ≡ 0 > 0,
and that the eigenfunction corresponding to ξ 1 is the minimum of the Euler functional

J(ω) := 1 p Ω |∇ω| p - ξ 1 p Ω |ω| p .
Lindqvist [12,13] have obtained the following characterization for the eigenvalue ξ 1 and for the corresponding eigenfunctions:

Lemma 2.3 In any bounded domain Ω of R N (N ≥ 2) we have: i) ξ 1 is simple in the sense that if ω 1 , ω 2 
are the eigenfunctions corresponding to the eigenvalue ξ 1 then there exists a parameter c such that ω 1 = cω 2 ;

ii) the eigenfunctions corresponding to ξ 1 has a constant sign in the sense that ω > 0 or ω < 0;

iii) ξ 1 is isolated in the sense that there exists κ > 0 such that in the interval (ξ 1 , ξ 1 + κ) there are no other eigenfunctions of (6); iv) the non negative eigenfunction corresponding to ξ 1 is unique (after multypling by a constant).

In the article we note by ω 1 (Ω) the eigenfunction corresponding to the eigenvalue ξ 1 (Ω) for the problem (6). The C 1,α -regularity of the eigenfunctions corresponding to the eigenvalue ξ 1 for the problem (6) Taylor & Francis and I.T. Consultant Lemma 2.4 If ξ := ξ 1 in (6) then there there exists α ∈ (0, 1) such that ω 1 ∈ C 1,α (Ω).

The following result can be found in more general form in Diaz-Saà [6] and is the main tool in the proof of the main result.

Lemma 2.5

Let Ω ⊂ R N be a bounded domain with smooth boundary ∂Ω. Assume that G : Ω × R + → R is such that: H1) for a.e. x ∈ Ω, the function u → G(x, u) is continuous on [0, ∞) and the function u → G(x, u)/u p-1 is decreasing on (0, ∞) ; H2) for all u ≥ 0, the function x → G(x, u) belong to L ∞ (Ω) ; H3)

∃C > 0 such that G(x, u) ≤ C(u p-1 + 1) a.e. x ∈ Ω, ∀ u ≥ 0. Under these hypotheses, the problem

-∆ p u = G(x, u), u ≥ 0, u ≡ 0 in Ω, u = 0 on ∂Ω , (7) 
has almost one solution. If, in addition,

a 0 (x) = lim s 0 G(x, s) s p-1 and a ∞ (x) = lim s ∞ G(x, s) s p-1 , is such that -∞ < a 0 (x) ≤ +∞ and -∞ ≤ a ∞ (x) < +∞ ( 8 
)
then the problem (7) has a unique solution

u ∈ W 1,p 0 (Ω) ∩ L ∞ (Ω). Moreover u ∈ C 1,α Ω .
We restate the well-known result of Diaz-Saà which can be found in [6].

Lemma 2.6 Let Ω be an open set in R N . For i = 1, 2 let w i ∈ L ∞ (Ω)∩W 1,p (Ω) such that w i > 0 a.e. in Ω, ∆ p w 1/p i ∈ L ∞ (Ω) and w 1 = w 2 on ∂Ω. If w i /w j ∈ L ∞ (Ω) (i = j, i,j = 1, 2) then Ω -∆ p w 1/p 1 w (p-1)/p 1 + ∆ p w 1/p 2 w (p-1)/p 2 (w 1 -w 2 ) dx ≥ 0.
The next result can be found in more general form in the article of DiBenedetto [5] (see also Tolksdorf [16]). Lemma 2.7 Let N ≥ 2, p ∈ (1, ∞), Ω be an open set in R N and Ω a subset of Ω such that Ω ⊂ Ω. Assume that h : R N × R → R is a Carathéodory function (i.e. measurable in x ∈ Ω and continuous in u ∈ R) and that there exists

γ > 0 such that |h(x, u)| ≤ γ. If u ∈ W 1,p loc (Ω) ∩ L ∞ loc (Ω) satisfies -∆ p u = h (x, u) in D (Ω) ,
then |∇u| ∈ L ∞ loc (Ω) and for any compact subset K ⊂ Ω , there exists α ∈ (0, 1) and the parameters C 0 , C 1 > 0 depending only upon N , p, M = ess sup Ω |u|, γ (M ) and dist(K, ∂Ω ), such that

∇u L ∞ (K) ≤ C 0 and |u xi (x) -u xi (y)| ≤ C 1 |x -y| α , x, y ∈ K, i = 1, N . (9)
The following result can be found in [7]. 

F

-∆ p w 1 = a(x) in D (Ω) , w 1 > 0 in Ω, w 1 = 0 on ∂Ω, (10) 
has a unique solution w 1 ∈ C 1,α (Ω). Moreover, there exist constants

l 1 ≥ k 1 > 0, such that k 1 d(x) ≤ w 1 (x) ≤ l 1 d(x)
on Ω where d(x) denote the distance from x ∈ Ω to the boundary ∂Ω.

The following lemma can be found in [11].

Lemma 2.9 Let Ω be a domain in R N (but otherwise arbitrary, in particular, not necessarily smooth or bounded). Then for every k ∈ N there exist bounded domains

Ω k such that i) the boundary of Ω k is of class C ∞ ; ii) Ω k ⊂ Ω k+1 ⊂ Ω; iii) ∪ k∈N Ω k = Ω.
The first result of this section is the following.

Lemma 2.10 Make the same assumption on a and Ω as in Lemma 2.8. If in addition (g1) and (g2) hold, then there exists number Λ 0 ∈ (0, ∞) such that for each λ ∈ (0, Λ 0 ] there are a positive number µ := µ (λ) and a function

v l := v l λ ∈ C 1 (Ω) with max x∈Ω v l (x) = µ satisfying -∆ p v l ≥ λa(x)g(v l ) in D (Ω) , v l > l in Ω, v l = l on ∂Ω, (11) 
where l ≥ 0 is a parameter.

Proof.. Let w 1 ∈ C 1,α Ω be the unique solution of the problem (10) and w a function defined by

w(x) := λ 1 p-1 w 1 (x) for all x ∈ Ω. ( 12 
)
Set M := max x∈Ω w 1 (x), and Λ 0 =

1 M (p-1) p-1 1 τ∞ .
Let λ ∈ (0, Λ 0 ). Consider first the function 1) for y > 0 and l ≥ 0.

H(y + l) = (g(y + l) + 1) 1/(p-

Note that

H1)H(y + l) ≥ [g (y + l)] 1/(p-1) ; H2) lim y→0+ H(y + l)/y = ∞; H3) lim y→∞ H(y + l)/y = (τ ∞ ) 1/(p-1) ; H4)y → H(y + l)/y p-1 is decreasing on (0, ∞).
Consider the continuous function 

Π (y) := 1 M y p-1 y-l 0 σ p-1 H (σ + l) dσ, y > l,
σ p-1 H (σ + l) dσ = lim y→∞ (y -l) p-1 M (p -1) y p-2 H (y) = 1 (p -1) M 1 τ ∞ 1 p-1 (13) and lim y→l 1 M y p-1 y-l 0 σ p-1 H (σ + l) dσ = 0. ( 14 
)
From ( 13) and ( 14) one easily deduces that, for every object λ ∈ (0, Λ 0 ] there is some µ ∈ (l, ∞) with the property Π (µ) = λ 1/(p-1) , which is equivalent to

1 µ p-1 µ-l 0 σ p-1 H (σ + l) dσ = M λ 1 p-1 . ( 15 
)
Introduce the function

I : R N × [l, µ] → R by I (x, s) = w (x) - 1 µ p-1 s-l 0 σ p-1 H (σ + l) dσ.
Then

∂I (x, s) ∂s = - 1 µ p-1 (s -l) p-1 H (s) < 0, s > l. (16) 
Now, as an application of ( 16) there is a function

v l : Ω → [l, µ] of class C 1,α Ω such that I x, v l (x) = 0 for all x ∈ Ω and so w(x) = 1 µ p-1 v l (x)-l 0 σ p-1 H (σ + l) dσ, (17) 
is well defined. Moreover for

Γ (t) = t 0 σ p-1 H (σ + l) dσ
we also have

v l (x) = Γ -1 µ p-1 w(x) + l, (18) 
where Γ -1 is the inverse function of Γ and from Lemma 2.8 that By (12) we get in the point x 0 , where the maximum is achieved that

Γ -1 k 1 λ 1 p-1 µ p-1 d (x) ≤ v l (x) -l ≤ Γ -1 l 1 λ 1 p-1 µ p-1 d (x) on Ω. ( 19 
) Letting x → ∂Ω in (19) follows v l (x) = l on ∂Ω. Of course, we still need to prove that max x∈Ω v l (x) = µ for all x ∈ Ω. ( 20 
w (x 0 ) = λ 1 p-1 M = 1 µ p-1 µ-l 0 σ p-1 H (σ + l) dσ ≥ w (x) = 1 µ p-1 v l (x)-l 0 σ p-1 H (σ + l) dσ,
and

I (x 0 , µ) = w (x 0 ) - 1 µ p-1 µ-l 0 σ p-1 H (σ + l) dσ = 0.
Then v l (x) ≤ µ for all x ∈ Ω and so v l (x 0 ) = µ.

It remains to show that v l (x) constructed in ( 17) is an upper bound for the problem (11).

Differentiating in (17) with respect to x we obtain

∆ p w = v l -l p-1 µ p-1 H (v l -l) p-1 ∆ p v l + (p -1)|∇v l | p µ 2(p-1) v l -l p-1 H (v l -l) p-2 ∂ ∂v l v l -l p-1 H (v l -l) .
and using H4) we have

-∆ p v l ≥ - µ p-1 H v l -l (v l -l) p-1 p-1 ∆ p w = λa(x) µ p-1 H v l -l (v l -l) p-1 p-1 ≥ λa(x)g v l ,
Then the same arguments used in [10] follows that v verifies

-∆ p v l ≥ -λa(x)g(v l ) in Ω. ( 21 
)
in the distributions sense and the proof is now complete. This key lemma was suggested in an early version of [10].

Proof of the main result

There are several new ideas in the works [1], [2], [10] and [19] which will be exploited in the next proof.

For each ε > 0 consider the function

G ε : Ω × R + → (0, ∞) defined by G ε (x, s) := λa(x)g(s + ε) if s ≥ 0
and the associated problem

-∆ p v = G ε (x, v) in Ω, v(x) = 0 on ∂Ω. (22) 
In order to obtain a solution of the problem (22), it is enough to check the hypotheses of the Diaz-Saà theorem are fulfilled. Taylor & Francis and I.T. Consultant using positivity of a and (g1) we deduce that the function u → Gε(x,u) u p-1 is decreasing on (0, ∞).

H1 : Since g ∈ C 1 ((0, ∞) , (0, ∞)) and ε > 0, it follows that the mapping u → G ε (x, u) is continuous in [0, ∞) and from G ε (x, u) u p-1 = λa(x) g(u + ε) (u + ε) p-1 1 + ε u p-1 F o r P e e r
H2 : For all u ≥ 0, since a ∈ C 0,α (Ω), we obtain x → a(x)g(u) belongs to L ∞ (Ω).

H3 : By lim u→∞ g(u+ε)

u p-1 +1 = lim u→∞ g(u+ε) (u+ε) p-1 • (u+ε) p-1 u p-1 +1 = τ ∞ , a ∈ C 0,α (Ω) and g ∈ C 1 ((0, ∞) , (0, ∞)), there exists C > 0 such that G ε (x, u) ≤ C(u p-1 + 1) for all u ≥ 0.
Observe that

a 0 (x) = lim u 0 G ε (x, u) u p-1 = +∞ and a ∞ (x) = lim u→+∞ G ε (x, u) u p-1 = λa (x) τ ∞ .
Thus by results of Diaz-Saà, problem (22) has a unique positive solution

u ε ∈ W 1,p 0 (Ω) ∩ C 1,α (Ω) such that Ω |∇u ε (x)| p-2 ∇u ε ∇ϕdx = Ω G ε (x, u)ϕdx ∀ϕ ∈ C ∞ 0 (Ω) , u ε > 0 in Ω, ( 23 
)
u ε = 0 on ∂Ω.
We will start by producing a lower solution of the equation (23). To this end, pick λ ∈ (0, Λ 0 ]. For simplicity, we denote by ξ 1 (λ) := ξ 1 (λ, Ω) and ω 1,λ := ω 1 (λ, Ω).

Notice that under this notation we have

-∆ p ω 1,λ = ξ 1 (λ)λω 1,λ |ω 1,λ | p-2 in Ω, ω 1,λ > 0 in Ω, ω 1,λ = 0 on ∂Ω.
Since lim s→0+ g(s)/s p-1 = +∞ and a ∈ C α Ω with a > 0 on Ω there exists

δ := δ (λ) > 0 such that g(s) s p-1 ≥ ξ 1 (λ) min x∈Ω a (x) ∀ s ∈ (0, δ) . ( 24 
)
Let u 1 (x) = cω 1,λ (x) where c is a constant chosen such that

0 < c < δ max x∈Ω ω 1,λ (x)
.

Then u = u 1 -ε satisfies -∆ p u = -∆ p u 1 = ξ 1 (λ)λ (cω 1,λ ) p-1 ≤ λa (x) g (u 1 ) = λa (x) g (u + ε) = G ε (x, u) in D (Ω) ,
i.e. u(x) is a lower solution of (23). We see by Lemma 2.10 that there exists at least one solution u ε (x) corresponding to l = ε which satisfies (11) in the sense of distributions that means Taking ε > 0 small enough, recalling that u ε (x) = ε > 0 on ∂Ω and setting u(x) = u ε (x) -ε we have

Ω |∇u ε (x)| p-2 ∇u ε (x)∇ϕdx ≥ Ω λa (x) g (u ε (x)) ϕdx , ϕ ∈ C ∞ 0 (Ω) u ε (x) > ε in Ω, ( 25 
)
u ε (x) = ε on ∂Ω. F o
-∆ p u(x) = -∆ p u ε (x) ≥ λa(x)g(u ε (x)) = G ε (x, u(x)) in D (Ω),
showing u(x) is an upper solution of (22).

We note here that u ε (x) is a suitable upper solution chosen to meet the lower and upper solution method for singular problems developed recently by Goncalves and Santos [10]. The upper solution suggest the study of (1) for more general class of functions as in [3], [10].

Set B u1,uε = {x ∈ Ω u 1 (x) > u ε (x) }.
We show that B u1,uε = ∅. To this end, notice that B u1,uε ⊂ Ω is open and, in fact, B u1,uε ⊂⊂ Ω. Assume, to the contrary, that B u1,uε = ∅. Let w 1 := (u 1 ) p and w 2 := (u ε ) p . Now, applying Diaz-Saà's inequality we have

0 ≤ Bu 1 ,uε -∆ p w 1/p 1 w (p-1)/p 1 + ∆ p w 1/p 2 w (p-1)/p 2 (w 1 -w 2 ) dx = Bu 1 ,uε -∆ p u 1 (x) (u 1 (x)) p-1 + ∆ p u ε (x) (u ε (x)) p-1 (w 1 -w 2 ) dx ≤ Bu 1 ,uε λ ξ 1 (λ) u p-1 1 u p-1 1 -a (x) g (u ε (x)) u p-1 ε (w 1 -w 2 ) dx ≤ Bu 1 ,uε λ ξ 1 (λ) -a (x) g (u 1 (x)) u p-1 1 (w 1 -w 2 ) dx < 0,
which is impossible. This shows that B u1,uε = ∅, proving the claim. Hence u(x) ≤ u(x) in Ω. Moreover, we can easy prove that

u(x) < u ε (x) ≤ u(x) in Ω. ( 26 
)
Now, due to Lemma 2.9 we can approximate Ω with smooth bounded domains Ω k such that

Ω k ⊂ Ω k+1 ⊂ Ω for all k ∈ N and Ω = ∪ ∞ k=1 Ω k .
Taking an integer k ≥ 1 such that supp(ϕ)⊂ Ω k we have by ( 23)

Ωk |∇u ε (x)| p-2 ∇u ε (x)∇ϕ(x)dx = Ωk λa(x)g(u ε (x) + ε)ϕdx, u ε > 0 in Ω k , (27) 
By Lemma 2.7 we see that there are α ∈ (0, 1) and the constants C 0 , C 1 > 0 such that Taylor & Francis and I.T. Consultant Now, since the embedding

|∇u ε (x)| L ∞ ≤ C 0 and |∇u ε (x) -∇u ε (x)| ≤ C |x -y| α , x, y ∈ Ω k k = 1,
C 1,α (Ω 1 ) → → C 1 (Ω 1 )
is compact there exists a sequence denoted by {u n1,j

1 } j=1,2,... where n 1j → ∞ as j → ∞ such that u n1,j 1 n1j→∞ → u 1 in C 1 (Ω 1 ) and u 1 > 0 in Ω 1 . Hence ∇u n1,j 1 p-2 ∇u n1,j 1 n1j→∞ -→ |∇u 1 | p-2 ∇u 1 in C(Ω 1 ).
We have by the standard integral convergence theorems, that

Ω1 ∇u n1,j 1 p-2 ∇u n1,j 1 ∇ϕ(x)dx n1j→∞ -→ Ω1 |∇u 1 | p-2 ∇u 1 ∇ϕ(x)dx, and Ω1 λa(x)g(u n1,j 1 + 1/n 1,j )ϕdx n1,j→∞ → Ω1 λa(x)g(u 1 )ϕdx. Then u 1 satisfies (2)-(3) with Ω = Ω 1 .
Repeat the above proof up to the existence of the sequence {u n1,j

1 } j=1,2,... to get a subsequence {u n2,j 2 } j=1,2,... such that u n2,j 2 n2j→∞ → u 2 in C 1 (Ω 2 ) and u 2 > 0 in Ω 2 . Hence ∇u n2,j 2 p-2 ∇u n2,j 2 n2j→∞ -→ |∇u 2 | p-2 ∇u 2 in C(Ω 2 ).
The likewise u 2 is a solution of (2)- (3) with Ω = Ω 2 and u 2|Ω1 = u 1 . Choose k large. In the same way as above, we obtain a sequence {u nk,j k } j=1,2,... which is a subsequence of {u

n(k-1),j k } such that u nk,j k nkj→∞ → u k in C 1 (Ω k ) and u k > 0 in Ω k and ∇u nk,j k p-2 ∇u nk,j k nkj→∞ -→ |∇u k | p-2 ∇u k in C(Ω k ). Then u k |Ωk-1 = u k-1 and u k is a solution of (2)-(3) with Ω = Ω k . Let u : Ω → (0, ∞) defined by u(x) := lim k→∞ u k (x). We have u ∈ C 1 (Ω), u(x) > 0 in Ω and u(x) ≤ u(x) ≤ u(x)
in Ω (since u k > 0 in Ω and u ≤ u k ≤ u for every k). Hence u |∂Ω = 0 because we have u |∂Ω = 0 and so u is the solution of the problem (1).

The asymptotic behavior of solution is given in what follows. Let u 0 (x) the solution of (11) corresponding to ε = 0. From the above arguments we have where h 1 (t) := t p-1 /H(t), t > 0.

w(x) = 1 µ p-1 u0(x) 0 t p-1 /H (t) dt ≥ 1 µ p-1 u0 u0/2 t p-1 /H(t) dt := 1 µ p-1 u0 u0/2 h 1 (t)
Using H1), H4) and the definition of H(t) we find that

w(x) ≥ 1 µ p-1 h 1 (u 0 (x)/2)(u 0 (x)/2) ≥ 1 µ p-1 ( 1 2 ) p/(p-1) ( u 0 (x) 2 ) p 1 [g(u 0 (x)/4)(1 + 1/g(u 0 (x)/2))] 1/(p-1) . Using g1) w(x) ≥ 1 µ p-1 ( 1 2
) p/(p-1) ( u 0 (x) 4 ) p 2 p+1 [g(u 0 (x)/4)2 p-1 + 1] 1/(p-1) . ( 28)

From (28), g1) and the fact that u ≤ u 0 we get

u(x) p [g(u(x)/4)2 p-1 + 1] -1/(p-1) ≤ µ p-1 • 2 [(p-1) 2 +p]/(p-1) w(x) for all x ∈ Ω. ( 29 
)
Then is sufficient to apply Lemma 2.8 to obtain (5). This ends the proof of Theorem 1.1.

Remark 1

The case Ω = R N can be now treated as in [3], [10].

We can observe from [4] the following: 

Remark 2 Let τ 0 ∈ (0, ∞] and τ ∞ ∈ [0, ∞). If g : (0, ∞) → (0, ∞) is a continuous function then the following are equivalently: i) lim s 0 g(s) = τ 0 and lim s ∞ g(s) s p-1 = τ ∞ ; ii) exists η > 0 such that lim s 0 g(s) (s+η) p-1 = τ0 η p-1 and lim s ∞ g(s) (s+η) p-1 = τ ∞ . F o

Introduction

In this article we study the existence and asymptotic behavior of the solutions for the following quasilinear elliptic problem

-∆ p u = λa(x)g(u) in D (Ω) , u > 0 in Ω, lim x→∂Ω u(x) = 0, (1) 
where 1 < p < ∞, λ > 0 is a parameter, ∆ p u := div(|∇u| p-2 ∇u) is the p-Laplacian operator of u, Ω ⊂ R N (N ≥ 2) is a bounded domain with smooth boundary ∂Ω.

A solution of the problem (1) will be a function u ∈ C 1 (Ω) which satisfies Such problems has been extensively studied for both bounded or unbounded domains: Ye-Zhou [18], Goncalves-Santos [9], the author [2], Hai-Wang [8], Chai-Zhao [1], Goncalves-Silva [10] and references therein. Our study is motivated by the recent works of [1,2,9,10] where the existence, non-existence and asymptotic behavior of solutions for the problem (1) are solved in Ω ⊆ R N .

Ω |∇u| p-2 ∇u∇ϕdx = Ω λa(x)g(u)ϕdx, ϕ ∈ C ∞ 0 (Ω), (2) 
For instance, when Ω ⊂ R N in [2] the problem (1) has been considered under the assumptions that λ = 1, the anisotropic potential function a : Ω → R satisfies the conditions (a1) a ∈ C 0,α (Ω) for some α ∈ (0, 1); (a2) a(x) > 0 for all x ∈ Ω, and that the non-linearity g : (0,

∞) → (0, ∞) is a C 1 function such that (g1) t → g(t) t p-1 is decreasing on (0, ∞); (g2) lim t 0 g(t) = τ 0 and lim t ∞ g(t) t p-1 = τ ∞ where 0 ≤ τ ∞ < ∞ and 0 < τ 0 ≤ ∞.
The above result has been generalized by Chai-Zhao [1] and Miao-Yang [19] for more general class of functions. After these results Goncalves-Silva [10] deals with more general conditions for the function g but in the case Ω ⊂ R N they didn't obtain the property (4) for the solution u. In other words the function u is not an entire solution.

Inspired by the above mentioned works we study, in a natural way, the existence and asymptotic behavior of solution to the problem (1). By construction of a suitable lower and upper solution, we intent in this paper to discover more ideas and techniques that in [1], [2] in order to open the access for more general class of function as in [10] in any situation Ω ⊆ R N .

Our main result is the following:

Theorem 1.1 Let Ω ⊂ R N be a bounded domain with smooth boundary. Under hypotheses (a1), (a2), (g1) and (g2) there is a non-negative number Λ 0 such that for all λ ∈ (0, Λ 0 ] there is a positive number µ := µ (λ) and some functions u := u λ ∈ C 1 (Ω) ∩ L ∞ (Ω) with u ≤ µ satisfying (1) in the sense of distributions. Moreover, there exists constant l 1 > 0 such that the solution u satisfies

u(x) p [g(u(x)/4)2 p-1 + 1] -1/(p-1) ≤ λ -1 p-1 l 1 µ p-1 • 2 [(p-1) 2 +p]/(p-1) d(x), x ∈ Ω, ( 5 
)
where d(x) denote the distance from x ∈ Ω to the boundary ∂Ω.

Our main theorem apply to the class of functions

g (u) = u -γ + u λ + τ ∞ u p-1 , γ > 0 and 0 < λ < p -1 where lim t 0 g(t) = ∞ and lim t ∞ g(t) t p-1 = τ ∞ .
The result of existence and asymptotic behavior is a generalization of the work [2] in the whole space done for the p-Laplacian equation and of the work [9] done in bounded sets for the Laplace problem. To prove the main result we use the approach of lower and upper solutions employed in [10] and the results obtained in [3] with some adaptation in the estimates. The key tool is an inequality for the p-Laplacian developed by Diaz-Saà in the 1987's (see reference [6]). The rest of this paper is organized as follows: in Section 2, we collect several technical lemmas. Section 3 contains the proof of our main result.

Preliminary results

We present some results about the eigenvalues problem for the p-Laplacian.

Let Ω ⊂ R N be a bounded domain with smooth boundary.

Definition 2.1 We will say that ξ ∈ R is an eigenvalue, if there exists a function ω ∈ W 1,p (Ω), ω = 0, such that ω = 0 on ∂Ω and

Ω |∇ω (x)| p-2 ∇ω (x) ∇η (x) dx = Ω ξ |ω (x)| p-2 ω (x) η (x) dx, (6) 
for any η ∈ C ∞ 0 (Ω). Definition 2.2 The function ω which appears in ( 6) is called the eigenfunction corresponding to the eigenvalue ξ.

A first observation about problem ( 6) is:

Remark 1 If (ω, ξ
) is a solution of the problem ( 6) then for any α ∈ R the couple (αω, ξ) is the same a solution.

For 1 < p < ∞ the existence of ξ and ω has been first considered by Garcia Azorero and Peral Alonzo [15]. They showed that there exists an increasing subset {ξ k } k≥1 of eigenvalue which are strictly positive and such that ξ k → ∞ for k → ∞.

It is well-known that the first eigenvalue which appears in ( 6) is

ξ 1 := inf Ω |∇ω| p dx Ω |ω| p dx ω ∈ W 1,p 0 (Ω), ω ≡ 0 > 0,
and that the eigenfunction corresponding to ξ 1 is the minimum of the Euler functional

J(ω) := 1 p Ω |∇ω| p - ξ 1 p Ω |ω| p .
Lindqvist [12,13] have obtained the following characterization for the eigenvalue ξ 1 and for the corresponding eigenfunctions:

Lemma 2.3 In any bounded domain Ω of R N (N ≥ 2) we have: i) ξ 1 is simple in the sense that if ω 1 , ω 2 
are the eigenfunctions corresponding to the eigenvalue ξ 1 then there exists a parameter c such that ω 1 = cω 2 ;

ii) the eigenfunctions corresponding to ξ 1 has a constant sign in the sense that ω > 0 or ω < 0;

iii) ξ 1 is isolated in the sense that there exists κ > 0 such that in the interval (ξ 1 , ξ 1 + κ) there are no other eigenfunctions of (6); iv) the non negative eigenfunction corresponding to ξ 1 is unique (after multypling by a constant).

In the article we note by ω 1 (Ω) the eigenfunction corresponding to the eigenvalue ξ 1 (Ω) for the problem (6). The C 1,α -regularity of the eigenfunctions corresponding to the eigenvalue ξ 1 for the problem ( 6) is given in the following: 6) then there there exists α ∈ (0, 1) such that ω 1 ∈ C 1,α (Ω).

The following result can be found in more general form in Diaz-Saà [6] and is the main tool in the proof of the main result. Lemma 2.5 Let Ω ⊂ R N be a bounded domain with smooth boundary ∂Ω. Assume that G : Ω × R + → R is such that: H1) for a.e. x ∈ Ω, the function u → G(x, u) is continuous on [0, ∞) and the function u → G(x, u)/u p-1 is decreasing on (0, ∞) ; H2) for all u ≥ 0, the function x → G(x, u) belong to L ∞ (Ω) ; H3)

∃C > 0 such that G(x, u) ≤ C(u p-1 + 1) a.e. x ∈ Ω, ∀ u ≥ 0. Under these hypotheses, the problem

-∆ p u = G(x, u), u ≥ 0, u ≡ 0 in Ω, u = 0 on ∂Ω , (7) 
has almost one solution. If, in addition,

a 0 (x) = lim s 0 G(x, s) s p-1 and a ∞ (x) = lim s ∞ G(x, s) s p-1 , is such that -∞ < a 0 (x) ≤ +∞ and -∞ ≤ a ∞ (x) < +∞ (8) 
then the problem (7) has a unique solution

u ∈ W 1,p 0 (Ω) ∩ L ∞ (Ω). Moreover u ∈ C 1,α Ω .
We restate the well-known result of Diaz-Saà which can be found in [6].

Lemma 2.6 Let Ω be an open set in R N . For i = 1, 2 let w i ∈ L ∞ (Ω)∩W 1,p (Ω) such that w i > 0 a.e. in Ω, ∆ p w 1/p i ∈ L ∞ (Ω) and w 1 = w 2 on ∂Ω. If w i /w j ∈ L ∞ (Ω) (i = j, i,j = 1, 2) then Ω -∆ p w 1/p 1 w (p-1)/p 1 + ∆ p w 1/p 2 w (p-1)/p 2 (w 1 -w 2 ) dx ≥ 0.
The next result can be found in more general form in the article of DiBenedetto [5] (see also Tolksdorf [16]).

Lemma 2.7 Let N ≥ 2, p ∈ (1, ∞), Ω be an open set in R N and Ω a subset of Ω such that Ω ⊂ Ω. Assume that h : R N × R → R is a Carathéodory function (i.e. measurable in x ∈ Ω and continuous in u ∈ R) and that there exists γ > 0 such that |h(x, u)| ≤ γ. If u ∈ W 1,p loc (Ω) ∩ L ∞ loc (Ω) satisfies -∆ p u = h (x, u) in D (Ω) , then |∇u| ∈ L ∞ loc (Ω)
and for any compact subset K ⊂ Ω , there exists α ∈ (0, 1) and the parameters C 0 , C 1 > 0 depending only upon N , p, M = ess sup Ω |u|, γ (M ) and dist(K, ∂Ω ), such that

∇u L ∞ (K) ≤ C 0 and |u xi (x) -u xi (y)| ≤ C 1 |x -y| α , x, y ∈ K, i = 1, N . (9)
The following result can be found in [7]. Lemma 2.8 Let Ω ⊂ R N be a bounded domain with smooth boundary. If (a1) and (a2) hold, then

-∆ p w 1 = a(x) in D (Ω) , w 1 > 0 in Ω, w 1 = 0 on ∂Ω, (10) 
has a unique solution w 1 ∈ C 1,α (Ω). Moreover, there exist constants

l 1 ≥ k 1 > 0, such that k 1 d(x) ≤ w 1 (x) ≤ l 1 d(x)
on Ω where d(x) denote the distance from x ∈ Ω to the boundary ∂Ω.

The following lemma can be found in [11].

Lemma 2.9 Let Ω be a domain in R N (but otherwise arbitrary, in particular, not necessarily smooth or bounded). Then for every k ∈ N there exist bounded domains

Ω k such that i) the boundary of Ω k is of class C ∞ ; ii) Ω k ⊂ Ω k+1 ⊂ Ω; iii) ∪ k∈N Ω k = Ω.
The first result of this section is the following.

Lemma 2.10 Make the same assumption on a and Ω as in Lemma 2.8. If in addition (g1) and (g2) hold, then there exists number Λ 0 ∈ (0, ∞) such that for each λ ∈ (0, Λ 0 ] there are a positive number µ := µ (λ) and a function

v l := v l λ ∈ C 1 (Ω) with max x∈Ω v l (x) = µ satisfying -∆ p v l ≥ λa(x)g(v l ) in D (Ω) , v l > l in Ω, v l = l on ∂Ω, (11) 
where l ≥ 0 is a parameter.

Proof.. Let w 1 ∈ C 1,α Ω be the unique solution of the problem (10) and w a function defined by w(x) := λ Let λ ∈ (0, Λ 0 ). Consider first the function H(y + l) = (g(y + l) + 1) 1/(p-1) for y > 0 and l ≥ 0.

Note that

H1)H(y + l) ≥ [g (y + l)] 1/(p-1) ; H2) lim y→0+ H(y + l)/y = ∞;
H3) lim y→∞ H(y + l)/y = (τ ∞ ) 1/(p-1) ; H4)y → H(y + l)/y p-1 is decreasing on (0, ∞). 

σ p-1 H (σ + l) dσ = lim y→∞ (y -l) p-1 M (p -1) y p-2 H (y) = 1 (p -1) M 1 τ ∞ 1 p-1 (13) and lim y→l 1 M y p-1 y-l 0 σ p-1 H (σ + l) dσ = 0. ( 14 
)
From ( 13) and ( 14) one easily deduces that, for every object λ ∈ (0, Λ 0 ] there is some µ ∈ (l, ∞) with the property Π (µ) = λ 1/(p-1) , which is equivalent to

1 µ p-1 µ-l 0 σ p-1 H (σ + l) dσ = M λ 1 p-1 . (15) 
Introduce the function I : R N × [l, µ] → R by

I (x, s) = w (x) - 1 µ p-1 s-l 0 σ p-1 H (σ + l) dσ.
Then

∂I (x, s) ∂s = - 1 µ p-1 (s -l) p-1 H (s) < 0, s > l. (16) 
Now, as an application of ( 16) there is a function v l : Ω → [l, µ] of class C 1,α Ω such that I x, v l (x) = 0 for all x ∈ Ω and so

w(x) = 1 µ p-1 v l (x)-l 0 σ p-1 H (σ + l) dσ, (17) 
is well defined. Moreover for

Γ (t) = t 0 σ p-1 H (σ + l) dσ
we also have

v l (x) = Γ -1 µ p-1 w(x) + l, (18) 
where Γ -1 is the inverse function of Γ and from Lemma 2.8 that By (12) we get in the point x 0 , where the maximum is achieved that

Γ -1 k 1 λ -1 p-1 µ p-1 d (x) ≤ v l (x) -l ≤ Γ -1 l 1 λ -1 p-1 µ p-1 d (x) on Ω. ( 19 
w (x 0 ) = λ 1 p-1 M = 1 µ p-1 µ-l 0 σ p-1 H (σ + l) dσ ≥ w (x) = 1 µ p-1 v l (x)-l 0 σ p-1 H (σ + l) dσ, and 
I (x 0 , µ) = w (x 0 ) - 1 µ p-1 µ-l 0 σ p-1 H (σ + l) dσ = 0.
Then v l (x) ≤ µ for all x ∈ Ω and so v l (x 0 ) = µ.

It remains to show that v l (x) constructed in ( 17) is an upper bound for the problem (11).

Differentiating in (17) with respect to x we obtain

∆ p w = v l -l p-1 µ p-1 H (v l -l) p-1 ∆ p v l + (p -1)|∇v l | p µ 2(p-1) v l -l p-1 H (v l -l) p-2 ∂ ∂v l v l -l p-1 H (v l -l) .
and using H4) we have

-∆ p v l ≥ - µ p-1 H v l -l (v l -l) p-1 p-1 ∆ p w = λa(x) µ p-1 H v l -l (v l -l) p-1 p-1 ≥ λa(x)g v l ,
Then the same arguments used in [10] follows that v verifies

-∆ p v l ≥ -λa(x)g(v l ) in Ω. (21) 
in the distributions sense and the proof is now complete. This key lemma was suggested in an early version of [10].

Proof of the main result

There are several new ideas in the works [1], [2], [10] and [19] which will be exploited in the next proof.

For each ε > 0 consider the function

G ε : Ω × R + → (0, ∞) defined by G ε (x, s) := λa(x)g(s + ε) if s ≥ 0
and the associated problem

-∆ p v = G ε (x, v) in Ω, v(x) = 0 on ∂Ω. (22) 
In order to obtain a solution of the problem (22), it is enough to check the hypotheses of the Diaz-Saà theorem are fulfilled. Taylor & Francis and I.T. Consultant using positivity of a and (g1) we deduce that the function u → Gε(x,u) u p-1 is decreasing on (0, ∞).

H1 : Since g ∈ C 1 ((0, ∞) , (0, ∞)) and ε > 0, it follows that the mapping u → G ε (x, u) is continuous in [0, ∞) and from G ε (x, u) u p-1 = λa(x) g(u + ε) (u + ε) p-1
H2 : For all u ≥ 0, since a ∈ C 0,α (Ω), we obtain x → a(x)g(u) belongs to L ∞ (Ω).

H3 : By lim u→∞ g(u+ε)

u p-1 +1 = lim u→∞ g(u+ε) (u+ε) p-1 • (u+ε) p-1 u p-1 +1 = τ ∞ , a ∈ C 0,α (Ω) and g ∈ C 1 ((0, ∞) , (0, ∞)), there exists C > 0 such that G ε (x, u) ≤ C(u p-1 + 1) for all u ≥ 0.
Observe that

a 0 (x) = lim u 0 G ε (x, u) u p-1 = +∞ and a ∞ (x) = lim u→+∞ G ε (x, u) u p-1 = λa (x) τ ∞ .
Thus by results of Diaz-Saà, problem (22) has a unique positive solution

u ε ∈ W 1,p 0 (Ω) ∩ C 1,α (Ω) such that Ω |∇u ε (x)| p-2 ∇u ε ∇ϕdx = Ω G ε (x, u)ϕdx ∀ϕ ∈ C ∞ 0 (Ω) , u ε > 0 in Ω, (23) 
u ε = 0 on ∂Ω.

We will start by producing a lower solution of the equation (23). To this end, pick λ ∈ (0, Λ 0 ]. For simplicity, we denote by ξ 1 (λ) := ξ 1 (λ, Ω) and ω 1,λ := ω 1 (λ, Ω).

Notice that under this notation we have

-∆ p ω 1,λ = ξ 1 (λ)λω 1,λ |ω 1,λ | p-2 in Ω, ω 1,λ > 0 in Ω, ω 1,λ = 0 on ∂Ω.
Since lim s→0+ g(s)/s p-1 = +∞ and a ∈ C α Ω with a > 0 on Ω there exists

δ := δ (λ) > 0 such that g(s) s p-1 ≥ ξ 1 (λ) min x∈Ω a (x) ∀ s ∈ (0, δ) . ( 24 
)
Let u 1 (x) = cω 1,λ (x) where c is a constant chosen such that 0 < c < δ max x∈Ω ω 1,λ (x) .

Then u = u 1ε satisfies

-∆ p u = -∆ p u 1 = ξ 1 (λ)λ (cω 1,λ ) p-1 ≤ λa (x) g (u 1 ) = λa (x) g (u + ε) = G ε (x, u) in D (Ω) ,
i.e. u(x) is a lower solution of (23). We see by Lemma 2.10 that there exists at least one solution u ε (x) corresponding to l = ε which satisfies (11) in the sense of distributions that means Taking ε > 0 small enough, recalling that u ε (x) = ε > 0 on ∂Ω and setting u(x) = u ε (x)ε we have -∆ p u(x) = -∆ p u ε (x) ≥ λa(x)g(u ε (x)) = G ε (x, u(x)) in D (Ω),

showing u(x) is an upper solution of (22). We note here that u ε (x) is a suitable upper solution chosen to meet the lower and upper solution method for singular problems developed recently by Goncalves and Santos [10]. The upper solution suggest the study of (1) for more general class of functions as in [3], [10].

Set B u1,uε = {x ∈ Ω u 1 (x) > u ε (x) }. We show that B u1,uε = ∅. To this end, notice that B u1,uε ⊂ Ω is open and, in fact, B u1,uε ⊂⊂ Ω. Assume, to the contrary, that B u1,uε = ∅. Let 
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 24 If ξ := ξ 1 in (

1 p- 1

 11 w 1 (x) for all x ∈ Ω. (12) Set M := max x∈Ω w 1 (x), and Λ 0 = 1 M (p-1) p-1 1 τ∞ .

Ω

  |∇u ε (x)| p-2 ∇u ε (x)∇ϕdx ≥ Ω λa (x) g (u ε (x)) ϕdx , ϕ ∈ C ∞ 0 (Ω) u ε (x) > ε in Ω,(25)u ε (x) = ε on ∂Ω.

2 (w 1 - 1 u p-1 1 -u p- 1 ε(w 1 - 1 (w 1 -w 2 )

 211111112 w 1 := (u 1 ) p and w 2 := (u ε ) p . Now, applying Diaz-Saà's inequality we have w 2 ) dx= Bu 1 ,uε -∆ p u 1 (x) (u 1 (x)) p-1 + ∆ p u ε (x) (u ε (x)) p-1 (w 1w 2 ) dx ≤ Bu 1 ,u ε λ ξ 1 (λ) u p-1 a (x) g (u ε (x)) w 2 ) dx ≤ Bu 1 ,uε λ ξ 1 (λ)a (x) g (u 1 (x)) u p-1 dx < 0,which is impossible. This shows that B u1,uε = ∅, proving the claim. Hence u(x) ≤ u(x) in Ω. Moreover, we can easy prove thatu(x) < u ε (x) ≤ u(x) in Ω.(26)Now, due to Lemma 2.9 we can approximate Ω with smooth bounded domains Ω k such thatΩ k ⊂ Ω k+1 ⊂ Ω for all k ∈ N and Ω = ∪ ∞ k=1 Ω k .Taking an integer k ≥ 1 such that supp(ϕ)⊂ Ω k we have by (23)Ωk |∇u ε (x)| p-2 ∇u ε (x)∇ϕ(x)dx = Ωk λa(x)g(u ε (x) + ε)ϕdx, u ε > 0 in Ω k ,(27)By Lemma 2.7 we see that there are α ∈ (0, 1) and the constants C 0 , C 1 > 0 such that|∇u ε (x)| L ∞ ≤ C 0 and |∇u ε (x) -∇u ε (x)| ≤ C |x -y| α , x, y ∈ Ω k k = 1, 2, ...Set ε := 1/n and u ε := u n . It follows that {u n } is bounded in C 1,α (Ω 1 ).
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  Letting x → ∂Ω in(19) follows v l (x) = l on ∂Ω. Of course, we still need to prove that max
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x∈Ω v l (x) = µ for all x ∈ Ω.
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Now, since the embedding

is compact there exists a sequence denoted by {u n1,j 1 } j=1,2,... where n 1j → ∞ as j → ∞ such that u n1,j 1 n1j →∞ → u 1 in C 1 (Ω 1 ) and u 1 > 0 in Ω 1 .

Hence

We have by the standard integral convergence theorems, that

Then u 1 satisfies (2)-( 3) with Ω = Ω 1 .

Repeat the above proof up to the existence of the sequence {u n1,j

Hence

The likewise u 2 is a solution of ( 2)-( 3) with Ω = Ω 2 and u 2|Ω1 = u 1 . Choose k large. In the same way as above, we obtain a sequence {u nk,j k } j=1,2,... which is a subsequence of {u

Then

in Ω (since u k > 0 in Ω and u ≤ u k ≤ u for every k). Hence u |∂Ω = 0 because we have u |∂Ω = 0 and so u is the solution of the problem (1). The asymptotic behavior of solution is given in what follows. Let u 0 (x) the solution of (11) corresponding to ε = 0. From the above arguments we have

where h 1 (t) := t p-1 /H(t), t > 0.

Using H1), H4) and the definition of H(t) we find that

) p/(p-1) ( u 0 (x) 4 ) p 2 p+1 [g(u 0 (x)/4)2 p-1 + 1] 1/(p-1) . ( 28)

From (28), g1) and the fact that u ≤ u 0 we get

Then is sufficient to apply Lemma 2.8 to obtain (5). This ends the proof of Theorem 1.1.

Remark 1

The case Ω = R N can be now treated as in [3], [10].

We can observe from [4] the following: