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We study a stochastic game where one player tries to find a strategy such that the state process reaches a target of controlled-loss-type, no matter which action is chosen by the other player. We provide, in a general setup, a relaxed geometric dynamic programming for this problem and derive, for the case of a controlled SDE, the corresponding dynamic programming equation in the sense of viscosity solutions. As an example, we consider a problem of partial hedging under Knightian uncertainty.

Introduction

We study a stochastic (semi) game of the following form. Given an initial condition (t, z) in time and space, we try to find a strategy u[•] such that the controlled state process Z u[ν],ν t,z (•) reaches a certain target at the given time T , no matter which control ν is chosen by the adverse player. The target is specified in terms of expected loss; that is, we are given a real-valued ("loss") function and try to keep the expected loss above a given threshold p ∈ R:

ess inf ν E Z u[ν],ν t,z (T ) |F t ≥ p a.s. (1.1)
Instead of a game, one may also see this as a target problem under Knightian uncertainty; then the adverse player has the role of choosing a worst-case scenario.

Our aim is to describe, for given t, the set Λ(t) of all pairs (z, p) such that there exists a strategy u attaining the target. We provide, in a general abstract framework, a geometric dynamic programming principle (GDP) for this set. To this end, p is seen as an additional state variable and formulated dynamically via a family {M ν } of auxiliary martingales with expectation p, indexed by the adverse controls ν. Heuristically, the GDP then takes the following form: Λ(t) consists of all (z, p) such that there exists a strategy u and a family {M ν } satisfying Z u[ν],ν t,z (τ ) , M ν (τ ) ∈ Λ (τ ) a.s. for all adverse controls ν and all stopping times τ ≥ t. The precise version of the GDP, stated in Theorem 2.1, incorporates several relaxations that allow us to deal with various technical problems. In particular, the selection of ε-optimal strategies is solved by a covering argument which is possible due a continuity assumption on and a relaxation in the variable p. The martingale M ν is constructed from the semimartingale decomposition of the adverse player's value process.

Our GDP is tailored such that the dynamic programming equation can be derived in the viscosity sense. We exemplify this in Theorem 3.4 for the standard setup where the state process is determined by a stochastic differential equation (SDE) with coefficients controlled by the two players; however, the general GDP applies also in other situations such as singular control. The solution of the equation, a partial differential equation (PDE) in our example, corresponds to the indicator function of (the complement of) the graph of Λ. In Theorem 3.8, we specialize to a case with a monotonicity condition that is particularly suitable for pricing problems in mathematical finance. Finally, in order to illustrate various points made throughout the paper, we consider a concrete example of pricing an option with partial hedging, according to a loss constraint, in a model where the drift and volatility coefficients of the underlying are uncertain. In a worst-case analysis, the uncertainty corresponds to an adverse player choosing the coefficients; a formula for the corresponding seller's price is given in Theorem 4.1.

Stochastic target (control) problems with almost-sure constraints, corresponding to the case where is an indicator function and ν is absent, were introduced in [START_REF] Soner | Dynamic programming for stochastic target problems and geometric flows[END_REF][START_REF] Soner | Stochastic target problems, dynamic programming, and viscosity solutions[END_REF] as an extension of the classical superhedging problem [START_REF] Karoui | Dynamic programming and pricing of contingent claims in an incomplete market[END_REF] in mathematical finance. Stochastic target problems with controlled loss were first studied in [START_REF] Bouchard | Stochastic target problems with controlled loss[END_REF] and are inspired by the quantile hedging problem [START_REF] Föllmer | Quantile hedging[END_REF]. The present paper is the first to consider stochastic target games. The rigorous treatment of zero-sum stochastic differential games was pioneered by [START_REF] Fleming | On the existence of value functions of twoplayer, zero-sum stochastic differential games[END_REF], where the mentioned selection problem for ε-optimal strategies was treated by a discretization and a passage to continuous-time limit in the PDEs. Let us remark, however, that we have not been able to achieve satisfactory results for our problem using such techniques. We have been importantly influenced by [START_REF] Buckdahn | Stochastic differential games and viscosity solutions of Hamilton-Jacobi-Bellman-Isaacs equations[END_REF], where the value functions are defined in terms of essential infima and suprema, and then shown to be deterministic. The formulation with an essential infimum (rather than an infimum of suitable expectations) in (1.1) is crucial in our case, mainly because {M ν } is constructed by a method of non-Markovian control, which raises the fairly delicate problem of dealing with one nullset for every adverse control ν.

The remainder of the paper is organized as follows. Section 2 contains the abstract setup and GDP. In Section 3 we specialize to the case of a controlled SDE and derive the corresponding PDE, first in the general case and then in the monotone case. The problem of hedging under uncertainty is discussed in Section 4.

Geometric dynamic programming principle

In this section, we obtain our geometric dynamic programming principle (GDP) in an abstract framework. Some of our assumptions are simply the conditions we need in the proof of the theorem; we will illustrate later how to actually verify them in a typical setup.

Problem statement

We fix a time horizon T > 0 and a probability space (Ω, F, P) equipped with a filtration F = (F t ) t∈[0,T ] satisfying the usual conditions of right-continuity and completeness. We shall consider two sets U and V of controls; for the sake of concreteness, we assume that each of these sets consists of stochastic processes on (Ω, F), indexed by [0, T ], and with values in some sets U and V , respectively. Moreover, let U be a set of mappings u : V → U. Each u ∈ U is called a strategy and the notation u[ν] will be used for the control it associates with ν ∈ V. In applications, U will be chosen to consist of mappings that are non-anticipating; see Section 3 for an example. Furthermore, we are given a metric space (Z, d Z ) and, for each (t, z) ∈ [0, T ] × Z and (u, ν) ∈ U × V, an adapted càdlàg process Z u[ν],ν t,z (•) with values in Z satisfying Z u[ν],ν t,z (t) = z. For brevity, we set

Z u,ν t,z := Z u[ν],ν t,z
.

Let : Z → R be a Borel-measurable function satisfying

E Z u,ν t,z (T ) < ∞ for all (t, z, u, ν) ∈ [0, T ] × Z × U × V. (2.1)
We interpret as a loss (or "utility") function and denote by

I(t, z, u, ν) := E Z u,ν t,z (T ) |F t , (t, z, u, ν) ∈ [0, T ] × Z × U × V
the expected loss given ν (for the player choosing u) and by

J(t, z, u) := ess inf ν∈V I(t, z, u, ν), (t, z, u) ∈ [0, T ] × Z × U
the worst-case expected loss. The main object of this paper is the reachability set

Λ(t) := (z, p) ∈ Z × R : there exists u ∈ U such that J(t, z, u) ≥ p P-a.s. . (2.2)
These are the initial conditions (z, p) such that starting at time t, the player choosing u can attain an expected loss not worse than p, regardless of the adverse player's action ν.

The main aim of this paper is to provide a geometric dynamic programming principle for Λ(t). For the case without adverse player, a corresponding result was obtained in [START_REF] Soner | Dynamic programming for stochastic target problems and geometric flows[END_REF] for the target problem with almost-sure constraints and in [START_REF] Bouchard | Stochastic target problems with controlled loss[END_REF] for the problem with controlled loss. As mentioned above, the dynamic programming for the problem (2.2) requires the introduction of a suitable set of martingales starting from p ∈ R. This role will be played by certain families1 {M ν , ν ∈ V} of martingales which should be considered as additional controls. More precisely, we denote by M t,p the set of all real-valued (rightcontinuous) martingales M satisfying M (t) = p P-a.s., and we fix a set M t,p of families {M ν , ν ∈ V} ⊂ M t,p ; further assumptions on M t,p will be introduced below. Since these martingales are not present in the original problem (2.2), we can choose M t,p to our convenience; see also Remark 2.2 below.

As usual in optimal control, we shall need to concatenate controls and strategies in time according to certain events. We use the notation

ν ⊕ τ ν := ν1 [0,τ ] + ν1 (τ,T ]
for the concatenation of two controls ν, ν ∈ V at a stopping time τ . We also introduce the set

ν = (t,τ ] ν := ω ∈ Ω : ν s (ω) = νs (ω) for all s ∈ (t, τ (ω)] .
Analogous notation is used for elements of U.

In contrast to the setting of control, strategies can be concatenated only at particular events and stopping times, as otherwise the resulting strategies would fail to be elements of U (in particular, because they may fail to be non-anticipating, see also Section 3). Therefore, we need to formalize the events and stopping times which are admissible for this purpose: For each t ≤ T , we consider a set F t whose elements are families {A ν , ν ∈ V} ⊂ F t of events indexed by V, as well as a set T t whose elements are families {τ ν , ν ∈ V} ⊂ T t , where T t denotes the set of all stopping times with values in [t, T ]. We assume that T t contains any deterministic time s ∈ [t, T ] (seen as a constant family τ ν ≡ s, ν ∈ V). In practice, the sets F t and T t will not contain all families of events and stopping times, respectively; one will impose additional conditions on ν → A ν and ν → τ ν that are compatible with the conditions defining U. Both sets should be seen as auxiliary objects which make it easier (if not possible) to verify the dynamic programming conditions below.

The geometric dynamic programming principle

We can now state the conditions for our main result. The first one concerns the concatenation of controls and strategies.

Assumption (C).

The following hold for all t ∈ [0, T ].

(C1) Fix ν 0 , ν 1 , ν 2 ∈ V and A ∈ F t . Then ν := ν 0 ⊕ t (ν 1 1 A + ν 2 1 A c ) ∈ V. (C2) Fix (u j ) j≥0 ⊂ U and let {A ν j , ν ∈ V} j≥1 ⊂ F t be such that {A ν j , j ≥ 1} forms a partition of Ω for each ν ∈ V. Then u ∈ U for u[ν] := u 0 [ν] ⊕ t j≥1 u j [ν]1 A ν j , ν ∈ V. (C3) Let u ∈ U and ν ∈ V. Then u[ν ⊕ t •] ∈ U. (C4) Let {A ν , ν ∈ V} ⊂ F t be a family of events such that A ν1 ∩ {ν 1 = (0,t] ν 2 } = A ν2 ∩ {ν 1 = (0,t] ν 2 } for all ν 1 , ν 2 ∈ V. Then {A ν , ν ∈ V} ∈ F t . (C5) Let {τ ν , ν ∈ V} ∈ T t . Then {τ ν1 ≤ s} = {τ ν2 ≤ s} for P-a.e. ω ∈ {ν 1 = (0,s] ν 2 }, for all ν 1 , ν 2 ∈ V and s ∈ [t, T ]. (C6) Let {τ ν , ν ∈ V} ∈ T t . Then, for all t ≤ s 1 ≤ s 2 ≤ T , {{τ ν ∈ (s 1 , s 2 ]}, ν ∈ V} and {{τ ν / ∈ (s 1 , s 2 ]}, ν ∈ V} belong to F s2 .
The second condition concerns the behavior of the state process.

Assumption (Z). The following hold for all (t, z, p)

∈ [0, T ] × Z × R and s ∈ [t, T ]. (Z1) Z u1,ν t,z (s)(ω) = Z u2,ν t,z (s)(ω) for P-a.e. ω ∈ {u 1 [ν] = (t,s] u 2 [ν]}, for all ν ∈ V and u 1 , u 2 ∈ U. (Z2) Z u,ν1 t,z (s)(ω) = Z u,ν2 t,z (s)(ω) for P-a.e. ω ∈ {ν 1 = (0,s] ν 2 }, for all u ∈ U and ν 1 , ν 2 ∈ V. (Z3) M ν1 (s)(ω) = M ν2 (s)(ω) for P-a.e. ω ∈ {ν 1 = (0,s] ν 2 }, for all {M ν , ν ∈ V} ∈ M t,p and ν 1 , ν 2 ∈ V. (Z4) There exists a constant K(t, z) ∈ R such that ess sup u∈U ess inf ν∈V E (Z u,ν t,z (T ))|F t = K(t, z) P-a.s.
The nontrivial assumption here is, of course, (Z4), stating that (a version of) the random variable ess sup u∈U ess inf ν∈V E[ (Z u,ν t,z (T ))|F t ] is deterministic. For the game determined by a Brownian SDE as considered in Section 3, this will be true by a result of [START_REF] Buckdahn | Stochastic differential games and viscosity solutions of Hamilton-Jacobi-Bellman-Isaacs equations[END_REF], which, in turn, goes back to an idea of [START_REF] Peng | BSDE and stochastic optimizations[END_REF] (see also [START_REF] Li | Stochastic optimization theory of backward stochastic differential equations with jumps and viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF]). An extension to jump diffusions can be found in [START_REF] Buckdahn | Stochastic representation for solutions of Isaacs' type integral-partial differential equations[END_REF].

While the above assumptions are fundamental, the following conditions are of technical nature. We shall illustrate later how they can be verified.

Assumption (I). Let (t, z) ∈ [0, T ] × Z, u ∈ U and ν ∈ V.
(I1) There exists an adapted right-continuous process N Moreover, L u,ν1 t,z (s)(ω) = L u,ν2 t,z (s)(ω) for P-a.e. ω ∈ {ν 1 = (0,s] ν 2 }, for all u ∈ U and ν 1 , ν 2 ∈ V.

Assumption (R). Let (t, z) ∈ [0, T ] × Z.
(R1) Fix s ∈ [t, T ] and ε > 0. Then there exist a Borel-measurable partition (B j ) j≥1 of Z and a sequence (z j ) j≥1 ⊂ Z such that for all u ∈ U, ν ∈ V and j ≥ 1,

E (Z u,ν t,z (T ))|F s ≥ I(s, z j , u, ν) -ε, ess inf ν∈V E (Z u,ν⊕s ν t,z (T ))|F s ≤ J(s, z j , u[ν ⊕ s •]) + ε, K(s, z j ) -ε ≤ K(s, Z u,ν t,z (s)) ≤ K(s, z j ) + ε          P-a.s. on {Z u,ν t,z (s) ∈ B j }. (R2) lim δ→0 sup ν∈V,τ ∈Tt P sup 0≤h≤δ d Z Z u,ν t,z (τ + h), Z u,ν t,z (τ ) ≥ ε = 0 for all u ∈ U and ε > 0.
Our GDP will be stated in terms of the closure 

(z, z ) + |p -p | + |t -t |).
The relaxation from Λ to Λ and Λι essentially allows us to reduce to stopping times with countably many values in the proof of the GDP and thus to avoid regularity assumptions in the time variable. We shall also relax the variable p in the assertion of (GDP2); this is inspired by [START_REF] Bouchard | Weak dynamic programming for generalized state constraints[END_REF] and important for the covering argument in the proof of (GDP2), which, in turn, is crucial due to the lack of a measurable selection theorem for strategies. Of course, all our relaxations are tailored such that they will not interfere substantially with the derivation of the dynamic programming equation; cf. Section 3.

Theorem 2.1. Fix (t, z, p) ∈ [0, T ] × Z × R and let Assumptions (C), (Z), (I) and (R) hold true.

(GDP1) If (z, p) ∈ Λ(t), then there exist u ∈ U and {M ν , ν ∈ V} ⊂ M t,p such that Z u,ν t,z (τ ) , M ν (τ ) ∈ Λ (τ ) P-a.s. for all ν ∈ V and τ ∈ T t .

(GDP2) Let ι > 0, u ∈ U, {M ν , ν ∈ V} ∈ M t,p and {τ ν , ν ∈ V} ∈ T t be such that Z u,ν t,z (τ ν ), M ν (τ ν ) ∈ Λι (τ ν ) P-a.s. for all ν ∈ V, and suppose that M ν (τ ν ) + : ν ∈ V and L u,ν t,z (τ ) -: ν ∈ V, τ ∈ T t are uniformly integrable, where L u,ν t,z is as in (I2). Then (z, p -ε) ∈ Λ(t) for all ε > 0.

The proof is stated in Sections 2.3 and 2.4 below.

Remark 2.2. We shall see in the proof that the family {M ν , ν ∈ V} ⊂ M t,p in (GDP1) can actually be chosen to be non-anticipating in the sense of (Z3). However, this will not be used when (GDP1) is applied to derive the dynamic programming equation. Whether {M ν , ν ∈ V} is an element of M t,p will depend on the definition of the latter set; in fact, we did not make any assumption about its richness. In many application, it is possible to take M t,p to be the set of all non-anticipating families in M t,p ; however, we prefer to leave some freedom for the definition of M t,p since this may be useful in ensuring the uniform integrability required in (GDP2).

We conclude this section with a version of the GDP for the case Z = R d , where we show how to reduce from standard regularity conditions on the state process and the loss function to the assumptions (R1) and (I).

Corollary 2.3. Let Assumptions (C), (Z) and (R2) hold true. Assume also that is continuous and that there exist constants C ≥ 0 and q > q ≥ 0 and a locally bounded function :

R d → R + such that | (z)| ≤ C(1 + |z| q ), (2.3) 
ess sup

(ū,ν)∈U×V E |Z ū,ν t,z (T )| q |F t ≤ (z) q P-a.s. and (2.4) ess sup (ū,ν)∈U×V E |Z u⊕sū,ν⊕s ν t,z (T ) -Z ū,ν⊕s ν s,z (T )| |F s ≤ C|Z u,ν t,z (s) -z | P-a.s. (2.5 
)

for all (t, z) ∈ [0, T ] × R d , (s, z ) ∈ [t, T ] × R d and (u, ν) ∈ U × V. (GDP1') If (z, p + ε) ∈ Λ(t)
for some ε > 0, then there exist u ∈ U and {M ν , ν ∈ V} ⊂ M t,p such that Z u,ν t,z (τ ) , M ν (τ ) ∈ Λ (τ ) P-a.s. for all ν ∈ V and τ ∈ T t .

(GDP2') Let ι > 0, u ∈ U, {M ν , ν ∈ V} ∈ M t,p and {τ ν , ν ∈ V} ∈ T t be such that Z u,ν t,z (τ ν ), M ν (τ ν ) ∈ Λι (τ ν ) P-a.s. for all ν ∈ V and assume that {Z u,ν t,z (τ ν ) , ν ∈ V} is uniformly bounded in L ∞ . Then (z, p -ε) ∈ Λ(t) for all ε > 0.

We remark that (GDP2') is usually applied in a setting where τ ν is the exit time of Z u,ν t,z from a given ball, so that the boundedness assumption is not restrictive. (Some adjustments are needed when the state process admits unbounded jumps; see also [START_REF] Moreau | Stochastic target problems with controlled loss in jump diffusion models[END_REF].)

Proof of (GDP1)

We fix t ∈ [0, T ] and (z, p) ∈ Λ(t) for the remainder of this proof. By the definition (2.2) of Λ(t), there exists u ∈ U such that E [G(ν)|F t ] ≥ p P-a.s. for all ν ∈ V, where G(ν) := (Z u,ν t,z (T )).

(2.6)

In order to construct the family {M ν , ν ∈ V} ⊂ M t,p of martingales, we consider

S ν (r) := ess inf ν∈V E [G(ν ⊕ r ν)|F r ] , t ≤ r ≤ T. (2.7)
We shall obtain M ν from a Doob-Meyer-type decomposition of S ν . This can be seen as a generalization with respect to [START_REF] Bouchard | Stochastic target problems with controlled loss[END_REF], where the necessary martingale was trivially constructed by taking the conditional expectation of the terminal reward.

Step 1: We have S ν (r) ∈ L 1 (P) and E [S ν (r)|F s ] ≥ S ν (s) for all t ≤ s ≤ r ≤ T and ν ∈ V.

The integrability of S ν (r) follows from (2.1) and (I1). To see the submartingale property, we first show that the family {E[G(ν ⊕ r ν)|F r ], ν ∈ V} is directed downward. Indeed, given ν1 , ν2 ∈ V, the set

A := {E [G(ν ⊕ r ν1 )|F r ] ≤ E [G(ν ⊕ r ν2 )|F r ]} is in F r ; therefore, ν3 := ν ⊕ r (ν 1 1 A + ν2 1 A c
) is an element of V by Assumption (C1). Hence, (Z2) yields that

E [G(ν ⊕ r ν3 )|F r ] = E [G(ν ⊕ r ν1 )1 A + G(ν ⊕ r ν2 )1 A c |F r ] = E [G(ν ⊕ r ν1 )|F r ] 1 A + E [G(ν ⊕ r ν2 )|F r ] 1 A c = E [G(ν ⊕ r ν1 )|F r ] ∧ E [G(ν ⊕ r ν2 )|F r ] .
As a result, we can find a sequence

(ν n ) n≥1 in V such that E[G(ν ⊕ r νn )|F r ] decreases P-a.s. to S ν (r); cf. [19, Proposition VI-1-1]. Recalling (2.1
) and that S ν (r) ∈ L 1 (P), monotone convergence yields that

E [S ν (r)|F s ] = E lim n→∞ E [G(ν ⊕ r νn )|F r ] |F s = lim n→∞ E [G(ν ⊕ r νn )|F s ] ≥ ess inf ν∈V E [G(ν ⊕ r ν)|F s ] ≥ ess inf ν∈V E [G(ν ⊕ s ν)|F s ] = S ν (s),
where the last inequality follows from the fact that any control ν ⊕ r ν, where ν ∈ V, can be written in the form ν ⊕ s (ν ⊕ r ν); cf. (C1).

Step 2: There exists a family of càdlàg martingales {M ν , ν ∈ V} ⊂ M t,p such that S ν (r) ≥ M ν (r) P-a.s. for all r ∈ [t, T ] and ν ∈ V.

Fix ν ∈ V. By Step 1, S ν (•) satisfies the submartingale property. Therefore,

S + (r)(ω) := lim u∈(r,T ]∩Q, u→r S ν (u)(ω) for 0 ≤ r < T and S + (T ) := S ν (T )
is well defined P-a.s.; moreover, recalling that the filtration F satisfies the usual conditions, S + is a (right-continuous) submartingale satisfying

S + (r) ≥ S ν (r) P-a.s. for all r ∈ [t, T ] (c.f. [8, Theorem VI.2]). Let H ⊂ [t, T ] be the set of points of discontinuity of the function r → E[S ν (r)]. Since this function is increasing, H is at most count- able.
(If H happens to be the empty set, then S + defines a modification of S ν and the Doob-Meyer decomposition of S + yields the result.) Consider the process

S(r) := S + (r)1 H c (r) + S ν (r)1 H (r), r ∈ [t, T ].
The arguments (due to E. Lenglart) in the proof of [8, Theorem 10 of Appendix 1] show that S is an optional modification of S ν and E[ S(τ )|F σ ] ≥ S(σ) for all σ, τ ∈ T t such that σ ≤ τ ; that is, S is a strong submartingale. Let N = N u,ν t,z be a rightcontinuous process of class (D) as in (I1); then S ν (r) ≥ N (r) P-a.s. for all r implies that S + (r) ≥ N (r) P-a.s. for all r, and since both S + and N are right-continuous, this shows that S + ≥ N up to evanescence. Recalling that H is countable, we deduce that S ≥ N up to evanescence, and as S is bounded from above by the martingale generated by S(T ), we conclude that S is of class (D). Now the decomposition result of Mertens [START_REF] Mertens | Théorie des processus stochastiques généraux applications aux surmartingales[END_REF]Theorem 3] yields that there exist a (true) martingale M and a nondecreasing (not necessarily càdlàg) predictable process C with C(t) = 0 such that S = M + C, and in view of the usual conditions, M can be chosen to be càdlàg. We can now define

M ν := M -M (t) + p on [t, T ] and M ν (r) := p for r ∈ [0, t), then M ν ∈ M t,p . Noting that M (t) = S(t) = S ν (t) ≥ p by (2.6
), we see that M ν has the required property:

M ν (r) ≤ M (r) ≤ S(r) = S ν (r) P-a.s. for all r ∈ [t, T ].
Step 3: Let τ ∈ T t have countably many values. Then

K τ, Z u,ν t,z (τ ) ≥ M ν (τ ) P-a.s. for all ν ∈ V.
Fix ν ∈ V and ε > 0, let M ν be as in Step 2, and let (t i ) i≥1 be the distinct values of τ . By Step 2, we have

M ν (t i ) ≤ ess inf ν∈V E Z u,ν⊕t i ν t,z (T ) |F ti P-a.s., i ≥ 1.
Moreover, (R1) yields that for each i ≥ 1, we can find a sequence (z ij ) j≥1 ⊂ Z and a Borel partition

(B ij ) j≥1 of Z such that ess inf ν∈V E Z u,ν⊕t i ν t,z (T ) |F ti (ω) ≤ J(t i , z ij , u[ν ⊕ ti •])(ω) + ε for P-a.e. ω ∈ C ij := {Z u,ν t,z (t i ) ∈ B ij }.
Since (C3) and the definition of K in (Z4) yield that

J(t i , z ij , u[ν ⊕ ti •]) ≤ K(t i , z ij ), we conclude by (R1) that M ν (t i )(ω) ≤ K(t i , z ij ) + ε ≤ K(t i , Z u,ν t,z (t i )(ω)) + 2ε for P-a.e. ω ∈ C ij . Let A i := {τ = t i } ∈ F τ . Then (A i ∩ C ij ) i,j≥1
forms a partition of Ω and the above shows that

M ν (τ ) -2ε ≤ i,j≥1 K(t i , Z u,ν t,z (t i ))1 Ai∩Cij = K(τ, Z u,ν t,z (τ )) P-a.s.
As ε > 0 was arbitrary, the claim follows.

Step 4: We can now prove (GDP1). Given τ ∈ T t , pick a sequence (τ n ) n≥1 ⊂ T t such that each τ n has countably many values and τ n ↓ τ P-a.s. In view of the last statement of Lemma 2.4 below, Step 3 implies that

Z u,ν t,z (τ n ), M ν (τ n ) -n -1 ∈ Λ(τ n ) P-a.s. for all n ≥ 1.
However, using that Z u,ν t,z and M ν are càdlàg, we have

τ n , Z u,ν t,z (τ n ), M ν (τ n ) -n -1 → τ, Z u,ν t,z (τ ), M ν (τ ) P-a.s. as n → ∞,
so that, by the definition of Λ, we deduce that (Z u,ν t,z (τ ), M ν (τ )) ∈ Λ(τ ) P-a.s. 2

Lemma 2.4. Let Assumptions (C2), (C4), (Z1) and (Z4) hold true. For each ε > 0, there exists a mapping

µ ε : [0, T ] × Z → U such that J (t, z, µ ε (t, z)) ≥ K(t, z) -ε P-a.s. for all (t, z) ∈ [0, T ] × Z. In particular, if (t, z, p) ∈ [0, T ] × Z × R, then K(t, z) > p implies (z, p) ∈ Λ(t).
Proof. Since K(t, z) was defined in (Z4) as the essential supremum of J(t, z, u) over u, there exists a sequence (u

k (t, z)) k≥1 ⊂ U such that sup k≥1 J t, z, u k (t, z) = K(t, z) P-a.s. (2.8)
Set ∆ 0 t,z := ∅ and define inductively the F t -measurable sets

∆ k t,z := J t, z, u k (t, z) ≥ K(t, z) -ε \ k-1 j=0 ∆ j t,z , k ≥ 1.
By (2.8), the family {∆ k t,z , k ≥ 1} forms a partition of Ω. Clearly, each ∆ k t,z (seen as a constant family) satisfies the requirement of (C4), since it does not depend on ν, and therefore belongs to F t . Hence, after fixing some u 0 ∈ U, (C2) implies that

µ ε (t, z) := u 0 ⊕ t k≥1 u k (t, z)1 ∆ k t,z ∈ U, while (Z1) ensures that J (t, z, µ ε (t, z)) = ess inf ν∈V E Z µ ε (t,z),ν t,z (T ) |F t = ess inf ν∈V E   k≥1 Z u k (t,z),ν t,z (T ) 1 ∆ k t,z |F t   = ess inf ν∈V k≥1 E Z u k (t,z),ν t,z (T ) |F t 1 ∆ k t,z ,
where the last step used that ∆ k t,z is F t -measurable. Since

E Z u k (t,z),ν t,z (T ) |F t ≥ J(t, z, u k (t, z))
by the definition of J, it follows by the definition of {∆ k t,z , k ≥ 1} that

J (t, z, µ ε (t, z)) ≥ k≥1 J t, z, u k (t, z) 1 ∆ k t,z ≥ K(t, z) -ε P-a.s.
as required.

Remark 2.5. Let us mention that the GDP could also be formulated using families of submartingales {S ν , ν ∈ V} rather than martingales. Namely, in (GDP1), these would be the processes defined by (2.7). However, such a formulation would not be advantageous for applications as in Section 3, because we would then need an additional control process to describe the (possibly very irregular) finite variation part of S ν . The fact that the martingales {M ν , ν ∈ V} are actually sufficient to obtain a useful GDP can be explained heuristically as follows: the relevant situation for the dynamic programming equation corresponds to the adverse player choosing an (almost) optimal control ν, and then the value process S ν will be (almost) a martingale.

Proof of (GDP2)

In the sequel, we fix (t, z, p) ∈ [0, T ] × Z × R and let ι > 0, u ∈ U, {M ν , ν ∈ V} ∈ M t,p , {τ ν , ν ∈ V} ∈ T t and L u,ν t,z be as in (GDP2). We shall use the dyadic discretization for the stopping times τ ν ; that is, given n ≥ 1, we set

τ ν n = 0≤i≤2 n -1 t n i+1 1 (t n i ,t n i+1 ] (τ ν ), where t n i = i2 -n T for 0 ≤ i ≤ 2 n .
We shall first state the proof under the additional assumption that

M ν (•) = M ν (• ∧ τ ν ) for all ν ∈ V.
(2.9)

Step 1: Fix ε > 0 and n ≥ 1. There exists

u ε n ∈ U such that E Z u ε n ,ν t,z (T ) |F τ ν n ≥ K τ ν n , Z u,ν t,z (τ ν n ) -ε P-a.s. for all ν ∈ V.
We fix ε > 0 and n ≥ 1. It follows from (R1) and (C2) that, for each i ≤ 2 n , we can find a Borel partition (B ij ) j≥1 of Z and a sequence (z ij ) j≥1 ⊂ Z such that, for all ū ∈ U and ν ∈ V,

E Z u⊕ t n i ū,ν t,z (T ) |F t n i (ω) ≥ I(t n i , z ij , u ⊕ t n i ū, ν)(ω) -ε and
(2.10)

K (t n i , z ij ) ≥ K t n i , Z u,ν t,z (t n i )(ω) -ε (2.11) for P-a.e. ω ∈ C ν ij := {Z u,ν t,z (t n i ) ∈ B ij }. Let µ ε be as in Lemma 2.4, u ε ij := µ ε (t n i , z ij ) and A ν ij := C ν ij ∩ {τ ν n = t n i }, and consider the mapping ν → u ε n [ν] := u[ν] ⊕ τ ν n j≥1,i≤n u ε ij [ν]1 A ν ij .
Note that (Z2) and (C4) imply that {C ν ij , ν ∈ V} j≥1 ⊂ F t n i for each i ≤ 2 n . Similarly, it follows from (C6) and the definition of τ ν n that the families

{{τ ν n = t n i }, ν ∈ V} and {{τ ν n = t n i } c , ν ∈ V} belong to F t n i .
Therefore, an induction argument based on (C2) yields that u ε n ∈ U. Using successively (2.10), (Z1), the definition of J, Lemma 2.4 and (2.11), we deduce that for P-a.e.

ω ∈ A ν ij , E Z u ε n ,ν t,z (T ) |F τ ν n (ω) ≥ I t n i , z ij , u ε ij , ν (ω) -ε ≥ J (t n i , z ij , µ ε (t n i , z ij )) (ω) -ε ≥ K (t n i , z ij ) -2ε ≥ K t n i , Z u,ν t,z (t n i )(ω) -3ε = K τ ν n (ω), Z u,ν t,z (τ ν n )(ω) -3ε.
As ε > 0 was arbitrary and ∪ i,j A ν ij = Ω P-a.s., this proves the claim.

Step 2: Fix ε > 0 and n ≥ 1. For all ν ∈ V, we have

E Z u ε n ,ν t,z (T ) |F τ ν n (ω) ≥ M ν (τ ν n )(ω) -ε for P-a.e. ω ∈ E ν n ,
where

E ν n := τ ν n , Z u,ν t,z (τ ν n ), M ν (τ ν n ) ∈ B ι τ ν , Z u,ν t,z (τ ν ), M ν (τ ν ) . Indeed, since Z u,ν t,z (τ ν ), M ν (τ ν ) ∈ Λι (τ ν ) P-a.s., the definition of Λι entails that Z u,ν t,z (τ ν n ), M ν (τ ν n ) ∈ Λ(τ ν n ) for P-a.e. ω ∈ E ν n . This, in turn, means that K τ ν n (ω), Z u,ν t,z (τ ν n )(ω) ≥ M ν (τ ν n )(ω) for P-a.e. ω ∈ E ν n .
Now the claim follows from Step 1. (In all this, we actually have M ν (τ ν n ) = M ν (τ ν ) by (2.9), a fact we do not use here.)

Step 3: Let L ν := L u,ν t,z be the process from (I2). Then

K(t, z) ≥ p -ε -sup ν∈V E (L ν (τ ν n ) -M ν (τ ν n )) -1 (E ν n ) c .
Indeed, it follows from Step 2 and (I2) that

E Z u ε n ,ν t,z (T ) |F t ≥ E M ν (τ ν n )1 E ν n |F t -ε + E E Z u ε n ,ν t,z (T ) |F τ ν n 1 (E ν n ) c |F t ≥ E [M ν (τ ν n )|F t ] -E M ν (τ ν n )1 (E ν n ) c |F t -ε + E L ν (τ ν n )1 (E ν n ) c |F t = p -ε + E (L ν (τ ν n ) -M ν (τ ν n )) 1 (E ν n ) c |F t .
By the definitions of K and J, we deduce that

K(t, z) ≥ J(t, z, u ε n ) ≥ p -ε + ess inf ν∈V E (L ν (τ ν n ) -M ν (τ ν n )) 1 (E ν n ) c |F t .
Since K is deterministic, we can take expectations on both sides to obtain that 

K(t, z) ≥ p -ε + E ess inf ν∈V E [Y ν |F t ] , where Y ν := (L ν (τ ν n ) -M ν (τ ν n )) 1 (E ν n ) c . The family {E [Y ν |F t ] , ν ∈ V}
) k≥1 ⊂ V such that E [Y ν k |F t ] decreases P-a.s. to ess inf ν∈V E [Y ν |F t ], cf. [19, Proposition VI-1-1]
, so that the claim follows by monotone convergence.

Step 4: We have

lim n→∞ sup ν∈V E (L ν (τ ν n ) -M ν (τ ν n )) -1 (E ν n ) c = 0 P-a.s.
Indeed, since M ν (τ ν n ) = M ν (τ ν ) by (2.9), the uniform integrability assumptions in Theorem 2.

1 yield that {(L ν (τ ν n ) -M ν (τ ν n )) -: n ≥ 1, ν ∈ V} is again uniformly
integrable. Therefore, it suffices to prove that sup ν∈V P {(E ν n ) c } → 0. To see this, note that for n large enough, we have |τ ν n -τ ν | ≤ 2 -n T ≤ ι/2 and hence

P {(E ν n ) c } ≤ P d Z Z u,ν t,z (τ ν n ), Z u,ν t,z (τ ν ) ≥ ι/2 ,
where we have used that M ν (τ ν n ) = M ν (τ ν ). Using once more that |τ ν n -τ ν | ≤ 2 -n T , the claim then follows from (R2).

Step 5: The additional assumption (2.9) entails no loss of generality.

Indeed, let M ν be the stopped martingale M ν (• ∧ τ ν ). Then { M ν , ν ∈ V} ⊂ M t,p .
Moreover, since {M ν , ν ∈ V} ∈ M t,p and {τ ν , ν ∈ V} ∈ T t , we see from (Z3) and (C5) that { M ν , ν ∈ V} again satisfies the property stated in (Z3). Finally, we have that the set M ν (τ ν ) + : ν ∈ V is uniformly integrable like M ν (τ ν ) + : ν ∈ V , since these sets coincide. Hence, { M ν , ν ∈ V} satisfies all properties required in (GDP2), and of course also (2.9). To be precise, it is not necessarily the case that { M ν , ν ∈ V} ∈ M t,p ; in fact, we have made no assumption whatsoever about the richness of M t,p . However, the previous properties are all we have used in this proof and hence, we may indeed replace M ν by M ν for the purpose of proving (GDP2).

We can now conclude the proof of (GDP2): in view of Step 4, Step 3 yields that K(t, z) ≥ p -ε, which by Lemma 2.4 implies the assertion that (z, p -ε) ∈ Λ(t). 2

Proof of Corollary 2.3

Step 1: Assume that is bounded and Lipschitz continuous. Then (I) and (R1) are satisfied.

Assumption (I) is trivially satisfied; we prove that (2.5) implies Assumption (R1). Let t ≤ s ≤ T and (u, ν) ∈ U × V. Let c be the Lipschitz constant of . By (2.5), we have

E Z u,ν t,z (T ) -Z u,ν s,z (T ) |F s ≤ cE Z u,ν t,z (T ) -Z u,ν s,z (T ) |F s ≤ cC Z u,ν t,z (s) -z (2.12)
for all z, z ∈ R d . Let (B j ) j≥1 be any Borel partition of R d such that the diameter of B j is less than ε/(cC), and let z j ∈ B j for each j ≥ 1. Then

E Z u,ν t,z (T ) -Z u,ν s,zj (T ) |F s ≤ ε on C u,ν j := Z u,ν t,z (s) ∈ B j ,
which implies the first property in (R1). In particular, let ν ∈ V, then using (C1), we have

E Z u,ν⊕s ν t,z (T ) -Z u,ν⊕s ν s,zj (T ) |F s ≤ ε on C u,ν⊕s ν j .
Since C u,ν⊕s ν j = C u,ν j by (Z2), we may take the essential infimum over ν ∈ V to conclude that ess inf

ν∈V E Z u,ν⊕s ν t,z (T ) |F s ≤ J(s, z j , u[ν ⊕ s •]) + ε on C u,ν j ,
which is the second property in (R1). Finally, the last property in (R1) is a direct consequence of (2.12) applied with t = s.

Step 2: We now prove the corollary under the additional assumption that | (z)| ≤ C; we shall reduce to the Lipschitz case by inf-convolution. Indeed, if we define the functions

k by k (z) = inf z ∈R d { (z ) + k|z -z|}, k ≥ 1,
then k is Lipschitz continuous with Lipschitz constant k, | k | ≤ C, and ( k ) k≥1 converges pointwise to . Since is continuous and the sequence ( k ) k≥1 is monotone increasing, the convergence is uniform on compact sets by Dini's lemma. That is, for all n ≥ 1, sup

z∈R d , |z|≤n | k (z) -(z)| ≤ n k , (2.13) 
where ( n k ) k≥1 is a sequence of numbers such that lim k→∞ n k = 0. Moreover, (2.4) combined with Chebyshev's inequality implies that ess sup

(u,ν)∈U×V P |Z u,ν t,z (T )| ≥ n|F t ≤ ( (z)/n) q . (2.14)
Combining (2.13) and (2.14) and using the fact that k -is bounded by 2C then leads to ess sup

(u,ν)∈U×V E k Z u,ν t,z (T ) -Z u,ν t,z (T ) |F t ≤ n k + 2C( (z)/n) q . (2.15)
Let O be a bounded subset of R d , let η > 0, and let 

I k (t, z, u, ν) = E k Z u,ν t,z (T ) |F t . ( 2 
I k η O (t, z, u, ν) -I(t, z, u, ν) ≤ η for (t, z) ∈ [0, T ] × O.
(2.17)

In the sequel, we fix (t, z, p) It remains to prove (GDP2'). To this end, let ι > 0, u ∈ U, {M ν , ν ∈ V} ∈ M t,p and {τ ν , ν ∈ V} ∈ T t be such that Z u,ν t,z (τ ν ), M ν (τ ν ) ∈ Λ2ι (τ ν ) P-a.s. for all ν ∈ V. For η < ι/2, we then have

∈ [0, T ] × R d × R
Z u,ν t,z (τ ν ), M ν (τ ν ) + 2η ∈ Λι (τ ν ) P-a.s. for all ν ∈ V. (2.18) Let M ν := M ν + η. Since {Z u,ν t,z (τ ν ) , ν ∈ V} is uniformly bounded in L ∞ , we may assume, by enlarging O if necessary, that B ι (Z u,ν t,z (τ ν )) ⊂ O P-a.
s. for all ν ∈ V. Then, (2.17) and (2.18) imply that

Z u,ν t,z (τ ν ), M ν (τ ν ) ∈ Λk η O ,ι (τ ν ) P-a.
s. for all ν ∈ V. Moreover, as ≤ C, (2.18) implies that M ν (τ ν ) ≤ C; in particular, { M ν (τ ν ) + , ν ∈ V} is uniformly integrable. Furthermore, as ≥ -C, we can take L u,ν t,z := -C for (I2). In view of Step 1, (GDP2) applied with the loss function k η O then yields that (z, p + η -ε) ∈ Λ k η O (t) for all ε > 0.

(

2.19)

To be precise, this conclusion would require that { M ν , ν ∈ V} ∈ M t,p+η , which is not necessarily the case under our assumptions. However, since {M ν , ν ∈ V} ∈ M t,p , it is clear that { M ν , ν ∈ V} satisfies the property stated in (Z3), so that, as in Step 5 of the proof of (GDP2), there is no loss of generality in assuming that { M ν , ν ∈ V} ∈ M t,p+η . We conclude by noting that (2.17) and (2.19) imply that (z, p -ε) ∈ Λ(t) for all ε > 0.

Step 3: We turn to the general case. For k ≥ 1, we now define k := ( ∧ k) ∨ (-k), while I k is again defined as in (2.16). We also set

n k = max m ≥ 0 : B m (0) ⊂ { = k } ∧ k
and note that the continuity of guarantees that lim k→∞ n k = ∞. Given a bounded set O ⊂ R d and η > 0, we claim that ess sup

(u,ν)∈U×V I k η O (t, z, u, ν) -I(t, z, u, ν) ≤ η for all (t, z) ∈ [0, T ] × O (2.20)
for any large enough integer

k η O . Indeed, let (u, ν) ∈ U × V; then |I k (t, z, u, ν) -I(t, z, u, ν)| ≤ E | -k | Z u,ν t,z (T ) |F t = E | -k | Z u,ν t,z (T ) 1 {Z u,ν t,z (T ) / ∈{ = k }} |F t ≤ E Z u,ν t,z (T ) 1 {|Z u,ν t,z (T )|>n k } |F t ≤ CE 1 + Z u,ν t,z (T ) q 1 {|Z u,ν t,z (T )|>n k } |F t by (2.
3). We may assume that q > 0, as otherwise we are in the setting of Step 2. Pick δ > 0 such that q(1 + δ) = q. Then Hölder's inequality and (2.4) yield that

E Z u,ν t,z (T ) q 1 {|Z u,ν t,z (T )|>n k } |F t ≤ E Z u,ν t,z (T ) q |F t 1 1+δ P |Z u,ν t,z (T )| > n k |F t δ 1+δ ≤ ρ(z) q 1+δ (ρ(z)/n k ) qδ 1+δ .
Since ρ is locally bounded and lim k→∞ n k = ∞, the claim (2.20) follows. We can then obtain (GDP1') and (GDP2') by reducing to the result of Step 2, using the same arguments as in the proof of Step 2. 2

3 The PDE in the case of a controlled SDE

In this section, we illustrate how our GDP can be used to derive a dynamic programming equation and how its assumptions can be verified in a typical setup. To this end, we focus on the case where the state process is determined by a stochastic differential equation with controlled coefficients; however, other examples could be treated similarly.

Setup

Let Ω = C([0, T ]; R d ) be the canonical space of continuous paths equipped with the Wiener measure P, let F = (F t ) t≤T be the P-augmentation of the filtration generated by the coordinate-mapping process W , and let F = F T . We define V, the set of adverse controls, to be the set of all progressively measurable processes with values in a compact subset V of R d . Similarly, U is the set of all progressively measurable processes with values in a compact U ⊂ R d . Finally, the set of strategies U consists of all mappings u : V → U which are non-anticipating in the sense that

{ν 1 = (0,s] ν 2 } ⊂ {u[ν 1 ] = (0,s] u[ν 2 ]} for all ν 1 , ν 2 ∈ V and s ≤ T .
Given (t, z) ∈ [0, T ] × R d and (u, ν) ∈ U × V, we let Z u,ν t,z be the unique strong solution of the controlled SDE

Z(s) = z + s t µ(Z(r), u[ν] r , ν r ) dr + s t σ(Z(r), u[ν] r , ν r ) dW r , s ∈ [t, T ], (3.1) 
where the coefficients

µ : R d × U × V → R d , σ : R d × U × V → R d×d
are assumed to be jointly continuous in all three variables as well as Lipschitz continuous with linear growth in the first variable, uniformly in the two last ones. Throughout this section, we assume that : R d → R is a continuous function of polynomial growth; i.e., (2.3) holds true for some constants C and q. Since Z u,ν t,z (T ) has moments of all orders, this implies that the finiteness condition (2.1) is satisfied.

In view of the martingale representation theorem, we can identify the set M t,p of martingales with the set A of all progressively measurable d-dimensional processes α such that α dW is a (true) martingale. Indeed, we have M t,p = {P α t,p , α ∈ A}, where

P α t,p (•) = p + • t α s dW s .
We shall denote by A the set of all mappings a[•]: V → A such that

{ν 1 = (0,s] ν 2 } ⊂ {a[ν 1 ] = (0,s] a[ν 2 ]} for all ν 1 , ν 2 ∈ V and s ≤ T .
The set of all families {P a[ν] t,p , ν ∈ V} with a ∈ A then forms the set M t,p , for any given (t, p) ∈ [0, T ] × R. Furthermore, T t consists of all families {τ ν , ν ∈ V} ⊂ T t such that, for some (z,

p) ∈ R d × R, (u, a) ∈ U × A and some Borel set O ⊂ [0, T ] × R d × R, τ ν is the first exit time of •, Z u,ν t,z , P a[ν] t,p
from O, for all ν ∈ V.

(This includes the deterministic times s ∈ [t, T ] by the choice

O = [0, s] × R d × R.)
Finally, F t consists of all families {A ν , ν ∈ V} ⊂ F t such that Fix any q > q ∨ 2; then (2.4) can be obtained as follows. Let (u, ν) ∈ U × V and A ∈ F t be arbitrary. Using the Burkholder-Davis-Gundy inequalities, the boundedness of U and V , and the assumptions on µ and σ, we obtain that

A ν1 ∩ {ν 1 = (0,t] ν 2 } = A ν2 ∩ {ν 1 = (0,t] ν 2 } for all ν 1 , ν 2 ∈ V.
E sup t≤s≤τ Z u,ν t,z (s) q 1 A ≤ cE 1 + |z| q 1 A + τ t sup t≤s≤r Z u,ν t,z (s) q 1 A dr ,
where c is a universal constant and τ is any stopping time such that Z u,ν t,z (• ∧ τ ) is bounded. Applying Gronwall's inequality and letting τ → T , we deduce that

E Z u,ν t,z (T ) q 1 A ≤ E sup t≤u≤T Z u,ν t,z (u) q 1 A ≤ cE 1 + |z| q 1 A .
Since A ∈ F t was arbitrary, this implies (2.4). To verify the condition (2.5), we note that the flow property yields

E Z u⊕sū,ν⊕s ν t,z (T ) -Z ū,ν⊕s ν s,z (T ) 1 A = E Z ū,ν⊕s ν s,Z u,ν t,z (s) (T ) -Z ū,ν⊕s ν s,z (T ) 1 A
and estimate the right-hand side with the above arguments. Finally, the same arguments can be used to verify (R2).

Remark 3.2. We emphasize that our definition of a strategy u ∈ U does not include regularity assumptions on the mapping ν → u[ν]. This is in contrast to [START_REF] Bayraktar | On zero-sum stochastic differential games[END_REF], where a continuity condition is imposed, enabling the authors to deal with the selection problem for strategies in the context of a stochastic differential game and use the traditional formulation of the value functions in terms of infima (not essential infima) and suprema. Let us mention, however, that such regularity assumptions may preclude existence of optimal strategies in concrete examples (see also Remark 4.3).

PDE for the reachability set Λ

In this section, we show how the PDE for the reachability set Λ from (2.2) can be deduced from the geometric dynamic programming principle of Corollary 2.3. This equation is stated in terms of the indicator function of the complement of the graph of Λ, Corresponding results for the case without adverse player have been obtain in [START_REF] Bouchard | Stochastic target problems with controlled loss[END_REF][START_REF] Soner | Stochastic target problems, dynamic programming, and viscosity solutions[END_REF]; we extend their arguments to account for the presence of ν and the fact that we only have a relaxed GDP. We begin by rephrasing Corollary 2.3 in terms of χ.

χ(t, z, p) := 1 -1 Λ(t) (z, p) = 0 if (z, p) ∈ Λ(t)
Lemma 3.3. Fix (t, z, p) ∈ [0, T ] × R d × R.
(GDP1 χ ) Assume that χ(t, z, p + ε) = 0 for some ε > 0. Then there exist u ∈ U and {α ν , ν ∈ V} ⊂ A such that χ * τ, Z u,ν t,z (τ ), P α ν t,p (τ ) = 0 P-a.s. for all ν ∈ V and τ ∈ T t .

(GDP2 χ ) Let ϕ be a continuous function such that ϕ ≥ χ and let O ⊂ [0, T ] × R d × R be a bounded open set containing (t, z, p). Let (u, a) ∈ U × A and η > 0 be such that ϕ τ ν , Z u,ν t,z (τ ν ), P a[ν] t,p (τ ν ) ≤ 1 -η P-a.s. for all ν ∈ V, (3.2) 
where τ ν denotes the first exit time of •, Z u,ν t,z , P

a[ν] t,p
from O. Then χ(t, z, p -ε) = 0 for all ε > 0.

Proof. After observing that (z, p + ε) ∈ Λ(t) if and only if χ(t, z, p + ε) = 0 and that (z, p) ∈ Λ(t) implies χ * (t, z, p) = 0, (GDP1 χ ) follows from Corollary 2.3, whose conditions are satisfied by Proposition 3.1. We now prove (GDP2 χ ). Since ϕ is continuous and ∂O is compact, we can find ι > 0 such that

ϕ < 1 on a ι-neighborhood of ∂O ∩ {ϕ ≤ 1 -η}. As χ ≤ ϕ, it follows that (3.2) implies Z u,ν
t,z (τ ν ), M ν (τ ν ) ∈ Λι (τ ν ) P-a.s. for all ν ∈ V. Now Corollary 2.3 yields that (z, p -ε) ∈ Λ(t); i.e., χ(t, z, p -ε) = 0.

Given a suitably differentiable function ϕ = ϕ(t, z, p) on [0, T ] × R d+1 , we shall denote by ∂ t ϕ its derivative with respect to t and by Dϕ and D 2 ϕ the Jacobian and the Hessian matrix with respect to (z, p), respectively. Given u ∈ U , a ∈ R d and v ∈ V , we can then define the Dynkin operator

L u,a,v (Z,P ) ϕ := ∂ t ϕ + µ (Z,P ) (•, u, v) Dϕ + 1 2 Tr σ (Z,P ) σ (Z,P ) (•, u, a, v)D 2 ϕ with coefficients µ (Z,P ) := µ 0 , σ (Z,P ) (•, a, •) := σ a .
To introduce the associated relaxed Hamiltonians, we first define the relaxed kernel

N ε (z, q, v) = (u, a) ∈ U × R d : σ (Z,P ) (z, u, a, v)q ≤ ε , ε ≥ 0 for (t, z) ∈ [0, T ]×R d , q ∈ R d+1
and v ∈ V , as well as the set N Lip (z, q) of all continuous functions (û, â) :

R d × R d+1 × V → U × R d , (z , q , v ) → (û, â)(z , q , v )
that are locally Lipschitz continuous in (z , q ), uniformly in v , and satisfy (û, â) ∈ N 0 on B × V, for some neighborhood B of (z, q).

The local Lipschitz continuity will be used to ensure the local wellposedness of the SDE for a Markovian strategy defined via (û, â). Setting 

F (Θ, u, a, v) := -µ (Z,P ) (z, u, v) q - 1 2 Tr σ (Z,P ) σ (Z,P ) (z, u, a, v)A for Θ = (z, q, A) ∈ R d × R d+1 × S d+1 and (u, a, v) ∈ U × R d × V ,
F (Θ , u, a, v), (3.3) 
H * (Θ) := sup (û,â)∈N Lip (Θ) inf v∈V F (Θ, û(Θ, v), â(Θ, v), v).
(3.4) (In (3.4), it is not necessary to take the relaxation Θ → Θ because inf v∈V F is already lower semicontinuous.) The question whether H * = H * is postponed to the monotone setting of the next section; see Remark 3.9.

We are now in the position to derive the PDE for χ; in the following, we write H * ϕ(t, z, p) for H * (z, p, Dϕ(t, z, p), D 2 ϕ(t, z, p)), and similarly for H * . We suppose that (-

Theorem 3.4. The function χ * is a viscosity supersolution on [0, T ) × R d+1 of (-∂ t + H * )ϕ ≥ 0. The function χ * is a viscosity subsolution on [0, T ) × R d+1 of (-∂ t + H * )ϕ ≤ 0. Proof. Step 1: χ * is a viscosity supersolution. Let (t o , z o , p o ) ∈ [0, T ) × R d × R
∂ t + H * )ϕ(t o , z o , p o ) ≤ -2η < 0 (3.6)
for some η > 0 and work towards a contradiction. Using the continuity of µ and σ and the definition of the upper-semicontinuous operator H * , we can find v o ∈ V and ε > 0 such that -L u,a,vo (Z,P ) ϕ(t, z, p) ≤ -η for all (u, a) ∈ N ε (z, p, Dϕ(t, z, p), v o ) and (t, z, p) ∈ B ε ,

(3.7)
where

B ε := B ε (t o , z o , p o ) denotes the open ball of radius ε around (t o , z o , p o ). Let ∂B ε := {t o + ε} × B ε (z o , p o ) ∪ [t o , t o + ε) × ∂B ε (z o , p o )
denote the parabolic boundary of B ε and set

ζ := min ∂Bε (χ * -ϕ).
In view of (3.5), we have ζ > 0.

Next, we claim that there exists a sequence ( 

t n , z n , p n , ε n ) n≥1 ⊂ B ε × (0, 1) such that (t n , z n , p n , ε n ) → (t o , z o , p o , 0) and χ(t n , z n , p n + ε n ) = 0 for all n ≥ 1. ( 3 
∂ t ϕ(t o , z o , p o ) ≤ 0, Dϕ(t o , z o , p o ) = 0, D 2 ϕ(t o , z o , p o ) ≤ 0.
This clearly contradicts (3.7), and so the claim follows.

For any n ≥ 1, the equality in (3.8) and (GDP1 χ ) of Lemma 3.3 yield u n ∈ U and 

{α n,ν , ν ∈ V} ⊂ A such that χ * (t ∧ τ n , Z n (t ∧ τ n ), P n (t ∧ τ n )) = 0, t ≥ t n , ( 3 
-ϕ(•, Z n , P n )(t ∧ τ n ) = (χ * -ϕ)(•, Z n , P n )(t ∧ τ n ) ≥ ζ1 {t≥τn} ≥ 0.
Applying Itô's formula to -ϕ(•, Z n , P n ), we deduce that

S n (t) := S n (0) + t∧τn tn δ n (r) dr + t∧τn tn Σ n (r) dW r ≥ -ζ1 {t<τn} , (3.11) 
where

S n (0) := -ζ -ϕ(t n , z n , p n ), δ n (r) := -L u n r [vo],α n,vo r ,vo (Z,P ) ϕ (r, Z n (r), P n (r)) , Σ n (r) := -Dϕ (r, Z n (r), P n (r)) σ (Z,P ) (Z n (r), u n r [v o ], α n,vo r , v o ) .
Define the set

A n := [[t n , τ n ]] ∩ {δ n > -η};
then (3.7) and the definition of N ε imply that

|Σ n | > ε on A n . (3.12) 
Lemma 3.5. After diminishing ε > 0 if necessary, the stochastic exponential

E n (•) = E - •∧τn tn δ n (r) |Σ n (r)| 2 Σ n (r)1 An (r) dW r
is well-defined and a true martingale for all n ≥ 1. This lemma is proved below; it fills a gap in the previous literature. Admitting its result for the moment, integration by parts yields

(E n S n )(t ∧ τ n ) = S n (0) + t∧τn tn E n δ n 1 A c n dr + t∧τn tn E n Σ n -S n δ n |Σ n | 2 Σ n 1 An dW.
As E n ≥ 0, it then follows from the definition of A n that E n δ n 1 A c n ≤ 0 and so E n S n is a local supermartingale; in fact, it is a true supermartingale since it is bounded from below by the martingale -ζE n . In view of (3.11), we deduce that

-ζ -ϕ(t n , z n , p n ) = (E n S n )(t n ) ≥ E [(E n S n )(τ n )] ≥ -ζE 1 {τn<τn} E n (τ n ) = 0,
which yields a contradiction due to ζ > 0 and the fact that, by (3.9),

ϕ(t n , z n , p n ) → ϕ(t o , z o , p o ) = χ * (t o , z o , p o ) = 0.
Step 2: χ * is a viscosity subsolution.

Let (t o , z o , p o ) ∈ [0, T ) × R d × R and let ϕ be a smooth function such that max [0,T )×R d ×R (χ * -ϕ) = (χ * -ϕ)(t o , z o , p o ) = 0.
In order to prove that (-∂ t + H * )ϕ(t o , z o , p o ) ≤ 0, we assume for contradiction that

(-∂ t + H * )ϕ(t o , z o , p o ) > 0. ( 3.13) 
An argument analogous to the proof of (3.9) shows that χ

* (t o , z o , p o ) = 1. Consider a sequence (t n , z n , p n , ε n ) n≥1 in [0, T ) × R d × R × (0, 1) such that (t n , z n , p n -ε n , ε n ) → (t o , z o , p o , 0) and χ(t n , z n , p n -ε n ) → χ * (t o , z o , p o ) = 1.
Since χ takes values in {0, 1}, we must have

χ(t n , z n , p n -ε n ) = 1 (3.14) 
for all n large enough. Set φ(t, z, p) := ϕ(t, z, p)

+ |t -t o | 2 + |z -z o | 4 + |p -p o | 4 .
Then the inequality (3.13) and the definition of H * imply that we can find (û, â) in

N Lip (•, D φ)(t o , z o , p o ) such that inf v∈V -L (û,â)(•,D φ,v),v (Z,P ) φ ≥ 0 on B ε := B ε (t o , z o , p o ) , (3.15) 
for some ε > 0. By the definition of N Lip , after possibly changing ε > 0, we have

(û, â) ∈ N 0 (•, D φ, •) on B ε × V. (3.16) 
Moreover, we have φ ≥ ϕ + η on ∂B ε (3.17)

for some η > 0. Since φ(t n , z n , p n ) → ϕ(t o , z o , p o ) = χ * (t o , z o , p o ) = 1, we can find n such that φ(t n , z n , p n ) ≤ 1 + η/2 (3.18) 
and such that (3.14) is satisfied. We fix this n for the remainder of the proof.

For brevity, we write (û, â)(t, z, p, v) for (û, â)(z, p, D φ(t, z, p), v) in the sequel. Exploiting the definition of N Lip , we can then define the mapping (û, â)

[•] : V → U × A implicitly via (û, â)[ν] = (û, â) •, Z û[ν],ν tn,zn , P â[ν] tn,pn , ν 1 [tn,τ ν ] ,
where

τ ν := inf r ≥ t n : r, Z û[ν],ν tn,zn (r), P â[ν] tn,pn (r) / ∈ B ε .
We observe that û and â are non-anticipating; that is, (û, â) ∈ U × A. Let us write (Z ν , P ν ) for (Z û,ν tn,zn , P

â[ν]
tn,pn ) to alleviate the notation. Since χ ≤ χ * ≤ ϕ, the continuity of the paths of Z ν and P ν and (3.17) lead to

ϕ (τ ν , Z ν (τ ν ), P ν (τ ν )) ≤ φ (τ ν , Z ν (τ ν ), P ν (τ ν )) -η.
On the other hand, in view of (3.15) and (3.16), Itô's formula applied to φ on [t n , τ ν ] yields that φ (τ ν , Z ν (τ ν ),

P ν (τ ν )) ≤ φ (t n , z n , p n ) .
Therefore, the previous inequality and (3.18) show that

ϕ (τ ν , Z ν (τ ν ), P ν (τ ν )) ≤ φ (t n , z n , p n ) -η ≤ 1 -η/2.
By (GDP2 χ ) of Lemma 3.3, we deduce that χ(t n , z n , p n -ε n ) = 0, which contradicts (3.14).

To complete the proof of the theorem, we still need to show Lemma 3.5. To this end, we first make the following observation. Lemma 3.6. Let α ∈ L 2 loc (W ) be such that M = α dW is a bounded martingale and let β be an R d -valued, progressively measurable process such that |β| ≤ c(1 + |α|) for some constant c. Then the stochastic exponential E( β dW ) is a true martingale.

Proof. The assumption clearly implies that

T 0 |β s | 2 ds < ∞ P-a.s. Since M is bounded, we have in particular that M ∈ BM O; i.e., sup τ ∈T0 E T τ |α s | 2 ds |F τ ∞ < ∞.
In view of the assumption, the same holds with α replaced by β, so that β dW is in BM O. This implies that E( β dW ) is a true martingale; cf. [START_REF] Kazamaki | Continuous exponential martingales and BMO[END_REF]Theorem 2.3].

Proof of Lemma 3.5. Consider the process

β n (r) := δ n (r) |Σ n (r)| 2 Σ n (r)1 An (r); we show that |β n | ≤ c(1 + |α n,vo |) on [[t n , τ n ]] (3.19) 
for some c > 0. Then, the result will follow by applying Lemma 3.6 to α n,vo 1 [[tn,τn]] ; note that the stochastic integral of this process is bounded by the definition of τ n . To prove (3.19), we distinguish two cases.

Case 1: ∂ p ϕ(t o , z o , p o ) = 0.
Using that µ and σ are continuous and that U and B ε are bounded, tracing the definitions yields that

|δ n | ≤ c 1 + |α n,vo | + |α n,vo | 2 |∂ pp ϕ(•, Z n , P n )| on [[t n , τ n ]], while |Σ n | ≥ -c + |α n,vo ||∂ p ϕ(•, Z n , P n )| on [[t n , τ n ]],
for some c > 0. Since ∂ p ϕ(t o , z o , p o ) = 0 by assumption, ∂ p ϕ is uniformly bounded away from zero on B ε , after diminishing ε > 0 if necessary. Hence, recalling (3.12), there is a cancelation between |δ n | and |Σ n | which allows us to conclude (3.19).

Case 2: ∂ p ϕ(t o , z o , p o ) = 0. We first observe that

δ + n ≤ c(1 + |α n,vo |) -c -1 |α n,vo | 2 ∂ pp ϕ(•, Z n , P n ) on [[t n , τ n ]]
for some c > 0. Since δ - n and |Σ n | -1 are uniformly bounded on A n , it therefore suffices to show that ∂ pp ϕ ≥ 0 on B ε . To see this, we note that (3.6) and the relaxation in the definition (3.3) of H * imply that there exists ι > 0 such that, for every v ∈ V and all small ε > 0,

-∂ t ϕ(t o , z o , p o ) + F (Θ ι , u, a, v) ≤ -η for all (u, a) ∈ N ε (Θ ι ), (3.20) 
where Θ ι = (z 0 , p 0 , Dϕ, A ι ) and A ι is the same matrix as D 

PDE in the monotone case

We now specialize the setup of Section 3.1 to the case where the state process Z consists of a pair of processes (X, Y ) with values in R d-1 × R and the loss function

: R d-1 × R → R, (x, y) → (x, y)
is nondecreasing in the scalar variable y. This setting, which was previously studied in [START_REF] Bouchard | Stochastic target problems with controlled loss[END_REF] for the case without adverse control, will allow for a more explicit description of Λ which is particularly suitable for applications in mathematical finance. For (t, x, y) where µ Y and σ Y take values in R and R 1×d , respectively. The assumptions from Section 3.1 remain in force; in particular, the continuity and growth assumptions on µ and σ. In this setup, we can consider the real-valued function γ(t, x, p) := inf{y ∈ R : (x, y, p) ∈ Λ(t)}.

∈ [0, T ] × R d-1 × R and (u, ν) ∈ U × V, let Z u,ν t,x,y = (X u,ν t,x , Y u,ν t,x,
In mathematical finance, this may describe the minimal capital y such that the given target can be reached by trading in the securities market modeled by X u,ν t,x ; an illustration is given in the subsequent section. In the present context, Corollary 2.3 reads as follows.

Lemma 3.7. Fix (t, x, y, p) ∈ [0, T ]×R d-1 ×R×R and assume that γ is locally bounded.

(GDP1 γ ) Assume that y > γ(t, x, p + ε) for some ε > 0. Then there exist u ∈ U and {α ν , ν ∈ V} ⊂ A such that Y u,ν t,x,y (τ ) ≥ γ * τ, X u,ν t,x (τ ), P α ν t,p (τ ) P-a.s. for all ν ∈ V and τ ∈ T t .

(GDP2 γ ) Let ϕ be a continuous function such that ϕ ≥ γ and let

O ⊂ [0, T ] × R d-1 × R
be a bounded open set containing (t, z, p). Let (u, a) ∈ U × A and η > 0 be such that

Y u,ν t,x,y (τ ν ) ≥ ϕ τ, X u,ν t,x (τ ν ), P a[ν]
t,p (τ ν ) + η P-a.s. for all ν ∈ V, where τ ν is the first exit time of (•, X u,ν t,x , Y u,ν t,x,y , P

a[ν]
t,p ) from O. Then y ≥ γ(t, x, p -ε) for all ε > 0.

Proof. Noting that y > γ(t, x, p) implies (x, y, p) ∈ Λ(t) and that (x, y, p) ∈ Λ(t) implies y ≥ γ(t, x, p), the result follows from Corollary 2.3 by arguments similar to the proof of Lemma 3.3.

The Hamiltonians G * and G * for the PDE describing γ are defined like H * and H * in (3.3) and (3.4), but with

F (Θ, u, a, v) := µ Y (x, y, u, v) -µ (X,P ) (x, u, v) q - 1 2
Tr σ (X,P ) σ (X,P ) (x, u, a, v)A

where Θ := (x, y, q, A)

∈ R d-1 × R × R d × S d and µ (X,P ) (x, u, a, v) := µ X (x, u, v) 0 , σ (X,P ) (x, u, a, v) := σ X (x, u, v) a ,
with the relaxed kernel N ε replaced by

K ε (x, y, q, v) := (u, a) ∈ U × R : σ Y (x, y, u, v) -q σ (X,P ) (x, u, a, v) ≤ ε ,
and N Lip replaced by a set K Lip , defined like N Lip but in terms of K 0 instead of N 0 .

We then have the following result for the semicontinuous envelopes γ * and γ * of γ.

Theorem 3.8. Assume that γ is locally bounded. Then γ * is a viscosity supersolution on [0,

T ) × R d-1 × R of (-∂ t + G * )ϕ ≥ 0 and γ * is a viscosity subsolution on [0, T ) × R d-1 × R of (-∂ t + G * )ϕ ≤ 0.
Proof. The result follows from Lemma 3.7 by adapting the proof of [3, Theorem 2.1], using the arguments from the proof of Theorem 3.4 to account for the game-theoretic setting and the relaxed formulation of the GDP. We therefore omit the details.

We shall not discuss in this generality the boundary conditions as t → T ; they are somewhat complicated to state but can be deduced similarly as in [START_REF] Bouchard | Stochastic target problems with controlled loss[END_REF]. Obtaining a comparison theorem at the present level of generality seems difficult, mainly due to the presence of the sets K ε and K Lip (which depend on the solution itself) and the discontinuity of the nonlinearities at ∂ p ϕ = 0. It seems more appropriate the treat this question on a case-by-case basis. In fact, once G * = G * (see also Remark 3.9), the challenges in proving comparison are similar as in the case without adverse player. For that case, comparison results have been obtained, e.g., in [START_REF] Bouchard | A stochastic target approach for P&L matching problems[END_REF] for a specific setting (see also the references therein for more examples). Remark 3.9. Let us discuss briefly the question whether G * = G * . We shall focus on the case where U is convex and the (nondecreasing) function γ is strictly increasing with respect to p; in this case, we are interested only in test functions ϕ with ∂ p ϕ > 0. It is not hard to see that for such functions, the relaxation ε 0, Θ → Θ in (3.3) is superfluous, so we are left with the question whether

inf v∈V sup (u,a)∈K0(Θ,v) G(Θ, u, a, v) = sup (û,â)∈K Lip (Θ) inf v∈V G(Θ, û(Θ, v), â(Θ, v), v).
The inequality "≥" is clear. The converse inequality will hold if, say, for each ε > 0, there exists a locally Lipschitz mapping (û ε , âε ) ∈ K Lip such that

G(•, (û ε , âε )(•, v), v) ≥ sup (u,a)∈K0(•,v) G(•, u, a, v) -ε for all v ∈ V.
is again of polynomial growth. As a consequence, is continuous and (2.3) is satisfied for some q > 0; that is,

| (z)| ≤ C(1 + |z| q ), z = (x, y) ∈ R 2 . (4.1)
We interpret g(X ν t,x (T )) as the random payoff of a European option written on the risky asset, for a given realization of the drift and volatility processes, while Ψ quantifies the disutility of the hedging error Y u,ν t,y (T ) -g(X ν t,x (T ). In this setup,

γ(t, x, p) = inf y ∈ R : ∃ u ∈ U s.t. E Ψ(Y u,ν t,y (T ) -g(X ν t,x (T ))|F t ≥ p P-a.s. ∀ ν ∈ V
is the minimal price for the option allowing to find a hedging policy such that the expected disutility of the hedging error is controlled by p. We fix a finite constant q > q ∨ 2 and define U to be the set of mappings u : V → U that are non-anticipating (as in Section 3) and satisfy the integrability condition

sup ν∈V E   T 0 |u[ν] r | 2 dr q 2   < ∞. (4.2)
The conclusions below do not depend on the choice of q. The main result of this section is an explicit expression for the price γ(t, x, p).

Theorem 4.1. Let (t, x, p) ∈ [0, T ] × (0, ∞) × R. Then γ(t, x, p) is finite and given by γ(t, x, p) = sup ν∈V 0 E g X ν t,x (T ) + Ψ -1 (p), where V 0 = {(µ, σ) ∈ V : µ ≡ 0}. (4.3)
In particular, γ(t, x, p) coincides with the superhedging price for the shifted option g(•) + Ψ -1 (p) in the (driftless) uncertain volatility model for [σ, σ]; see also below. That is, the drift uncertainty has no impact on the price, provided that µ ≤ 0 ≤ µ. Let us remark, in this respect, that the present setup corresponds to an investor who knows the present and historical drift and volatility of the underlying. It may also be interesting to study the case where only the trajectories of the underlying (and therefore the volatility, but not necessarily the drift) are observed. This, however, does not correspond to the type of game studied in this paper.

Proof of Theorem 4.1

Proof of "≥" in (4.3). We may assume that γ(t, x, p) < ∞. Let y > γ(t, x, p); then there exists u ∈ U such that

E Ψ Y u,ν t,y (T ) -g X ν t,x (T ) ≥ p for all ν ∈ V.
As Ψ is concave, it follows by Jensen's inequality that

Ψ E Y u,ν t,y (T ) -g X ν t,x (T ) ≥ p for all ν ∈ V.
Since the integrability condition (4.2) implies that Y u,ν t,y is a martingale for all ν ∈ V 0 , we conclude that Ψ y -E g X ν t,x (T ) ≥ p for all ν ∈ V 0 and hence y ≥ sup ν∈V 0 E g X ν t,x (T ) + Ψ -1 (p). As y > γ(t, x, p) was arbitrary, the claim follows.

We shall use Theorem 3.8 to derive the missing inequality in (4.3). Since U = R is unbounded, we introduce a sequence of approximating problems γ n defined like γ, but with strategies bounded by n:

γ n (t, x, p) := inf y ∈ R : ∃ u ∈ U n s.t. E Z u,ν t,x,y (T ) |F t ≥ p P-a.s. ∀ ν ∈ V , where U n = {u ∈ U : |u[ν]| ≤ n for all ν ∈ V}.
Then clearly γ n is decreasing in n and

γ n ≥ γ, n ≥ 1. (4.4) Lemma 4.2. Let (t, z) ∈ [0, T ] × (0, ∞) × R, u ∈ U, and define u n ∈ U by u n [ν] := u[ν]1 {|u[ν]|≤n} , ν ∈ V.
Then

ess sup ν∈V E Z un,ν t,z (T ) -Z u,ν t,z (T ) |F t → 0 in L 1 as n → ∞.
Proof. Using monotone convergence and an argument as in the proof of Step 1 in Section 2.3, we obtain that

E ess sup ν∈V E Z un,ν t,z (T ) -Z u,ν t,z (T ) |F t = sup ν∈V E Z un,ν t,z (T ) -Z u,ν t,z ( 

T ) .

Since V is bounded, the Burkholder-Davis-Gundy inequalities show that there is a universal constant c > 0 such that

E Z un,ν t,z (T ) -Z u,ν t,z (T ) ≤ cE T t |u[ν] r -u n [ν] r | 2 dr 1 2 = cE T t u[ν] r 1 {|u[ν]r|>n} 2 dr 1 2
and hence (4.2) and Hölder's inequality yield that, for any given δ > 0,

sup ν∈V P Z un,ν t,z (T ) -Z u,ν t,z (T ) > δ ≤ δ -1 sup ν∈V E Z un,ν t,z (T ) -Z u,ν t,z (T ) → 0 (4.5)
for n → ∞. Similarly, the Burkholder-Davis-Gundy inequalities and (4.2) show that {|Z un,ν t,z (T )| + |Z u,ν t,z (T )|, ν ∈ V, n ≥ 1} is bounded in L q . This yields, on the one hand, that sup ν∈V, n≥1

P Z un,ν t,z (T ) + Z u,ν t,z (T ) > k → 0 (4.6)
for k → ∞, and on the other hand, in view of (4.1) and q > q, that 

Z un,ν t,z (T ) -Z u,ν t,z (T ) : ν ∈ V, n ≥ 1 is uniformly integrable. ( 4 
E Z un,ν t,z (T ) -Z u,ν t,z (T ) 1 {|Z un,ν t,z (T )|+|Z u,ν t,z (T )|>k} < ε
for all n. Using also that is uniformly continuous on {|z| ≤ k}, we thus find δ > 0 such that

sup ν∈V E Z un,ν t,z (T ) -Z u,ν t,z (T ) ≤ 2ε + sup ν∈V E Z un,ν t,z (T ) -Z u,ν t,z (T ) 1 {|Z un ,ν t,z (T )-Z u,ν t,z (T )|>δ} .
By (4.5) and (4.7), the supremum on the right-hand side tends to zero as n → ∞. This completes the proof of Lemma 4.2.

Proof of "≥" in (4.3). It follows from the polynomial growth of g and the boundedness of V that the right-hand side of (4.3) is finite. Thus, the already established inequality "≥" in (4.3) yields that γ(t, x, p) > -∞. We now show the theorem under the hypothesis that γ(t, x, p) < ∞ for all p; we shall argue at the end of the proof that this is automatically satisfied.

Step 1: Let γ ∞ := inf n γ n . Then the upper semicontinuous envelopes of γ and γ ∞ coincide: γ * = γ * ∞ . It follows from (4.4) that γ * ∞ ≥ γ * . Let η > 0 and y > γ(t, x, p + 2η). We show that y ≥ γ n (t, x, p) for n large; this will imply the remaining inequality γ * ∞ ≤ γ * . Indeed, the definition of γ and Lemma 4.2 imply that we can find u ∈ U and u n ∈ U n such that

J(t, x, y, u n ) ≥ J(t, x, y, u) -n ≥ p + η -n P-a.s.,
where n → 0 in L 1 . If K n is defined like K, but with U n instead of U, then it follows that K n (t, x, y) ≥ p + ηn P-a.s. Recalling that K n is deterministic (cf. Proposition 3.1), we may replace n by E[ n ] in this inequality. Sending n → ∞, we then see that lim n→∞ K n (t, x, y) ≥ p + η, and therefore K n (t, x, y) ≥ p + η/2 for n large enough.

Step 2: The relaxed semi-limit γ * ∞ (t, x, p) := lim sup n→∞ (t ,x ,p )→(t,x,p) γ * n (t , x , p ) is a viscosity subsolution on [0, T ) × (0, ∞) × R of

-∂ t ϕ + inf σ∈[σ,σ] - 1 2 σ 2 x 2 ∂ xx ϕ ≤ 0 (4.8)
and satisfies the boundary condition γ * ∞ (T, x, p) ≤ g(x) + Ψ -1 (p). We first show that the boundary condition is satisfied. Fix (x, p) ∈ (0, ∞) × R and let y > g(x) + Ψ -1 (p); then (x, y) > p. Let (t n , x n , p n ) → (T, x, p) be such that γ n (t n , x n , p n ) → γ * ∞ (T, x, p). We consider the strategy u ≡ 0 and use the arguments from the proof of Proposition 3.1 to find a constant c independent of n such that ess sup ν∈V E |Z 0,ν tn,xn,y (T ) -(x, y)| q |F tn ≤ c |T -

t n | q 2 + |x -x n | q .
Similarly as in the proof of Lemma 4.2, this implies that there exist constants ε n → 0 such that J(t n , x n , y, 0) ≥ (x, y) -ε n P-a.s.

In view of (x, y) > p, this shows that y ≥ γ n (t n , x n , p n ) for n large enough, and hence that y ≥ γ * ∞ (T, x, p). As a result, we have γ * ∞ (T, x, p) ≤ g(x) + Ψ -1 (p). It remains to show the subsolution property. Let ϕ be a smooth function and let (t o , x o , p o ) ∈ [0, T ) × (0, ∞) × R be such that

(γ * ∞ -ϕ)(t o , x o , p o ) = max(γ * ∞ -ϕ) = 0.
After passing to a subsequence, [ -n, n] × R such that σû(x, q x , q p , µ, σ) = xσq x + q p â(x, q x , q p , µ, σ) for all σ ∈ [σ, σ] for all (x, (q x , q p )) in a neighborhood of (x n , Dϕ(t n , x n , p n )). Since the mapping (0, ∞) × R 2 × [µ, µ] × [σ, σ] → R 2 , (x, q x , q p , µ, σ) → (xq x , 0) belongs to K n Lip (•, Dϕ)(t n , x n , p n ) for n large enough, (4.9) leads to

-∂ t ϕ + inf σ∈[σ,σ] - 1 2 σ 2 x 2 ∂ xx ϕ (t n , x n , p n ) ≤ 0
for n large. Here the nonlinearity is continuous; therefore, sending n → ∞ yields (4.8).

Step 3: We have γ * ∞ ≤ π on [0, T ] × (0, ∞) × R, where π(t, x, p) := sup

ν∈V 0 E g X ν t,x (T ) + Ψ -1 (p)
is the right hand side of (4.3).

Indeed, our assumptions on g and Ψ -1 imply that π is continuous with polynomial growth. It then follows by standard arguments that π is a viscosity supersolution on [0, T ) × (0, ∞) × R of We can now deduce the theorem: We have γ ≤ γ * by the definition of γ * and γ * = γ * ∞ by Step 1. As γ * ∞ ≤ γ * ∞ by construction, Step 3 yields the result. It remains to show that γ < ∞. Indeed, this is clearly satisfied when g is bounded from above. For the general case, we consider g m = g ∧ m and let γ m be the corresponding value function. Given η > 0, we have γ m (t, x, p + η) < ∞ for all m and so (4.3) holds for g m . We see from (4.3) that y := 1 + sup m γ m (t, x, p + η) is finite. Thus, there exist u m ∈ U such that E Ψ Y um,ν t,y (T ) -g m X ν t,x (T ) |F t ≥ p + η/2 for all ν ∈ V.

-∂ t ϕ + inf σ∈[σ,σ]
Using once more the boundedness of V , we see that for m large enough, E Ψ Y um,ν t,y (T ) -g X ν t,x (T ) |F t ≥ p for all ν ∈ V, which shows that γ(t, x, p) ≤ y < ∞.

Remark 4.3. We sketch a probabilistic proof for the inequality "≤" in Theorem 4.1, for the special case without drift (µ = µ = 0) and σ > 0. We focus on t = 0 and recall that y 0 := sup ν∈V 0 E[g(X ν 0,x (T ))] is the superhedging price for g(•) in the uncertain volatility model. More precisely, if B is the coordinate-mapping process on Ω = C([0, T ]; R), there exists an F B -progressively measurable process ϑ such that y 0 + T 0 ϑ s dB s B s ≥ g(B T ) P ν -a.s. for all ν ∈ V 0 , where P ν is the law of X ν 0,x under P (see, e.g., [START_REF] Nutz | Superhedging and dynamic risk measures under volatility uncertainty[END_REF]). Seeing ϑ as an adapted functional of B, this implies that

y 0 + T 0 ϑ s (X ν 0,x ) dX ν 0,x (s) X ν 0,x (s) 
≥ g(X ν 0,x (T )) P -a.s. for all ν ∈ V 0 .

Since X ν 0,x is non-anticipating with respect to ν, we see that u[ν] s := ϑ s (X ν 0,x ) defines a non-anticipating strategy such that, with y := y 0 + Ψ -1 (p),

y + T 0 u[ν] r dX ν 0,x (s) X ν 0,x (s) 
≥ g(X ν 0,x (T )) + Ψ -1 (p);

that is, Ψ Y u,ν 0,y (T ) -g(X ν 0,x (T ) ≥ p holds even P -almost surely, rather than only in expectation, for all ν ∈ V 0 , and V 0 = V because of our assumption that µ = µ = 0. In particular, we have the existence of an optimal strategy u. (We notice that, in this respect, it is important that our definition of strategies does not contain regularity assumptions on ν → u[ν].)

Heuristically, the case with drift uncertainty (i.e., µ = µ) can be reduced to the above by a Girsanov change of measure argument; e.g., if µ is deterministic, then we can take u[(µ, σ)] := u[(0, σ µ )], where σ µ (ω) := σ(ω + µ t dt). However, for general µ, there are difficulties related to the fact that a Girsanov Brownian motion need not generate the original filtration (see, e.g., [START_REF] Feldman | Simple examples of non-generating Girsanov processes[END_REF]), and we shall not enlarge on this.

Proposition 3 . 1 .

 31 The conditions of Corollary 2.3 are satisfied in the present setup. Proof. The above definitions readily yield that Assumptions (C) and (Z1)-(Z3) are satisfied. Moreover, Assumption (Z4) can be verified exactly as in [7, Proposition 3.3].

  we can then define the relaxed Hamiltonians H * (Θ) := inf v∈V lim sup ε 0,Θ →Θ sup (u,a)∈Nε(Θ ,v)

  and let ϕ be a smooth function such that (strict) min [0,T )×R d ×R (χ * -ϕ) = (χ * -ϕ) (t o , z o , p o ) = 0. (3.5)

  y ) be the strong solution of (3.1) withµ(x, y, u, v) := µ X (x, u, v) µ Y (x, y, u, v) , σ(x, y, u, v) := σ X (x, u, v) σ Y (x, y, u, v) ,

- 1 2 σ 2 x 2 ∂

 2 xx ϕ ≥ 0, and clearly the boundary condition π(T, x, p) ≥ g(x) + Ψ -1 (p) is satisfied. The claim then follows from Step 2 by comparison.

  and a bounded set O ⊂ R d containing z, and define J k η O , Λ k η O , Λk η O ,ι and Λk η O in terms of k η O instead of . We now prove (GDP1'). To this end, suppose that (z, p + 2η) ∈ Λ(t). Then (2.17) implies that (z, p + η) ∈ Λ k η O (t). In view of Step 1, we may apply (GDP1) with the loss function k η O to obtain u ∈ U and {M ν , ν ∈ V} ⊂ M t,p such that Z u,ν t,z (τ ), M ν (τ ) + η ∈ Λk η O (τ ) P-a.s. for all ν ∈ V and τ ∈ T t . Using once more (2.17), we deduce that Z u,ν t,z (τ ), M ν (τ ) ∈ Λ(τ ) P-a.s. for all ν ∈ V and τ ∈ T t ; i.e., (GDP1') holds for . (The last argument was superfluous as ≥ k η O already implies Λk η O (τ ) ⊂ Λ(τ ); however, we would like to refer to this proof in a similar situation below where there is no monotonicity.)

  .8) In view of χ ∈ {0, 1}, it suffices to show that χ * (t o , z o , p o ) = 0. (3.9) Suppose that χ * (t o , z o , p o ) > 0, then the lower semicontinuity of χ * yields that χ * > 0 and therefore χ = 1 on a neighborhood of (t o , z o , p o ), which implies that ϕ has a strict local maximum in (t o , z o , p o ) and thus

  2 ϕ(t o , z o , p o ) except that the entry ∂ pp ϕ(t o , z o , p o ) is replaced by ∂ pp ϕ(t o , z o , p o ) -ι.Going back to the definition of N ε , we observe that N ε (Θ ι ) does no depend on ι and, which is the crucial part, the assumption that∂ p ϕ(t o , z o , p o ) = 0 implies that N ε (Θ ι ) is of the form N U × R d ; that is, the variable a is unconstrained. Now (3.20) and the last observation show that-(∂ pp ϕ(t o , z o , p o ) -ι)|a| 2 ≤ c(1 + |a|)for all a ∈ R d , so we deduce that ∂ pp ϕ(t o , z o , p o ) ≥ ι > 0. Thus, after diminishing ε > 0 if necessary, we have ∂ pp ϕ ≥ 0 on B ε as desired. This completes the proof.

  1, Lemma 4.2] yields (t n , x n , p n) → (t o , x o , p o ) such that lim * n -ϕ)(t n , x n , p n ) = (γ * ∞ -ϕ)(t o , x o , p o ),and such that (t n , x n , p n ) is a local maximizer of (γ * n -ϕ). Applying Theorem 3.8 to γ Gϕ(•, (u, a), (µ, σ)):= uµ -∂ t ϕ -µx∂ x ϕ -1 2 σ 2 x 2 ∂ xx ϕ + a 2 ∂ pp ϕ +2σxa∂ xp ϕ and K n Lip (•, Dϕ)(t n , x n , p n ) is the set of locally Lipschitz mappings (û, â) with values in [

n→∞

(γ * n , we deduce that sup

(û,â)∈K n Lip (•,Dϕ) inf (µ,σ)∈V Gϕ(•, (û, â)(µ, σ), (µ, σ))(t n , x n , p n ) ≤ 0,

(4.9)

where

Of course, there is no mathematical difference between families indexed by V, like {M ν , ν ∈ V}, and mappings on V, like u. We shall use both notions interchangeably, depending on notational convenience.

Application to hedging under uncertainty

In this section, we illustrate our general results in a concrete example, and use the opportunity to show how to extend them to a case with unbounded strategies. To this end, we shall consider a problem of partial hedging under Knightian uncertainty. More precisely, the uncertainty concerns the drift and volatility coefficients of the risky asset and we aim at controlling a function of the hedging error; the corresponding worst-case analysis is equivalent to a game where the adverse player chooses the coefficients. This problem is related to the G-expectation of [START_REF] Peng | G-expectation, G-Brownian motion and related stochastic calculus of Itô type[END_REF][START_REF] Peng | Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation[END_REF], the second order target problem of [START_REF] Soner | Dual formulation of second order target problems[END_REF] and the problem of optimal arbitrage studied in [START_REF] Fernholz | Optimal arbitrage under model uncertainty[END_REF]. We let

be the possible values of the coefficients, where µ ≤ 0 ≤ µ and σ ≥ σ ≥ 0. Moreover, U = R will be the possible values for the investment policy, so that, in contrast to the previous sections, U is not bounded.

The notation is the same as in the previous section, except for an integrability condition for the strategies that will be introduced below to account for the unboundedness of U , moreover, we shall sometimes write ν = (µ, σ) for an adverse control ν ∈ V. Given (µ, σ) ∈ V and u ∈ U, the state process Z u,ν t,x,y = (X ν t,x , Y u,ν t,y ) is governed by

= y. To wit, the process X ν t,x represents the price of a risky asset with unknown drift and volatility coefficients (µ, σ), while Y u,ν t,y stands for the wealth process associated to an investment policy u[ν], denominated in monetary amounts. (The interest rate is zero for simplicity.) We remark that it is clearly necessary to use strategies in this setup: even a simple stop-loss investment policy cannot be implemented as a control.

Our loss function is of the form (x, y) = Ψ(y -g(x)),

where Ψ, g : R → R are continuous functions of polynomial growth. The function Ψ is also assumed to be strictly increasing and concave, with an inverse Ψ -1 : R → R that