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Abstract: This paper aims to describe a comparative study regarding several identification models and 
control solutions for an active suspension system, while corrupted by narrow band disturbances. The tested 
identification models are linear and belong to ARMAX class. Several identification methods were 
compared in terms of disturbances rejection, both in open and closed loop cases. Beside the Least Squares 
class of methods, Minimum Prediction Error and Minimum Output Error methods have been investigated 
as well. The subsequent controller has been designed for the best found models and is either of RST or 
Q-parameterized class. After several simulations with real data, one has found that models estimated by 
means of Generalized Closed Loop Output Error (GCLOE) Method are seemingly the best ones.  

 
1. INTRODUCTION 

The active suspension system is already under study at many 
great automobile companies. This is the reason some research 
projects are developed in the academic filed as well. The 
GIPSA Laboratory from Grenoble (France) is hosting such a 
system, on both research and didactical purposes. Fig. 1 
illustrates a picture of that active system.  

 
Fig. 1. Photo of the active suspension system hosted by 

GIPSA Laboratory from Grenoble (France). 

Such a system is quite complex and mainly consists of two 
sub-systems: a primary one and a secondary one, as Fig. 2 
displays. The primary sub-system is actually the classical 
passive suspension. Its input is the primary force (seen as 
disturbance), while the output is the first residual force, as 
returned by the elastomere cone. (Forces are measured by 
means of accelerometers.) The cone is only able to partially 
attenuate the primary force. 

 
Fig. 2. Functional scheme of the active suspension system. 

The secondary sub-system is the active extension of passive 
suspension by means of a controllable inertial actuator. This 
time, the input is the electrical power applied through the coil 
winding, in order to provide an attenuation force (the output), 
which is opposite with respect to the first residual force. By 
composing both outputs (the first residual force and the 
attenuation force), the second (final) residual force is 
obtained. Fig. 2 shows this resulted force only.  

This paper focuses on the identification of the secondary path 
from active suspension, while working under the influence of 
narrow band disturbances of significant level. Subsequently, 
optimal controllers have been designed for the actuator, based 
on several identification models, in order to minimize the 
intensity of the final residual force. Since the signals between 
sub-systems are vibrations, the overall system exhibits a 
characteristic frequency of about 52 Hz and a critical 
resonance frequency of about 95 Hz. Therefore, the study 
mainly focuses on the behaviour of active suspension excited 
by narrow band disturbances, which are centred at different 



 
 

     

 

frequencies, including the resonance one. (Further stochastic 
disturbances (seen as different coloured noises) are under 
consideration.) This topic has not been addressed in previous 
contributions (see for example [Landau et.al, 2005]), where 
identification has been performed in the absence of such 
disturbances. However, the narrow band disturbances may 
occur during the commissioning of the suspension system.  
The article is structured as follows. The next section reviews 
some identification methods that have been employed in this 
study. (The ideal model is also emphasized.) Section 3 
shortly describes the corresponding controllers. Section 4 is 
devoted to simulation results. Some concluding remarks and 
a succinct list of references complete the article.  

2. IDENTIFICATION OF SUSPENSION SYSTEM 

Here and hereafter, one assumes that the reader is 
accustomed with the terminology of System Identification 
and Digital Control Systems fields [Söderström-Stoica, 
1989], [Landau, 1996], [Landau-Zito, 2005], [Stefanoiu et 

al., 2005]. Before reviewing the appropriate identification 
methods, one has to mention that the noiseless model of the 
suspension system has previously been identified by means 
of long Gaussian pseudo-random inputs, sampled at 800 Hz. 
The model is of ARX type, with 14 zeros and 12 poles. In 
Fig. 3, the model spectrum has been drawn. One can notice 
the two peaks pointing to the characteristic (primary 
resonance) frequency (51.66 Hz) and the (secondary) 
resonance frequency (~95 Hz), respectively. The 
performance of the noisy identification models will be 
assessed according to this ideal frequency characteristic.  

 
Fig. 3. Ideal spectrum of the active suspension system. 

The ARX model actually belongs to ARMAX class, 
generally expressed by the linear regression equation below:  

 T[ ] [ ] [ ]y n n e n= +φ θ ,   n ∗∀ ∈N , (1) 

where [ ]nφ  is the regressors vector, θ  is the parameters 

vector (unknown) and e  is a (Gaussian) white noise. The two 
vectors have several compounds that match ARMAX class:  

 T T T T
, , ,y na u nb e nc

⎡ ⎤≡ −⎣ ⎦φ φ φ φ ,   T T T T
a b c

⎡ ⎤≡ ⎣ ⎦θ θ θ θ , (2) 

where [ ]T
, [ ] [ 1] [ ]x m n x n x n m= − −φ A , n ∗∀ ∈N , for some 

signal x  and structural index m ∗∈N , while θ  includes the 
coefficients of the 3 polynomials A , B  and C . Obviously, 
φ  consists of acquired and/or estimated data (since the white 

noise cannot be measured separately). The ideal ARX model 
only includes the first two compounds for each vector in (2).  

Since the MA model of coloured noise could be non accurate, 
the ARMAX model has been extended to a more general 
Filtered Input Filtered Noise (FIFN) model. This time, the 
noise filter exhibits zeros as well as and poles. Thus the C  
polynomial of MA model is replaced by the couple of 
polynomials {C,D} . The FIFN regression equation is 

however similar to (1), but with a coloured noise v  instead of 
the white noise e . The noise v  is obtained by an AR model, 
with D  polynomial playing the filtering role (all poles).  

Two types of identification methods are bond to 
ARMAX/FIFN models (1) (of suspension system): open loop 
and closed loop. When the identification ignores the 
automatic controller, one can rely on the following methods 
[Dauphin-Tanguy et al., 2004]: (Recursive) Extended Least 

Squares (RELS), Open Loop Output Error with Extended 

Prediction Model (XOLOE), Generalized Least Squares 
(GLS). As of closed loop methods (when the controller is 
considered), the following were selected [Landau-Karimi, 
1997]: Closed Loop Output Error (CLOE), CLOE with 

Extended Prediction Model (XCLOE), Generalized CLOE 
(GCLOE). A very brief description of the 6 above mentioned 
methods is presented next.  

The RELS method actually employs a two stages LS strategy. 
The regressors vector from (2) is not entirely known, because 

,e ncφ  cannot be measured. Therefore, the first stage is aiming 

to identify an approximate ARX model, in order to estimate 
the noise with. Such a model has already been identified: the 
ideal one, with 12na =  and 14nb = . Another model (with 
larger structural indexes) can also be identified from I/O data. 
Then the white noise can be estimated as the prediction error:  

 T
ARX ARX

ˆˆ[ ] [ ] [ ] [ ]e n n y n n= ε = −φ θ ,   n ∗∀ ∈N , (3) 

with natural notations. At the second stage, the estimates (3) 
are inserted in ,e ncφ . Thus, ,e ncφ  becomes ˆ,e ncφ , whereas φ  

becomes φ̂ . Now, the LS procedure is applied once more:  
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where N ∗∈N  is the number of I/O acquired data. The two 
stages above car recursively be repeated for increasing N .  

The XOLOE method has small differences comparing to 
RELS. Its goal is to increase the convergence speed, by 
overcoming the bias between the true and estimated 
parameters faster. This time, C  is replaced by C A− . The 
corresponding coefficients sequence c aδ = −  is of length 

max{ , }n na ncδ = . In definitions (2), the following 

replacements are made: ,e ncφ  by ,e nδφ , cθ  by δθ  and ,y naφ  

by ˆ ,y naφ , where T ˆˆˆ[ ] [ ] [ ]y n n n= φ θ , n ∗∀ ∈N  is the noise free 

simulated output, with φ̂  estimated exactly like in RELS. 

The difference ˆy y−  is actually the output error (OE), which 

has to be minimized by means of LS method. The OE 
formally replaces the prediction error (PE) computed like in 
definition (3) and creates the extended prediction model. The 
GLS method refers to the FIFN model (eventually with 
C 1≡ , i.e. without zeros) and can be implemented by means 



 
 

     

 

of the general Minimum Prediction Error (MPE), which is 
intrinsic recursive. The main problem is to estimate the 
coloured noise. This can be done by means of an approximate 
ARX model with long memory, like in (3), unless, now, not 
the white noise e  is estimated, but the coloured noise v . It 
follows that the noise filter is of ARMA type and can be 
identified through RELS method, from estimated output data.  

The closed loop group of identification methods require the 
controller configuration. The configuration depicted in Fig. 4 
is rather classical, of R-S-T type.  
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ŷ

ε
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Fig. 4. Closed loop configuration with R-S-T controller. 

Here, ε  plays the role of OE between the acquired output y  

and the simulated output ŷ . The plant and the model include 

both filters (for input and for noise). However, the model can 
only work with estimated values of the white noise. The 
R-S-T controller depends on the identification model. It is 
designed such that noises are attenuated (or rejected) and the 
output verifies some performance criteria, according to 
reference r . Consequently, the ,u nbφ  vector in (2) has to be 

computed/estimated by means of the controller, starting from 
the reference signal. Clearly:  

 
( )( ) ( )( )

1 1

1 1

T q R q
[ ] [ ] [ ]

S q S q
u n r n y n

− −
− −= − ,   n ∗∀ ∈N . (5) 

The PAA block stands for Parameter Adaptation Algorithm 
and performs model updating. (Note that the noise filter can 
be missing from the scheme, which decreases the controller 
performance.)  

The CLOE method operates with the ARX model 
( C D 1≡ ≡ ) and is based on minimisation of two types of 
OE: a priori ( 0ε ) and a posteriori ( 1ε ). They are defined by:  

T
0

ˆˆ[ ] [ ] [ ] [ ]n y n n nε = −φ θ  & T
0

ˆˆ[ ] [ ] [ 1] [ ]n y n n nε = − −φ θ , (6) 

for any n ∗∈N . The rightmost terms of definitions (6) are 
referred to as the a priori output 0ŷ  and the a posteriori 

output 1ŷ , respectively. Ignoring the noises leads however to 

less accurate models, although the convergence is quite fast.  

The XCLOE method approaches the ARMAX model ( D 1≡ ) 
and operates with the closed loop predictor below:  

 ( ) ( ) ( )( )
1

1 1

1

Q q
ˆ[ ] 1 A q [ ] B q [ ] [ ]

S q
y n y n u n n

−
− −

−⎡ ⎤= − + + ε⎣ ⎦ , (7) 

for any n ∗∈N . In definition (7), the Q  polynomial is:  

 Q 1 (C A) S B R≡ + − ⋅ − ⋅ . (8) 

Minimization of extended OE ˆy y−  (with ŷ  defined in (7)) 

is based on some RELS-like strategy.  

The GCLOE method deals with the FIFN model, where both 
polynomials C  and D  can be non unit. The identification 
procedure is quite complex and, usually, makes use of MPE 
algorithm. This is the only method that fully employs the 
structure of Fig. 4.  

Several other methods have been tested as well. But their 
performance was quite low, so they were removed. 

3. ON CONTROLLER DESIGN 

Two types of controllers have been adopted. The first one is 
already described in Fig. 4 and belongs to R-S-T class. This 
controller covers quite a large panoply of linear systems and 
can be designed starting from either open loop or closed loop 
identification models. The design procedure is largely 
described in various publications such as [Dauphin-Tanguy et 

al., 2004] or [Landau-Zito, 2005]. Before proceeding to the 
controller design, the user has to set some performance 
specifications. Usually, such specifications consists of the 
number and position of poles (real valued and/or complex 
conjugate pairs), together with their damping factors. For the 
active suspension system, poles are grouped in 3 categories: 
(a) two complex conjugate dominant poles that focus on the 
characteristic frequency (51.66 Hz), with a damping factor of 
0.8; (b) four to six complex conjugate pairs of auxiliary poles 
that cover the frequency band [90, 400] Hz with different 

damping factors (usually smaller than 0.8); (c) eleven to 
fifteen real valued auxiliary identical poles located on the 
interval [0.22,0.4] . The number and location of auxiliary 

poles depends on the identification model. In case of closed 
loop approach, updating of controller, on one side, and model 
estimation/adaptation, on the other side, are alternatively 
performed, through iterative procedures.  

The second type of controller belongs to Q-parameterized 
class, also known as Youla-Kucera class [Blondel, 2006]. 
The corresponding identification and control scheme is drawn 
in Fig. 5. The controller aims to integrate a model of 
disturbances by means of Q  polynomial. After few 
manipulations, from the scheme of Fig. 5, one obtains the 
noise-to-output equation:  

 
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

1 1 1 1 1
0

1 1 1 1 1
0 0

A q S q B q Q q C q

A q S q B q R q D q
y e

− − − − −
− − − − −

⎡ ⎤−⎣ ⎦≡ + . (9) 

Eq. (9) implies that rejection of disturbances poles can be 
achieved with the following factorization (a Bézout-like 
equation, in fact):  

 ( ) ( ) ( ) ( ) ( )1 1 1 1 1
0 0S q B q Q q Q q D q− − − − −− = . (10) 
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Fig. 5. Closed loop configuration with Youla-Kucera 

parameterized controller. 

The unknown Q  and 0Q  polynomials are solutions equation 

(10). Similarly, the disturbances zeros can be removed by 
selecting 0S  and 0R  polynomials such that  

 ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1
0 0 0A q S q B q R q P q C q− − − − − −+ = , (11) 

where the 0P  polynomial has to be preset (by the controller 

design specifications). Notice that eq. (10) cannot be solved 
before eq. (11), since 0S  needs to be known. Of course, both 

equations rely on the identification model. So, the controller 
has to be updated accordingly.  

4. SIMULATION RESULTS AND DISCUSSION 

The plant of Fig. 1 has been stimulated with 3 types of 
narrow band disturbances, at: 75 Hz, 90 Hz and 95 Hz, 
respectively. The last one falls on the secondary resonance 
frequency range. The sampling frequency is 800sF = Hz and 

the I/O data block counts 10 000 samples. The 6 identification 
methods provided valid identification models, as described in 
section 2. The structural indexes na , nb  and nc  vary in 
range 10:16, whereas nd  is maximum 2. The controllers 
were designed according to the principles of section 3. From 
the start, one has to say that both types of controllers led to 
very similar performance. However, the Q-parameterized 
controller is easier to implement.  

To compare the models and especially to emphasize the open 
loop versus closed loop approaches, frequency characteristics 
of the identified main filter have been drawn, together with 
the ideal characteristic of Fig. 3. Also, the distance between 
each estimated frequency characteristic and the ideal one has 
been computed by means of error standard deviation (std), 
denoted by λ . More specifically, assume that H  is the ideal 
frequency characteristic (actually, the spectrum only), while 

Ĥ  is one of its estimates, both expressed in dB. Normally, 
they are continuous maps. In order to draw their variations, 
let them uniformly be sampled. The number of samples, K , 
should be sufficiently large to have a good visual resolution 
(say at least 500). Then the std λ  (as distance between H  

and Ĥ ) is computed as follows:  

 ( )2

1

1 ˆ ˆ[ ] [ ]
K

k

H k H k H H
K =

λ = − − −∑ , (12) 

where ˆH H−  is the error between the two characteristics, 

whereas ˆH H−  is the average (the arithmetic mean) of the 

error. The smaller λ , the closer H  and Ĥ  each other.  

Figures 6, 7 and 8 illustrate the frequency characteristics of 
open loop models, for the three types of disturbances, with a 
resolution of 512K =  samples. The red solid curve is the 

estimated characteristic ( Ĥ ), while the blue doted curve 
shows the ideal characteristic ( H ). For each couple of 
variations, the std λ  of error between the two characteristics 
was computed (like in eq. (12)). One can see that the LS 
methods perform differently than XOLOE, in terms of std. 
Whilst the LS methods perform the best at 75 Hz disturbance 
(i.e with minimum std), XOLOE improves as the disturbance 
approaches the secondary resonance frequency of 95 Hz (i.e. 
the std decreases). It seems that GLS is the very best open 
loop method (with the smallest std in all 3 cases). The best 
structural indexes for open loop models are: 10na = , 

12nb =  and 12nc = , for ARMAX models identified with 
RELS or XOLOE methods; 10na = , 12nb = , 1nc =  and 

12nd = , for FIFN models identified with GLS method. The 
corresponded controller was of R-S-T type.  

Figures 9, 10 and 11 focus on the results obtained with closed 
loop models and methods. The same graphical conventions 
and resolution like in case of open the loop approach are 
adopted, excepting for the solid curve, which turned in green. 
Apparently, the XCLOE method leads to the best models in 
terms of std λ . However, one can see that those models are 
not as accurate as the FIFN models estimated with GCLOE in 
0-200 Hz subband (where disturbances lie). Therefore, one 
can consider that GCLOE is seemingly the best. This time, 
the optimal structural indices are: 14na = , 14nb = , 2nc =  
and 2nd = . The FIFN identification model also led to an 
efficient Youla-Kucera controller.  

The performance of disturbances rejection is demonstrated in 
Figures 12 and 13. Both figures display the variations ranged 
on 2 columns. On the left side, the residual forces are drawn. 
On the right side, power spectral densities (psd) are depicted, 
with a graphical resolution of 512 samples (like within the 
previous figures). The dotted (blue) curve corresponds to psd 
of residual force when no controller is integrated in the active 
suspension system. The solid variations are actually the psd 
of residual forces from the left (red for open loop, green for 
closed loop models). Only the best models were considered, 
i.e. of FIFN type. The std of error between solid and dotted 
curves (denoted by σ , this time, but computed just like in 
eq. (12)) was also evaluated. In this context, as overall 
performance, the higher σ , the better disturbances rejection. 
However, the quality of disturbances rejection is not entirely 
revealed by σ . The narrow band of about 50 Hz, centred on 
each disturbance peak (the dotted blue one in the figures), 
should be focused as well. Usually, when the disturbance 
attenuation is quite strong on the narrow band, some other 
disturbances outside the band could be amplified. This is the 



 
 

     

 

reason some identification models are only apparently better 
than others, when solely considering the overall std, σ . The 
rejection performance on the narrow band is assessed by nbσ , 

which is the std computed for the psd error restricted to the 
narrow band only. In general, nbσ > σ , since the number of 

psd samples is significantly smaller over the narrow band 
than over the whole band (the denominator in eq. (12) 
decreases).  

Fig. 12 shows the performance of R-S-T controller when 
using FIFN-GLS (open loop) models. According to std σ , 
disturbances at 90 Hz are the least rejected, as Fig. 7 already 
predicted. However, the std nbσ  points to the disturbances at 

95 Hz as the least rejected, which is a more accurate result. 
(Disturbances near the resonance frequency are harder to 
reject.) Fig. 13 illustrates the superior performance of 
Q-parameterized controller when using FIFN-GCLOE 
(closed loop) models, especially for 75 and 90 Hz 
disturbances. Again, the disturbances at 95 Hz are the least 
rejected. This time, both σ  and nbσ  lead to this conclusion.  

5. CONCLUDING REMARKS 

The case study developed in this paper concerned the 
identification and control of an active suspension system in 
the presence of narrow band disturbances at significant level. 
After testing several identification models and two types of 
controllers, one can say that the FIFN model identified by 
means of GLS or GCLOE methods allowed us to design the 
best controller in terms narrow band disturbances rejection. 
The Q-parameterized controller structure could be preferred 
to the R-S-T structure only for implementation purposes, 
because both types of controllers perform about the same. As 
future research, non linear identification models are under 
consideration, starting from the analytical system of 
equations that describe the active suspension dynamics.  
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Fig. 6. Open loop models for 75 Hz disturbances. 

 

 

 
Fig. 7. Open loop models for 90 Hz disturbances. 

2.28338λ =  GLS

2.38316λ =  RELS

2.82816λ =  GLS

3.09734λ =  RELS

3.85888λ =  

2.91814λ =  XOLOE

XOLOE



 
 

     

 

 

 

 
Fig. 8. Open loop models for 95 Hz disturbances. 

 

 

 
Fig. 9. Closed loop models for 75 Hz disturbances. 

 

 

 
Fig. 10. Closed loop models for 90 Hz disturbances. 

 

 

 
Fig. 11. Closed loop models for 95 Hz disturbances. 
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Fig. 12. Residual forces and spectra for FIFN-GLS models. 

 

 

 
Fig. 13. Residual forces and spectra for FIFN-GCLOE models. 
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