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In this paper, a bi-level optimization problem covering upper (design) and
lower (operation) levels is defined and a solution procedure for bi-level opti-
mization problems is presented. This is devised as a dynamic multiobjective
optimization problem, i.e. the values of the control and state variables change
over a predefined time horizon and several competing criteria are optimized
simultaneously. Moreover, the interaction between the upper and lower levels
is analysed. The benefits of bi-level dynamic multiobjective optimization are
illustrated in detail by examining an industrial case in which the design of a
paper mill (upper level) and the mill operation (lower level) are optimized at
the same time. However, the problem definition and the solution procedure are
not limited to any specific application but can be exploited in many different
industrial areas.
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1. Introduction

A bi-level optimization makes possible the simultaneous optimization of design and oper-
ation. A bi-level optimization problem has two levels where the upper level (e.g. process
design) problem is the leader and the lower level (e.g. process operation) problem is the
follower. Thus, the upper level solution affects the lower level solution and vice versa.
For example, the optimization variables of the upper level are used as constants in the
lower lever. If the objective function on one or both of the levels is vector-valued, the
problem is called a bi-level multiobjective optimization problem (Eichfelder 2010). Bi-
level multiobjective optimization makes it possible to conduct an efficient optimization
of complicated practical applications, such as a papermaking process.

Bi-level optimization can be applied in many fields and for different kinds of problems.
For example, in chemical engineering, bi-level optimization is exploited to optimize the
design and control of processes (Mohideen et al. 1996b, Bansal et al. 2000a,b), in elec-
tricity markets, it is applied to strategic pricing (Fampa et al. 2008), and in supply chain
problems, production-distribution interactions are studied (Calvete et al. 2011). Bi-level
optimization methodology was developed by Mohideen et al. (1996b) who proposed an
algorithm for solving integrated design and operation problems including dynamic math-
ematical models, uncertainty parameters, timevarying disturbances and robust stability
criteria. Subsequently, Bansal et al. (2000b) described both simultaneous and sequen-
tial solution procedures for bi-level problems. In the sequential procedure, the process
design and operation are optimized in turn until optimal design with optimal operation
is achieved. Multiobjective bi-level problems have been studied by Fliege and Vicente
(2006) as well as Deb and Sinha (2008) and Li et al. (2010) solved multiobjective bi-
level problems by using evolutionary algorithms. Different cases and useful background
to bi-level optimization were reviewed by Colson et al. (2005).

Practical optimization problems in industrial processes can usually be considered as
being both dynamic and multiobjective. In addition, the solution methods may be based
on the process models (Kameswaran and Biegler 2006) in which case they are referred to
as model-based problems. As well as bi-level optimization, dynamic multiobjective opti-
mization has been widely applied in chemical engineering. For example, Cervantes et al.
(2002) have considered optimal control strategies of an industrial low-density polyethy-
lene plant, and Barakat et al. (2008) have presented dynamic multiobjective optimization
as applied in batch separation processes.

In the paper industry, although dynamic process modelling has been used for a long
time (Barber and Scott 2007, Niemenmaa et al. 1998) the process optimization has mainly
been simply single objective (Höfferl and Steinschorn 2009, Ropponen and Ritala 2010)
or multiobjective with steady-state models (Madetoja and Tarvainen 2008, Hämäläinen
et al. 2010). However, there are examples of dynamic multiobjective approaches being
used in single level optimization (Linnala et al. 2009, 2010). Bi-level multiobjective opti-
mization has already been exploited so that the design and operation of one sub-process
(broke system) are optimized simultaneously (Ropponen et al. 2010). In this paper bi-
level multiobjective optimization is applied for the broke system similarly to previous
studies, but as far as it is known the process model used is more exact, realistic and
larger than those used in the previous studies. In this way the results of the optimization
are more reliable for implementation in real processes, which is one important goal of
this kind of research.

In this study, dynamic and multiobjective properties were taken into account in both
levels of a bi-level optimization problem unlike in previous studies of bi-level optimization.
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That is because several of the practical optimization problems in the process industry
are dynamic and multiobjective, and those problems have been not discussed extensively
from a bi-level optimization point of view. Here, definition of the bi-level problem as well
as the solution procedure is generalized, i.e. they are not limited to any specific appli-
cation, algorithm or solver. Since the optimization problem is formulated in the bi-level
multiobjective mode, it is possible to handle both long-term and short-term objectives
simultaneously and efficiently. In the long-term, one can decrease capital expenditure in
the process as well as raw material costs, and in the short-term one can assure optimal
operation during different production tasks. In addition to handling different problems,
a similar approach can be exploited for the design of both new processes and for the
revision of existing processes.

The paper is organized as follows: the next section handles theoretical background
and presents a solution procedure for a bi-level optimization problem. Then, there are
numerical experiments and the results are presented in Section 3. Finally, conclusions
sum up the results in Section 4.

2. Problem setting and solution procedure

Here a bi-level optimization problem in which the upper (design) and lower (operation)
levels are taken into account will be defined. There are several papers on this topic (Deb
and Sinha 2008, Mohideen et al. 1996b). However, certain aspects presented in this paper
have not been considered in previously, where the emphasis of the research may have been
different. Deb and Sinha (2008) have described an algorithm that uses a multiobjective
evolutionary algorithm on both levels of a bi-level optimization problem. Thus, there
are some similarities with this solution procedure. For instance, Deb and Sinha empha-
size that the upper level control variables do not change in the lower level optimization.
The same assumption is also used in this approach. In addition, both levels have sep-
arate objective functions and control variables. Moreover, Deb and Sinha highlighted
one important issue: Pareto optimal solutions of the lower level optimization problem
become feasible solutions to the upper level optimization problem. Pareto optimal solu-
tions are mathematically equally good solutions of a multiobjective optimization problem
(Sawaragi et al. 1985). However, this approach can use different optimization methods
and algorithms whereas their algorithm was developed as a multiobjective evolutionary
algorithm.

Similarly to this approach and Deb and Sinha’s algorithm, also Mohideen et al. (1996b)
attempted to find an optimal design on the upper level with feasible and efficient op-
eration on the lower level. They proposed a framework for solving integrated design
and control problems that included dynamic mathematical models similar to this ap-
proach. Moreover their framework also takes into account uncertainty parameters and
time-varying disturbances as well as robust stability criteria. These two last features are
not taken into account to the same extent in this approach, though this optimization can
also cope with some time-varying disturbances (Linnala et al. 2010). The main difference
between this approach and the algorithm of Mohideen et al. (1996b) is that their solution
procedure can only manage a single objective function.

Since there are two important aspects in this approach; multiobjectivity and dynamics,
next a dynamic optimization problem and its solution procedure are defined, and then
a dynamic multiobjective optimization problem is studied.
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4 M. Linnala et al.

2.1. Dynamic optimization

A dynamic optimization problem involves a dynamic process model where dynamic vari-
able values change with time (Biegler and Grossmann 2004). Thus, its solution differs
from the steady state problem. The dynamic optimization problem can be formulated as
follows:

optimize
uuu(t)

f(xxx(tf ),uuu(tf ), ppp, tf )

subject to











xxx ∈ Sx

uuu ∈ Su

h
(

dxxx(t)
dt ,xxx(t),uuu(t),ωωω(t), t

)

= 0 for all t ∈ [to, tf ],

(2.1)

where f is an objective function, h is a system of the differential and algebraic equation
constraints, which can also be divided into two separate systems (Biegler and Grossmann
2004, Cervantes and Biegler 2000), xxx denotes the differential and algebraic state vectors
(these can also be presented separately), uuu is the vector of optimization variables, also
known as a control vector, ppp is a steady parameter vector, and tf is a length of time hori-
zon. Sometimes the steady parameter vectors can be ignored, because they are constants
from the optimization point of view. Since dynamic optimization has been studied for
years, there are several different solution approaches for (2.1). Typically some of the solu-
tions require at least partial discretization of the originally continuous variables (Biegler
and Grossmann 2004, Grossmann and Biegler 2004).

In the case when several objectives need to be optimized simultaneously and objec-
tives and/or variables change with time, the optimization problem is called a dynamic
multiobjective optimization problem and it can be formulated as follows:

optimize
uuu(t)

(f1(xxx(tf ),uuu(tf ), ppp, tf ), . . . , fn(xxx(tf ),uuu(tf ), ppp, tf ))

subject to











xxx ∈ Sx

uuu ∈ Su

h
(

dxxx(t)
dt ,xxx(t),uuu(t), ppp(t), t

)

= 0 for all t ∈ [to, tf ],

(2.2)

where fff = (f1, . . . , fn)T is a vector-valued objective function. In this case, the solution
process is different compared to (2.1) because all the objective functions fi, for all i =
1, . . . , n, need to be optimized at the same time. Thus, there does not typically exist
a unique solution, but instead, there can be a set of solutions that are mathematically
equally good. These solutions are called Pareto optimal or non-dominated or efficient
solutions (Sawaragi et al. 1985).

2.2. Bi-level optimization

Based on the dynamic multiobjective optimization problem (2.2), the problem setting
can be extended such that there are two separate levels in the optimization problem; the
upper level and the lower level. Assumption is that both levels have multiple objectives
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and the upper level includes the lower level optimization problem. In other words, opti-
mization of the upper level requires that the lower level is optimized. The optimization
problem considered on the upper level can be given as follows:

optimize
aaa

{F1(aaa,xxx(tf ),uuu(tf ),ωωω) . . . , Fk(aaa,xxx(tf ),uuu(tf ),ωωω)}

subject to

{

aaa ∈ Sa

(2.4),

(2.3)

where Fi, for all i = 1, . . . , k, are the upper level objective functions, aaa is a vector of the
optimization variables on the upper level (design variables), xxx is a vector of the state
variables, uuu is a vector of the optimization variables on the lower level (control variables),
ωωω is a vector of the operational tasks, tf is the length of the optimization horizon and
Sa is a feasible set of aaa defined by all the constraints including box constraints as well
as linear and nonlinear equality and inequality constraints. In (2.3), the operation tasks
(ωωω) are related to the lower level optimization problem and they typically present some
assignment or modification of the system state. One should note that compared to some
other formulations in (2.3), steady parameters are ignored.

The problem (2.3) becomes dynamic because the lower level optimization problem
includes a system of transient differential and algebraic equations that is a dynamic
system. The optimization problem on the lower level can be given as:

optimize
uuu

{f1(xxx(tf ),uuu(tf ),ωωω(aaa, t)), . . . , fl(xxx(tf ),uuu(tf ),ωωω(aaa, t))}

subject to











xxx ∈ Sx(aaa)

uuu ∈ Su(aaa)

h
(

dxxx(t)
dt ,xxx(t),uuu(t),ωωω(aaa, t), t

)

= 0 for all t ∈ [to, tf ],

(2.4)

where fj for all j = 1 . . . , l are the lower level objective functions, xxx, aaa, uuu and ωωω are
the same as above, Sx and Su are the feasible sets of xxx and uuu, respectively, and h is the
system of dynamic differential and algebraic equations, similar to (2.1) and (2.2).

As (2.3) and (2.4) show, in this problem formulation, the current optimization variable
values on the upper level affect the lower level problem setting. They appear not only in
the operational tasks but also in defining the feasible sets of the state variables and the
optimization variables. On the other hand, the solution of the lower level optimization
problem (optimal values of the optimization variables) affects the objective functions on
the upper level. Thus, the optimization problems on the upper and lower levels have
two-way coupling which is presented in Figure 1. Here assumption is that the objective
functions and optimization variables are different between the levels, and the optimal
variable values are denoted by *.

2.3. Solution procedure

Next a solution procedure for the bi-level optimization problem given in (2.3) will be
presented. As described, this approach has a few similar features to simultaneous and
sequential optimization procedures presented by Mohideen et al. (1996a) and the algo-
rithm of Deb and Sinha (2008). In practice, this approach is able to handle dynamic
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Figure 1. Interactions between the optimization levels and a dynamic process model.

and multiobjective optimization problems on both levels. The main emphasis is given to
definition of an abstract solution procedure that can be applied and modified easily for
different problems. In the following section, an example of how it is applied for solving a
bi-level optimization problem from paper industry will be presented.

Algorithm 2.1 (Bi-level optimization)
Let the bi-level optimization problem be defined as in (2.3) and (2.4). Then the solution

procedure for such a problem can be defined as follows.

1. Initialize the optimization method selected for the upper level optimization.
2. Define objective functions, a vector of optimization variables and constraints for

the upper level optimization problem (2.3) (including the lower level optimization
problem parameterized by the upper level optimization variables) and perform
optimization as follows.
Do until some stopping criterion is fulfilled:

a) Let vector ãaa contain the current values for the optimization variables on the
upper level. Define the corresponding lower level optimization problem (2.4)
at ãaa.

b) Find the optimal state for lower level with the selected optimization method,
i.e. perform the optimization based on Algorithm 2.2.

c) Let uuu∗ be the optimal solution of the lower level optimization problem and
xxx∗ the corresponding vector of state variables. In the multiobjective case uuu∗

is selected from a set of Pareto optimal solutions using even human decision
maker or some predefined information.

d) Based on uuu∗ and xxx∗, evaluate objective functions F1, . . . , Fk on the upper
level and provide the objective function values to the optimization method.

End Do
3. The optimal solutions for the bi-level optimization problem are F1, . . . , Fk at aaa∗

with the corresponding optimal lower level optimization solutions f1, . . . , fl at uuu∗.

Algorithm 2.2 (Lower level optimization)
Let a lower level optimization problem be defined as in (2.4). Then the solution pro-

cedure is as follows:

1. Initialize the optimization method.
2. Define the objective functions, a vector of the optimization variables and con-

straints in (2.4) for the given parameters ãaa. Start optimization procedure as
follows.
Do until some stopping criterion is fulfilled:
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a) Solve the dynamic process model with the current optimization variables ũuu.
b) Evaluate objectives f1, . . . , fl at ũuu based on the state variables x̃xx.

End Do
3. Save the optimal values of the optimization variables uuu∗ and the corresponding

state variable values xxx∗ as well as f1, . . . , fl which are needed in Algorithm 2.1.

In this approach, the bi-level optimization problem is multiobjective in both opti-
mization levels. If the objectives are conflicting, a set of mathematically equally good
solutions (Pareto optimal solutions) is obtained on both levels. In the work of Deb and
Sinha (2008) bi-level Pareto optimality was analysed and their algorithm could handle
the Pareto optimal solutions produced on the lower level. However, in many situations
only one solution has to be chosen as the final one. This choice can be done by a deci-
sion maker who is capable of comparing the Pareto optimal solutions based on her/his
expert knowledge of the current problem. Sometimes computational time becomes un-
acceptably long and that precludes participation of the decision maker. Then some kind
of predefined information with classical scalarizing functions can be used to choose the
best solution during the bi-level optimization process (Miettinen 1999).

3. Numerical experiment

Here a numerical experiment where a bi-level optimization was applied to the process of
papermaking is presented. To be precise, a broke system in which the rejected paper is
being collected and re-circulated back into the process as a raw material is considered.
Briefly, the aim was to optimize the capital costs and the operating costs simultaneously.
The capital costs were described by the broke tower volumes that were minimized, and
the operating costs were minimized by maximizing the broke dosage (in order to minimize
the need for virgin raw material) and the net production. In order to highlight the special
features of this problem, the application will be introduced.

3.1. Dynamic multiobjective optimization related to papermaking

In this experiment a dynamic process model of a supercalendered (SC) papermaking
line was used. The model consists of a TMP (thermomechanical pulp) mill where the
mechanical pulp is produced, an approach system where the raw materials are mixed
and diluted, a broke system where the rejected paper is being collected, a paper machine
where the paper web is formed and dried, and a reel where the ready paper is packaged
for post processing. The dynamic process model was conducted with Apros software
(VTT 2010) in co-operation with VTT Technical Research Centre of Finland.

The problem became bi-level one because the design and operation of the broke system
had to be considered. The broke system had its own subsystems for a wet broke (paper
rejected before drying having approximately 50 % moisture content) and a dry broke
(ready paper being rejected). Hence, the broke system consisted of the elements presented
in Figure 2.

When the broke is recycled back into the process, its properties differ from those of the
virgin raw materials and therefore this affects the paper properties. For example, when
the dosage of broke increases, the strength properties of the paper web decrease and
furthermore, the risk of production failure, referred to as a break, increases significantly.
Should a break occur, all the paper needs to be rejected and fed back to the broke system
(that creates a need for larger broke tower volume). This phenomenon was modelled
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Figure 2. Broke system of the papermaking line modeled.

such that when the broke dosage increased, a larger part of the paper web was rejected,
but no actual break occurred. This illustrated the growing risk of break caused by the
increased broke dosage over the long-term. On the other hand, broke is a much cheaper
raw material than virgin raw materials such as TMP or chemical pulp. Therefore the
dosage of broke should be kept as high as possible. Hence, on the lower level (operation
of the broke system) there were conflicting objectives: maximize both dosage of broke
and net production. On the upper level (process design) investment costs (broke tower
volumes) which depend on the operations of the lower level were tried to minimize.
Overall, there were multiple objectives at both levels which had very strong interactions
with each other.

3.2. Optimization problem setting

At the operational level, there were two continuous control variables; dosage of broke and
the wet broke proportion of total broke dosaged. Instead, at the design level different
tower volumes as control variables were considered and they were defined as integer
variables in order to limit the search space. The objective functions optimized on the
operational level consisted of production loss (f1), variation of fill percentage of the dry
broke tower (f2), variation of fill percentage of the wet broke tower (f3), and broke dosage
(f4). From these functions, f1, f2 and f3 were minimized, and f4 was maximized. The
objective functions on the operational level were defined as follows:

fj =

tf
∑

t=t0

|x(t) − xtarget|, for all j = 1, . . . , 4. (3.1)
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On the design level, the objective functions consisted of the fill percentages of wet
broke (F1) and dry broke (F2) towers and both functions were minimized. The objective
functions were defined as follows:

Fi = max
t∈[t0,tf ]

|x(t) − xtarget|, for all i = 1, 2. (3.2)

In this way, the tower volumes could be minimized, but runnability and stability were
able to be maintained with buffer volume needed. This can be seen in the objective func-
tions f2, f3, F1 and F2 which were based on the same state variables. At the operational
level (f2 and f3), the process stability was the most important parameter whereas at the
design level (F1 and F2) maximum values were the most important. Numerical values
for the design, control and state variables are presented in Table 1. The upper and lower
limits of the design and control variables were defined based on the expert knowledge.
The initial values of the variables represented a stable process situation (reference point).

Table 1. Numerical values of the design, control and state variables. Lower and upper limits or step size
were not needed for the state variables and target values were not needed for the control variables. Thus,
they are marked with ’-’.

OperationalOperationalOperational Control variablesControl variablesControl variables State variablesState variablesState variables
levellevellevel Wet broke prop. [%] Broke dos.∗ [%] Prod. [t/h] Fill-% [%]
Initial value 60 15 51.39 50
Lower limit 0 0 - -
Upper limit 100 75 - -
Target value - 75 53.69 50
DesignDesignDesign Design variablesDesign variablesDesign variables State variablesState variablesState variables
levellevellevel Vwet broke [m3] Vdry broke [m3] Fill-% [%]
Initial value 2000 4000 50
Lower limit 250 250 -
Upper limit 6000 6000 -
Step size 250 250 -
Target value - - 75

∗ Broke dosage was both a control and a state variable. Its target value was used only in
the objective function formulation.

The optimization problem on the operational level was multiobjective, and thus, a
set of Pareto optimal solutions was obtained. Here only one solution was wanted to be
brought to the design level. To achieve that goal, a scalarizing function was used to select
a single solution. The method of global criteria was applied as a scalarizing function (Deb
2001):

S(fff,zzz) =

(

l
∑

m=1

|fm(uuu) − zm|p

)1/p

, (3.3)

where fff = (f1, . . . , fl)
T is a vector of the objective functions, zzz = (z1, . . . , zl) is the

reference point defined close to the ideal point based on the expert knowledge and here
p was 2. After the scalarizing, a solution which corresponded to the smallest value of the
scalarizing function was brought to the design level.
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Since the optimization problem on the operational level was dynamic, a receding hori-
zon prediction principle (model predictive control) was applied (Rawlings 2000). In this
example, the same dynamic process model was used for both prediction and simulation.
Therefore two different time horizons were defined. The longer time horizon, Tpred=3000
s, was used for prediction of the control sequence, and the shorter time horizon, Tsim=600
s, was used to simulate one time stage forward with the first controls predicted. This
loop was repeated until the end of total time horizon, 4800 s, was achieved (Tend = T8).
The principle of receding horizon prediction is presented in Figure 3, and an example of
this has been presented previously (Linnala et al. 2010).

Figure 3. Receding horizon prediction principle.

In this example, the optimization problem on the both levels was solved by using the
differential evolution algorithm (DE) implemented in MATLAB. DE belongs to the group
of evolution strategies i.e. it simulates natural evolution. The simulation is based on gen-
erations and populations as in other evolution algorithms (Price et al. 2005, Lampinen
2002, Coello Coello 2000). DE algorithm can be formulated to solve multiobjective prob-
lems with linear and nonlinear equality and inequality constraints. The solution of the
problem begins with the definition of initial vector population (target vectors) from the
permitted search space. After the initialization, differential mutation produces a pop-
ulation of mutation vectors, such that, the scaled difference of two randomly sampled
vectors is added to the third vector. The scale factor is used to control the rate at which
the population evolves. After a mutation, DE performs a uniform crossover or discrete
recombination. Subsequently, trial vectors are built by copying parameter values from
two different vectors, i.e. each target vector is crossed with a corresponding mutant vec-
tor. The crossover probability is used to control the proportion of parameters copied
from the mutant vector. The defined crossover probability is compared to the output
of random number generator and if the probability is greater than the random number,
then this parameter is copied from the mutant vector. Otherwise, the parameter value
is copied from the target vector. Still, at least one parameter value is copied from the
mutant vector in order to avoid duplication of the target vector. Finally, DE selects the
vectors for the new population. If the trial vector is equally good or better from the
objective function point of view, it will replace the target vector in the new generation.
In the multiobjective case, the nondominated vector is selected to the new generation. In
this way, the search moves toward the optimal solution in a step by step manner (Price
et al. 2005).

Even if the same solver was used on both levels, some parameter values of DE differed.
The mutation rate was 0.3 and the crossover rate was 0.6 on both levels. The number
of generations and the population size were five at the design level. At the operational
level, the number of generations was five also, but the population size was eight in order
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to increase variation in the set of optimal solutions.

3.3. Results

After the optimization problem was solved, several different design candidates with the
optimal operation were obtained. Since the design optimization problem was multiobjec-
tive and the operational level affected the design level, design candidates differed from
each other. As an example, the objective function values of two chosen design candidates
are presented in Table 2. Here the conflicts between the objectives can be appreciated:
At the design level, if F2 decreased, then F1 increased and vice versa. At the operational
level, conflicts were more complicated because several variables affected several objec-
tives. Nonetheless, it could be considered as a conflict between the dry broke and wet
broke line operations as can be seen in Table 2. If f3 (wet broke tower variations) de-
creased, f2 (dry broke tower variations) increased (Candidate 1) and vice versa, if f2 (dry
broke tower variations) decreased, f3 (wet broke tower variations) increased (Candidate
2).

Table 2. The objective function values of two different solution candidates.

Candidate 1 Candidate 2
f1, sum of production loss [t/h] 1149 1200
f2, sum of dry broke tower liquid level [%] 2587 3377
f3, sum of wet broke tower liquid level [%] 1672 7489
f4, sum of broke dosage [%] 408 385
F1, maximum liquid level of wet broke tower [%] 25.00 24.93
F2, maximum liquid level of dry broke tower [%] 24.98 25.00

Each optimal process design had its own optimal control sequence defined by the
operational optimization over the time horizon T1 − T8. Table 3 presents the previous
two design candidates including the design variable values (tower volumes) and control
variable values (broke dosage and wet broke proportion of total broke).

Table 3. Design and control variable values of two design candidates.

Design variables [m3] Control variables [%]
T1 T2 T3 T4 T5 T6 T7 T8

Candidate 1, a1 4000 u1 15.0 7.6 2.3 18.7 3.9 38.6 8.5 27.5
a2 1000 u2 60.0 57.4 23.7 80.8 95.7 95.4 39.0 65.2

Candidate 2, a1 1000 u1 0.5 61.0 7.2 7.7 3.9 40.7 25.7 12.4
a2 2750 u2 37.5 58.5 38.5 38.4 50.4 42.2 46.3 2.8

a1: Wet broke tower volume, a2: Dry broke tower volume.
u1: Broke dosage, u2: Wet broke proportion of the total broke.

The optimization results can be visualized with the time series of different state vari-
ables used in the objective functions as presented in Figures 4 and 5. Here, five optimal
solutions are shown in order to illustrate the variation between the different designs and
operations. The dotted lines mark the target levels, i.e. the objective function values are
better the closer the state variable values are to the target level. For the sake of clar-
ification, design candidates 1 and 2 presented above are marked with arrows in Figure
4.
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Figure 4. Fill percentages of wet broke (left) and dry broke (right) towers during the simulation.
The dotted line represents the target value.
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Figure 5. Broke dosage for each of the eight time stages (left) and production (right) during the
simulation. The dotted line represents the target value.

Figure 6 presents variation in basis weight and filler content which are very important
paper quality parameters. These parameters were not included in the objective functions
but produce interesting additional information for the decision maker because the quality
parameters should stay within the target interval (marked with dotted lines).

As the results show, there was variation between the solutions both in design and in
operation. At the operational level, variations in the broke tower liquid levels (Figure
4) differed rather markedly between the design candidates. For example, designs 2 and
4 show that too strong operations lead to loss of the process stability. The same phe-
nomenon can be seen in Figure 5 in which too high a broke dosage leads to production
losses (design 2). In addition, some solutions, such as designs 2 and 4, could be dis-
counted in practice based on the expert knowledge because the paper quality would not
stay at the target interval, as can be seen in Figure 6. Since the paper quality was not
included in the objective functions, all the solutions presented are equally good from the
optimization point of view. Therefore, a decision maker is the best individual to compare
the various solution candidates and choose the best one to be realized.

Above, only one control sequence for each design is presented. Nonetheless, depending
on the method used at the operational level, different control sequences are also possible.
Here, the scalarizing function selected the best controls for eight time stages, one after
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Figure 6. Basis weight (left) and filler content (right) during the simulation. The dotted lines
represent the target intervals.

another. When the first controls were implemented, the next control possibilities were
fixed, because the next stage depended on the previous stage. Note that if the scalariz-
ing function or the value of reference point was changed, the optimal control sequence
could be different. This is the challenge of dynamics in a bi-level case which has not been
considered previously in the literature. Overall, this numerical experiment shows that
dynamic and multiobjective bi-level optimization can be applied in practical optimiza-
tion problems, but it requires expert knowledge to understand the relationships between
different optimization levels, objectives and variables.

4. Conclusions

In this paper a real life optimization problem being dynamic, multiobjective and bi-level
by nature was discussed. All these special features set requirements for the solution pro-
cess as well as the problem formulation. Thus, the generalized formulation for a dynamic
multiobjective bi-level optimization problem was defined, and a solution procedure for
such problems was presented. Subsequently, the approach was illustrated with a real life
example in which the process design and operation were optimized simultaneously in
place of theoretical test case examination. The results show that this approach was suc-
cessful and it could be implemented in practical optimization problems. Moreover, this
complicated problem cannot be solved efficiently as a single level optimization problem.
Here, the bi-level optimization problem was solved by using differential evolution algo-
rithm, but other techniques can be implemented as well. It would be interesting to apply
this approach with different optimization problems and algorithms. Furthermore, this
generalized approach could be implemented in some industrial, even more complicated
and challenging, optimization problems in order to demonstrate the real advantages of
this approach.
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Receding horizon prediction principle.  
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The dotted line represents the target value.  
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simulation. The dotted line represents the target value.  
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Basis weight (left) and filler content (right) during the simulation. The dotted lines 
represent the target intervals.  
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