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Rational curves with one place at infinity *

Abdallah Assif

Abstract: Let K be an algebraically closed field of characteristic zero. Given a polynomial
f(z,y) € K[z, y] with one place at infinity, we prove that either f is equivalent to a coordinate,
or the family (f))xex has at most two rational elements.

1 Introduction and notations

Let K be an algebraically closed field of characteristic zero, and let f = y™ + a;(x)y™* + ... +
a,(x) be a monic reduced polynomial of K[z][y]. For all A € K, we set f, = f — A\. Hence we
get a family of polynomials (fx)rex. We shall suppose that f is a reduced polynomial for all
A € K. Let g be a nonzero polynomial of K[z][y]. We define the intersection multiplicity of

L{m g ote that in
g Note that int(f, g)

is also the z-degree of the y-resultant of f and g. Let p = (a,b) € V(f) NV (g), where V
denotes the set of zeros in K2, By setting T = x — a,j = y — b, we may assume that p = (0,0).
We define the intersection multiplicity of f with ¢ at p, denoted int,(f,g), to be the rank of
K[z, y]]

(f.9)
Milnor number of f at p, denoted 1,(f), to be the intersection multiplicity int,(f,, f,), where

fz (resp. f,) denotes the z-derivative (resp. the y-derivative) of f. We set pu(f) = int(f,, f,)
and we recall that p = Y, ZpeV(fA tp(fr). The number of places at p of f, denoted 7, is

f with g, denoted int(f, g), to be the rank of the K-vector space

the K-vector space . Note that int(f,g) = > cv(prv (g nts(f, 9). We define the local

defined to be the number of irreducible components of f in K[[x]][y].

Assume, after possibly a change of variables, that deg,a;(z) < n — i for all : = 1,...,n
(where deg, denotes the z-degree). In particular f has one point at infinity defined by y = 0.
Let h¢(z,y,u) = u"f(E g) The local equation of at infinity of f is nothing but F(y,u) =

u u
he(1,y,u) € K[[u]]ly]. We define the Milnor number at infinity of f, denoted p, to be the

*2000 Mathematical Subject Classification: 14H20
tUniversité d’Angers, Mathématiques, 49045 Angers ceded 01, France, e-mail:assiQuniv-angers.fr



K{lu]][y]
(Fu, )
defined to be the number of irreducible components of F(y,u) in K[[u]][y]-.

Let the notations be as above and let R(z,\) = Py(\)z’ + ... + P;(\) be the y-resultant of
Ix, fy- We say that (f)), is regular if Py(A\) € K*. Note that (f)), is regular if and only if
int(fy, f,) =i for all A € K. Suppose that (fy)x is not regular, and let A,..., As be the set of
roots of FPy(A). Weset I(f) = {A1,...,As}, and we call I(f) the set of irregular values of (f))x.
Set Ay = 1_, (i —int(f — Ag, f,)). For all A € K—I(f), we have int(fy, f,) = p+n—1+ Ay,
where p = int(f,, f,) (see [5]).

Note that Ay = >, k(i —int(fy, fy)), in particular (f\), is regular if and only if Ay = 0. On
the other hand, given a € K, if int(f,, f,) = p+n—1, then either (fy), is regular or I(f) = {a}.

rank of the K-vector space The number of places at infinity of f, denoted r., is

2 Curves with one place at infinity

In this section we recall some of the basic properties of curves with one place at infinity. Let
f=y"+ai(x)y" '+...+a,(z) be an irreducible monic polynomial of K[x][y], and assume, after
possibly a change of variables, that a;(z) = 0 and that dey,ax(z) < kforallk = 1,...,n, insuch
a way that f has only one point at infinity. Let F'(X,Y) = f(X 1, y) € K[X !, y] C K((X))[y],
where K((X)) denotes the field of meromorphic series over K. Assume that f has one place at
infinity, i.e. the projective curve defined by the homogeneous equation hy(x,y,u) = f (E, g)u”
U u
is analytically irreducible at the point at infinity (1 : 0 : 0). In particular F is an irreducible
polynomial in K((X))[y]. Let t be an indeterminate. By Newton theorem, there is y(t) € K((t))
such that F(t",y(t)) = 0 and

Ft"y) = [ v —y(wt)).

wn=1
Let y(t) = >, a;t". We set supp (y(t)) = {i,a; # 0}. Clearly supp(y(t)) = supp(y(wt)) for all
w such that w™ = 1. We denote this set by supp(F') and we recall that ged (n,supp(F)) = 1.

Given f as above, we will associate with F' the sequences (mg)i>o, (di)r>1 and (rg)g>o defined
by:

mo = dy =rg = —n, my = r; = inf(supp(F)) and for all k > 2,
dp = ged (mo, ... ,my—1) = ged (dg—1, my—1)

my, = inf {i € supp(F); i is not divisible by dj}

rL =T i1
E = Tk—1
dy,

+ My — Mpg_1.

Since ged(n, supp(F)) = 1, there is h € N such that d,.; = 1. We denote by convention
Mp41 = Thy1 = +00.



Let g be a nonzero polynomial of K|[x][y]. We define the intersection multiplicity of f with g,
denoted int(f, g), to be the z-degree of the y-resultant of f and g, and we recall that int(f, g)

H?[fx]g] The set {int(f, ¢)|0 # g € K[z][y]} is a semigroup
of N. We denote this set by I'y f)’ and we call it the semigroup associated with f. Let
G(X,y) =g(X 1 y) € KIX![y]. We set Int(F,G) = —int(f, g) and we call it the intersection
multiplicity of F' with G. It is also the X-order of the y-resultant of F' and G. The set
{Int(F,G)|0 # G € K[ X ![y]} is a semigroup of —N. We denote this set by I'(F') and we call
it the semigroup associated with F'. Note that Int(F, G) = O,G(t", y(t)) -where O, denotes the
t-order-, and that this order does not depend on the choice of the root y(t) of F(t",y) = 0.

is the rank of the K-vector space

Remark 2.1 (see [1]) With the notations above, for all k = 0,...,h, r, < 0. Furthermore,
Loo(f) =< —ro,=T1,..., =1 > (resp. ['(F) =< ro,r1,...,7% >.

Let d be a positive integer and assume that d divides n. Let g be a monic polynomial of K[x][y],

of degree g in y. There exist unique polynomials o (z,y), ..., aq(x,y) € K[z][y] such that:

(*) f=g"+ oz, y)g"" + ...+ aulz,y)

and for all 1 <k <d, if ag(z,y) # 0, then deg, (o (z,y)) < g, where deg, denotes the y-degree.

We call (*) the g-adic expansion of f. There is a unique monic polynomial g of dergree g in y

such that in the g-adic expansion of f, a; = 0. We call such a polynomial the d-th approximate
root of f, and we denote it by Appa(f). If F(X,y) = f(X',y), then the d-th approximate
root of F', defined in the same way as for f, is Appq(F) = App,(f)(X 1, y)

For all 1 < k < h, let g = App,, (f) and let Gy(X,y) = ge(X ', y) = App,, (F) (in particular
g1 =Gy =y and gpy1 = f,Gp1 = F), then we have:

Lemma 2.2 (See [1])For all k =1,...,h+ 1, we have:

i) Int(F, Gi) = r and int(f, gx) = —7%.
To ~ Tk—1

ii) gx is a polynomial with one place at infinity and ' (gx) = < T T
k k

Let the notations be as in Section 1. The integer p = int(f,, f,) is the conductor of I'(f) in
dk
for all 1 < k < h, then

N, i. e, forall N > u, N € T'o(f). Furthermore, if we set e, =
k+1
we have

w=>y (eg—rp—n+1

h
k=1



and it follows from Dedekind formula (see also [8]) that

h

nt(f, f,) = p+n—1=3 (ex—

k=1

Lemma 2.3 Let g,k =1,...,h+1, be the set of approximate roots of f. Forall k =2, ... h,
we have

int(fz, fy) = drint(gr,, gr,) + Z?:k(ei —1)r; —dp + 1.
Proof.  Since gy is a polynomial with one place at infinity, it follows that
. . n
lnt(gkagky) = 1nt(gkxagky) + d_k - 17

on the other hand,

n h

int(f, f,) = Z(ek — 1)ry, = diint(gx, gr,) + Z(ei — )r;.

k=1 i=k
This proves our assertionll
Write

92 = Appy, (f) =% +axt + > ayx'y

My m i o mom
d21+d2j<d2 dg

where a # 0. Since ng(dﬁ’dﬂ) =1, then int(gs,,g2,) = (dﬁ — 1)(dE -1
2 dy 2 2

int(gs,,g2,) > 0 if and only if gcd(n,m) = dy < min(n,m), and by the Lemma above, if
int(gs,, g2,) > 0, then so is for p. In particular we get the following:

). In particular,

Lemma 2.4 Let the notations be as above. If u = 0, then so is for int(gy,, g,) forall 1 < k < h,
and either m divides n or n divides m. In particular, if gcd(n, m) = dy < min(n, m), then p > 0.

Proof. Obviousll

Remark 2.5 Let the notations be as above, and let B = {0 = (61, ...,05,0,41)|0 < 0; < ¢; for
alli=1,...,h}, B'={0 € B|0+1 = 0}. Let g € K[z][y]. The polynomial g can be uniquely
written as

g="> colx)g* ... g O+,

0eB



Suppose that g does not divide f, in particular B’ # (. By [1], There is a unique 6y € B’
such that deg,cg,(z)(—7r0) + Z?:l 0oi(—r;) = max{deg,co(x)(—r0) + Z?:l 0;(—r;)}. With these
notations, int(f, g) = deg,cg,(x)(—ro) + Z?Zl Ooi(—1)

3 Abhyankar-Moh Lemma

Let f =9"+ a1(z)y" '+ ...+ a,(x) be a nonzero reduced polynomial of K[z, ] and assume,
after possibly a change of variables, that a;(z) = 0 and also that ¢ > deg, (a;(x) for all2 < i < n,
in such a way that y = 0 is the only point at infinity of f. Let the notations be as in Section
1. If 6, (resp. doo) denotes the order of the conductor of f at p (resp. at the point at infinity),
then 26, = p, + 1, — 1 (resp. 2000 = floo + Too — 1) (see [6]). If p = int(f,, f,), then we set

n(f) = ZpGV(f) pp and T(f) = p — p(f).

Assume that f is an irreducible polynomial, and let g(f) be the genus of the normalized curve
of V(f). By the genus formula we have:

29(f)+ () 26,) 42000 = (n —1)(n —2).

peV(f)

Now int(f, f,) = p+n—1+A(f), where A(f) is a nonnegative integer and A(f) = 0 if and only
if (f))aex has at most one irregular value at infinity (see Section 1). On the other hand, the
local intersection multiplicity of f with f, at the point at infinity is i, +n — 1. In particular
1+ too = (n —1)(n — 2), and consequently:

29(f)+ (Y 20,) + 2000 = u(f) + Ti(f) + o + A(f)

peV(f)

We finally get:

(o) 29(f)+ Y (rp—1) + 7 — 1 =T(f) + A(f)

peV(f)

In particular g(f) = >_ ey (rp — 1) + 7oo — 1 = 0 if and only if A(f) = E(f) = 0. Roughly
speaking, f is a rational unibranch curve (at infinity as well as at finite distance) if and only if
the pencil (fy)rex has at most one irregular value at infinity, and for all A # 0, f) is a smooth
curve. This with Lemma 2.4. implies the following:

Proposition 3.1 (Abhyankar-Moh Lemma) Let x(¢),y(¢) be two monic polynomials of K[t]
and let n = deg,(z(t)), m = deg,(y(t)). Assume that m < n. If Klz(t),y(t)] = K[t], then m
divides n.



Proof. Let f € K[z][y] be the generator of the Kernel of the map K|z][y] — K][t] which
sends z,y to z(t),y(t) respectively. The polynomial f is a rational polynomial with one place
at infinity, and pu(f) = 0, hence p = a(f). It follows from (**) that p = a(f) = A(f) =0, in
particular, by Lemma 2.4., dy = ged(n, m) = mMl

4 Rational one place curves

Let f be a rational polynomial with one place at infinity, and let the notations be as in Section
1. It follows from the equality (**) of Section 3 that }_ iy (rp, —1) = (f). We shall prove
the following;:

Theorem 4.1 Let the notations be as above and let (f\)x be a pencil of polynomials defined
by f . If f is rational, then exactly one of the following hold:

i) For all A € K, f) is rational, and o(f) is a coordinate of K? for some automorphism o of
K2.

ii) The polynomial f — A is rational for at most one A\; # 0, i.e. the pencil (fy), has at most
two rational elements.

iii) Assume that the pencil (fy), has two rational elements f and f),. We have u(f) =
w(fa) = g, furthermore, given a singular point p of V/(f) (resp. V(fx,)), f (resp. fy,) has

two places at p and p,(f) =1 (vesp. p,(fy,) = 1). In particular, f (resp. f),) has excalty g

singular points.
We shall first prove the following Lemma:

Lemma 4.2 Let H = y¥ + a1(2)yV ' + ... + an(x) be a non zero reduced polynomial of
K[[z]][y], and let H = H;...H, be the decomposition of H into irreducible components of
K{[z]][y]. Let g, denotes the Milnor number of H at (0,0) (i.e. p, is the rank of the

K{l=]][y]

K-vector space ———2=). We have the following:
(H, Hy)

1) ,u(o’o) Z r—1.
ii) If > 3, then peo >r—1.
iii) If r = 2 and po0) =7 — 1 = 1, then (H,, Hy) is a local system of coordinates at (0, 0).

Proof.  We have int o) (H, Hy) = 10,0 + N — 1, but

T

int(070) (H, Hy) = Z 1nt(H,, sz) + 2 Z int(070) (HZ, Hj)

i=1 i#]



T

= Z 1nt[(HZz, sz) + dengZ- - 1] + 2 Z il’lt(op) (H27 HJ)

i=1 i£j
hence

T

poo + N —1= () int(Hy,, Hy,))+ N —r+2) intee(H;, H)).

i=1 i#£j

Finally we have o) = (O i, int(H;,, H;,)) —r + 1+ 23, int o) (H;, Hy) . Now for all
r(r—1)

1 S 1 S r, int(o’o)(Hix,Hiy) Z 0 and Zi;éj int(op)(Hi,Hj) Z Cg =

r(r—1)—(r—1) = (r—1)% and i), i) follow immediately. Assume that r = 2. If pgo =r—1,
then int(op) (Hlx, Hly) = iIlt(QQ)(HQx, Hgy) =0 and int(op) (Hl, Hg) = 1. This 1mphes 111).

, hence p0,0) >

Proof of Theorem 4.1.. 1If p(f) = 0, then g = 0, and by Proposition 3.1., either m divides
n or n divides m. Furthermore, o(f) is a coordinate of K? for some automorphism o of K2.
Assume that p(f) > 0 and let py,...,ps be the set of singular points of V(f). Let r; denotes
the number of places of f at p; forall 1 <¢ <s. By Lemma 4.2., forall 1 <7 <s, p,, > 1, — 1,
on the other hand, equality (**) of Section 3 implies that Y ;_,(yp, +7; — 1) = p, in particular

p< > 2p, = 2u(f), hence p(f) > Ko fx, is rational for some A; # 0, then the same

argument as above implies that u(fy,) > =. This is possible only for at most one A; # 0, hence

no | =

ii) follows immediately.

Assume that fy, is rational for some \; # 0. Clearly this holds only if u(f) = u(fy,) = g We

shall prove iii) for f. Let the notations be above. For all 1 < i < s, we have p,, =1, — 1,
hence, by lemma 4.2., r; = 2, int,, (H1,, H,,) = int,,(H,, H,) = 0 and int,, (H, H) = 1. This
implies iii)ll

As a corollary we get the following:

Corollary 4.3 Let f be as above and let (f)), be a pencil of polynomials defined by f. Assume
that f is a rational polynomial, and that u(f) > 0. Let py, ..., ps be the set of singular points

of f.
i) If r,, = 1 (resp. rp, > 3) for some 1...7...s , then f is the only rational point of the
pencil (f)\))\ .

ii) If rp, =2 forall 1 <i <sbuts# g, , then f is the only rational point of the pencil

(Sox -

Proof. 'This is an immediate application of Theorem 4.1.1



Proposition 4.4 Let f # g be two polynomials of K[x][y] and assume that f, g are parametrized
by polynomials of K[t]. Under these hypotheses, exactly one of the following conditions hold:

i) f =g+ A for some A\; € K* and f is equivalent to a coordinate, i.e. o(f) is a coordinate
of K2 for some automorphism o of K2,

int( fz, :
i) f =g+ A for some \y € K* u(f) = pu(fy,) = w > 0, and f, g satisfy the

condition iii) of Theorem 4.1.

i) int(f,g) > 0, i.e. f, g meet in a least one point of K2.

Proof.  The polynomial f (resp. g) has one place at infinity. Assume that deg,g > deg, f and
let the notations be as in Section 2. Let g1,...,gn, f be the set of approximate roots of f and
write, with the notations of Remark 2.5., g =), 5 co(x)g? ... gin for+1. Since g has one place
at infinity, then f does not divide g, in particular there is a unique 6y such that cg, # 0, Opp1 =
0, and int(f, g) = —rodeg, o, (x) + S0, Boi(—r;) = max{—rodeg,cqo(x) + S0, 6:(—r;)|8 € B'}.
Clearly int(f,g) > 0. If int(f,g) = 0, then cg,(z) € K* and fy; = ... = gy, = 0, in particular,
since f does not divide ¢, g = f + ¢, ¢ € K*. Now apply Theorem 4.1.H

Remark 4.5 Let (z(t),y(t) (13 — 3t,t*> — 2) and (X (s),Y(s)) + 3s,s% + 2), and

) = = (s’
let f(z,y) = resi(x — a(t),y — y(t) (resp. g(z,y) = resy( — X(s),y — Y(s)). We have
(x(t) — X(s),y(t) — Y(s)) = K]t, s], hence int(f, g) = 0. In fact,

flay) =y’ —a>=3y+2=—2"+ (y+2)(y — 1)?

and

gz,y)=y*—2® -3y —2=—2"+ (y—2)(y + 1)%,

hence f = g+ 4. The genus of a generic element of the family (fy), is 1, and f, f — 4 are the
two rational elements of this family. Note that g = 2 and p(f) = u(f —4) = 1. This example
shows that the bound of Theorem 4.1. is sharp.

Remark 4.6 Let (f)) be a pencil of algebraic plane curves and assume that f—\ is irreducible
for all A € K. If the generic element of the pencil is rational, then for all A € K, f — X is rational
and irreducible. In this case, by [7], f has one place at infinity and o(f) is a coordinate of K?
for some automorphism o of K. Assume that the genus of the generic element of the pencil
(fa)x is greater or equal than one. Similarly to the case of curves with one place at infinity, it
is natural to address the following question:

Question: Is there an integer ¢ € N such that, given a pencil of irreducible polynomials (fy)a,
if 4+ Ay > 0, then the number of rational elements in the pencil is bounded by ¢?
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