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A new fully automatic procedure for the construction of histograms is proposed. It consists of constructing both a regular and an irregular histogram and then choosing between the two. To choose the number of bins in the irregular histogram, two different penalties motivated by recent work in model selection are proposed. A description of the algorithm and a proper tuning of the penalties is given. Finally, different versions of the procedure are compared to other existing proposals for a wide range of densities and sample sizes. In the simulations, the squared Hellinger risk of the new procedure is always at most twice as large as the risk of the best of the other methods.

The procedure is implemented in an R-Package.

Introduction

For a sample (X 1 , X 2 , . . . , X n ) of a real random variable X with an unknown density f w.r.t. Lebesgue measure, we denote the realizations by (x 1 , x 2 , . . . , x n ) and the realizations of the order statistics by x (1) ≤ x (2) ≤ • • • ≤ x (n) . The goal in nonparametric density estimation is to construct an estimate f of f from the sample. In this work, we focus on estimation by histograms, which are defined as piecewise constant densities. The procedure we propose consists of constructing both a regular and an irregular histogram (both to be defined below) and then choosing between the two. Although other types of nonparametric density estimators are known to be superior to histograms according to several optimality criteria, histograms still play an important role in practice. The main reason is their simplicity and hence their interpretability [START_REF] Birgé | How many bins should be put in a regular histogram?[END_REF]. Often, the histogram is the only density estimator taught to future researchers in non-mathematical subject areas, usually introduced in an exploratory context without reference to optimality criteria.

We first introduce histograms and describe the connection to Maximum Likelihood estimation: Given (x 1 , x 2 , . . . , x n ) and a set of densities F, the maximum likelihood estimate -if it exists -is given by an element f ∈ F that maximizes the likelihood n i=1 f (x i ) or equivalently its logarithm, the log-likelihood L(f, x 1 , . . . , x n ):

f := argmax f ∈F L(f, x 1 , . . . , x n ) := argmax f ∈F n i=1 log(f (x i )).
Without further restrictions on the class F, the log-likelihood is unbounded, and hence, no maximum likelihood estimate exists. One possibility is to restrict F to a set of histograms. Consider a partition I := {I 1 , . . . , I D } of a compact interval K ⊂ R into D intervals I 1 , . . . , I D , such that I i ∩ I j = ∅ for i = j and I i = K. Now consider the set F I of all histograms that are piecewise constant on I and zero outside I:

F I := f f = D j=1
h j 1 I j , h j ≥ 0, j = 1, . . . , D and 

:= argmax f ∈F I L(f, x 1 , . . . , x n ) = 1 n D j=1 N j |I j | 1 I j , (1) 
with N j = n i=1 1 I j (x i ). Its log-likelihood is

L( fI , x 1 , . . . , x n ) = D j=1 N j log N j n|I j | . (2) 
In the following, we consider partitions I := I D := (I 1 , . . . , I D ) of the interval I := [x (1) , x (n) ], consisting of D intervals of the form

I j :=    [t 0 , t 1 ] j = 1 (t j-1 , t j ] j = 2, . . . , D , with breakpoints x (1) =: t 0 < t 1 < • • • < t D := x (n) . A histogram is called
regular if all intervals have the same length and irregular otherwise. The intervals are also referred to as bins.

We will only consider ML histograms in this work, and use the term "histogram" synonymously with "ML histogram" unless explicitly stated otherwise. We focus on finding a data-driven construction of a histogram with good risk behavior. Given a distance measure d between densities, the risk is defined as the expected distance between the true and the estimated density:

R n (f, fI , d) := E f [d(f, fI (X 1 , . . . , X n ))].
We consider the risks w.r.t. (normalized) squared Hellinger distance

d H (f, g) = 1 2 ( f (t) -g(t)) 2 dt, (3) 
and w.r.t. powers of the L p -norms (p = 1, 2) defined by

d p := f -g p p = |f (t) -g(t)| p dt. (4) 
For a detailed discussion on the choice of loss functions in histogram density estimation, see Birgé and Rozenholc (2006, sec. 2.2) and the references given there.

Given the sample, the histogram fI depends only on the partition I = (I 1 , . . . , I D ) as the values on the intervals of the partition are given by (1). In order to achieve good performance in terms of risk, the crucial point is thus choosing the partition. Since partitions with too many bins will result in a large likelihood without yielding a good estimate of f , a naïve comparison of the likelihoods of histograms with different numbers of bins is misleading. But also without any further restrictions on the allowed partitions the likelihood can be made arbitrarily large for a fixed number of bins.

Many approaches exist for the special case of regular histograms where I is divided into D equal sized bins; the problem is then reduced to the choice of D, cf. [START_REF] Birgé | How many bins should be put in a regular histogram?[END_REF], [START_REF] Davies | A comparison of automatic histogram constructions[END_REF] and the references given there. Using irregular partitions can reduce bias and therefore can improve performance for spatially inhomogenous densities, but the increased difficulty of choosing a good partition may lead to an increase in risk for more well-behaved densities. The idea of constructing both a regular and an irregular histogram and then choosing between the two is briefly discussed in [START_REF] Birgé | How many bins should be put in a regular histogram?[END_REF]. To our knowledge, this approach has not yet been put into practice.

Our recommendation is to construct a regular histogram that maximizes the penalized log-likelihood

L( fI , x 1 , . . . , x n ) -(D -1) -log 2.5 D (5)
among all regular partitions of [x (1) , x (n) ] with D = 1, . . . , ⌊n/ log n⌋ bins (where ⌊x⌋ denotes the largest integer not larger than x) and an irregular histogram that maximizes the penalized log-likelihood

L( fI , x 1 , . . . , x n ) -log n -1 D -1 -(D -1) -log 2.5 D (6)
among a set of partitions of [x (1) , x (n) ] with breakpoints equal to the sample points, where again D is the number of bins in a given partition. The final estimate is then the one with the larger penalized log-likelihood. The penalty in (5) for the regular case was proposed in [START_REF] Birgé | How many bins should be put in a regular histogram?[END_REF], while the motivation for ( 6) is developed later in this paper, where we consider different penalty forms for the irregular case. Note that the difference between the penalties is the term log n-1 D-1 which is needed because in the irregular case, the best partition with D bins has to be chosen from a set of n-1 D-1 partitions, while there is only one partition with D bins in the regular case. The necessity of taking into account in the penalty not only the number of parameters in a model but also the number of candidate models with same number of parameters is one of the key points in [START_REF] Barron | Risk bounds for model selection via penalization[END_REF]. Specific penalty forms for histogram estimators were derived in [START_REF] Castellan | Modified Akaike's criterion for histogram density estimation[END_REF] and for more general situations in [START_REF] Massart | Concentration inequalities and model selection[END_REF]. Note that both penalties (and hence the penalized log-likelihoods) coincide for D = 1. The penalties are both designed to achieve a good control on the Hellinger risk in term of Oracle Inequality as derived for example in (Massart, 2007, Th.??? eq(???)).Thoralf, I don't have the Massart book with me, could you extract an Oracle Inequality from a theorem connected to histogram Several methods for choosing a good irregular histogram have been developed previously. [START_REF] Kogure | Asymptotically optimal cells for a histogram[END_REF] gives asymptotic results for the optimal choice of bins. His approach is based on using blocks of equisized bins, and he explores the dependence on tuning parameters via simulations [START_REF] Kogure | Optimal cells for a histogram[END_REF]. It does not result in a fully automatic procedure. [START_REF] Kanazawa | An optimal variable cell histogram[END_REF] proposes to control the Hellinger distance between the unknown true density and the estimated histogram and introduces a dynamic programming algorithm to find the best partition with a given number of bins. [START_REF] Kanazawa | An optimal variable cell histogram based on the sample spacings[END_REF] derives the asymptotically optimal choice of the number of bins which depends on derivatives of the unknown density, making the procedure inapplicable in practice. [START_REF] Celisse | Nonparametric density estimation by exact leave-p-out cross-validation[END_REF] give explicit formulas for L 2 leave-p-out cross-validation for regular and irregular histograms. They only briefly comment on the case of irregular histograms and only show simulations with ad-hoc choices of the set of partitions. In our simulations, we use their explicit formula to compare risk behavior of cross-validation and our penalized likelihood approach when both are used to choose an irregular histogram from the same set of partitions. The multiresolution histogram by [START_REF] Engel | The multiresolution histogram[END_REF] is based on a tree of dyadic partitions. Its performance crucially depends on the finest resolution level, for which no universally usable recommendation is given. Some other tree-based procedures have been suggested for the multivariate case. They can be used for the univariate case, but they either perform a complete search over a restricted set of partitions [START_REF] Blanchard | Optimal dyadic decision trees[END_REF][START_REF] Klemelä | Multivariate histograms with data-dependent partitions[END_REF] or a greedy search over a full set of partitions [START_REF] Klemelä | Density estimation with stagewise optimization of the empirical risk[END_REF] to deal with computational problems that do not occur in the univariate case. Conditions for consistency of histogram estimates with data-driven and possibly irregular partitions are derived in [START_REF] Chen | Almost sure L 1 -norm convergence for databased histogram density estimators[END_REF]; [START_REF] Lugosi | Consistency of data-driven histogram methods for density estimation and classification[END_REF] and [START_REF] Zhao | Almost sure L r -norm convergence for data-based histogram estimates[END_REF]. [START_REF] Devroye | Bin width selection in multivariate histograms by the combinatorial method[END_REF] give a construction of histograms where bin widths are allowed to vary according to a pre-specified function. [START_REF] Hartigan | Bayesian histograms[END_REF] considers regular and irregular histogram construction from a Bayesian point of view. However, we are not aware of any fully tuned automatic Bayesian procedure for irregular histogram construction. [START_REF] Rissanen | Density estimation by stochastic complexity[END_REF] give a construction based on the Minimum Description Length (MDL) paradigm, which leads to a penalized likelihood estimator. A choice of several discretization parameters is needed, and the recommendation given by the authors is to perform an exhaustive search over all possible combinations of values, which is computationally expensive. A more recent MDL-based proposal by [START_REF] Kontkanen | MDL histogram density estimation[END_REF] involves a discretization which results in the estimate not being a proper density. [START_REF] Catoni | Data compression and adaptive histograms[END_REF] suggests a multi-stage procedure based on coding ideas that computes a density estimate by aggregating histograms.

The taut string procedure introduced by [START_REF] Davies | Densities, spectral densities and modality[END_REF] can also be used to generate an irregular histogram as described in [START_REF] Davies | A comparison of automatic histogram constructions[END_REF]. Regularization is achieved not by controlling the number of bins but by constructing an estimate that has a minimum number of modes subject to a constraint on the distance between the empirical and the estimated distribution function. The main idea is to construct a piecewise linear spline of minimal length (the taut string) in a tube around the empirical cdf and then take its derivative, which is piecewise constant. With some modifications this gives a histogram that fulfills definition (1). The main tuning parameter is the tube width, and an automatic choice is suggested by the authors.

Although not designed to minimize risk, the procedure has performed well w.r.t. classical loss functions [START_REF] Davies | A comparison of automatic histogram constructions[END_REF], and therefore is included in our simulations.

For our construction of irregular histograms, we will focus on penalized likelihood maximization techniques. For a good data-driven histogram one needs an appropriate penalization to provide an automatic choice of D as well as of the partition I = (I 1 , . . . , I D ). Since Akaike's Information Criterion (AIC) introduced by [START_REF] Akaike | A new look at the statistical model identification[END_REF], penalized likelihood has been used with many different penalty terms. AIC aims at ensuring a good risk behavior of the resulting estimate. Another widely used criterion is the Bayesian Information Criterion (BIC) introduced by [START_REF] Schwarz | Estimating the dimension of a model[END_REF]. It is constructed in such a way as to consistently estimate the smallest true model order, which in histogram density estimation would lead to very large models unless the true density is piecewise constant. In practice, criteria like AIC and BIC are routinely applied in many different statistical models, often without reference to their different conceptual backgrounds and without appropriate modifications for the model under consideration. In their original forms, both AIC and BIC do not account for multiple partitions with the same number of bins. See Chapter 7.3 of [START_REF] Massart | Concentration inequalities and model selection[END_REF] for a critique of the use of AIC in histogram density estimation. Since both are widely used, we include them in our comparisons. Our penalties are motivated by recent model selection works by [START_REF] Barron | Risk bounds for model selection via penalization[END_REF], [START_REF] Castellan | Modified Akaike's criterion for histogram density estimation[END_REF][START_REF] Castellan | Sélection d'histogrammes à l'aide d'un critère de type Akaike[END_REF] and [START_REF] Massart | Concentration inequalities and model selection[END_REF].

The regular histogram construction proposed in [START_REF] Birgé | How many bins should be put in a regular histogram?[END_REF] with which we combine our irregular histogram is based on the same ideas.

Our paper is structured as follows: In Section 2, we review the problem of constructing an irregular histogram using penalized likelihood. Section 3 gives a description of the practical implementation including calibration of the penalty. Section 4 gives the results of a simulation study and conclusions.

Penalized likelihood construction of irregular histograms

Constructing an irregular histogram by penalized likelihood means maximizing

L( fI , x 1 , . . . , x n ) -pen n (I), (7) w 
.r.t. partitions I = (I 1 , . . . , I |I| ) of [x (1) , x (n) ]
, where pen n (I) is a penalty term depending only on the partition I and possibly on the sample (datadriven). We will introduce a new choice here motivated by work of [START_REF] Barron | Risk bounds for model selection via penalization[END_REF], [START_REF] Castellan | Modified Akaike's criterion for histogram density estimation[END_REF][START_REF] Castellan | Sélection d'histogrammes à l'aide d'un critère de type Akaike[END_REF] and [START_REF] Massart | Concentration inequalities and model selection[END_REF].

Optimizing w.r.t. the partition I with |I| fixed in (7) leaves us with a continuous optimization problem. Without further restrictions, for |I| ≥ 2 the likelihood is unbounded. One possibility is to restrict to all partitions that are built with endpoints on the observations; the optimization problem (7) can then be solved using a dynamic programming algorithm first used for histogram construction by [START_REF] Kanazawa | An optimal variable cell histogram[END_REF]. More details are given in Section 3.

With D = |I|, we propose the following families of penalties parametrized by two constants c and α:

pen A n (I) = c log n -1 D -1 + α(D -1) + ε (1) c,α (D), ( 8 
) pen B n (I) = c log n -1 D -1 + α(D -1) + ε (2) (D) (9) and pen R n (I) = c log n -1 D -1 + α n D j=1 N j |I j | + ε (2) (D), (10) 
where

ε (1) c,α (D) = c k log D + 2 cα(D -1)(log n -1 D -1 + k log D) (11)
and

ε (2) (D) = log 2.5 D. (12) 
The precise choices for c and α obtained by simulations are described in Section 3. Note that, while the penalties given in ( 8) and ( 9) depend only on the number of bins of the partition, the penalty in formula ( 10) is a random penalty in the sense that it also depends on the data.

We now give arguments to explain the origins of these penalties. The penalty defined by ( 8) is derived from Theorem 3.2 in [START_REF] Castellan | Modified Akaike's criterion for histogram density estimation[END_REF], which is also stated as Theorem 7.9 in Massart (2007, p. 232) and from eq. (7.32) in Theorem 7.7 in Massart (2007, p.219). From the penalty form in Theorem 7.9 in [START_REF] Massart | Concentration inequalities and model selection[END_REF] we derive ε (1) :

pen n (I) = c 1 ( √ D -1 + √ c 2 x I ) 2 , ( 13 
)
where the weights x I are chosen such that

D |I|=D e -x I ≤ Σ (14)
for an absolute constant Σ. Because the endpoints of our partitions are fixed, there are n-1 D-1 different partitions with cardinality D, and we assign equal weights to every partition I with |I| = D:

x I = log n -1 D -1 + k log D.
Choosing k > 1 ensures that the sum in ( 14) is converging and that Σ is finite. Substitution into (13) gives

pen n (I) = c 1 D -1 + c 2 log n -1 D -1 + k log D +2 c 2 (D -1) log n -1 D -1 + k log D . ( 15 
)
Let us emphasize that Theorem 7.9 in Massart (2007, p. 232) requires

c 1 > 1/2 and c 2 = 2(1 + 1/c 1 ). Coming back to our notations, with α = c 1 , c = c 1 c 2 we obtain Equation (11).
We now use Theorem 7.7 in Massart (2007, p. 219) to justify the random penalty in (10). The orthonormal basis considered in this theorem for a given partition I consists of all 1 I / |I| for all I in I. The least squares contrast used in this theorem in our framework is -n -2 I∈I N 2 I /|I|. To link the minimization of the least squares contrast and the maximization of the log-likelihood, we consider the following approximation:

L( fI , x 1 , . . . , x n ) = D j=1 N j log N j n|I j | ≈ D j=1 N j N j n|I j | -1 = 1 n D j=1 N 2 j |I j | -n.
From the penalty form (7.32) and the use of M = 1 and ε = 0 in Theorem 7.7 in Massart (2007, p. 219), following the same derivation for ε (1) , we find the penalty in ( 15) with c 1 = 1 and c 2 = 2.

Using the least squares approximation, we can use the random penalty (7.33) in Theorem 7.7 in [START_REF] Massart | Concentration inequalities and model selection[END_REF]. Let us emphasize that V m defined by Massart is in our framework I∈I N I /n|I| with m = I. To derive ε (2) in (10) we start from the penalty defined in (7.33) in [START_REF] Massart | Concentration inequalities and model selection[END_REF]:

pen n (I) = (1 + ε) 5 V I + 2M L I D 2 .
Following the same derivations as for the penalty (13), setting M = 1, ε = 0 and L I = D -1 (log n-1 D-1 + k log D) we obtain:

pen n (I) = V I + 2 log n -1 D -1 + 2k log D +2 2 V I log n -1 D -1 + k log D .
Let us emphasize that, because of terms of the form ϕ(D) V I , the expression in the square root above prevents the use of dynamic programming to compute the maximum of the penalized log-likelihood defined in (7). To avoid this problem we propose, following penalty forms proposed in [START_REF] Birgé | How many bins should be put in a regular histogram?[END_REF] and [START_REF] Comte | A new algorithm for fixed design regression and denoising[END_REF], to replace the remainder expression 2k log D + 2 2 V I log n-1 D-1 + k log D by a power of log D. We have tried several values of the power and found that formula (12) leads to a good choice. Finally, we also replaced ε

(1) c,α in formula (8) by ε (2) , leading to the penalty given in (9).

Practical Implementation

We will describe briefly the implementation of our method. For a more detailed description, see [START_REF] Rozenholc | Combining regular and irregular histograms by penalized likelihood[END_REF]. To calibrate the penalties, histograms with the endpoints of the partitions placed on the observations and with different choices of the constants α and c in the penalties given in ( 8), ( 9) and ( 10) were evaluated by means of simulations. We used the same densities for calibration as in the simulations described in Section 4 but different samples and a smaller number of replications. The loss functions d = d H , d 1 , d 2 were evaluated by numerical integration using a trapeze rule.

We focused on the Hellinger risk to obtain good choices of the penalties, but the behavior w.r.t. L 1 loss is very similar. For minimizing L 2 risk, other choices may be preferable. Since no single penalty is best in all cases, we describe in the following what we consider to be a good compromise.

In formula (8) we tried different combinations of α ∈ {0.5, 1} and c between 1 and 4, some of which were motivated by Theorems 7.7 (eq. 7.32) and 7.9 in [START_REF] Massart | Concentration inequalities and model selection[END_REF]. We always set k = 2. From these experiments, the most satisfactory choice is c = 1 and α = 0.5. We also ran experiments replacing ε

(1) c,α by ε (2) , leading to the penalty given in (9). In this case, the most satisfactory choice is c = 1 and α = 1, and this choice is even better than ε

(1) 2,1 . Note that the resulting penalty, given in (6), exactly corresponds to the penalty in (5) proposed in [START_REF] Birgé | How many bins should be put in a regular histogram?[END_REF] for the regu-lar case, except for the additional term log n-1 D-1 that is needed to account for multiple partitions with the same number of bins. This term vanishes for D = 1, making the maxima of penalized likelihoods directly comparable. Because ( 8) and ( 9) are very similar, we only use this version in our simulations in Section 4.

For the random penalty in formula ( 10) we tried all combinations of c ∈ {0.5, 1, 2} and α ∈ {0.5, 1}. Let us emphasize that c = 2 and α = 1 correspond to formula (7.33) in [START_REF] Massart | Concentration inequalities and model selection[END_REF] up to our choice of ε (2) defined in (12). From our point of view, the most satisfactory choice is c = 1 and α = 0.5. In order to make the maximum of the log-likelihood penalized by (10) comparable to the maximum of (5), we add the constant α(x (n)x (1) ), which does not change the maximizer but makes the penalized log-likelihoods coincide for D = 1.

We now briefly describe the algorithm for constructing the irregular histogram. We consider partitions I built with endpoints on the observations:

I = ([x (1) , x (k 1 ) ], (x (k 1 ) , x (k 2 ) ], (x (k 2 ) , x (k 3 ) ], . . . , (x (k D-2 ) , x (k D-1 ) ], (x (k D-1 ) , x (n) ]),
where 1 < k 1 < . . . < k D-1 < n. We start from a "finest" partition I max defined by D max < n and the choice 1 < k 1 < . . . < k Dmax-1 < n. Our aim is to construct a sub-partition I of I max that maximizes (7). For all penalties (8)-( 10) this can be achieved by a dynamic programming algorithm [START_REF] Kanazawa | An optimal variable cell histogram[END_REF][START_REF] Comte | A new algorithm for fixed design regression and denoising[END_REF]. The total complexity of the algorithm is of order D 3 max . We reduce this to the order n by first using a greedy algorithm to construct a partition with ⌊max{n 1/3 , 100}⌋ bins if this number is smaller than n. Starting with a partition with one bin, in each step we recursively add to the current partition an endpoint (at an observation) in an existing bin in order to achieve the best maximization (in one step) of the likelihood. The resulting partition is used as the finest partition for the dynamic programming algorithm.

Let us remark that the theoretical results by [START_REF] Castellan | Modified Akaike's criterion for histogram density estimation[END_REF][START_REF] Castellan | Sélection d'histogrammes à l'aide d'un critère de type Akaike[END_REF] and Massart (2007, ch. 7), are derived for the case of a finest regular grid (depending on n but not on the sample) with bin sizes not smaller than a constant times log 2 (n)/n. However, we found that, in practice, we can improve performance drastically for some densities by using a data-dependent finest grid imposing no restrictions on the smallest bins without losing much at other densities. More comments on this are given in Section 4.

Simulation Study and Conclusions

The performance of our proposals given in Section 3 is compared to the performance of other available methods for 12 of the 28 test-bed densities introduced by Berlinet and [START_REF] Berlinet | A comparison of kernel density estimates[END_REF] which include standard distributions like the uniform and the normal as well as more special ones. We denote these by f 1 , . . . , f 12 . We also add 4 histogram densities f 13 , . . . , f 16 which are defined in [START_REF] Rozenholc | Combining regular and irregular histograms by penalized likelihood[END_REF]. Some of the densities do not fulfill the conditions in Theorem 3.2 in [START_REF] Castellan | Modified Akaike's criterion for histogram density estimation[END_REF] for example if they are not bounded away from zero. They are included in order to explore the behavior of the procedure in cases not covered by theory. All densities are implemented in the R-package benchden [START_REF] Mildenberger | benchden: 28 benchmark densities from Berlinet/Devroye[END_REF] and are depicted in Figure 1.

The sample sizes are 50,100,500,1000,5000 and 10000. We use 500 replications for each scenario. The methods compared in the simulations are: • B Penalized maximum likelihood using penalty (9) with c = 1 and

α = 1.
R Penalized maximum likelihood using random penalty (10) with c = 1 and α = 0.5.

CV Leave-one-out cross-validation using formula (11) given in [START_REF] Celisse | Nonparametric density estimation by exact leave-p-out cross-validation[END_REF]. We also tried formula ( 12) of [START_REF] Celisse | Nonparametric density estimation by exact leave-p-out cross-validation[END_REF] for different values of p without finding a big difference.

Maximization is performed over a data-driven finest grid as described in Section 3 without restrictions on the minimum bin width.

• Methods B, R, CV using the same data-driven grid but with the additional constraint that the minimum bin length allowed is (x (n) -

x (1) ) log 1.5 (n)/n. These are denoted by B ′ , R ′ and CV ′ .

• Methods B, R, CV but using a full optimization over a finest regular partition with bin width (x (n)x (1) )⌊n/ log 1.5 (n)⌋ -1 . This is the grid considered in [START_REF] Castellan | Modified Akaike's criterion for histogram density estimation[END_REF], except that we slightly relax log 2 (n) to log 1.5 (n). These are denoted B ′′ , R ′′ and CV ′′ .

• Penalized maximum likelihood using Information Criteria: AIC Akaike's Information Criterion [START_REF] Akaike | A new look at the statistical model identification[END_REF]. The penalty is

pen AIC n (D) = (D -1).
BIC Bayesian Information Criterion [START_REF] Schwarz | Estimating the dimension of a model[END_REF]. The penalty is pen BIC n (D) = 0.5 log(n)(D -1).

• The taut-string method TS introduced by [START_REF] Davies | Densities, spectral densities and modality[END_REF].

We use the function pmden() implemented in the R-package ftnonpar [START_REF] Davies | ftnonpar: Features and strings for nonparametric regression[END_REF] with the default values except that we set localsq=FALSE as local squeezing of the tube does not give a ML histogram. The histogram is then constructed using the knots of the string as the boundaries of the bins. This coincides with the derivative of the string except on intervals where the string switches from the upper to the lower boundary of the tube or vice versa.

• Regular histogram construction BR due to [START_REF] Birgé | How many bins should be put in a regular histogram?[END_REF].

The penalty is pen BR n (D) = (D-1)+log(D) 2.5 , where the log-likelihood is maximized over all regular partitions with 1, . . . , ⌊n/ log n⌋ bins.

• Combined approach: A regular histogram and an irregular histogram are constructed. After adding a constant such that all penalties are 0 for a histogram with 1 bin, the penalized log-likelihoods are compared. Such a procedure mixing several collections of models was proposed in [START_REF] Barron | Risk bounds for model selection via penalization[END_REF] but, to our knowledge, it has never been applied from a practical point of view. The aim is to achieve the best trade-off between bias and variance. Indeed, very large collections like those consisting of irregular histograms may lead to a small bias but may increase the stochastic part of the risk. The necessary price are terms of order log n-1 D-1 in the penalty which lead to larger upper bounds on the risk in the oracle inequality. It is then of interest to compare more than one strategy: one giving good results when the density is well-behaved (using the regular histogram collection) and one for less well-behaved (e.g. less smooth) densities (using the irregular histogram collection).

Because the density is unknown and so is its regularity, it is proposed to directly compare the penalized likelihoods in each collection. The histogram which has the larger penalized likelihood is chosen as the final estimate: B * Chooses between a regular histogram using BR and an irregular histogram using B R * Chooses between a regular histogram using BR and an irregular histogram using R.

Except for TS, all methods have been implemented in the R-package histogram (Mildenberger et al., 2009a). The program code to reproduce all simulation results is available from the corresponding author's website. For the discussion of the results, we focus on squared Hellinger risk. Table 1 shows the binary logarithms of relative squared Hellinger risks w.r.t. the best method for any given n and density: log 2 ( R method n / R best n ) for all 15 methods in the simulation study. Thus, a value of 0 means that the method was best in this particular setting and a value of 1 means that the risk of the method is twice as large as the risk of the best method. We omitted n = 5000 for space reasons; complete tables giving the absolute risk values, tables for other risks and a more detailed discussion of the results can be found in Rozenholc et al. (2009). Generally, the L 1 and Hellinger risks behave similarly, while the results for L 2 are much less conclusive and no clear recommendation for using one of the methods under consideration can be given when minimizing the L 2 risk is the main aim.

As was to be expected, the table shows no clear overall best method for all scenarios. The relative risk w.r.t. the best method is always smaller than 2 for our proposal B * . In this sense, it can be seen as the best method. Let us remark that other methods could be better in particular situations. In many cases, TS or one of our proposals B and R is either the best or the binary logarithm of relative risk w.r.t. the best method is close to zero. These three methods are -except for B * -also the only ones in the simulation study for which this quantity is always strictly smaller than log 2 3 ≈ 1.58, meaning that the empirical risk is never greater than three times the risk achieved by the best method. The random penalty R seems to be slightly better than B in many cases, the most notable exception being the trimodal uniform density f 10 for n = 50. Cross-validation using the same set of partitions performs rather poorly.

n B R CV B ′ R ′ CV ′ B ′′ R ′′ CV ′′ AIC BIC TS BR B * R * f 1 50 0.
Note that it is particularly bad for the uniform density f 1 . Relative performance of CV w.r.t. the best method becomes generally worse when sample size increases. If we compare our penalties and cross-validation for the case of full dynamic programming optimization over a finest regular partition with bin length (x (n)x (1) ) log 1.5 (n)/n (B ′′ , R ′′ ,CV ′′ ), the picture changes. Overall, the performance of all three methods is not bad, in particular CV ′′ often outperforms B ′′ and R ′′ , which behave very similarly. But CV ′′ performs badly for histogram densities, especially the uniform. Putting a constraint on the minimum bin size causes a problem for all three methods when the density has very sharp peaks (especially f 10 ). For the intermediate case,

i.e. using both penalties and cross-validation for a data-driven finest grid but adding a constraint on the bin widths, we see that B ′ and R ′ share the catastrophic behavior of B ′′ and R ′′ at f 10 without offering a real improvement over B and R at the other densities. On the other hand, CV ′ is a good compromise between CV and CV ′′ , but still shows bad behavior for f 1 and f 10 .

The taut string method TS shows a particularly good behavior in terms of Hellinger risk, although it was derived for different aims than performing well w.r.t. a given loss function [START_REF] Davies | Densities, spectral densities and modality[END_REF], and many questions regarding behavior in a more classical framework remain open. It does not control the number of bins but the modality of the estimate, thereby avoiding overfitting while still being able to chose a large number of bins to give sufficient detail.

Using AIC leads to very bad results. It is known to underpenalize even for regular histograms [START_REF] Birgé | How many bins should be put in a regular histogram?[END_REF][START_REF] Castellan | Modified Akaike's criterion for histogram density estimation[END_REF][START_REF] Massart | Concentration inequalities and model selection[END_REF]. This tendency becomes even worse when used for irregular histograms, since now there are many partitions with the same number of bins. This leads to problems similar to those arising in multiple testing. In this case, an additional penalty is needed [START_REF] Castellan | Modified Akaike's criterion for histogram density estimation[END_REF][START_REF] Massart | Concentration inequalities and model selection[END_REF]. BIC does not aim for a good control of risk but at asymptotically identifying the "smallest true model", if it exists. It shows some good behavior in particular for small sample sizes that deteriorates when samples become larger. Particularly noteworthy is the bad performance for "simple" models like the uniform and the 5 bin regular histogram density f 13 .

The regular histogram method BR, which improves on Akaike's penalization, is the best method for f 3 , f 11 and f 13 , at least when the sample size is not very small. This shows that the greater flexibility of an irregular

histogram over a regular one may be outweighed by the greater difficulty in choosing a good partition, as was already remarked by [START_REF] Birgé | How many bins should be put in a regular histogram?[END_REF]. Regular histograms are inferior for spatially inhomogeneous densities like f 4 and f 10 .

The simulations show that one can successfully combine the advantages of regular and irregular histograms (B * and R * ). The Hellinger risk for B * is always within twice the risk of the best method for a given situation. While R * is even better in most cases, it shares the bad behaviour of BR for f 10 and n = 50. Table 2 shows that for larger sample sizes both B * and R * almost always choose an irregular histogram for densities where this is advantageous (the spatially inhomogenous densities f 4 , f 5 , f 10 , f 14 and f 16 ) and a regular partition in most of the other cases.

To summarize, we propose a practical method of irregular histogram construction inspired by theoretical works by [START_REF] Barron | Risk bounds for model selection via penalization[END_REF][START_REF] Castellan | Modified Akaike's criterion for histogram density estimation[END_REF][START_REF] Castellan | Sélection d'histogrammes à l'aide d'un critère de type Akaike[END_REF] and [START_REF] Massart | Concentration inequalities and model selection[END_REF]. It can be easily implemented using a 0.02 0.13 0.10 0.68 1.00 0.11 0.27 0.06 0.12 0.00 0.02 0.16 0.03 0.07 0.22 0.43 100 B * 0.04 0.07 0.04 0.74 1.00 0.11 0.23 0.02 0.19 1.00 0.12 0.43 0.01 0.12 0.24 0.65 R * 0.00 0.10 0.10 0.64 1.00 0.24 0.40 0.05 0.36 1.00 0.05 0.28 0.01 0.11 0.33 0.65 500 B * 0.03 0.00 0.00 0.73 1.00 0.01 0.03 0.00 0.42 1.00 0.00 0.47 0.00 0.69 0.36 0.99 R * 0.00 0.00 0.00 0.47 1.00 0.04 0.07 0.00 0.53 1.00 0.00 0.45 0.00 0.75 0.48 0.99 1000 B * 0.02 0.00 0.00 0.89 1.00 0.00 0.00 0.00 0.58 1.00 0.00 0.41 0.00 0.96 0.49 1.00 R * 0.01 0.00 0.00 0.63 1.00 0.01 0.00 0.00 0.64 1.00 0.00 0.41 0.00 0.98 0.57 1.00 5000 B * 0.01 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.65 1.00 0.00 0.26 0.00 1.00 0.43 1.00 R * 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.70 1.00 0.00 0.28 0.00 1.00 0.47 1.00 10000 B * 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.66 1.00 0.00 0.18 0.00 1.00 0.35 1.00 R * 0.00 0.00 0.00 1.00 0.98 0.00 0.00 0.00 0.71 1.00 0.00 0.20 0.00 1.00 0.39 1.00

Table 2: Frequency of choosing an irregular partition.

dynamic programming algorithm and it performs well for a wide range of different densities and sample sizes, even for some cases not covered by the underlying theory. Performance is shown to be improved when combined with the regular histogram approach proposed in [START_REF] Birgé | How many bins should be put in a regular histogram?[END_REF]. All procedures proposed here are available in the R-package histogram (Mildenberger et al., 2009a).

  j | = 1 , where 1 A denotes the indicator function of a set A and |I| the length of the interval I. If K contains [x (1) , x (n) ], the Maximum Likelihood Histogram (ML histogram) is defined as the maximizer of the log-likelihood in F I and is given by fI

Figure 1 :

 1 Figure 1: The densities used in the simulation study.

Table 1 :

 1 Binary logarithms of relative squared Hellinger Risks w.r.t the best method.

			13 0.05 1.53 0.03 0.03 0.76 0	0	0.44 2.07 1.27 0.07 0.12 0.18 0.13
		100	0.08 0.02 2.31 0.02 0.02 1.25 0	0.01 0.72 2.91 1.56 0.1	0.11 0.17 0.12
		500	0.06 0.03 4.2	0.01 0.02 2.56 0	0.01 1.69 4.64 2.04 0.19 0.13 0.17 0.14
		1000	0.04 0.02 4.64 0.01 0.01 3.05 0	0.01 2.3	4.98 2.1	0.12 0.11 0.14 0.12
		10000	0	0	5.39 0	0	3.98 0	0	4.71 5.59 1.85 0.2	0.18 0.19 0.18
	f 2	50 100	0.42 0.34 0.5 0.57 0.51 0.81 0.56 0.51 0.05 0.56 0.54 0 0.38 0.34 0.09 0.52 0.47 0	0.91 0.53 0.13 0.14 0.17 0.16 1.34 0.61 0.02 0.2 0.24 0.25
		500	0.71 0.67 1.79 0.7	0.66 0.04 0.69 0.67 0.07 2.2	0.75 0	0.2	0.2	0.2
		1000	0.74 0.7	1.94 0.72 0.7	0.08 0.72 0.7	0.15 2.25 0.73 0	0.18 0.18 0.18
		10000	0.69 0.71 1.59 0.69 0.71 0.21 0.67 0.68 0.68 1.7	0.56 0	0.07 0.07 0.07
	f 3	50 100	0.51 0.42 0.68 0.49 0.43 0.14 0.51 0.48 0 0.47 0.4 1.07 0.45 0.39 0.17 0.48 0.43 0	1.15 0.64 0.51 0.23 0.24 0.23 1.62 0.72 0.25 0.15 0.16 0.17
		500	0.65 0.6	2.08 0.64 0.6	0.36 0.65 0.59 0.1	2.49 0.81 0.13 0	0	0
		1000	0.73 0.69 2.28 0.73 0.69 0.54 0.73 0.66 0.25 2.59 0.84 0.19 0	0	0
		10000	1.03 0.99 2.19 1.02 0.99 0.94 1	0.96 1.34 2.32 0.93 0.57 0	0	0
	f 4	50 100	0.56 0.5 0.63 0.6	0.68 0.74 0.72 0.45 0.68 0.65 0.41 1.12 0.67 0 1.08 0.72 0.72 0.38 0.7 0.69 0.38 1.62 0.79 0	0.55 0.56 0.52 0.61 0.62 0.59
		500	0.56 0.61 1.79 0.71 0.72 0.36 0.66 0.69 0.41 2.2	0.62 0	0.67 0.55 0.62
		1000	0.31 0.42 1.74 0.72 0.74 0.4	0.7	0.73 0.46 2.05 0.39 0	0.75 0.34 0.52
		10000	0.55 0.77 1.62 1.48 1.56 1.27 1.27 1.37 1.25 1.73 0.45 0	2.05 0.55 0.77
	f 5	50 100	0.25 0.19 0.5 0.47 0.44 0.76 2.71 2.71 2.73 1.81 1.82 1.77 1.07 0.48 0 2.18 2.18 2.18 1.6 1.59 1.57 0.64 0.33 0	1.12 0.25 0.19 0.41 0.47 0.44
		500	0.79 0.77 1.73 1.69 1.69 1.92 1.89 1.9	1.68 2.05 0.81 0	1.18 0.79 0.77
		1000	0.89 0.91 1.92 1.56 1.56 1.78 1.29 1.3	0.98 2.16 0.85 0	0.95 0.89 0.91
		10000	0.98 1	1.63 0.98 1	0.47 0.96 1	0.22 1.71 0.82 0	0.68 0.98 1
	f 6	50 100	0.4 0.36 0.29 1.14 0.35 0.3 0.31 0.75 0.38 0.32 0.24 0.33 0.3 0.31 0.45 0.39 0 0	1.22 0.66 0.51 0.28 0.3 1.7 0.8 0.44 0.31 0.31 0.29 0.27
		500	0.5	0.45 1.98 0.5	0.45 0.31 0.48 0.42 0	2.38 0.71 0.1	0.09 0.09 0.1
		1000	0.55 0.49 2.11 0.54 0.49 0.42 0.52 0.47 0.11 2.42 0.67 0.06 0	0	0.01
		10000	0.92 0.87 2.1	0.91 0.87 0.85 0.91 0.86 1.26 2.23 0.83 0	0.11 0.11 0.11
	f 7	50 100	0.28 0.16 0.48 0.25 0.17 0.04 0.39 0.35 0 0.05 0.01 0.66 0.02 0 0.08 0.2 0.18 0.05 1.15 0.53 0.06 0.14 0.12 0.08 0.86 0.45 0.39 0.19 0.2 0.15
		500	0.68 0.64 1.44 0.66 0.63 0.14 0.69 0.66 0.15 1.84 0.68 0	0.27 0.28 0.3
		1000	0.89 0.87 1.8	0.88 0.86 0.44 1.15 1.14 0.29 2.1	0.8	0	0.45 0.45 0.45
		10000	1.25 1.24 1.85 1.25 1.24 0.76 1.26 1.26 1.11 1.94 1.11 0	0.77 0.77 0.77
	f 8	50 100	0.3 0.37 0.28 0.27 0.37 0.3 0.24 0.08 0.29 0.26 0.05 0.34 0.32 0 0 0.63 0.55 0.09 0.67 0.27 0.17 0.09 0.09 0.09 0.4 0.21 0.22 0.14 0.16 0.14
		500	0.44 0.36 0.9	0.51 0.46 0.24 0.66 0.59 0	1.25 0.35 0.03 0.1	0.1	0.1
		1000	0.47 0.39 1.05 0.54 0.49 0.27 0.64 0.58 0.09 1.33 0.37 0	0.19 0.19 0.19
		10000	0.99 0.93 1.17 1.01 0.96 0.61 0.99 0.93 0.66 1.25 0.82 0	0.7	0.7	0.7
	f 9	50 100	0.44 0.42 0 0.46 0.28 0.72 0.49 0.28 0 0.45 0.45 0.16 0.44 0.44 0.36 0.34 0.03 0.26 0.36 0.38 0.37 1.37 1.34 1.09 1.13 0.47 0.17 0.6 0.51 0.37
		500	0.55 0.5	1.81 0.52 0.48 0.36 1.64 1.62 1.36 2.17 0.68 0	0.85 0.63 0.55
		1000	0.61 0.56 2.02 0.59 0.55 0.5	1.65 1.62 1.37 2.3	0.72 0	1.08 0.66 0.61
		10000	0.73 0.69 1.87 0.72 0.69 0.74 1.61 1.59 1.69 1.98 0.65 0	1.31 0.77 0.74
	f 10	50 100	0 0.06 0 1.31 0.55 3.15 3.15 3.14 3.12 3.12 3.12 0.68 0.31 0.15 2.68 0 1.02 4.2 4.2 4.2 4.02 4.02 4.02 1.32 0.53 0.32 3.29 0.06 0 2.68
		500	0.02 0	2.4	5.82 5.82 5.82 5.64 5.64 5.64 2.74 0.79 0.51 5.08 0.02 0
		1000	0.01 0	2.8	6.8	6.8	6.8	6.34 6.34 6.34 3.07 0.82 0.56 5.63 0.01 0
		10000	0	0	3.48 10.1 10.1 10.1 6.46 6.46 6.46 3.59 0.65 0.81 0.17 0	0
	f 11	50 100	0.06 0.02 0.54 0.01 0.01 0.22 0 0.02 0.01 0.39 0 0 0.24 0	0 0	0.13 0.81 0.51 0.19 0.03 0.08 0.04 0.13 0.74 0.43 0.25 0.03 0.05 0.03
		500	0.86 0.61 0.8	0.89 0.7	0.27 1.06 1.06 0.15 1.14 0.48 0.11 0	0	0
		1000	0.63 0.58 0.98 0.62 0.59 0.4	0.86 0.69 0.08 1.24 0.63 0.09 0	0	0
		10000	1.06 0.99 0.93 1.05 0.98 0.57 1.09 1.01 0.37 0.97 0.91 0.17 0	0	0
	f 12	50 100	0.21 0.11 0.88 0.01 0.02 0.25 0 0.23 0.17 1.17 0.13 0.14 0.27 0.12 0.13 0 0.01 0.14 1.36 0.79 0.03 0.15 0.27 0.18 1.75 0.73 0.15 0.16 0.24 0.18
		500	0.37 0.33 2.41 0.3	0.3	0.88 0.29 0.28 0.28 2.83 0.9	0	0.29 0.37 0.34
		1000	0.52 0.49 2.63 0.48 0.47 1.09 0.52 0.51 0.5	2.95 0.89 0	0.36 0.45 0.42
		10000	0.68 0.66 2.48 0.67 0.66 1.18 0.67 0.65 1.61 2.62 0.74 0	0.57 0.6	0.59
	f 13	50 100	0.1 0.43 0.4 0.07 0.69 0.04 0.05 0.02 0.01 0.02 0 1.21 0.39 0.38 0.25 0.38 0.38 0.04 1.77 0.87 0.4 1.16 0.65 0.06 0.06 0.09 0.06 0 0.01 0.01
		500	1.41 1.34 3.43 1.39 1.33 1.86 1.53 1.5	1.41 3.85 1.88 1.1	0	0	0
		1000	1.06 0.98 3.98 1.02 0.98 2.44 0.83 0.78 1.7	4.29 1.97 1.11 0	0	0
		10000	0.92 0.92 4.83 0.9	0.91 3.57 1.39 1.39 4.1	5	1.93 1.25 0	0	0
	f 14	50 100	0.18 0.13 0.65 0.12 0.11 0.14 0.12 0.13 0 0.26 0.23 1 0.24 0.23 0.3 0.36 0.33 0.19 1.54 0.65 0.29 0 1.1 0.59 0.19 0.02 0.08 0.04 0.03 0.02
		500	0.08 0.03 2.41 0.02 0	0.85 0.58 0.56 0.67 2.83 0.83 0.09 0.88 0.35 0.28
		1000	0.14 0.11 2.98 0.12 0.11 1.45 0.83 0.82 1.25 3.3	0.98 0	0.94 0.21 0.15
		10000	0.01 0.01 3.96 0	0	2.67 0.92 0.93 3.31 4.13 1.04 0.57 2.64 0.01 0.01
	f 15	50 100	0.1 0.27 0.18 0.65 0.24 0.21 0 0 0.06 0.35 0.29 0.06 0.46 0.42 0.06 0.43 0.09 0.11 0.03 0.04 0.01 0.69 0.65 0.35 1.11 0.46 0.1 0.27 0.25 0.2
		500	0.15 0	1.79 0.15 0.01 0.31 1.15 1.09 0.87 2.17 0.48 0.21 0.48 0.27 0.13
		1000	0.06 0.01 2.39 0.03 0	0.87 1.26 1.25 1.32 2.69 0.67 0.34 0.87 0.26 0.16
		10000	0.01 0	2.8	0.01 0	1.69 1.5	1.48 2.59 2.95 0.51 0.1	0.85 0.14 0.1
	f 16	50 100	0.11 0 0.1 0.03 0.72 0 0.29 0.96 0.93 0.74 0.74 0.71 0.48 0.65 0.29 0 0.01 0 0.9 0.91 0.78 1.2 0.46 0.02 0.55 0.25 0.21 0.34 0.26 0.2
		500	0.07 0.02 1.8	0.58 0.57 0.79 1.53 1.52 1.32 2.19 0.5	0	1.21 0.09 0.03
		1000	0	0	2.18 0.27 0.28 0.84 1.21 1.22 1.26 2.49 0.55 0.03 1.24 0	0
		10000	0.04 0	2.97 0.04 0	1.83 1.17 1.15 2.58 3.12 0.59 0.8	1.65 0.04 0

Acknowledgments

This work has been supported in part by the Collaborative Research Centers "Reduction of Complexity in Multivariate Data Structures" (SFB 475) and "Statistical Modelling of Nonlinear Dynamic Processes" (SFB 823) of the German Research Foundation (DFG). The authors also wish to thank Henrike Weinert for discussions and programming in earlier stages of the work as well as two anonymous referees for giving comments that greatly improved the paper.