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In restoration or denoising of a movie, the classical procedures often do
not take into account the full information provided by the movie. These pro-
cedures are either applied spatially ”image per image” or locally on some
neighborhood combining both closeness in one image and closeness in time.
The local information is then combined homogeneously in order to realize the
treatment. There is one type of movie where both approaches fail to provide
a relevant treatment. Such a movie, called dynamical image, represents the
same scene along the time with only variations, not in the positions of the
objects in the scene but, in their gray levels, colors or contrasts. Hence, at
each point of the image, one observes some regular temporal dynamics. This
is the typical output using Dynamic Contrast Enhanced Computed Tomogra-
phy (DCE-CT) or Dynamic Contrast Enhanced Magnetic Resonance Imaging
(DCE-MRI) where at each spatial location (called voxel) of the image a time
series is recorded.

In such a case, in order to preserve the full temporal information in the
image, a proper denoising procedure should be based on averaging over spa-
tial neighborhoods, but using the full dynamics of all pixels (or voxels) within
the neighborhood. It is thus necessary to search homogeneous spatial neigh-
borhoods with respect to the full dynamical information.

We introduce a new algorithm which meets these requirements. It is based
on two main tools : a multiple hypothesis testing for the zero mean of a vec-
tor and an adaptive construction of homogeneous neighborhoods. For both
tools, results of mathematical statistics ensure the quality of the global proce-
dure. Illustrations from medical image sequences show a very good practical
performance.

Key words: Statistical Hypothesis Testing; Time Series; Denoising; Adap-
tive Estimation; DCE-CT; Microcirculation; Angiogenesis.

1.1 Introduction

Classically, the restoration or the denoising of a movie involve 2D techniques
for smoothing [Lepski and Spokoiny, 1997, Buades et al., 2008], enhancing
(see contributions on structure enhancement and use of line diffusion), filter-
ing (see contribution of Michael Felsberg and references within), partitioning
(see [Polzehl and Spokoiny, 2000] or contributions of J. Polzehl and K. Tabe-
low), etc. applied image per image. If some methods use instead of one image
a small number of images to take into account the time domain, all methods
ignore the full time structure. A natural mathematical reason, outside the
computational cost, is that the information contained in one image is consid-
ered to be less and less connected to the next images as the time increases. In
some sense, the time regular structures existing in a movie do not have a long
range effect and disappear quickly as the time distance between two images
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increases. One exception to this last rule is given by movies made from one
dynamical image where at each 2D location (pixel or voxel) one observes not
only a gray level or a color, but a full dynamical process represented by a
time series or a vector. This is typically the case when the objects in the
picture do not have changes in their position, but have changes only their
brightness, contrast or color. Medical examples of interest are sequences like
DCE-CT or DCE-MRI which register the variations of a contrast medium in
the internal tissues of the body in response to a dynamical injection.

Our aim is to develop a new technique, adapted to these dynamical images,
where each pixel presents a time series. In order to denoise by local averag-
ing, we combine two approaches: statistical multiple hypothesis testing in the
spirit of the works [Baraud et al., 2003, Durot and Rozenholc, 2006] to com-
pare the time series between two pixels, together with a spatial growth of lo-
cally homogeneous neighborhoods closely related to [Lepskĭı, 1990, Lepski and Spokoiny, 1997].
The originality of our method is not only to use the full dynamics to com-
pare pixels, but also the way of sequentially growing the neighborhood. While
usual paradigms to grow such neighborhoods compare the estimates built
on the nested neighborhoods as in [Lepski and Spokoiny, 1997], our method
compares, at each step, independent estimates to stop or not the recursive
growth. In the context of noise with heavy tails like Laplace noise for exam-
ple, this comparison using independent estimates and robust statistics like
the median offers a clear benefit in reducing the error.

Because the test procedure is based on the comparison to zero of the dif-
ference between two noisy vectors, i.e. two noisy time series, no modeling
assumption is used. As we use an adaptive multiple hypothesis testing pro-
cedure, neither regularization in time is needed nor made. From a theoretical
point of view, we only need the dynamics to be not too wild in the sense that
the enhancement differences – viewed as a function of time – should remain
in some Hölder regularity ball.

The article is organized as follows: In Section 1.2, we introduce the statisti-
cal framework of dynamical images and summarize our method. The two main
statistical tools used to construct this method, multiple testing and neighbor-
hood/ring growth, are respectively studied in 1.3 and in 1.4. In these sections,
results from mathematical statistics are provided to guarantee the behavior
of our method. Section 1.5 is devoted to the comparison of our estimation
technique with estimates introduced in [Lepski and Spokoiny, 1997] and in
[Polzehl and Spokoiny, 2000]. Finally in Section 1.6, we briefly describe an
application to DCE-CT of renal metastasis in the liver, an extract from the
specific work [Reiß et al., 2009a].
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1.2 Denoising a dynamical image

We consider the following model called dynamical image indexed by the two
quantities t and x representing time and spatial location, respectively:

I = {Ix(t), x ∈ X , t ∈ {t1, t2, . . . , tK}} .

Here Ix(.) denotes a noisy time series at location x. The notation Ix will
denote the vector

(Ix(t1), . . . , Ix(tK)),

of the discrete observation at times t1,. . . , tK of this time series. In our
setting, X denotes the finite grid of pixels.

We assume that the noisy observations Ix(tk) may be written as

Ix(tk) = ix(tk) + σεx
k, (1.1)

where ix(t) denotes an unobservable true gray level at time t, where εx
k de-

notes a standardized noise with fixed distribution and where σ denotes the
level of noise. We assume that the noise variables εx

k are independent and
identically distributed with respect to both, space location x and (time in-
dex) k. It is not necessary to assume that σ and the distribution of εx are
known, but we will illustrate our construction using the simple setting σ
known and εx having a Gaussian distribution.

In order to compare the full time series, we use multiple hypothesis tests
to decide whenever the vectors Ix and Iy at spatial locations x and y are
statistically similar or not. For this purpose, we ask if the expectation of
difference vector Ix − Iy is the zero vector or not at a given level α which
could be considered as a natural tuning parameter. Such a test is presented
in Section 1.3.

Given a set V of pixels, let us define the estimated dynamics using V as
the coordinate-wise empirical mean

ÎV =
1

|V |
∑

y∈V

Iy, (1.2)

where |A| denotes the cardinality of a set A. Our aim is to construct at each
spatial location x, a spatial neighborhood Vx of x made from voxels y such
that the difference Ix − Iy does not deviate significantly from the zero vector
and such that the bias of the estimated dynamics obtained by replacing V
in (1.2) by Vx remains under control. Controlling the statistical bias means
that we aim at using a procedure which ensures that the principal goal of
nonparametric statistics, which is the trade-off between bias and variance, is
achieved. This method is introduced in Section 1.4 and can be summarized
as follows:
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Let a geometrically increasing sequence (ni) of positive integers be given
with n1 = 1. For a fixed location x ∈ X , we consider the set Wx of all pixels
y such that, at a level α ∈ (0, 1), Ix − Iy is accepted to have a zero mean by
the previous test. We set i = 0 as well as V0 = ∅ and W0 = {x}. Our method
repeats the following steps until one test, at least, rejects the null hypothesis:

• Increment i.
• Define Vi = Vi−1∪Wi−1 and build the set Wi of the ni closest y in Wx\Vi.
• For j = 1, . . . , i, test the i − 1 null hypotheses E(ÎWi

− ÎVj
) = 0 for

j = 1, . . . , i − 1 against a non-zero expectation.

The final estimate is ÎVi−1
. The algorithm realizes a pointwise adaptive se-

lection of homogeneous dynamics. Because the last step involves a multiple
hypothesis test, in order to ensure that its level is α, each individual test has
to be calibrated with respect to α and i by a Bonferroni correction.

1.3 Multiple testing

Given two spatial locations x and y, we present the statistical test used to
compare to the zero vector the expectation of the difference vector Z with
components

Zk := Iy(tk) − Ix(tk), k = 1 . . . K.

Such a test of comparison to the zero vector derives from the theoretical works
[Baraud et al., 2003, Durot and Rozenholc, 2006] which consider a more gen-
eral framework where σ is unknown and/or where ε is not necessarily assumed
to be Gaussian. The theoretical study relies on large K asymptotics, which
in our case means that we observe the continuous time signal more and more
frequently. For the sake of simplicity, we write Z = f +

√
2σε and we intro-

duce these tests in their simplified version which is the Gaussian case with
σ known. We aim to test that the mean vector f is zero or not and hence
consider the hypotheses

H0 : ”f = 0” versus H1 : ”f 6= 0”.

To enlighten the notations, we suppose that K, the number of time indices,
is of the form K = 2d and we consider the regular dyadic decomposition of
the observation times t1. . . t2d . For j = 0 . . . d−1, we denote by T j

1 . . .T j
2j the

2j intervals of time indexes

T j
l = {tk : k = 2d−j(l − 1) + (1 . . . 2d−j)}.

The set T j
l contains 2d−j time indices. Given j in 0 . . . d− 1, let us introduce

the projection of the observation Z onto the space spanned by the vectors
with same coordinates on each time index T j

l :
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ΠjZ = (mj
1, . . . ,m

j
1

︸ ︷︷ ︸

2d−j times

, . . . ,mj
2j , . . . ,m

j
2j

︸ ︷︷ ︸

2d−j times

)

with the local mean over T j
l

mj
l =

1

2d−j

∑

t∈T j

l

Zt.

The test is based on the size of the squared Euclidean norm ‖ΠjZ‖2
K which

is:

2d−j
2j

∑

l=1

(

mj
l

)2

=
1

2d−j

2j

∑

l=1




∑

t∈T j

l

Zt





2

.

Under H0, the difference vector Z = Iy − Ix is a centered Gaussian vector
with covariance matrix 2σ2IdK , where IdK denotes the identity matrix in
R

K . Hence, under H0,
‖ΠjZ‖2

n/2σ2 ∼ χ2(2j)

which defines a distribution-free test statistic. Let us denote by Ψ−1
D the

inverse cumulative distribution function of a χ2 with D degrees of freedom,
using a Bonferroni correction, our test procedure works as follows:

Reject H0 at level α if for any j = 0 . . . d − 1, ‖ΠjZ‖2
K/2σ2 > Ψ−1

2j (α/d).

If σ is unknown, instead of a χ2-test based procedure, [Baraud et al., 2003]
proposes a Fisher like construction and considers the following procedure:

Reject H0 at level α if for any j = 0 . . . d − 1,

‖ΠjZ‖2
K/2j

‖Z − ΠjZ‖2
K/2K−j

> F−1
2j ,2K−j (α/d),

where F−1
2j ,2K−j denotes the inverse cumulative distribution function of a

Fisher distribution with 2j and 2K−j degrees of freedom. Moreover, if the
distribution of the noise variables εx

k is unknown, as ε := (εx − εy)/
√

2 is by
construction standardized and symmetrical, under the weak condition that
the common distribution of the ε does not put mass in 0, we can follow the
construction proposed in [Durot and Rozenholc, 2006]:

Consider p Rademacher vectors R1, . . . , Rp of length K. Rademacher vec-
tors have independent coordinates Ri with P (Ri = +1) = P (Ri = −1) =
1/2. Introduce the vectors Nj = Z⊗Rj where ⊗ denotes the coordinate-wise
product. The previous constructions can be generalized by considering the
following procedure:
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Reject H0 at level α if for any j = 0 . . . d − 1,

‖ΠjZ‖2
K > Q−1

[
‖ΠjZ ⊗ R1‖2

K , . . . , ‖ΠjZ ⊗ Rp‖2
K

]
(α/d),

where Q−1[X1, . . . , XK ] denotes the inverse cumulative distribution of the
empirical distribution of the Xi, i = 1, . . . ,K.

Introducing the continuous-time signal F defined by F (t) := ix(t)− iy(t),
the difference vector Z = Ix − Iy follows the fixed-design regression model

Zk = fk +
√

2εk = F (tk) +
√

2σεk.

In this framework, the introduced multiple hypothesis tests are known to have
a power which may be controlled on balls of the form ‖f‖K ≥ ρ(K) where
ρ(K) is a radius decreasing with K, the number of components of f (= num-
ber of observation times in the dynamical image). Moreover, these multiple
hypothesis tests are adaptive with respect to the unknown Hölder regularity
s of the unknown function F : at a fixed level α and for a given fixed power
1−β, this test automatically achieves (up to logarithmic factors) the minimax
rate of testing ρs(K) obtained in [Gayraud and Pouet, 2005] for all regular-
ities s > 1/4. More precisely, we can derive following [Baraud et al., 2003,
Th 1] and [Durot and Rozenholc, 2006, Th 4]) the following control of the
power :

Theorem 1 :
If the distribution of ε1 does not put mass on 0, assuming that : (Bern-
stein’s conditions) max1≤i≤n E(ε2p

i ) ≤ γp!µp−2 holds for all integers p ≥ 1
and some positive γ and µ , then there are A1, . . . , A4 > 0 such that the
multi-test procedure is of power 1 − β outside the ball defined by ‖f‖2

K ≤
infj ∆(Jj , f, A1, . . . , A5) where

∆(Jj , f, A1, . . . , A5) = A1‖f − ΠJj
f‖2

K + A2

√
γ

β
2(j−1)/2+

+ A3(
√

γ + µ + max
k=1..K

(f2
k ))

[

1 +
j log 2 + log(1/β)

2

]

log

(
2d

βα

)

+

+ A4(
√

γ + µ + max
k=1..K

(f2
k ))2(j−1)/2

√
[

1 +
j log 2 + log(1/β)

2

]

log

(
2d

βα

)

Corollary 1 If fk = F (tk) then the test is adaptative w.r.t. the Hölder reg-
ularity s of F and achieves the optimal minimax rate for s > 1/4.

This theorem is the exact translation of [Durot and Rozenholc, 2006, Thm. 4],
using our simple setting with K = 2d and dyadic partitions. It ensures a good
power of the test (up to logarithmic terms) if the true unknown function to
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be tested is, at least for one dyadic partition, at a squared distance from 0
large enough to ensure that a noisy version has also its squared distance from
0 large enough. Let us recall that the squared distance of a noisy version is
of the order of the sum of the variance term given by the number of pieces
of the partition and the bias term ‖f − ΠJj

f‖2
K which measures how well f

can be approximated by a piecewise constant vector on the index partition.
We have now at hand the tool to compare dynamics at two locations x

and y with respect to the known noise level σ. We denote ”Iy ≡α
σ2 Ix” when

the enhancement difference average vector ix − iy is accepted to be the zero
vector at level α with respect to a noise variance 2σ2 following the above
construction.

1.4 Spatial neighborhood growth

We now present the construction of the spatial neighborhood Vx for a fixed
location x. In all that follows, the distance between spatial locations x in X
can be measured by any metric ; usually the Euclidean metric will be taken.

The main idea of the sequential neighborhood growth can be explained in
terms of testing. Suppose that neighborhoods V1 ⊂ V2 ⊂ · · · ⊂ VM of x are
given. Then the stochastic fluctuations in the mean ÎVi

of the observed signal
over Vi, as measured by the variances, decrease with i. On the other hand,
the bias terms usually increase with i (we smooth with a larger bandwidth).
We can assume that the bias in ÎV1

is negligible (or we just set V1 = {x}).
Considering next the empirical mean ÎV2\V1

over the observations in the set
difference V2 \ V1, a test is constructed to decide on the hypothesis that
E(ÎV2\V1

− ÎV1
) = 0 (recall that EZ denotes the coordinate-wise expectation

of a vector Z). If the test rejects, we conclude that the bias of the new ob-
servations is already too large and we take V1 as neighborhood, thus keeping
ÎV1

as estimator. Otherwise, we accept V2 as new neighborhood and consider
V3 \ V2. If ÎV3\V2

does not deviate significantly from ÎV1
and from ÎV2

, we

continue. Otherwise, we stop and select V2 as neighborhood, ÎV2
as estima-

tor. This way we continue growing the neighborhoods until the first time the
new observations differ statistically significantly from any of the estimators
on the previously built neighborhoods or until we reach the last index M .

This simple idea is reminiscent of Lepski’s method [Lepskĭı, 1991, Lepski and Spokoiny, 1997]
in mathematical statistics with the important difference that at the ith step
we do not test whether the new estimator ÎVi+1

is statistically homogeneous

with all previous ÎVj
, j ≤ i, but we compare only the average ÎVi+1\Vi

over
the new observations with the previous estimates. This has the clear advan-
tage that the underlying test statistics are based on independent quantities
and that in practice the number of too large grown neighborhoods is reduced
because changes in the signal are detected earlier.
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In order to correctly define our method, it is, of course, of great impor-
tance how to define precisely the tests and how to preselect the potential
neighborhoods (Vi). In the static case (i.e. we only observe a scalar, not a
time series at each point) this is described in full detail in [Reiß et al., 2009b],
here we describe the main points. Let us first indicate how two averages ÎV

and ÎV ′ over disjoint sets V and V ′ are compared. The test statistic is always
based on the size of the difference ZV,V ′ = ÎV − ÎV ′ . In the static case and for
Gaussian noise, we can standardize Z2

V,V ′ by its expectation under the null,

which is ρ(V, V ′) = |V |−1 + |V ′|−1, and compare it with some critical value
zV,V ′ . This critical value can be specified by a Bonferroni correction of the
corresponding χ2-quantile, taking into account the multiple testing. A more
refined and powerful, but also computationally more demanding calibration
of the quantiles in this case is proposed in [Reiß et al., 2009b]. Together with
the prescription of geometrically growing neighborhoods (Vi), it is proved
there that this results in estimators that optimally adapt to the local reg-
ularity of the signal (in the asymptotic minimax sense over Hölder balls).
We thus achieve an unsupervised estimation procedure which is pointwise
adaptive.

Here, the focus is on dynamic images and we need to compare the mean of
time series over different spatial locations V and V ′. For this we use exactly
the adaptive multiple testing procedure presented in the preceding section.
A second feature is that an a priori prescription of potentially good neigh-
borhoods (Vi) around each pixel or voxel x is not feasible. The potential
neighborhoods should rather be preselected based on the data observed in
order to adapt to possibly heterogeneous geometric structures like borders
or bands where a priori defined balls or squares are obviously not adequate.
In a first preprocessing step we therefore exclude pixels that carry with high
probability a significantly different time series. On the pixels kept after pre-
processing we apply our neighborhood growth, which eventually results in
the following algorithm.

We consider the set

Wx = {y ∈ X s.t. y 6= x and y ≡α
σ2 x}

of the spatial locations for which the time series are statistically similar to
those of x with respect to the multi-test introduced in Section 1.3 above.
Let us emphasize that Wx is neither necessarily contiguous with {x} nor
connected.

Our algorithm works as follows:

1. Start with i = 0 and set V0 = {x} and Î0 = Ix as the first neighborhood
and its associated denoised time series.

2. Find Wi the subset of the C02
i closest points to Vi in Wx \ Vi. We call

this set the ”ring” around Vi, alluding to the case Wx = X with the
Euclidean distance.

3. Compute Ĵi the estimated time series using locations in the ring Wi.
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4. Test if Ĵi is statistically not to be distinguished from all previously con-
structed estimates Îj for j = 0 . . . i. See hereafter for precision on this
test.

5. If equality is accepted, consider

Vi+1 = Vi ∪ Wi

and define the estimate Îi+1 using locations in Vi+1. Return to 2) with
i = i + 1.

6. Else stop, define Vx = Vi and use Îx = Îi as denoised time series in x.

To compare Ĵi with the previously constructed estimates Î0, . . . ,Îi, we test
the hypothesis

H0 : ”E(Ĵi − Îj) = 0, for all j = 0 . . . i”,

against
H1 : ”E(Ĵi − Îj) 6= 0, for at least one j”,

using a generalization of our test introduced in Section 1.3. We accept H0 if

Ĵi ≡α/(i+1)
σ2ρ(|Vj |,|Wi|)

Îj .

The use of α/(i + 1) is a Bonferroni correction due to multiple hypothe-
sis tests. It would be possible to use more clever corrections as proposed in
[Benjamini and Hochberg, 1995] for example. The correction factor ρ in the
noise level takes into account that the estimates come from independent sam-
ples with respective size |Vj | and |Wi|, which in the Gaussian case is just the
variance ρ(|Vj |, |Wi|) = |Vj |−1 + |Wi|−1.

1.5 Static toy examples

Not yet exploring the full scope of the method for treating dynamical im-
ages, we present first how the denoising is accomplished for one- and two-
dimensional signals (images) without an attached time series structure.

1.5.1 1D example

We propose a simple 1D example to compare the use of rings combined with
balls with the algorithm introduced in [Lepski and Spokoiny, 1997] based
only on balls. Given an increasing sequence of neighborhoods Vj , indexed
by j = 1, . . . , jmax, the selected index in [Lepski and Spokoiny, 1997] is de-
fined by
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̂ = inf

{

j ≥ 0 s.t. ∃ℓ ≤ j,
‖ÎVj

− ÎVℓ
‖2

E[‖ÎVj
− ÎVℓ

‖2]
> z2

ℓ

}

∧ jmax

while for our method the index is selected as follow

̂ = inf

{

j ≥ 0 s.t. ∃ℓ ≤ j,
‖ÎVj\Vℓ

− ÎVℓ
‖2

E[‖ÎVj\Vℓ
− ÎVℓ

‖2]
> z2

ℓ

}

∧ jmax

Both methods achieve the same rate of convergence for α-Hölder classes of
signals in R

d:

E[‖ÎV̂
− i‖2] ≤ c

(
log n

n

)2α/(2α+d)

,

where n is the size of the neighborhood. This rate is known to be optimal in a
minimax sense over classes of Hölder functions, already in the classical mean
regression model with known errors (see [Lepskĭı, 1991]). The logarithmic
term has to be paid in order to be adaptive. Note that the dimension d,
driven by the dimension of the neighborhood, is two for classical images, the
length K of the time series itself does not change the rate, but will certainly
influence the finite sample performance: more data in time increases the signal
to noise ratio.

Fig. 1.1 A simple example with a parabolic signal. Estimation point is x = 0 and noise

is Laplace distributed. Errors from 1000 Monte Carlo replications

In the left part of Figure 1.1 the true signal is presented together with a
typical sample of 200 data points obtained by adding iid Laplace distributed
noise. The estimation point is at x = 0 in the center. As possible balls,
i.e. intervals, around x we take Vk := [−aj ,+aj ] with aj = 4 · (5/4)j/200
with j = 1, 2, . . . We compare the following methods : (1) balls as in Lep-
ski [Lepski and Spokoiny, 1997] using the local mean; (2) balls/ring using
the local mean; (3) balls as in Lepski [Lepski and Spokoiny, 1997] using the
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local median; (4) balls/ring using the local median; all these methods are
compared to the (5) oracle where the median is taken over the (a posteriori
optimal) interval [−0.39,+0.39], which is slightly larger than V10. We have
used the empirical median in addition to the empirical mean (1.2) since for
Laplace distributed noise the median is more efficient and robust. The cali-
bration of the methods follows always the same algorithm as recommended in
[Reiß et al., 2009b]. The boxplots present the errors computed for the same
1000 samples with each method. The boxplots in Figure 1.1 show a compara-
ble performance for our method in the mean case with the benchmark Lepski
approach while in the median case a clear advantage for our ball/ring method
can be seen. It is remarkable that the oracle error is almost achieved.

1.5.2 A 2D example

Figure 1.2 compares our method to AWS introduced in [Polzehl and Spokoiny, 2000].
The left subfigure shows a noisy image obtained using a pattern with two val-
ues and a Laplace noise with noise level equal to the difference of these two
values. The middle subfigure shows the denoised version using AWS, a typ-
ical benchmark procedure for off-the-shelf spatially adaptive denoising. We
have used the R package AWS version 1.3-3.1 developed by the authors of
[Polzehl and Spokoiny, 2000] available on the web site of the CRAN using
the default 2D settings to produce this subfigure. Finally, the right subfig-
ure shows the denoised image obtained by our method. While, at the used
default setting, AWS offers a very clean picture in the right lower corner, all
details are lost in the upper left corner. Using our method, the signal is less
smoothed out, but allows to recover details even in the last part of the upper
corner. Clearly more details can be found in this last image even if one could
complain about the remaining noise due the noise level used.
In Figure 1.3, four examples of selected neighborhoods are presented. One
can remark the special effect of the first selection of the set Wx in the pre-
sented examples: the neighborhood follows the borders and can even be not
connected, allowing for rich geometrical structures in the signal.

Fig. 1.2 (left) Noisy data - (center) AWS - (right) Balls/Rings
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Fig. 1.3 Examples of neighborhood (pink crosses) found for 4 selected points of interest
(red circle)

1.6 Practical results

A complete study, using our technique in the framework of DCE-CT, has
been conducted with radiologists at the European George Pompidou Hospital
(HEGP), Paris, and the complete results are reported in [Reiß et al., 2009a].
In order to provide a flavor of how our method works on real data, we have
extracted from this study a few illustrations. The precise setting of the med-
ical experiments as well as the way the tuning parameters like σ and α are
fixed is left to that work.

Due to the limited irradiation dose used during the sequential acquisition,
the dynamical images in this study suffer from a poor signal-to-noise ratio.
Figure 1.4 shows typical time series obtained from voxels in manually selected
Regions of Interest (of size ≃100 voxels) within the Aorta (left curves) and
a tumor (right curves).

The Figures 1.5 and 1.6 present the result of our method applied at two
different voxels, one inside the aorta and the other inside the tumor.

Each figure is divided into 3 sub-figures. Left: the denoised slice at a specific
time, with the selected voxel x (black cross) and the voxels from its neighbor-
hood Vx (pink dots). Center: the original enhancement vector Ix (red thick
curve) and the associated enhancement vectors Iy for y ∈ Vx (background
curves). Right: the estimated enhancement using a generalized median as a
robust center of the selected neighborhood (see Section 1.4).
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Fig. 1.4 Typical curves (time, enhancement) of individual voxels in ROI manually drawn

within the Aorta (left) and the tumor (right)

Fig. 1.5 Voxel within the aorta

Fig. 1.6 Voxel within the tumor

1.7 Conclusion

Using a two-step procedure, each step based on multiple hypothesis testing,
we have introduced a novel algorithm to denoise dynamical images where each
point of the picture exhibits a complete time series. Based on a comparison
of the time series dynamics, this algorithm preserves the full structure of
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the time series by averaging spatially over adaptively grown neighborhoods.
The efficiency of our algorithm is shown on artificial examples and on real
medical images. The quality of the denoised dynamical image is shown by
the remarkable reconstruction of the details in these spatially heterogeneous
images.
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[Lepskĭı, 1990] Lepskĭı, O. V. (1990). A problem of adaptive estimation in Gaussian white

noise. Theory Probab. Appl., 35(3):454–466.
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