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Abstract

A new fully automatic procedure for the construction of histograms is pro-

posed. It consists of constructing both a regular and an irregular histogram

and then choosing between the two. To choose the number of bins in the ir-

regular histogram, two different penalties motivated by recent work in model

selection are proposed. A description of the algorithm and a proper tuning

of the penalties is given. Finally, different versions of the procedure are com-

pared to other existing proposals for a wide range of densities and sample

sizes. In the simulations, the squared Hellinger risk of the new procedure is

always at most twice as large as the risk of the best of the other methods.

The procedure is implemented in an R-Package.
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1. Introduction

For a sample (X1, X2, . . . , Xn) of a real random variable X with an un-

known density f w.r.t. Lebesgue measure, we denote the realizations by

(x1, x2, . . . , xn) and the realizations of the order statistics by x(1) ≤ x(2) ≤
· · · ≤ x(n). The goal in nonparametric density estimation is to construct an

estimate f̂ of f from the sample. In this work, we focus on estimation by

histograms, which are defined as piecewise constant densities. The procedure

we propose consists of constructing both a regular and an irregular histogram

(both to be defined below) and then choosing between the two. Although

other types of nonparametric density estimators are known to be superior

to histograms according to several optimality criteria, histograms still play

an important role in practice. The main reason is their simplicity and hence

their interpretability (Birgé and Rozenholc, 2006). Often, the histogram is

the only density estimator taught to future researchers in non-mathematical

subject areas, usually introduced in an exploratory context without reference

to optimality criteria.

We first introduce histograms and describe the connection to Maximum

Likelihood estimation: Given (x1, x2, . . . , xn) and a set of densities F , the

maximum likelihood estimate – if it exists – is given by an element f̂ ∈ F
that maximizes the likelihood

∏n
i=1 f(xi) or equivalently its logarithm, the

log-likelihood L(f, x1, . . . , xn):

f̂ := argmaxf∈FL(f, x1, . . . , xn) := argmaxf∈F

n∑

i=1

log(f(xi)).

Without further restrictions on the class F , the log-likelihood is unbounded,

and hence, no maximum likelihood estimate exists. One possibility is to
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restrict F to a set of histograms. Consider a partition I := {I1, . . . , ID} of

a compact interval K ⊂ R into D intervals I1, . . . , ID, such that Ii ∩ Ij = ∅
for i 6= j and

⋃
Ii = K. Now consider the set FI of all histograms that are

piecewise constant on I and zero outside I:

FI :=

{
f

∣∣∣∣∣f =
D∑

j=1

hj1Ij
, hj ≥ 0, j = 1, . . . , D and

D∑

j=1

hj|Ij| = 1

}
,

where 1A denotes the indicator function of a set A and |I| the length of

the interval I. If K contains [x(1), x(n)], the Maximum Likelihood Histogram

(ML histogram) is defined as the maximizer of the log-likelihood in FI and

is given by

f̂I := argmaxf∈FI
L(f, x1, . . . , xn) =

1

n

D∑

j=1

Nj

|Ij|
1Ij

, (1)

with Nj =
∑n

i=1 1Ij
(xi). Its log-likelihood is

L(f̂I , x1, . . . , xn) =
D∑

j=1

Nj log
Nj

n|Ij|
. (2)

In the following, we consider partitions I := ID := (I1, . . . , ID) of the

interval I := [x(1), x(n)], consisting of D intervals of the form

Ij :=





[t0, t1] j = 1

(tj−1, tj] j = 2, . . . , D
,

with breakpoints x(1) =: t0 < t1 < · · · < tD := x(n). A histogram is called

regular if all intervals have the same length and irregular otherwise. The

intervals are also referred to as bins.

We will only consider ML histograms in this work, and use the term ”his-

togram” synonymously with ”ML histogram” unless explicitly stated other-

wise. We focus on finding a data-driven construction of a histogram with
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good risk behavior. Given a distance measure d between densities, the risk is

defined as the expected distance between the true and the estimated density:

Rn(f, f̂I , d) := Ef [d(f, f̂I(X1, . . . , Xn))].

We consider the risks w.r.t. (normalized) squared Hellinger distance

dH(f, g) =
1

2

∫
(
√

f(t) −
√

g(t))2dt, (3)

and w.r.t. powers of the Lp-norms (p = 1, 2) defined by

dp := ‖f − g‖p
p =

∫
|f(t) − g(t)|pdt. (4)

For a detailed discussion on the choice of loss functions in histogram density

estimation, see Birgé and Rozenholc (2006, sec. 2.2) and the references given

there.

Given the sample, the histogram f̂I depends only on the partition I =

(I1, . . . , ID) as the values on the intervals of the partition are given by (1). In

order to achieve good performance in terms of risk, the crucial point is thus

choosing the partition. Since partitions with too many bins will result in a

large likelihood without yielding a good estimate of f , a näıve comparison

of the likelihoods of histograms with different numbers of bins is mislead-

ing. But also without any further restrictions on the allowed partitions the

likelihood can be made arbitrarily large for a fixed number of bins.

Many approaches exist for the special case of regular histograms where I

is divided into D equal sized bins; the problem is then reduced to the choice

of D, cf. Birgé and Rozenholc (2006), Davies et al. (2009) and the references

given there. Using irregular partitions can reduce bias and therefore can

improve performance for spatially inhomogenous densities, but the increased
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difficulty of choosing a good partition may lead to an increase in risk for

more well-behaved densities. The idea of constructing both a regular and an

irregular histogram and then choosing between the two is briefly discussed

in Birgé and Rozenholc (2006). To our knowledge, this approach has not yet

been put into practice.

Our recommendation is to construct a regular histogram that maximizes

the penalized log-likelihood

L(f̂I , x1, . . . , xn) − (D − 1) − log2.5 D (5)

among all regular partitions of [x(1), x(n)] with D = 1, . . . , ⌊n/ log n⌋ bins

(where ⌊x⌋ denotes the largest integer not larger than x) and an irregular

histogram that maximizes the penalized log-likelihood

L(f̂I , x1, . . . , xn) − log

(
n − 1

D − 1

)
− (D − 1) − log2.5 D (6)

among a set of partitions of [x(1), x(n)] with breakpoints equal to the sam-

ple points, where again D is the number of bins in a given partition. The

final estimate is then the one with the larger penalized log-likelihood. The

penalty in (5) for the regular case was proposed in Birgé and Rozenholc

(2006), while the motivation for (6) is developed later in this paper, where

we consider different penalty forms for the irregular case. Note that the dif-

ference between the penalties is the term log
(

n−1
D−1

)
which is needed because

in the irregular case, the best partition with D bins has to be chosen from

a set of
(

n−1
D−1

)
partitions, while there is only one partition with D bins in

the regular case. The necessity of taking into account in the penalty not

only the number of parameters in a model but also the number of candidate

models with same number of parameters is one of the key points in Barron
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et al. (1999). Specific penalty forms for histogram estimators were derived

in Castellan (1999) and for more general situations in Massart (2007). Note

that both penalties (and hence the penalized log-likelihoods) coincide for

D = 1. The penalties are both designed to achieve a good control on the

Hellinger risk in term of Oracle Inequality as derived for example in (Mas-

sart, 2007, Th.??? eq(???)).Thoralf, I don’t have the Massart book

with me, could you extract an Oracle Inequality from a theorem

connected to histogram

Several methods for choosing a good irregular histogram have been de-

veloped previously. Kogure (1987) gives asymptotic results for the optimal

choice of bins. His approach is based on using blocks of equisized bins, and

he explores the dependence on tuning parameters via simulations (Kogure,

1986). It does not result in a fully automatic procedure. Kanazawa (1988)

proposes to control the Hellinger distance between the unknown true den-

sity and the estimated histogram and introduces a dynamic programming

algorithm to find the best partition with a given number of bins. Kanazawa

(1992) derives the asymptotically optimal choice of the number of bins which

depends on derivatives of the unknown density, making the procedure inap-

plicable in practice. Celisse and Robin (2008) give explicit formulas for L2

leave-p-out cross-validation for regular and irregular histograms. They only

briefly comment on the case of irregular histograms and only show simula-

tions with ad-hoc choices of the set of partitions. In our simulations, we

use their explicit formula to compare risk behavior of cross-validation and

our penalized likelihood approach when both are used to choose an irregular

histogram from the same set of partitions. The multiresolution histogram by
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Engel (1997) is based on a tree of dyadic partitions. Its performance cru-

cially depends on the finest resolution level, for which no universally usable

recommendation is given. Some other tree-based procedures have been sug-

gested for the multivariate case. They can be used for the univariate case,

but they either perform a complete search over a restricted set of partitions

(Blanchard et al., 2007; Klemelä, 2009) or a greedy search over a full set of

partitions (Klemelä, 2007) to deal with computational problems that do not

occur in the univariate case. Conditions for consistency of histogram esti-

mates with data-driven and possibly irregular partitions are derived in Chen

and Zhao (1987); Lugosi and Nobel (1996) and Zhao et al. (1988). Devroye

and Lugosi (2004) give a construction of histograms where bin widths are

allowed to vary according to a pre-specified function.

Hartigan (1996) considers regular and irregular histogram construction

from a Bayesian point of view. However, we are not aware of any fully tuned

automatic Bayesian procedure for irregular histogram construction. Rissanen

et al. (1992) give a construction based on the Minimum Description Length

(MDL) paradigm, which leads to a penalized likelihood estimator. A choice of

several discretization parameters is needed, and the recommendation given by

the authors is to perform an exhaustive search over all possible combinations

of values, which is computationally expensive. A more recent MDL-based

proposal by Kontkanen and Myllymäki (2007) involves a discretization which

results in the estimate not being a proper density. Catoni (2002) suggests a

multi-stage procedure based on coding ideas that computes a density estimate

by aggregating histograms.

The taut string procedure introduced by Davies and Kovac (2004) can
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also be used to generate an irregular histogram as described in Davies et al.

(2009). Regularization is achieved not by controlling the number of bins but

by constructing an estimate that has a minimum number of modes subject

to a constraint on the distance between the empirical and the estimated dis-

tribution function. The main idea is to construct a piecewise linear spline of

minimal length (the taut string) in a tube around the empirical cdf and then

take its derivative, which is piecewise constant. With some modifications

this gives a histogram that fulfills definition (1). The main tuning parame-

ter is the tube width, and an automatic choice is suggested by the authors.

Although not designed to minimize risk, the procedure has performed well

w.r.t. classical loss functions (Davies et al., 2009), and therefore is included

in our simulations.

For our construction of irregular histograms, we will focus on penalized

likelihood maximization techniques. For a good data-driven histogram one

needs an appropriate penalization to provide an automatic choice of D as well

as of the partition I = (I1, . . . , ID). Since Akaike’s Information Criterion

(AIC) introduced by Akaike (1973), penalized likelihood has been used with

many different penalty terms. AIC aims at ensuring a good risk behavior

of the resulting estimate. Another widely used criterion is the Bayesian

Information Criterion (BIC) introduced by Schwarz (1978). It is constructed

in such a way as to consistently estimate the smallest true model order,

which in histogram density estimation would lead to very large models unless

the true density is piecewise constant. In practice, criteria like AIC and

BIC are routinely applied in many different statistical models, often without

reference to their different conceptual backgrounds and without appropriate
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modifications for the model under consideration. In their original forms, both

AIC and BIC do not account for multiple partitions with the same number

of bins. See Chapter 7.3 of Massart (2007) for a critique of the use of AIC in

histogram density estimation. Since both are widely used, we include them

in our comparisons. Our penalties are motivated by recent model selection

works by Barron et al. (1999), Castellan (1999, 2000) and Massart (2007).

The regular histogram construction proposed in Birgé and Rozenholc (2006)

with which we combine our irregular histogram is based on the same ideas.

Our paper is structured as follows: In Section 2, we review the problem

of constructing an irregular histogram using penalized likelihood. Section 3

gives a description of the practical implementation including calibration of

the penalty. Section 4 gives the results of a simulation study and conclusions.

2. Penalized likelihood construction of irregular histograms

Constructing an irregular histogram by penalized likelihood means max-

imizing

L(f̂I , x1, . . . , xn) − penn(I), (7)

w.r.t. partitions I = (I1, . . . , I|I|) of [x(1), x(n)], where penn(I) is a penalty

term depending only on the partition I and possibly on the sample (data-

driven). We will introduce a new choice here motivated by work of Barron

et al. (1999), Castellan (1999, 2000) and Massart (2007).

Optimizing w.r.t. the partition I with |I| fixed in (7) leaves us with a

continuous optimization problem. Without further restrictions, for |I| ≥ 2

the likelihood is unbounded. One possibility is to restrict to all partitions
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that are built with endpoints on the observations; the optimization problem

(7) can then be solved using a dynamic programming algorithm first used

for histogram construction by Kanazawa (1988). More details are given in

Section 3.

With D = |I|, we propose the following families of penalties parametrized

by two constants c and α:

penA
n (I) = c log

(
n − 1

D − 1

)
+ α(D − 1) + ε(1)

c,α(D), (8)

penB
n (I) = c log

(
n − 1

D − 1

)
+ α(D − 1) + ε(2)(D) (9)

and

penR
n (I) = c log

(
n − 1

D − 1

)
+

α

n

D∑

j=1

Nj

|Ij|
+ ε(2)(D), (10)

where

ε(1)
c,α(D) = c k log D + 2

√

cα(D − 1)(log

(
n − 1

D − 1

)
+ k log D) (11)

and

ε(2)(D) = log2.5 D. (12)

The precise choices for c and α obtained by simulations are described in

Section 3. Note that, while the penalties given in (8) and (9) depend only on

the number of bins of the partition, the penalty in formula (10) is a random

penalty in the sense that it also depends on the data.

We now give arguments to explain the origins of these penalties. The

penalty defined by (8) is derived from Theorem 3.2 in Castellan (1999), which

is also stated as Theorem 7.9 in Massart (2007, p. 232) and from eq. (7.32)
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in Theorem 7.7 in Massart (2007, p.219). From the penalty form in Theorem

7.9 in Massart (2007) we derive ε(1):

penn(I) = c1(
√

D − 1 +
√

c2xI)
2, (13)

where the weights xI are chosen such that

∑

D

∑

|I|=D

e−xI ≤ Σ (14)

for an absolute constant Σ. Because the endpoints of our partitions are fixed,

there are
(

n−1
D−1

)
different partitions with cardinality D, and we assign equal

weights to every partition I with |I| = D:

xI = log

(
n − 1

D − 1

)
+ k log D.

Choosing k > 1 ensures that the sum in (14) is converging and that Σ is

finite. Substitution into (13) gives

penn(I) = c1

(
D − 1 + c2

(
log

(
n − 1

D − 1

)
+ k log D

)

+2

√

c2(D − 1)

(
log

(
n − 1

D − 1

)
+ k log D

))
. (15)

Let us emphasize that Theorem 7.9 in Massart (2007, p. 232) requires

c1 > 1/2 and c2 = 2(1 + 1/c1). Coming back to our notations, with α = c1,

c = c1c2 we obtain Equation (11).

We now use Theorem 7.7 in Massart (2007, p. 219) to justify the random

penalty in (10). The orthonormal basis considered in this theorem for a

given partition I consists of all 1I/
√

|I| for all I in I. The least squares

contrast used in this theorem in our framework is −n−2
∑

I∈I N2
I /|I|. To
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link the minimization of the least squares contrast and the maximization of

the log-likelihood, we consider the following approximation:

L(f̂I , x1, . . . , xn) =
D∑

j=1

Nj log

(
Nj

n|Ij|

)
≈

D∑

j=1

Nj

(
Nj

n|Ij|
− 1

)
=

1

n

D∑

j=1

N2
j

|Ij|
− n.

From the penalty form (7.32) and the use of M = 1 and ε = 0 in Theorem

7.7 in Massart (2007, p. 219), following the same derivation for ε(1), we find

the penalty in (15) with c1 = 1 and c2 = 2.

Using the least squares approximation, we can use the random penalty

(7.33) in Theorem 7.7 in Massart (2007). Let us emphasize that V̂m defined

by Massart is in our framework
∑

I∈I NI/n|I| with m = I. To derive ε(2) in

(10) we start from the penalty defined in (7.33) in Massart (2007):

penn(I) = (1 + ε)5

(√
V̂I +

√
2MLID

)2

.

Following the same derivations as for the penalty (13), setting M = 1, ε = 0

and LI = D−1(log
(

n−1
D−1

)
+ k log D) we obtain:

penn(I) = V̂I + 2 log

(
n − 1

D − 1

)
+ 2k log D

+2

√

2V̂I

(
log

(
n − 1

D − 1

)
+ k log D

)
.

Let us emphasize that, because of terms of the form ϕ(D)V̂I , the expres-

sion in the square root above prevents the use of dynamic programming to

compute the maximum of the penalized log-likelihood defined in (7). To

avoid this problem we propose, following penalty forms proposed in Birgé

and Rozenholc (2006) and Comte and Rozenholc (2004), to replace the re-

mainder expression 2k log D + 2
√

2V̂I

(
log

(
n−1
D−1

)
+ k log D

)
by a power of
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log D. We have tried several values of the power and found that formula (12)

leads to a good choice. Finally, we also replaced ε
(1)
c,α in formula (8) by ε(2),

leading to the penalty given in (9).

3. Practical Implementation

We will describe briefly the implementation of our method. For a more

detailed description, see Rozenholc et al. (2009). To calibrate the penalties,

histograms with the endpoints of the partitions placed on the observations

and with different choices of the constants α and c in the penalties given

in (8), (9) and (10) were evaluated by means of simulations. We used the

same densities for calibration as in the simulations described in Section 4 but

different samples and a smaller number of replications. The loss functions

d = dH , d1, d2 were evaluated by numerical integration using a trapeze rule.

We focused on the Hellinger risk to obtain good choices of the penalties, but

the behavior w.r.t. L1 loss is very similar. For minimizing L2 risk, other

choices may be preferable. Since no single penalty is best in all cases, we

describe in the following what we consider to be a good compromise.

In formula (8) we tried different combinations of α ∈ {0.5, 1} and c be-

tween 1 and 4, some of which were motivated by Theorems 7.7 (eq. 7.32)

and 7.9 in Massart (2007). We always set k = 2. From these experiments,

the most satisfactory choice is c = 1 and α = 0.5. We also ran experiments

replacing ε
(1)
c,α by ε(2), leading to the penalty given in (9). In this case, the

most satisfactory choice is c = 1 and α = 1, and this choice is even better

than ε
(1)
2,1. Note that the resulting penalty, given in (6), exactly corresponds

to the penalty in (5) proposed in Birgé and Rozenholc (2006) for the regu-
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lar case, except for the additional term log
(

n−1
D−1

)
that is needed to account

for multiple partitions with the same number of bins. This term vanishes for

D = 1, making the maxima of penalized likelihoods directly comparable. Be-

cause (8) and (9) are very similar, we only use this version in our simulations

in Section 4.

For the random penalty in formula (10) we tried all combinations of

c ∈ {0.5, 1, 2} and α ∈ {0.5, 1}. Let us emphasize that c = 2 and α = 1

correspond to formula (7.33) in Massart (2007) up to our choice of ε(2) defined

in (12). From our point of view, the most satisfactory choice is c = 1 and

α = 0.5. In order to make the maximum of the log-likelihood penalized by

(10) comparable to the maximum of (5), we add the constant α(x(n) − x(1)),

which does not change the maximizer but makes the penalized log-likelihoods

coincide for D = 1.

We now briefly describe the algorithm for constructing the irregular his-

togram. We consider partitions I built with endpoints on the observations:

I = ([x(1), x(k1)], (x(k1), x(k2)], (x(k2), x(k3)], . . . , (x(kD−2), x(kD−1)], (x(kD−1), x(n)]),

where 1 < k1 < . . . < kD−1 < n. We start from a ”finest” partition Imax

defined by Dmax < n and the choice 1 < k1 < . . . < kDmax−1 < n. Our

aim is to construct a sub-partition I of Imax that maximizes (7). For all

penalties (8)-(10) this can be achieved by a dynamic programming algorithm

(Kanazawa, 1988; Comte and Rozenholc, 2004). The total complexity of the

algorithm is of order D3
max. We reduce this to the order n by first using a

greedy algorithm to construct a partition with ⌊max{n1/3, 100}⌋ bins if this

number is smaller than n. Starting with a partition with one bin, in each step

we recursively add to the current partition an endpoint (at an observation)
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in an existing bin in order to achieve the best maximization (in one step) of

the likelihood. The resulting partition is used as the finest partition for the

dynamic programming algorithm.

Let us remark that the theoretical results by Castellan (1999, 2000) and

Massart (2007, ch. 7), are derived for the case of a finest regular grid (depend-

ing on n but not on the sample) with bin sizes not smaller than a constant

times log2(n)/n. However, we found that, in practice, we can improve per-

formance drastically for some densities by using a data-dependent finest grid

imposing no restrictions on the smallest bins without losing much at other

densities. More comments on this are given in Section 4.

4. Simulation Study and Conclusions

The performance of our proposals given in Section 3 is compared to the

performance of other available methods for 12 of the 28 test-bed densities

introduced by Berlinet and Devroye (1994) which include standard distri-

butions like the uniform and the normal as well as more special ones. We

denote these by f1, . . . , f12. We also add 4 histogram densities f13, . . . , f16

which are defined in Rozenholc et al. (2009). Some of the densities do not

fulfill the conditions in Theorem 3.2 in Castellan (1999) for example if they

are not bounded away from zero. They are included in order to explore the

behavior of the procedure in cases not covered by theory. All densities are

implemented in the R-package benchden (Mildenberger et al., 2009b) and are

depicted in Figure 1.

The sample sizes are 50,100,500,1000,5000 and 10000. We use 500 repli-

cations for each scenario. The methods compared in the simulations are:
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Figure 1: The densities used in the simulation study.

• B Penalized maximum likelihood using penalty (9) with c = 1 and

α = 1.

R Penalized maximum likelihood using random penalty (10) with

c = 1 and α = 0.5.

CV Leave-one-out cross-validation using formula (11) given in Celisse

and Robin (2008). We also tried formula (12) of Celisse and Robin

(2008) for different values of p without finding a big difference.

Maximization is performed over a data-driven finest grid as described

in Section 3 without restrictions on the minimum bin width.
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• Methods B,R,CV using the same data-driven grid but with the ad-

ditional constraint that the minimum bin length allowed is (x(n) −
x(1)) log1.5(n)/n. These are denoted by B′, R′ and CV′.

• Methods B,R,CV but using a full optimization over a finest regular

partition with bin width (x(n) − x(1))⌊n/ log1.5(n)⌋−1. This is the grid

considered in Castellan (1999), except that we slightly relax log2(n) to

log1.5(n). These are denoted B′′ , R′′ and CV′′.

• Penalized maximum likelihood using Information Criteria:

AIC Akaike’s Information Criterion (Akaike, 1973). The penalty is

penAIC
n (D) = (D − 1).

BIC Bayesian Information Criterion (Schwarz, 1978). The penalty is

penBIC
n (D) = 0.5 log(n)(D − 1).

• The taut-string method TS introduced by Davies and Kovac (2004).

We use the function pmden() implemented in the R-package ftnonpar

(Davies and Kovac, 2008) with the default values except that we set

localsq=FALSE as local squeezing of the tube does not give a ML

histogram. The histogram is then constructed using the knots of the

string as the boundaries of the bins. This coincides with the derivative

of the string except on intervals where the string switches from the

upper to the lower boundary of the tube or vice versa.

• Regular histogram construction BR due to Birgé and Rozenholc (2006).

The penalty is penBR
n (D) = (D−1)+log(D)2.5, where the log-likelihood

is maximized over all regular partitions with 1, . . . , ⌊n/ log n⌋ bins.
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• Combined approach: A regular histogram and an irregular histogram

are constructed. After adding a constant such that all penalties are 0

for a histogram with 1 bin, the penalized log-likelihoods are compared.

Such a procedure mixing several collections of models was proposed in

Barron et al. (1999) but, to our knowledge, it has never been applied

from a practical point of view. The aim is to achieve the best trade-off

between bias and variance. Indeed, very large collections like those

consisting of irregular histograms may lead to a small bias but may

increase the stochastic part of the risk. The necessary price are terms of

order log
(

n−1
D−1

)
in the penalty which lead to larger upper bounds on the

risk in the oracle inequality. It is then of interest to compare more than

one strategy: one giving good results when the density is well-behaved

(using the regular histogram collection) and one for less well-behaved

(e.g. less smooth) densities (using the irregular histogram collection).

Because the density is unknown and so is its regularity, it is proposed

to directly compare the penalized likelihoods in each collection. The

histogram which has the larger penalized likelihood is chosen as the

final estimate:

B∗ Chooses between a regular histogram using BR and an irregular

histogram using B

R∗ Chooses between a regular histogram using BR and an irregular

histogram using R.

Except for TS, all methods have been implemented in the R-package histogram

(Mildenberger et al., 2009a). The program code to reproduce all simulation
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results is available from the corresponding author’s website. For the discus-

sion of the results, we focus on squared Hellinger risk. Table 1 shows the

binary logarithms of relative squared Hellinger risks w.r.t. the best method

for any given n and density: log2(R̂
method
n /R̂best

n ) for all 15 methods in the

simulation study. Thus, a value of 0 means that the method was best in

this particular setting and a value of 1 means that the risk of the method is

twice as large as the risk of the best method. We omitted n = 5000 for space

reasons; complete tables giving the absolute risk values, tables for other risks

and a more detailed discussion of the results can be found in Rozenholc et

al. (2009). Generally, the L1 and Hellinger risks behave similarly, while the

results for L2 are much less conclusive and no clear recommendation for using

one of the methods under consideration can be given when minimizing the

L2 risk is the main aim.

As was to be expected, the table shows no clear overall best method for

all scenarios. The relative risk w.r.t. the best method is always smaller than

2 for our proposal B∗. In this sense, it can be seen as the best method. Let us

remark that other methods could be better in particular situations. In many

cases, TS or one of our proposals B and R is either the best or the binary

logarithm of relative risk w.r.t. the best method is close to zero. These three

methods are – except for B∗ – also the only ones in the simulation study

for which this quantity is always strictly smaller than log2 3 ≈ 1.58, meaning

that the empirical risk is never greater than three times the risk achieved by

the best method. The random penalty R seems to be slightly better than

B in many cases, the most notable exception being the trimodal uniform

density f10 for n = 50.
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n B R CV B
′

R
′

CV
′

B
′′

R
′′

CV
′′

AIC BIC TS BR B
∗

R
∗

f1 50 0.13 0.05 1.53 0.03 0.03 0.76 0 0 0.44 2.07 1.27 0.07 0.12 0.18 0.13
100 0.08 0.02 2.31 0.02 0.02 1.25 0 0.01 0.72 2.91 1.56 0.1 0.11 0.17 0.12
500 0.06 0.03 4.2 0.01 0.02 2.56 0 0.01 1.69 4.64 2.04 0.19 0.13 0.17 0.14

1000 0.04 0.02 4.64 0.01 0.01 3.05 0 0.01 2.3 4.98 2.1 0.12 0.11 0.14 0.12
10000 0 0 5.39 0 0 3.98 0 0 4.71 5.59 1.85 0.2 0.18 0.19 0.18

f2 50 0.42 0.34 0.5 0.38 0.34 0.09 0.52 0.47 0 0.91 0.53 0.13 0.14 0.17 0.16
100 0.57 0.51 0.81 0.56 0.51 0.05 0.56 0.54 0 1.34 0.61 0.02 0.2 0.24 0.25
500 0.71 0.67 1.79 0.7 0.66 0.04 0.69 0.67 0.07 2.2 0.75 0 0.2 0.2 0.2

1000 0.74 0.7 1.94 0.72 0.7 0.08 0.72 0.7 0.15 2.25 0.73 0 0.18 0.18 0.18
10000 0.69 0.71 1.59 0.69 0.71 0.21 0.67 0.68 0.68 1.7 0.56 0 0.07 0.07 0.07

f3 50 0.51 0.42 0.68 0.49 0.43 0.14 0.51 0.48 0 1.15 0.64 0.51 0.23 0.24 0.23
100 0.47 0.4 1.07 0.45 0.39 0.17 0.48 0.43 0 1.62 0.72 0.25 0.15 0.16 0.17
500 0.65 0.6 2.08 0.64 0.6 0.36 0.65 0.59 0.1 2.49 0.81 0.13 0 0 0

1000 0.73 0.69 2.28 0.73 0.69 0.54 0.73 0.66 0.25 2.59 0.84 0.19 0 0 0
10000 1.03 0.99 2.19 1.02 0.99 0.94 1 0.96 1.34 2.32 0.93 0.57 0 0 0

f4 50 0.56 0.5 0.68 0.74 0.72 0.45 0.68 0.65 0.41 1.12 0.67 0 0.55 0.56 0.52
100 0.63 0.6 1.08 0.72 0.72 0.38 0.7 0.69 0.38 1.62 0.79 0 0.61 0.62 0.59
500 0.56 0.61 1.79 0.71 0.72 0.36 0.66 0.69 0.41 2.2 0.62 0 0.67 0.55 0.62

1000 0.31 0.42 1.74 0.72 0.74 0.4 0.7 0.73 0.46 2.05 0.39 0 0.75 0.34 0.52
10000 0.55 0.77 1.62 1.48 1.56 1.27 1.27 1.37 1.25 1.73 0.45 0 2.05 0.55 0.77

f5 50 0.25 0.19 0.5 2.18 2.18 2.18 1.6 1.59 1.57 0.64 0.33 0 1.12 0.25 0.19
100 0.47 0.44 0.76 2.71 2.71 2.73 1.81 1.82 1.77 1.07 0.48 0 0.41 0.47 0.44
500 0.79 0.77 1.73 1.69 1.69 1.92 1.89 1.9 1.68 2.05 0.81 0 1.18 0.79 0.77

1000 0.89 0.91 1.92 1.56 1.56 1.78 1.29 1.3 0.98 2.16 0.85 0 0.95 0.89 0.91
10000 0.98 1 1.63 0.98 1 0.47 0.96 1 0.22 1.71 0.82 0 0.68 0.98 1

f6 50 0.4 0.31 0.75 0.38 0.32 0.24 0.33 0.3 0 1.22 0.66 0.51 0.28 0.3 0.27
100 0.36 0.29 1.14 0.35 0.3 0.31 0.45 0.39 0 1.7 0.8 0.44 0.31 0.31 0.29
500 0.5 0.45 1.98 0.5 0.45 0.31 0.48 0.42 0 2.38 0.71 0.1 0.09 0.09 0.1

1000 0.55 0.49 2.11 0.54 0.49 0.42 0.52 0.47 0.11 2.42 0.67 0.06 0 0 0.01
10000 0.92 0.87 2.1 0.91 0.87 0.85 0.91 0.86 1.26 2.23 0.83 0 0.11 0.11 0.11

f7 50 0.28 0.16 0.48 0.25 0.17 0.04 0.39 0.35 0 0.86 0.45 0.39 0.19 0.2 0.15
100 0.05 0.01 0.66 0.02 0 0.08 0.2 0.18 0.05 1.15 0.53 0.06 0.14 0.12 0.08
500 0.68 0.64 1.44 0.66 0.63 0.14 0.69 0.66 0.15 1.84 0.68 0 0.27 0.28 0.3

1000 0.89 0.87 1.8 0.88 0.86 0.44 1.15 1.14 0.29 2.1 0.8 0 0.45 0.45 0.45
10000 1.25 1.24 1.85 1.25 1.24 0.76 1.26 1.26 1.11 1.94 1.11 0 0.77 0.77 0.77

f8 50 0.3 0.24 0.08 0.29 0.26 0.05 0.34 0.32 0 0.4 0.21 0.22 0.14 0.16 0.14
100 0.37 0.28 0.27 0.37 0.3 0 0.63 0.55 0.09 0.67 0.27 0.17 0.09 0.09 0.09
500 0.44 0.36 0.9 0.51 0.46 0.24 0.66 0.59 0 1.25 0.35 0.03 0.1 0.1 0.1

1000 0.47 0.39 1.05 0.54 0.49 0.27 0.64 0.58 0.09 1.33 0.37 0 0.19 0.19 0.19
10000 0.99 0.93 1.17 1.01 0.96 0.61 0.99 0.93 0.66 1.25 0.82 0 0.7 0.7 0.7

f9 50 0.44 0.42 0 0.45 0.45 0.16 0.44 0.44 0.36 0.34 0.03 0.26 0.36 0.38 0.37
100 0.46 0.28 0.72 0.49 0.28 0 1.37 1.34 1.09 1.13 0.47 0.17 0.6 0.51 0.37
500 0.55 0.5 1.81 0.52 0.48 0.36 1.64 1.62 1.36 2.17 0.68 0 0.85 0.63 0.55

1000 0.61 0.56 2.02 0.59 0.55 0.5 1.65 1.62 1.37 2.3 0.72 0 1.08 0.66 0.61
10000 0.73 0.69 1.87 0.72 0.69 0.74 1.61 1.59 1.69 1.98 0.65 0 1.31 0.77 0.74

f10 50 0 1.31 0.55 3.15 3.15 3.14 3.12 3.12 3.12 0.68 0.31 0.15 2.68 0 2.68
100 0.06 0 1.02 4.2 4.2 4.2 4.02 4.02 4.02 1.32 0.53 0.32 3.29 0.06 0
500 0.02 0 2.4 5.82 5.82 5.82 5.64 5.64 5.64 2.74 0.79 0.51 5.08 0.02 0

1000 0.01 0 2.8 6.8 6.8 6.8 6.34 6.34 6.34 3.07 0.82 0.56 5.63 0.01 0
10000 0 0 3.48 10.1 10.1 10.1 6.46 6.46 6.46 3.59 0.65 0.81 0.17 0 0

f11 50 0.06 0.02 0.54 0.01 0.01 0.22 0 0 0.13 0.81 0.51 0.19 0.03 0.08 0.04
100 0.02 0.01 0.39 0 0 0.24 0 0 0.13 0.74 0.43 0.25 0.03 0.05 0.03
500 0.86 0.61 0.8 0.89 0.7 0.27 1.06 1.06 0.15 1.14 0.48 0.11 0 0 0

1000 0.63 0.58 0.98 0.62 0.59 0.4 0.86 0.69 0.08 1.24 0.63 0.09 0 0 0
10000 1.06 0.99 0.93 1.05 0.98 0.57 1.09 1.01 0.37 0.97 0.91 0.17 0 0 0

f12 50 0.21 0.11 0.88 0.01 0.02 0.25 0 0.01 0.14 1.36 0.79 0.03 0.15 0.27 0.18
100 0.23 0.17 1.17 0.13 0.14 0.27 0.12 0.13 0 1.75 0.73 0.15 0.16 0.24 0.18
500 0.37 0.33 2.41 0.3 0.3 0.88 0.29 0.28 0.28 2.83 0.9 0 0.29 0.37 0.34

1000 0.52 0.49 2.63 0.48 0.47 1.09 0.52 0.51 0.5 2.95 0.89 0 0.36 0.45 0.42
10000 0.68 0.66 2.48 0.67 0.66 1.18 0.67 0.65 1.61 2.62 0.74 0 0.57 0.6 0.59

f13 50 0.1 0.07 0.69 0.04 0.05 0.02 0.01 0.02 0 1.16 0.65 0.06 0.06 0.09 0.06
100 0.43 0.4 1.21 0.39 0.38 0.25 0.38 0.38 0.04 1.77 0.87 0.4 0 0.01 0.01
500 1.41 1.34 3.43 1.39 1.33 1.86 1.53 1.5 1.41 3.85 1.88 1.1 0 0 0

1000 1.06 0.98 3.98 1.02 0.98 2.44 0.83 0.78 1.7 4.29 1.97 1.11 0 0 0
10000 0.92 0.92 4.83 0.9 0.91 3.57 1.39 1.39 4.1 5 1.93 1.25 0 0 0

f14 50 0.18 0.13 0.65 0.12 0.11 0.14 0.12 0.13 0 1.1 0.59 0.19 0.02 0.08 0.04
100 0.26 0.23 1 0.24 0.23 0.3 0.36 0.33 0.19 1.54 0.65 0.29 0 0.03 0.02
500 0.08 0.03 2.41 0.02 0 0.85 0.58 0.56 0.67 2.83 0.83 0.09 0.88 0.35 0.28

1000 0.14 0.11 2.98 0.12 0.11 1.45 0.83 0.82 1.25 3.3 0.98 0 0.94 0.21 0.15
10000 0.01 0.01 3.96 0 0 2.67 0.92 0.93 3.31 4.13 1.04 0.57 2.64 0.01 0.01

f15 50 0.1 0 0.06 0.35 0.29 0.06 0.46 0.42 0.06 0.43 0.09 0.11 0.03 0.04 0.01
100 0.27 0.18 0.65 0.24 0.21 0 0.69 0.65 0.35 1.11 0.46 0.1 0.27 0.25 0.2
500 0.15 0 1.79 0.15 0.01 0.31 1.15 1.09 0.87 2.17 0.48 0.21 0.48 0.27 0.13

1000 0.06 0.01 2.39 0.03 0 0.87 1.26 1.25 1.32 2.69 0.67 0.34 0.87 0.26 0.16
10000 0.01 0 2.8 0.01 0 1.69 1.5 1.48 2.59 2.95 0.51 0.1 0.85 0.14 0.1

f16 50 0.11 0 0.29 0.96 0.93 0.74 0.74 0.71 0.48 0.65 0.29 0 0.34 0.26 0.2
100 0.1 0.03 0.72 0 0.01 0 0.9 0.91 0.78 1.2 0.46 0.02 0.55 0.25 0.21
500 0.07 0.02 1.8 0.58 0.57 0.79 1.53 1.52 1.32 2.19 0.5 0 1.21 0.09 0.03

1000 0 0 2.18 0.27 0.28 0.84 1.21 1.22 1.26 2.49 0.55 0.03 1.24 0 0
10000 0.04 0 2.97 0.04 0 1.83 1.17 1.15 2.58 3.12 0.59 0.8 1.65 0.04 0

Table 1: Binary logarithms of relative squared Hellinger Risks w.r.t the best method.

Cross-validation using the same set of partitions performs rather poorly.

Note that it is particularly bad for the uniform density f1. Relative perfor-

mance of CV w.r.t. the best method becomes generally worse when sample
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size increases. If we compare our penalties and cross-validation for the case of

full dynamic programming optimization over a finest regular partition with

bin length (x(n)−x(1)) log1.5(n)/n (B′′, R′′,CV′′), the picture changes. Over-

all, the performance of all three methods is not bad, in particular CV′′ often

outperforms B′′ and R′′, which behave very similarly. But CV′′ performs

badly for histogram densities, especially the uniform. Putting a constraint

on the minimum bin size causes a problem for all three methods when the

density has very sharp peaks (especially f10). For the intermediate case,

i.e. using both penalties and cross-validation for a data-driven finest grid

but adding a constraint on the bin widths, we see that B′ and R′ share the

catastrophic behavior of B′′ and R′′ at f10 without offering a real improve-

ment over B and R at the other densities. On the other hand, CV′ is a good

compromise between CV and CV′′, but still shows bad behavior for f1 and

f10.

The taut string method TS shows a particularly good behavior in terms of

Hellinger risk, although it was derived for different aims than performing well

w.r.t. a given loss function (Davies and Kovac, 2004), and many questions

regarding behavior in a more classical framework remain open. It does not

control the number of bins but the modality of the estimate, thereby avoiding

overfitting while still being able to chose a large number of bins to give

sufficient detail.

Using AIC leads to very bad results. It is known to underpenalize even

for regular histograms (Birgé and Rozenholc, 2006; Castellan, 1999; Massart,

2007). This tendency becomes even worse when used for irregular histograms,

since now there are many partitions with the same number of bins. This

21



leads to problems similar to those arising in multiple testing. In this case, an

additional penalty is needed (Castellan, 1999; Massart, 2007). BIC does not

aim for a good control of risk but at asymptotically identifying the ”smallest

true model”, if it exists. It shows some good behavior in particular for small

sample sizes that deteriorates when samples become larger. Particularly

noteworthy is the bad performance for ”simple” models like the uniform and

the 5 bin regular histogram density f13.

The regular histogram method BR, which improves on Akaike’s penal-

ization, is the best method for f3, f11 and f13, at least when the sample

size is not very small. This shows that the greater flexibility of an irregular

histogram over a regular one may be outweighed by the greater difficulty in

choosing a good partition, as was already remarked by Birgé and Rozenholc

(2006). Regular histograms are inferior for spatially inhomogeneous densities

like f4 and f10.

The simulations show that one can successfully combine the advantages

of regular and irregular histograms (B∗ and R∗). The Hellinger risk for B∗ is

always within twice the risk of the best method for a given situation. While

R∗ is even better in most cases, it shares the bad behaviour of BR for f10 and

n = 50. Table 2 shows that for larger sample sizes both B∗ and R∗ almost

always choose an irregular histogram for densities where this is advantageous

(the spatially inhomogenous densities f4, f5, f10, f14 and f16) and a regular

partition in most of the other cases.

To summarize, we propose a practical method of irregular histogram con-

struction inspired by theoretical works by Barron et al. (1999), Castellan

(1999, 2000) and Massart (2007). It can be easily implemented using a
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n method f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16

50 B
∗

0.08 0.08 0.05 0.75 1.00 0.05 0.14 0.07 0.11 1.00 0.15 0.39 0.06 0.11 0.22 0.51

R
∗

0.02 0.13 0.10 0.68 1.00 0.11 0.27 0.06 0.12 0.00 0.02 0.16 0.03 0.07 0.22 0.43

100 B
∗

0.04 0.07 0.04 0.74 1.00 0.11 0.23 0.02 0.19 1.00 0.12 0.43 0.01 0.12 0.24 0.65

R
∗

0.00 0.10 0.10 0.64 1.00 0.24 0.40 0.05 0.36 1.00 0.05 0.28 0.01 0.11 0.33 0.65

500 B
∗

0.03 0.00 0.00 0.73 1.00 0.01 0.03 0.00 0.42 1.00 0.00 0.47 0.00 0.69 0.36 0.99

R
∗

0.00 0.00 0.00 0.47 1.00 0.04 0.07 0.00 0.53 1.00 0.00 0.45 0.00 0.75 0.48 0.99

1000 B
∗

0.02 0.00 0.00 0.89 1.00 0.00 0.00 0.00 0.58 1.00 0.00 0.41 0.00 0.96 0.49 1.00

R
∗

0.01 0.00 0.00 0.63 1.00 0.01 0.00 0.00 0.64 1.00 0.00 0.41 0.00 0.98 0.57 1.00

5000 B
∗

0.01 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.65 1.00 0.00 0.26 0.00 1.00 0.43 1.00

R
∗

0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.70 1.00 0.00 0.28 0.00 1.00 0.47 1.00

10000 B
∗

0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.66 1.00 0.00 0.18 0.00 1.00 0.35 1.00

R
∗

0.00 0.00 0.00 1.00 0.98 0.00 0.00 0.00 0.71 1.00 0.00 0.20 0.00 1.00 0.39 1.00

Table 2: Frequency of choosing an irregular partition.

dynamic programming algorithm and it performs well for a wide range of

different densities and sample sizes, even for some cases not covered by the

underlying theory. Performance is shown to be improved when combined with

the regular histogram approach proposed in Birgé and Rozenholc (2006). All

procedures proposed here are available in the R-package histogram (Milden-

berger et al., 2009a).
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Klemelä, J., 2007. Density estimation with stagewise optimization of the

empirical risk. Machine Learning 67, 169-195.
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