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Rational curves with one place at infinity ∗

Abdallah Assi†

Abstract: Let K be an algebraically closed field of characteristic zero. Given a polynomial
f(x, y) ∈ K[x, y] with one place at infinity, we prove that either f is equivalent to a coordinate,
or the family (fλ)λ∈K has at most two rational elements.

1 Introduction and notations

Let K be an algebraically closed field of characteristic zero, and let f = yn + a1(x)y
n−1 + . . .+

an(x) be a monic reduced polynomial of K[x][y]. For all λ ∈ K, we set fλ = f − λ. Hence we
get a family of polynomials (fK)λ∈K. We shall suppose that fλ is a reduced polynomial for all
λ ∈ K. Let g be a nonzero polynomial of K[x][y]. We define the intersection multiplicity of

f with g, denoted int(f, g), to be the rank of the K-vector space
K[x][y]

(f, g)
. Note that int(f, g)

is also the x-degree of the y-resultant of f and g. Let p = (a, b) ∈ V (f) ∩ V (g), where V

denotes the set of zeros in K
2. By setting x̄ = x− a, ȳ = y− b, we may assume that p = (0, 0).

We define the intersection multiplicity of f with g at p, denoted intp(f, g), to be the rank of

the K-vector space
K[[x, y]]

(f, g)
. Note that int(f, g) =

∑
p∈V (f)∩V (g) intp(f, g). We define the local

Milnor number of f at p, denoted µp(f), to be the intersection multiplicity intp(fx, fy), where
fx (resp. fy) denotes the x-derivative (resp. the y-derivative) of f . We set µ(f) = int(fx, fy)
and we recall that µ =

∑
λ∈K

∑
p∈V (fλ

µp(fλ). The number of places at p of f , denoted rp, is

defined to be the number of irreducible components of f in K[[x]][y].

Assume, after possibly a change of variables, that degxai(x) < n − i for all i = 1, . . . , n
(where degx denotes the x-degree). In particular f has one point at infinity defined by y = 0.

Let hf(x, y, u) = unf(
x

u
,
y

u
). The local equation of at infinity of f is nothing but F (y, u) =

hf (1, y, u) ∈ K[[u]][y]. We define the Milnor number at infinity of f , denoted µ∞, to be the
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rank of the K-vector space
K[[u]][y]

(Fu, Fy)
. The number of places at infinity of f , denoted r∞, is

defined to be the number of irreducible components of F (y, u) in K[[u]][y].

Let the notations be as above and let R(x, λ) = P0(λ)x
i + . . . + Pi(λ) be the y-resultant of

fλ, fy. We say that (fλ)λ is regular if P0(λ) ∈ K
∗. Note that (fλ)λ is regular if and only if

int(fλ, fy) = i for all λ ∈ K. Suppose that (fλ)λ is not regular, and let λ1, . . . , λs be the set of
roots of P0(λ). We set I(f) = {λ1, . . . , λs}, and we call I(f) the set of irregular values of (fλ)λ.
Set Af =

∑s

k=1(i− int(f − λk, fy)). For all λ ∈ K− I(f), we have int(fλ, fy) = µ+ n− 1+Af ,
where µ = int(fx, fy) (see [5]).

Note that Af =
∑

λ∈K(i − int(fλ, fy)), in particular (fλ)λ is regular if and only if Af = 0. On
the other hand, given a ∈ K, if int(fa, fy) = µ+n−1, then either (fλ)λ is regular or I(f) = {a}.

2 Curves with one place at infinity

In this section we recall some of the basic properties of curves with one place at infinity. Let
f = yn+a1(x)y

n−1+. . .+an(x) be an irreducible monic polynomial of K[x][y], and assume, after
possibly a change of variables, that a1(x) = 0 and that deyxak(x) < k for all k = 1, . . . , n, in such
a way that f has only one point at infinity. Let F (X, Y ) = f(X−1, y) ∈ K[X−1, y] ⊆ K((X))[y],
where K((X)) denotes the field of meromorphic series over K. Assume that f has one place at

infinity, i.e. the projective curve defined by the homogeneous equation hf(x, y, u) = f(
x

u
,
y

u
)un

is analytically irreducible at the point at infinity (1 : 0 : 0). In particular F is an irreducible
polynomial in K((X))[y]. Let t be an indeterminate. By Newton theorem, there is y(t) ∈ K((t))
such that F (tn, y(t)) = 0 and

F (tn, y) =
∏

wn=1

(y − y(wt)).

Let y(t) =
∑

i ait
i. We set supp (y(t)) = {i, ai 6= 0}. Clearly supp(y(t)) = supp(y(wt)) for all

w such that wn = 1. We denote this set by supp(F ) and we recall that gcd (n, supp(F )) = 1.

Given f as above, we will associate with F the sequences (mk)k≥0, (dk)k≥1 and (rk)k≥0 defined
by:

m0 = d1 = r0 = −n, m1 = r1 = inf(supp(F )) and for all k ≥ 2,

dk = gcd (m0, . . . , mk−1) = gcd (dk−1, mk−1)

mk = inf {i ∈ supp(F ); i is not divisible by dk}

rk = rk−1
dk−1

dk
+mk −mk−1.

Since gcd(n, supp(F )) = 1, there is h ∈ N such that dh+1 = 1. We denote by convention
mh+1 = rh+1 = +∞.

2



Let g be a nonzero polynomial of K[x][y]. We define the intersection multiplicity of f with g,
denoted int(f, g), to be the x-degree of the y-resultant of f and g, and we recall that int(f, g)

is the rank of the K-vector space
K[x][y]

(f, g)
. The set {int(f, g)|0 6= g ∈ K[x][y]} is a semigroup

of N. We denote this set by Γ∞(f) and we call it the semigroup associated with f . Let
G(X, y) = g(X−1, y) ∈ K[X−1][y]. We set Int(F,G) = −int(f, g) and we call it the intersection
multiplicity of F with G. It is also the X-order of the y-resultant of F and G. The set
{Int(F,G)|0 6= G ∈ K[X−1][y]} is a semigroup of −N. We denote this set by Γ(F ) and we call
it the semigroup associated with F . Note that Int(F,G) = OtG(tn, y(t)) -where Ot denotes the
t-order-, and that this order does not depend on the choice of the root y(t) of F (tn, y) = 0.

Remark 2.1 (see [1]) With the notations above, for all k = 0, . . . , h, rk < 0. Furthermore,
Γ∞(f) =< −r0,−r1, . . . ,−rh > (resp. Γ(F ) =< r0, r1, . . . , rh >.

Let d be a positive integer and assume that d divides n. Let g be a monic polynomial of K[x][y],

of degree
n

d
in y. There exist unique polynomials α1(x, y), . . . , αd(x, y) ∈ K[x][y] such that:

(∗) f = gd + α1(x, y)g
d−1 + . . .+ αd(x, y)

and for all 1 ≤ k ≤ d, if αk(x, y) 6= 0, then degy(αk(x, y)) <
n

d
, where degy denotes the y-degree.

We call (*) the g-adic expansion of f . There is a unique monic polynomial g of dergree
n

d
in y

such that in the g-adic expansion of f , α1 = 0. We call such a polynomial the d-th approximate
root of f , and we denote it by Appd(f). If F (X, y) = f(X−1, y), then the d-th approximate
root of F , defined in the same way as for f , is Appd(F ) = Appd(f)(X

−1, y)

For all 1 ≤ k ≤ h, let gk = Appdk
(f) and let Gk(X, y) = gk(X

−1, y) = Appdk
(F ) (in particular

g1 = G1 = y and gh+1 = f,Gh+1 = F ), then we have:

Lemma 2.2 (See [1])For all k = 1, . . . , h+ 1, we have:

i) Int(F,Gk) = rk and int(f, gk) = −rk.

ii) gk is a polynomial with one place at infinity and Γ∞(gk) = < −
r0

dk
, . . . ,−

rk−1

dk
>.

Let the notations be as in Section 1. The integer µ = int(fx, fy) is the conductor of Γ∞(f) in

N, i. e., for all N ≥ µ,N ∈ Γ∞(f). Furthermore, if we set ek =
dk

dk+1

for all 1 ≤ k ≤ h, then

we have

µ =
h∑

k=1

(ek − 1)rk − n+ 1
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and it follows from Dedekind formula (see also [8]) that

int(f, fy) = µ+ n− 1 =

h∑

k=1

(ek − 1)rk

Lemma 2.3 Let gk, k = 1, . . . , h+1, be the set of approximate roots of f . For all k = 2, . . . , h,
we have

int(fx, fy) = dkint(gkx, gky) +
∑h

i=k(ei − 1)ri − dk + 1.

Proof. Since gk is a polynomial with one place at infinity, it follows that

int(gk, gky) = int(gkx, gky) +
n

dk
− 1,

on the other hand,

int(f, fy) =
n∑

k=1

(ek − 1)rk = dkint(gk, gky) +
h∑

i=k

(ei − 1)ri.

This proves our assertion�

Write

g2 = Appd2
(f) = y

n
d2 + ax

m
d2 +

∑

n
d2

i+ m
d2

j< n
d2

m
d2

aijx
iyj

where a 6= 0. Since gcd(
n

d2
,
m

d2
) = 1, then int(g2x , g2y) = (

n

d2
− 1)(

m

d2
− 1). In particular,

int(g2x , g2y) > 0 if and only if gcd(n,m) = d2 < min(n,m), and by the Lemma above, if
int(g2x , g2y) > 0, then so is for µ. In particular we get the following:

Lemma 2.4 Let the notations be as above. If µ = 0, then so is for int(gkx , gky) for all 1 ≤ k ≤ h,
and either m divides n or n divides m. In particular, if gcd(n,m) = d2 < min(n,m), then µ > 0.

Proof. Obvious�

Remark 2.5 Let the notations be as above, and let B = {θ = (θ1, . . . , θh, θh+1)|0 ≤ θi < ei for
all i = 1, . . . , h}, B′ = {θ ∈ B|θh+1 = 0}. Let g ∈ K[x][y]. The polynomial g can be uniquely
written as

g =
∑

θ∈B

cθ(x)g
θ1
1 . . . gθhh f θh+1.
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Suppose that g does not divide f , in particular B′ 6= ∅. By [1], There is a unique θ0 ∈ B′

such that degxcθ0(x)(−r0)+
∑h

i=1 θ0i(−ri) = max{degxcθ(x)(−r0)+
∑h

i=1 θi(−ri)}. With these

notations, int(f, g) = degxcθ0(x)(−r0) +
∑h

i=1 θ0i(−ri)

3 Abhyankar-Moh Lemma

Let f = yn + a1(x)y
n−1 + . . .+ an(x) be a nonzero reduced polynomial of K[x, y] and assume,

after possibly a change of variables, that a1(x) = 0 and also that i > degx(ai(x) for all 2 ≤ i ≤ n,
in such a way that y = 0 is the only point at infinity of f . Let the notations be as in Section
1. If δp (resp. δ∞) denotes the order of the conductor of f at p (resp. at the point at infinity),
then 2δp = µp + rp − 1 (resp. 2δ∞ = µ∞ + r∞ − 1) (see [6]). If µ = int(fx, fy), then we set
µ(f) =

∑
p∈V (f) µp and µ(f) = µ− µ(f).

Assume that f is an irreducible polynomial, and let g(f) be the genus of the normalized curve
of V (f). By the genus formula we have:

2g(f) + (
∑

p∈V (f)

2δp) + 2δ∞ = (n− 1)(n− 2).

Now int(f, fy) = µ+n−1+A(f), where A(f) is a nonnegative integer and A(f) = 0 if and only
if (fλ)λ∈K has at most one irregular value at infinity (see Section 1). On the other hand, the
local intersection multiplicity of f with fy at the point at infinity is µ∞ + n− 1. In particular
µ+ µ∞ = (n− 1)(n− 2), and consequently:

2g(f) + (
∑

p∈V (f)

2δp) + 2δ∞ = µ(f) + µ(f) + µ∞ + A(f)

We finally get:

(∗∗) 2g(f) +
∑

p∈V (f)

(rp − 1) + r∞ − 1 = µ(f) + A(f)

In particular g(f) =
∑

p∈V (f)(rp − 1) + r∞ − 1 = 0 if and only if A(f) = µ(f) = 0. Roughly

speaking, f is a rational unibranch curve (at infinity as well as at finite distance) if and only if
the pencil (fλ)λ∈K has at most one irregular value at infinity, and for all λ 6= 0, fλ is a smooth
curve. This with Lemma 2.4. implies the following:

Proposition 3.1 (Abhyankar-Moh Lemma) Let x(t), y(t) be two monic polynomials of K[t]
and let n = degt(x(t)), m = degt(y(t)). Assume that m < n. If K[x(t), y(t)] = K[t], then m

divides n.
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Proof. Let f ∈ K[x][y] be the generator of the Kernel of the map K[x][y] 7−→ K[t] which
sends x, y to x(t), y(t) respectively. The polynomial f is a rational polynomial with one place
at infinity, and µ(f) = 0, hence µ = µ̄(f). It follows from (**) that µ = µ̄(f) = A(f) = 0, in
particular, by Lemma 2.4., d2 = gcd(n,m) = m�

4 Rational one place curves

Let f be a rational polynomial with one place at infinity, and let the notations be as in Section
1. It follows from the equality (**) of Section 3 that

∑
p∈V (f)(rp − 1) = µ(f). We shall prove

the following:

Theorem 4.1 Let the notations be as above and let (fλ)λ be a pencil of polynomials defined
by f . If f is rational, then exactly one of the following hold:

i) For all λ ∈ K, fλ is rational, and σ(f) is a coordinate of K2 for some automorphism σ of
K

2.

ii) The polynomial f −λ is rational for at most one λ1 6= 0, i.e. the pencil (fλ)λ has at most
two rational elements.

iii) Assume that the pencil (fλ)λ has two rational elements f and fλ1
. We have µ(f) =

µ(fλ1
) =

µ

2
, furthermore, given a singular point p of V (f) (resp. V (fλ1

)), f (resp. fλ1
) has

two places at p and µp(f) = 1 (resp. µp(fλ1
) = 1). In particular, f (resp. fλ1

) has excalty
µ

2
singular points.

We shall first prove the following Lemma:

Lemma 4.2 Let H = yN + a1(x)y
N−1 + . . . + aN(x) be a non zero reduced polynomial of

K[[x]][y], and let H = H1 . . .Hr be the decomposition of H into irreducible components of
K[[x]][y]. Let µ(0,0) denotes the Milnor number of H at (0, 0) (i.e. µ(0,0) is the rank of the

K-vector space
K[[x]][y]

(Hx, Hy)
). We have the following:

i) µ(0,0) ≥ r − 1.

ii) If r ≥ 3, then µ(0,0) > r − 1.

iii) If r = 2 and µ(0,0) = r − 1 = 1, then (H1, H2) is a local system of coordinates at (0, 0).

Proof. We have int(0,0)(H,Hy) = µ(0,0) +N − 1, but

int(0,0)(H,Hy) =

r∑

i=1

int(Hi, Hiy) + 2
∑

i 6=j

int(0,0)(Hi, Hj)
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=
r∑

i=1

int[(Hix , Hiy) + degyHi − 1] + 2
∑

i 6=j

int(0,0)(Hi, Hj)

hence

µ(0,0) +N − 1 = (

r∑

i=1

int(Hix, Hiy)) +N − r + 2
∑

i 6=j

int(0,0)(Hi, Hj).

Finally we have µ(0,0) = (
∑r

i=1 int(Hix , Hiy)) − r + 1 + 2
∑

i 6=j int(0,0)(Hi, Hj) . Now for all

1 ≤ i ≤ r, int(0,0)(Hix , Hiy) ≥ 0 and
∑

i 6=j int(0,0)(Hi, Hj) ≥ Cr
2 =

r(r − 1)

2
, hence µ(0,0) ≥

r(r− 1)− (r− 1) = (r− 1)2 and i), ii) follow immediately. Assume that r = 2. If µ(0,0) = r− 1,
then int(0,0)(H1x , H1y) = int(0,0)(H2x , H2y) = 0 and int(0,0)(H1, H2) = 1. This implies iii)�

Proof of Theorem 4.1.. If µ(f) = 0, then µ = 0, and by Proposition 3.1., either m divides
n or n divides m. Furthermore, σ(f) is a coordinate of K2 for some automorphism σ of K2.
Assume that µ(f) > 0 and let p1, . . . , ps be the set of singular points of V (f). Let ri denotes
the number of places of f at pi for all 1 ≤ i ≤ s. By Lemma 4.2., for all 1 ≤ i ≤ s, µpi ≥ ri− 1,
on the other hand, equality (**) of Section 3 implies that

∑s

i=1(µpi + ri − 1) = µ, in particular

µ ≤
∑s

i=1 2µpi = 2µ(f), hence µ(f) ≥
µ

2
. If fλ1

is rational for some λ1 6= 0, then the same

argument as above implies that µ(fλ1
) ≥

µ

2
. This is possible only for at most one λ1 6= 0, hence

ii) follows immediately.

Assume that fλ1
is rational for some λ1 6= 0. Clearly this holds only if µ(f) = µ(fλ1

) =
µ

2
. We

shall prove iii) for f . Let the notations be above. For all 1 ≤ i ≤ s, we have µpi = ri − 1 ,
hence, by lemma 4.2., ri = 2, intpi(H1x , H1y) = intpi(H2x , H2y) = 0 and intpi(H1, H2) = 1. This
implies iii)�

As a corollary we get the following:

Corollary 4.3 Let f be as above and let (fλ)λ be a pencil of polynomials defined by f . Assume
that f is a rational polynomial, and that µ(f) > 0. Let p1, . . . , ps be the set of singular points
of f .

i) If rpi = 1 (resp. rpi ≥ 3) for some 1 . . . i . . . s , then f is the only rational point of the
pencil (fλ)λ .

ii) If rpi = 2 for all 1 ≤ i ≤ s but s 6=
µ

2
, , then f is the only rational point of the pencil

(fλ)λ .

Proof. This is an immediate application of Theorem 4.1.�
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Proposition 4.4 Let f 6= g be two polynomials ofK[x][y] and assume that f, g are parametrized
by polynomials of K[t]. Under these hypotheses, exactly one of the following conditions hold:

i) f = g+λ1 for some λ1 ∈ K
∗, and f is equivalent to a coordinate, i.e. σ(f) is a coordinate

of K2 for some automorphism σ of K2.

ii) f = g + λ1 for some λ1 ∈ K
∗, µ(f) = µ(fλ1

) =
int(fx, fy)

2
> 0, and f, g satisfy the

condition iii) of Theorem 4.1.

iii) int(f, g) > 0, i.e. f, g meet in a least one point of K2.

Proof. The polynomial f (resp. g) has one place at infinity. Assume that degyg ≥ degyf and
let the notations be as in Section 2. Let g1, . . . , gh, f be the set of approximate roots of f and
write, with the notations of Remark 2.5., g =

∑
θ∈B cθ(x)g

θ1
1 . . . gθhh f θh+1. Since g has one place

at infinity, then f does not divide g, in particular there is a unique θ0 such that cθ0 6= 0, θ0h+1 =

0, and int(f, g) = −r0degxcθ0(x)+
∑h

k=1 θ0i(−ri) = max{−r0degxcθ(x)+
∑h

k=1 θi(−ri)|θ ∈ B′}.
Clearly int(f, g) ≥ 0. If int(f, g) = 0, then cθ0(x) ∈ K

∗ and θ01 = . . . = θ0h = 0, in particular,
since f does not divide g, g = f + c, c ∈ K

∗. Now apply Theorem 4.1.�

Remark 4.5 Let (x(t), y(t)) = (t3 − 3t, t2 − 2) and (X(s), Y (s)) = (s3 + 3s, s2 + 2), and
let f(x, y) = rest(x − x(t), y − y(t)) (resp. g(x, y) = ress(x − X(s), y − Y (s))). We have
(x(t)−X(s), y(t)− Y (s)) = K[t, s], hence int(f, g) = 0. In fact,

f(x, y) = y3 − x2 − 3y + 2 = −x2 + (y + 2)(y − 1)2

and

g(x, y) = y3 − x2 − 3y − 2 = −x2 + (y − 2)(y + 1)2,

hence f = g + 4. The genus of a generic element of the family (fλ)λ is 1, and f, f − 4 are the
two rational elements of this family. Note that µ = 2 and µ(f) = µ(f − 4) = 1. This example
shows that the bound of Theorem 4.1. is sharp.

Remark 4.6 Let (fλ)λ be a pencil of algebraic plane curves and assume that f−λ is irreducible
for all λ ∈ K. If the generic element of the pencil is rational, then for all λ ∈ K, f−λ is rational
and irreducible. In this case, by [7], f has one place at infinity and σ(f) is a coordinate of K2

for some automorphism σ of K. Assume that the genus of the generic element of the pencil
(fλ)λ is greater or equal than one. Similarly to the case of curves with one place at infinity, it
is natural to address the following question:

Question: Is there an integer c ∈ N such that, given a pencil of irreducible polynomials (fλ)λ,
if µ+ Af > 0, then the number of rational elements in the pencil is bounded by c?
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