Abdallah Assi 
email: assi@univ-angers.fr
  
Rational curves with one place at infinity *

Keywords: 

published or not. The documents may come    

Rational curves with one place at infinity

Introduction and notations

Let K be an algebraically closed field of characteristic zero, and let f = y n + a 1 (x)y n-1 + . . . + a n (x) be a monic reduced polynomial of K[x] [y]. For all λ ∈ K, we set f λ = fλ. Hence we get a family of polynomials (f λ ) λ∈K . We shall suppose that f λ is a reduced polynomial for all λ ∈ K. Let g be a nonzero polynomial of K[x][y]. We define the intersection multiplicity of f with g, denoted int(f, g), to be the rank of the K-vector space K[x][y] (f, g) . Note that int(f, g) is also the x-degree of the y-resultant of f and g. Let p = (a, b) ∈ V (f ) ∩ V (g), where V denotes the set of zeros in K 2 . By setting x = xa, ȳ = yb, we may assume that p = (0, 0). We define the intersection multiplicity of f with g at p, denoted int p (f, g), to be the rank of the K-

vector space K[[x, y]] (f, g) . Note that int(f, g) = p∈V (f )∩V (g) int p (f, g).
We define the local Milnor number of f at p, denoted µ p (f ), to be the intersection multiplicity int p (f x , f y ), where f x (resp. f y ) denotes the x-derivative (resp. the y-derivative) of f . We set µ(f ) = p∈V (f ) µ p (f ) and µ = int(f x , f y ) and we recall that µ = λ∈K µ(f λ ) = λ∈K p∈V (f λ ) µ p (f λ ). Let q be a point in V (f ) and assume, after possibly a change of variables that q = (0, 0). The number of places of f at q, denoted r q , is defined to be the number of irreducible components of

f in K[[x, y]].
Assume, after possibly a change of variables, that deg x a i (x) < ni for all i = 1, . . . , n (where deg x denotes the x-degree). In particular f has one point at infinity defined by y = 0. Let

h f (x, y, u) = u n f ( x u , y u ). The local equation of f at infinity is nothing but F (y, u) = 1 h f (1, y, u) ∈ K[[u]][y].
We define the Milnor number of f at infinity, denoted µ ∞ , to be the rank of the K-vector space K

[[u]][y] (F u , F y )
. We define the number of places at infinity of f , denoted r ∞ , to be the number of irreducible components of

F (y, u) in K[[u]][y].
2 Curves with one place at infinity

Let the notations be as in Section 1., in particular f = y n + a 1 (x)y n-1 + . . .

+ a n (x) is a monic reduced polynomial of K[x, y]. Let R(x, λ) = P 0 (λ)x i + . . . + P i (λ) be the y-resultant of f λ , f y . We say that (f λ ) λ∈K is d-regular (discriminant-regular) if P 0 (λ) ∈ K * . Note that (f λ ) λ∈K is d-regular if and only if int(f λ , f y ) = i for all λ ∈ K. Suppose that (f λ ) λ∈K is not d-regular
, and let λ 1 , . . . , λ s be the set of roots of P 0 (λ). We set I(f ) = {λ 1 , . . . , λ s }, and we call [START_REF] Assi | Meromorphic plane curves[END_REF]).

I(f ) the set of d-irregular values of (f λ ) λ∈K . Let A f = s k=1 (i -int(f -λ k , f y )). For all λ ∈ K -I(f ), we have int(f λ , f y ) = µ + n -1 + A f , where µ = int(f x , f y ) (see

Note that

A f = λ∈K (i -int(f λ , f y )), in particular (f λ ) λ∈K is d-regular if and only if A f = 0. On the other hand, given a ∈ K, if int(f a , f y ) = µ + n -1, then either (f λ ) λ∈K is d-regular or I(f ) = {a}.
Assume that deg x a k (x) < k for all k = 1, . . . , n, in such a way that y = 0 is the only point at infinity of f . Proposition 2.1 (see [START_REF] Abhyankar | Newton-Puiseux expansion and generalized Tschirnhausen transformation[END_REF] and [START_REF] Abhyankar | Newton-Puiseux expansion, and generalized Tschirnhausen transformation II[END_REF]) Let the notations be as above and assume that f has one place at infinity, i.e. the projective curve defined by the homogeneous equation h f (x, y, u) = f ( x u , y u )u n is analytically irreducible at the point at infinity (1 : 0 : 0). We have the following

• For all λ ∈ K, fλ has one place at infinity.

• The family (f λ ) λ∈K is d-regular. In particular, int(f λ , f y ) = µ + n -1 for all λ ∈ K.

• If µ = 0, then deg x a n (x) divides n and there exists an automorphism σ of

K 2 such that σ(f ) is a coordinate of K 2 .
Let the notations be as above. If δ p (resp. δ ∞ ) denotes the order of the conductor of f at p ∈ V (f ) (resp. at the point at infinity), then 2δ p = µ p + r p -1 (resp. 2δ ∞ = µ ∞ + r ∞ -1) (see [START_REF] Milnor | Singular points of complex hypersurfaces[END_REF]). Assume that f is an irreducible polynomial, and let g(f ) be the genus of the normalized curve of V (f ). By the genus formula we have:

2g(f ) + ( p∈V (f ) 2δ p ) + 2δ ∞ = (n -1)(n -2). Now int(f, f y ) = µ + n -1 + A(f )
, where A(f ) is a nonnegative integer and A(f ) = 0 if and only if (f λ ) λ∈K has at most one d-irregular value at infinity. On the other hand, the local intersection multiplicity of f with f y at the point at infinity is µ ∞ + n -1. In particular

µ + µ ∞ = (n -1)(n -2), consequently, if µ(f ) = p∈V (f ) µ p , and µ(f ) = µ -µ(f ), then 2g(f ) + ( p∈V (f ) 2δ p ) + 2δ ∞ = µ(f ) + µ(f ) + µ ∞ + A(f ).
We finally get:

( * * ) 2g(f ) + p∈V (f ) (r p -1) + r ∞ -1 = µ(f ) + A(f ) in particular g(f ) = p∈V (f ) (r p -1) + r ∞ -1 = 0 if and only if A(f ) = µ(f ) = 0.
Roughly speaking, f is a rational unibranch curve (at infinity as well as at finite distance) if and only if the pencil (f λ ) λ∈K has at most one d-irregular value at infinity and for all λ = 0, f λ is a smooth curve. Under these hypotheses, Lin-Zaidenberg Theorem implies that f is equivalent to a quasihomogeneous curve Y a -X b with gcd(a, b) = 1 (see [START_REF] Lin | An irreducible simply connected algebraic curve in C 2 is equivalent to a quasihomogeneous curve[END_REF]). Note that these hypotheses are satisfied when r ∞ -1 = 0 = µ. Hence we get the third assertion of Proposition 2.1. since in this case, min(a, b) = 1 and f is equivalent to a coordinate

Rational one place curves

Let f = y n + a 1 (x)y n-1 + . . . + a n (x) be a polynomial of K[x, y] and let the notations be as in Sections 1 and 2. Assume that f has one place at infinity, i.e. r ∞ = 1. If f is rational, then it follows from the equality (**) of Section 2 that p∈V (f ) (r p -1) = µ(f ). We shall prove the following:

Theorem 3.1 Assume that f has one place at infinity and let (f λ ) λ∈K be the pencil of curves defined by f . If f is rational, then exactly one of the following holds:

i) For all λ ∈ K, f λ is rational, and σ(f ) is a coordinate of K 2 for some automorphism σ of K 2 .

ii) The polynomial fλ is rational for at most one λ 1 = 0, i.e. the pencil (f λ ) λ∈K has at most two rational elements.

We shall prove first the following Lemma:

Lemma 3.2 Let H = y N + a 1 (x)y N -1 + . . . + a N (x) be a non zero reduced polynomial of K[[x]][y],
and let H = H 1 . . . H r be the decomposition of H into irreducible components of singular point p of V (f ) (resp. V (f λ 1 )), f (resp. f λ 1 ) has two places at p and µ p (f ) = 1 (resp. µ p (f λ 1 ) = 1). In particular, f (resp. f λ 1 ) has exactly µ 2 singular points.

Proof. It follows from the proof of Theorem 3.1. that µ(f ) ≥ µ 2 and that µ(

f λ 1 ) ≥ µ 2 . Clearly this holds only if µ(f ) = µ(f λ 1 ) = µ 2 .
Let p be a singular point of V (f ). We have µ p = r p -1, hence, by Lemma 3.2. ii), r p ≤ 2. But µ p > 0, hence r p = 2 and µ p = 1. This implies that f has µ 2 singular points. Clearly the same holds for f λ 1 .

The results above imply the following:

Proposition 3.4
Assume that f has one place at infinity and let (f λ ) λ∈K be the pencil of polynomials defined by f . Assume that f is a rational polynomial and that µ(f ) > 0. Let p 1 , . . . , p s be the set of singular points of f . We have the following

i) If r p i = 1 (resp. r p i ≥ 3) for some 1 ≤ i ≤ s, then f is the only rational point of the pencil (f λ ) λ . ii) If r p i = 2 for all 1 ≤ i ≤ s but s = µ 2
, then f is the only rational element of the pencil

(f λ ) λ .
Proof. This is an immediate application of Theorem 3.1. and Proposition 3. i) f = g + λ 1 for some λ 1 ∈ K * , and f is equivalent to a coordinate, i.e. σ(f ) is a coordinate of K 2 for some automorphism σ of K 2 .

ii) f = g + λ 1 for some λ 1 ∈ K * , µ(f ) = µ(g) = int(f x , f y ) 2 > 0, and f (resp. g) has int(f x , f y ) 2 singular points with two places at each of them.

iii) int(f, g) > 0, i.e. f, g meet in a least one point of K 2 .

Proof. The polynomial f (resp. g) has one place at infinity. If int(f, g) = 0, then f = ag + λ 1 , a, λ 1 ∈ K * . Since f and g are monic, then a = 1. Hence g and g + λ 1 are two rational elements of the pencil (f λ ) λ∈K . Now apply Theorem 3.1. and Proposition 3.3.

Remark 3.6 Let (x(t), y(t)) = (t 3 -3t, t 2 -2) and (X(s), Y (s)) = (s 3 + 3s, s 2 + 2), and let f (x, y) = res t (xx(t), yy(t)) (resp. g(x, y) = res s (x -X(s), y -Y (s))). We have (

x(t) -X(s), y(t) -Y (s)) = K[t, s], hence int(f, g) = 0. In fact, f (x, y) = y 3 -x 2 -3y + 2 = -x 2 + (y + 2)(y -1) 2 and g(x, y) = y 3 -x 2 -3y -2 = -x 2 + (y -2)(y + 1) 2 , hence f = g + 4.
The genus of a generic element of the family (f λ ) λ is 1, and f, f -4 are the two rational elements of this family. Note that µ = 2 and µ(f ) = µ(f -4) = 1. This example shows that the bound of Theorem 3.1. is sharp.

Remark 3.7 Let (f λ ) λ∈K be a pencil of polynomials of K[x, y] and assume that fλ is irreducible for all λ ∈ K. If the generic element of the pencil is rational, then for all λ ∈ K, fλ is rational and irreducible. In this case, by [START_REF] Neumann | Nontrivial rational polynomials in two variables have reducible fibres[END_REF], f has one place at infinity and σ(f ) is a coordinate of K 2 for some automorphism σ of K. Assume that the genus of the generic element of the pencil (f λ ) λ∈K is greater than or equal to one. Similarly to the case of curves with one place at infinity, it is natural to address the following question:

Question: Is there an integer c ∈ N such that, given a pencil of irreducible polynomials (f λ ) λ∈K , if µ + A f > 0, then the number of rational elements in the pencil is bounded by c?
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 335 Proposition Let f = g be two monic polynomials of K[x][y] and assume that f, g are parametrized by polynomials of K[t]. Under these hypotheses, exactly one of the following conditions holds:
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K[[x]][y]

. Let µ (0,0) denotes the Milnor number of H at (0, 0) (i.e. µ (0,0) is the rank of the

K-vector space K[[x]][y]

(H x , H y ) ). We have the following: i) µ (0,0) ≥ r -1.

ii) If r ≥ 3, then µ (0,0) > r -1.

iii) If r = 2 and µ (0,0) = r -1 = 1, then (H 1 , H 2 ) is a local system of coordinates at (0, 0).

Finally we have

, hence µ (0,0) ≥ r(r -1) -(r -1) = (r -1) 2 and i), ii) follow immediately. Assume that r = 2. If µ (0,0) = r -1, then int (0,0) (H 1x , H 1y ) = int (0,0) (H 2x , H 2y ) = 0 and int (0,0) (H 1 , H 2 ) = 1. This implies iii)

Proof of Theorem 3.1.. If µ(f ) = 0, then µ = 0 and by Proposition 2.1., σ(f ) is a coordinate of K 2 for some automorphism σ of K 2 . Assume that µ(f ) > 0 and let p 1 , . . . , p s be the set of singular points of V (f ). Let r i denotes the number of places of f at p i for all 1 ≤ i ≤ s. By Lemma 3.2., for all 1 ≤ i ≤ s, µ p i ≥ r i -1, on the other hand, equality (**) of Section 2 implies that s i=1 (µ

rational for some λ 1 = 0, then the same argument as above implies that µ(f λ 1 ) ≥ µ 2 . This is possible only for at most one λ 1 = 0, hence ii) follows immediately.

The following proposition characterizes the case where the pencil (f λ ) λ∈K has exactly two rational elements.

Proposition 3.3 Let the notations be as in Theorem 3.1. and assume that the pencil (f λ ) λ∈K has exactly two rational elements f and f λ 1 . We have µ(f ) = µ(f λ 1 ) = µ 2 , furthermore, given a