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Abstract

In this work we build two families of nonparametric tests using tapered data for the off-line
detection of change-points in the spectral characteristics of a stationary Gaussian process. This is
done using the Kolmogorov-Smirnov’s Statistics based on integrated tapered periodograms.

The convergence is obtained under the null hypothesis by means of a double indexed (frequency
- time) process together with some extensions of Dirichlet and Fejer kernels. Consistency is proved
using these statistics under the alternative.

Then using numerical simulations, we observe that the use of tapered data significantly improves
the properties of the test, especially in the case of small samples.

KEY WORDS: Nonparametric, Tests, Change-Point, Periodogram, Tapered Data, Stationary Pro-
cess.
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1 Introduction

The problem of detecting a change-point in the properties of a process has been extensively studied, see
for a general survey the books [1], [2] and [7] or more recently the works of [21] or [28].

The change point problem can be formulated in two different ways: a sequential problem called ”on-
line” and another one a posteriory called ”off-line”. We consider here this last case where one has to
decide between homogeneity and change-point after observing a given set of random data.

Different kinds of changes can affect a stochastic process: changes in the mean, in the covariance
structure, etc. In the present work, our aim is to detect changes in the spectrum of a strictly stationary
time series, while assuming no change in the mean. As the distributions are a priori unknown, we restrict
ourselves to a nonparametric framework and we build two families of nonparametric test-statistics for
change-point detection using estimates of the spectral measure.

Several authors have investigated such problems of detecting change in the spectral distribution func-
tion in an off-line case. We can quote for instance [31] for Gaussian processes, [19], [20], [21] for linear
processes and [27] for multidimensional Gaussian processes.

On the other hand, it is well known that, for estimating the spectral measure of a stationary process,
the use of the periodogram requires a large number of data. To bypass this problem of sample sizes,
Dahlhaus has shown, in a series of papers [12] [14] [13] [15] that the use of tapered data improves spectral
estimation: The increase in the asymptotic variance is balanced by a reduction of the bias which leads
to better results for small samples sizes. This is the old remedy to reduce leakage effects pointed out by
[36] or more recently in the papers of [38], [37], and [26].
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In this paper, we extend to tapered data the results on change point detection [31]. For this, following
Dahlhaus, we introduce tapers, and then build two families of test-statistics which are related to the
Kolmogorov-Smirnov test statistics. Assuming that the process is Gaussian, we show the asymptotic
normality of a double indexed (frequency-time) process. This result allows us to precise the distribution
of our tests under the null hypothesis where no change occurs. By numerical simulations, we show that
using an appropriate taper depending on the sample size, improves significantly the detection for small
sample size.

Section 2 contains the assumptions, notations and the definition of the auxiliary process ZT on which
the statistical studies relied. We prove that the test statistics derived from ZT converge under the null
hypothesis to a known distribution which only depends on the chosen taper. Therefore, it is possible to
tabulate this limiting distribution according to the taper, and obtain in practice the associated tests. The
result relies on a central limit theorem for ZT stated in Theorem 2. Section 3 contains some preliminary
results on the kernels used here. The functional central limit theorem for ZT is proved in Section 4. Section
5 is devoted to the study of the asymptotic distributions of our statistics under the null hypothesis. The
main point is to show that the two statistics have the same asymptotic distribution (Theorem 3). In
Section 6, we study the asymptotic confidence region (Corollary 1.1) and the asymptotic consistency of
the tests. Finally, we give some numerical results obtained with simulations. They show that, for small
sample sizes (T ∼ 50), the use of tapers improves the performance. Indeed, for the same number of false
alarms, there are twice more true alarms detected using of taper. This effect tends to disappear as T
increases.

2 Statement of the results

2.1 Notations and assumptions

Let G denote the set of stationary real centered Gaussian processes with absolutely continuous spectral
measure with density f w.r.t. the normalized Lebesgue measure on the torus T = [−π,+π[, dλ(α) =
dα/2π, which satisfy

• (A-i) F (λ) =
∫ λ

0
f(α)dλ(α) is an increasing function on [0, π],

• (A-ii) G2 =
∫ π

0
f2(α)dλ(α) < +∞.

We test the following hypotheses
H0: ”(Xj)j=1...T is the restriction to {1, . . . , T} of a process belonging to G”.

against

H1: ”there exists k0, 1 < k0 < T such that Xj = X̃1
j if j ≤ k0 and Xj = X̃2

j if j > k0 where X̃1

and X̃2 are both in G and have two unknown different spectral measures F1 and F2 (Fi denotes

the spectral measure of X̃i, i = 1, 2)”.

Let h be a non negative C1-function defined on [0, 1]: the taper. For k = 0, 1, . . . , T and s ∈ [0, 1], let us
define

Hk
p (α) =

k∑

j=1

hp(
j

T
)e−ijα, Hk

p = Hk
p (0), H0

p = 0, Hp(s) =

∫ s

0

hp(u)du, Hp = Hp(1). (1)

Consider now the tapered periodograms Ik(α) (respectively ǏT−k(α) built on the first k data (resp. on
the last T − k data), as in [12]

dk(α) =
k∑

j=1

Xjh(
j

T
)e−ijα, Ik(α) =

|dk(α)|2
Hk

2

, ǏT−k(α) =
|dT (α) − dk(α)|2

HT
2 − Hk

2

(2)
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with I0(α) = ǏT (α) = 0. The associated estimates of the spectral distribution function are respectively

Fk(λ) =

∫ λ

0

Ik(α)dλ(α), F̌T−k(λ) =

∫ λ

0

ǏT−k(α)dλ(α). (3)

The asymptotic properties of FT have been studied, in the non tapered case (h identically equal to 1), in
[25], [29], and in the tapered case by [12] [14] [15]. In particular, Dahlhaus has first pointed out the interest
of data tapering by numerical simulations results and then, through his theory of “high-resolution”, [15]
proved it. For a spectral density having high peaks the estimates based on tapered data behave better
(especially around the peaks). Indeed, for small T , this is because their bias is reduced. For large T ,
they are uniformly more efficient with respect to the supremum of the integrated mean square error; this
supremum is taken on a class of densities which contain the ARMA processes, whose roots belong to the
disk with radius 1 − 1/T .

Denote by [a] the integer part of a and define

Y 1
T (λ, s) =

√
T

H
[sT ]
2

HT
2

(
F[sT ](λ) − FT (λ)

)
, (4)

Y 2
T (λ, s) =

√
T

H
[sT ]
2

HT
2

HT
2 − H

[sT ]
2

HT
2

(
F[sT ](λ) − F̌T−[sT ](λ)

)
. (5)

The associated tests statistics are

Si
T (h) = sup

λ∈[0,π]

sup
s∈[0,1]

∣∣Y i
T (λ, s)

∣∣ , i = 1, 2 (6)

and the critical regions are, using the notations of (A-ii) and (1)

Rj
T =

{
Sj

T (h) >
c

H2

√
G2H4

}
, j = 1, 2. (7)

The properties of the statistic S2
T (h) under the null hypothesis H0 in the non tapered case (i.e. h ≡ 1)

have been studied by [31]. In the non tapered case, [20] have studied tests for linear (non necessarily
Gaussian) processes using analogous test-statistics.

2.2 Main Results

Our first aim is to obtain the asymptotic distributions of the above statistics in order to get the asymptotic
level of our test.

Let us stress upon the fact that the critical regions are not free. The unknown parameter G2 defined
in (A− ii) remains in the test. Hence, this value must be known or substituted by a consistent estimate

G̃2 in order to perform the test. For example G2 can be replaced by

G̃2 =
1

2

∑

|u|<
√

T


 1

T

T−|u|∑

j=1

XjXj+u




2

. (8)

Let D = D([0, π]× [0, 1],R) be the space of real functions on [0, π]× [0, 1] which are right-continuous
with left-hand limits, endowed with the Skorohod topology. Let C = C([0, π] × [0, 1],R) be the space of
continuous real functions on [0, π] × [0, 1], with the uniform convergence topology. Clearly processes Y 1

T

and Y 2
T are D-valued. The following holds
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Theorem 1 Assume that (Xj)j∈N belongs to G. Then, as T → +∞, under the null hypothesis H0, the
two sequences (Y 1

T ) and (Y 2
T ) converge in distribution in D to the centered Gaussian process

1

H2

(
Z(λ, s) − H2(s)

H2
Z(λ, 1)

)

(λ,s)∈[0,π]×[0,1]

(9)

where H2 and H2(.) are defined in (1) and where Z(., .) is the continuous Gaussian process with mean
zero and covariance function

E Z(λ, s)Z(λ′, s′) =

s∧s′∫

0

h4(u)du.

λ∧λ′∫

0

f2(α)dλ(α). (10)

The proof of Theorem 1 is given in Section 4.
Now, we can study the levels of the tests associated with the critical regions Rj

T defined in (7).

Corollary 1.1 Assume that (Xj)j∈N belongs to G. Then, as T → +∞,

lim
T→+∞

PH0(R
j
T ) = P( sup

u∈[0,1]

sup
s∈[0,1]

∣∣∣∣B(u, s) − H2[H
−1
4 (s.H4)]

H2
B(u, 1)

∣∣∣∣ > c)

where H−1
4 (.) denotes the inverse (or pseudo-inverse) function of H4(.) and B is the standard bidimen-

sional Brownian motion on R2 centered with covariance function E B(u, s)B(u′, s′) = (u ∧ u′).(s ∧ s′).

The proof in given in Section 6.
Therefore, for T large enough, we obtain approximations for the levels which only depend on the taper
h. To obtain this result, we introduce, as in [31] [20], the process ZT with values in D defined by

ZT (λ, s) =
H

[sT ]
2√
T

(F[sT ](λ) − F (λ)). (11)

Then, the following holds for Y 1
T and Y 2

T ,

Y 1
T (λ, s) =

T

HT
2

(
ZT (λ, s) − H

[sT ]
2

HT
2

ZT (λ, 1)

)
(12)

Y 2
T (λ, s) = Y 1

T (λ, s) +
TH

[sT ]
2

(HT
2 )2

ΩT (λ, s) (13)

where

ΩT (λ, s) =
2√
T

Re

∫ λ

0




[sT ]∑

j=1

h(
j

T
)Xje

−ijα
T∑

j=[sT ]+1

h(
j

T
)Xje

ijα


 dλ(α). (14)

All the results quoted above rely on the next theorem which states, under the null hypothesis H0, the
weak convergence of the process ZT (., .).

Theorem 2 Assume that (Xj)j∈N belongs to G. Then (ZT )T∈N converges in distribution to the centered
Gaussian process Z of C([0, π] × [0, 1],R) with covariance function given in (10).

The proof of Theorem 2, is given in Section 4. Some preliminary results are useful for obtaining the
limiting covariances together with the tightness of the sequence ZT (., .).
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3 Preliminary results

This section is devoted to studying the kernels that appear in the proof of the functional central limit
theorem.

Let us define, for p and j arbitrary integers and for α ∈ [−π, π], the functions L̃p
j

L̃p
j (α) =





j π
2 , if |α| ≤ 2

j ,

π(p−p) logp(epj|α|/2)
|α| , if 2

j ≤ |α| ≤ π.

For α ∈ R, denote by Lp
j the 2π-periodic extension of L̃p

j .

Property 1 The function Lp
j (α) has the following properties

1. For all p and j, α → Lp
j (α) is continuous, odd, and, for α in [0, π], non increasing. It is an

increasing function w.r.t. j and p.

2. For all p, q, n > 1 and j, there is a constant K, which does not depend on j such that

(a).

∫

T

Lp
j (α)dλ(α) ≤ K(log j)p+1, (b).

∫

T

[Lp
T (α)]

n
dλ(α) ≤ KTn−1, (15)

(c).

∫

T

Lp
j (γ + α)Lq

j(β − α)dλ(α) ≤ KLp+q+1
j (β + γ). (16)

The proof is omitted here, since this result is similar to the one stated in [12, lemma 1 and 2]. The
only difference lies in the definition of the Lp

T . A detailed proof can be found in [33].

Lemma 3.1 Let |α| ≤ π, and consider two integers k1, k2, k1 < k2, set

∣∣∣∣∣∣

k2∑

j=k1+1

h(
j

T
)e−ijα

∣∣∣∣∣∣
≤ ChL0

k2−k1
(α).

Proof Now, let us consider the Dirichlet kernels ∆k(α) = Hk
0 (α) (see (1)). By an Abel transformation,

we obtain

k2∑

j=k1+1

h(
j

T
)e−ijα =


h(

k2

T
)∆k2−k1(α) −

k2−1∑

j=k1+1

[
h(

j + 1

T
) − h(

j

T
)

]
∆j−k1(α)


 e−ik1α.

So, ∣∣∣∣∣∣

k2∑

j=k1+1

h(
j

T
)e−ijα

∣∣∣∣∣∣
≤


h(

k2

T
) +

k2−1∑

j=k1+1

∣∣∣∣h(
j + 1

T
) − h(

j

T
)

∣∣∣∣


 sup

j=1,...,k2−k1

|∆j(α)|.

As h is C1, the term between brackets is bounded by a constant Ch depending only on h. As the functions
Lp

j (α) are increasing with j, we just have to prove that, for |α| ≤ π

|∆j(α)| =

∣∣∣∣
sin(jα/2)

sin(α/2)

∣∣∣∣ ≤ L0
j (α).

Since sinx ≤ x, for x ∈ [0, π] and 2
π x ≤ sin x for x ∈ [0, π/2], then one easy checks that
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• for |α| ≤ 2/j,

|∆j(α)| ≤ j |α|
2

2
π

|α|
2

=
πj

2
= L0

j (α), (17)

• for 2/j ≤ |α| ≤ π,

|∆j(α)| ≤ 1
2
π

|α|
2

=
π

|α| = L0
j (α). (18)

This completes the proof of Lemma 3.1
Q.E.D.

Let us now introduce some kernels based on the taper h, which are approximate identities for convo-
lution. Set s = min(s1, . . . , sm) and define on Tm−1 the function Φs1,...,sm

T by

Φs1,...,sm

T (γ1, . . . , γm−1) =





H
[s1T ]

1 (γ1)...H
[sm−1T ]

1 (γm−1)H
[smT ]
1 (−

m−1∑
j=1

γj)

H
[sT ]
m

, if H
[sT ]
m 6= 0,

1, otherwise.

(19)

Lemma 3.2 Let m ∈ N, s1, . . . , sm in [0, 1] and h be C1 such that Hm(s) 6= 0. Then, the sequence of
functions (Φs1,...,sm

T )∞T=1 is an approximate identity for convolution.

First (see [34, Chaper 6]), recall that a family (ΦT )T∈N of Lebesgue integrable functions on Tm−1

with values in C is called an approximate identity for convolution if, for γ = (γ1, . . . , γm−1) and ||γ|| =
supi=1,...,m−1 |γi|,

(i) sup
T∈N

∫

Tm−1

|ΦT (γ)| dλ(γ) < ∞, (ii) lim
T→∞

∫

Tm−1

ΦT (γ)dλ(γ) = 1,

(iii) lim
T→∞

∫

Tm−1\{γ,||γ||<δ}

|ΦT (γ)| dλ(γ) = 0, for all δ > 0.

Then, for all bounded continuous complex functions g on Tm−1, limT→∞ ||ΦT ∗ g − g||∞ = 0.
Proof This result was shown by [12, Lemma 3] in the case s1 = . . . = sm = 1. We follow the sketch
of his proof in our case,that is to say that (Φs1,...,sm

T )∞T=1 satisfies the three assertions (i)-(iii). As the
functions L0

k(α) increase with k, by applying Lemma 3.1 to k1 = 0 and k2 = [sT ], we get

H
[sT ]
1 (α) ≤ Ch L0

[sT ](α) ≤ Ch L0
T (α).

Therefore,

|Φs1,...,sm

T (γ1, . . . , γm−1)| ≤
(Ch)m

H
[sT ]
m

L0
T (γ1) . . . L0

T (γm−1)L
0
T (−

m−1∑

j=1

γj). (20)

Assertion (i) is obtained noting that the limit of the sequence (H
[sT ]
m

T ) is Hm(s) 6= 0 by assumption, and
using inequality (16).

Set hs = h.1[0,s] and let us check (ii). One has

∫

Tm−1

Φs1,...,sm

T (γ)dλ(γ) =
1

H
[sT ]
m

T∑

j1=1

. . .
T∑

jm=1

hsm
(
jm

T
)

m−1∏

l=1

hsl
(
jl

T
)

∫

T

ei(jl−jm)γldλ(γl)

=
1

H
[sT ]
m

T∑

j=1

(
hs1(

j

T
) . . . hsm

(
j

T
)

)
=

1

H
[sT ]
m

T∑

j=1

[
hs(

j

T
)

]m

=
1

H
[sT ]
m

[sT ]∑

j=1

[
h(

j

T
)

]m

= 1.
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Fix δ > 0 and T0 such that δ ≥ π
T0

. Now, using that {||γ|| ≥ δ} = ∪m−1
j0=1{|γj0 | ≥ δ} and noticing that

|γj0 | ≥ δ ≥ 2
T implies L0

T (γj0) = 2
γj0

≤ 2
δ , inequality (20) leads to

∫

Tm−1\{γ,||γ||<δ}

|ΦT (γ1, . . . , γm−1)|
m−1⊗

j=1

dλ(γj)

≤ π(Ch)m

δH
[sT ]
m

m−1∑

j0=1

∫

Tm−2

L0
T (−

m−1∑

j=1

γj)
∏

1 ≤ j ≤ m − 1
j 6= j0

L0
T (γj)dλ(γ1) . . . dλ(γm−1).

Then, inequalities (15) give that this last term is an O( lnm−1 T
T ). We obtain assertion (iii) using again

the assumption Hm(s) 6= 0 to control H
[sT ]
m . This completes the proof of Lemma 3.2

Q.E.D.

4 Functional central limit theorem

To obtain a functional limit theorem for the process ZT defined in (11), we follow a classical scheme. We
first investigate the limits of the finite dimensional distributions of ZT and then we prove the tightness
of ZT .

4.1 Finite dimensional distributions

We first prove that ZT is asymptotically uniformly centered, then exhibit its limiting covariance function
and finally study its finite dimensional distributions.

Proposition 1 Suppose (Xj) belongs to G. Then, as T → ∞

sup
s∈[0,1],λ∈[0,π]

|E ZT (λ, s)| = o(1).

Proof We extend to tapered data inequality (1.5) of [25, p. 369]. If f is a function defined on the torus

T, denote by f̂(n) its nth Fourier coefficient. The expectation of ZT satisfies, using definitions (1), (2)
and (11)

E ZT (λ, s) =
H

[sT ]
2√
T

λ∫

0

(
E I[sT ](α) − f(α)

)
dλ(α) =

H
[sT ]
2√
T

+∞∑

n=−∞
ϕ̂(n)

(
̂E I[sT ](n) − f̂(n)

)
,

with ϕ = 1[0,λ] and ϕ̂(n) = (e−inλ − 1)/n. Now, let Kk(α) = 1
k

∣∣Hk
1 (α)

∣∣2 be the tapered generalization of

the Fejer kernel. It follows that E Ik(α) = Kk ∗ f(α), so that Ê Ik(n) = K̂k(n).f̂(n). Hence, the Fourier
coefficients of Kk are null for n > k, since they verify

K̂k(n) =
1

Hk
2

inf(k,(k−n))∑

j=sup(1,(1−n))

h(
j

T
)h(

j + n

T
).

The expectation of ZT splits into two terms

E ZT (λ, s) =
H

[sT ]
2√
T




[sT ]∑

n=−[sT ]

ϕ̂(n)f̂(n)
(
K̂[sT ](n) − 1

)
−

∑

|n|>[sT ]

ϕ̂(n)f̂(n)


 =

H
[sT ]
2√
T

(
A[sT ] − B[sT ]

)

(21)

with A[sT ] =
[sT ]∑

n=−[sT ]

ϕ̂(n)f̂(n)
(
K̂[sT ](n) − 1

)
and B[sT ] =

∑
|n|>[sT ]

ϕ̂(n)f̂(n).

7



Using |nϕ̂(n)| ≤ 2 and the Schwarz inequality, we get B2
[sT ] ≤ 4

∑
|n|>[sT ]

1
|n|2

∑
|n|>[sT ]

∣∣∣f̂(n)
∣∣∣
2

. Since

∑
|n|>[sT ]

1
|n|2 ≤ 2[sT ]

−1
, we get

H
[sT ]
2√
T

∣∣B[sT ]

∣∣ ≤ ||h||2

 [sT ]

T

∑

|n|>[sT ]

|f̂(n)|2



1/2

. (22)

Fix ε > 0, the behavior of B[sT ] varies according to the position of s w.r.t. ε.

• If 0 ≤ s < ε, using [sT ]
T ≤ ε and the Parseval equality yields

H
[sT ]
2√
T

∣∣B[sT ]

∣∣ ≤ ||h||2 ‖f‖2ε
1/2.

• If ε ≤ s ≤ 1, as [sT ]
T ≤ 1,

H
[sT ]
2√
T

∣∣B[sT ]

∣∣ ≤ ||h||2
(∑

|n|>[εT ] |f̂(n)|2
)1/2

.

Taking ε = 1/
√

T , we get that

sup
s∈[0,1]

H
[sT ]
2√
T

∣∣B[sT ]

∣∣ ≤ ||h||2 sup


 1√

T
,
∑

|n|>
√

T

|f̂(n)|2



1/2

= o(1). (23)

To study A[sT ], first consider

∆̂[sT ](n) − 1 =
1

H
[sT ]
2




inf([sT ],([sT ]−n))∑

j=sup(1,(1−n))

h(
j

T
)

[
h(

j + n

T
) − h(

j

T
)

]
−
∑

j

(n)
h2(

j

T
)


 (24)

where
∑(n)

j means
∑[sT ]

j=[sT ]−n+1 if n > 0 and
∑−n

j=1 if n < 0. This sum has at most n terms, so

∑

j

(n)
h2(

j

T
) ≤ |n| ‖h‖2.

Expanding h in Taylor series, leads to

H
[sT ]
2

∣∣∣∆̂[sT ](n) − 1
∣∣∣ ≤ [sT ]‖h‖ |n|

T
‖h′‖ + |n|‖h‖2 ≤ Ch |n| . (25)

Plugging this in A[sT ] (see 21), we get

|H
[sT ]
2√
T

A[sT ]| ≤
Ch√

T

∑

|n|≤[sT ]

|nϕ̂(n)f̂(n)| ≤ Ch
2√
T

∑

|n|≤[sT ]

|f̂(n)| ≤ Ch
2√
T

∑

|n|≤T

|f̂(n)|. (26)

As f is in L2,
∑

|n|≤T |f̂(n)| = o(
√

T ), so the expression in the right hand-side of (26) goes to 0 as

T → +∞ uniformly in s ∈ [0, 1]. Joining this and (23) completes the proof of Proposition 1
Q.E.D.

Proposition 2 If (Xj) is in G, then, for all s1 and s2 in [0, 1] and all λ1 and λ2 in [0, π],

lim
T→∞

cov[ZT (λ1, s1), ZT (λ2, s2)] =

λ1∧λ2∫

0

f2(α)dλ(α)

s1∧s2∫

0

h4(u)du.

8



Proof As ZT (., .) is uniformly centered, it is enough to prove this result for the centered process Z̃T

defined by

Z̃T (λ, s) = ZT (λ, s) − E ZT (λ, s) =
1√
T

∫ λ

0

(
|d[sT ](α)|2 − E |d[sT ](α)|2

)
dλ(α) (27)

where dk(α) is defined in (2). Clearly,

cov(Z̃T (λ1, s1), Z̃T (λ2, s2)) =

λ1∫

0

λ2∫

0

G(α1, α2, s1, s2)dλ(α1)dλ(α2) (28)

where G(α1, α2, s1, s2) = E
∣∣d[s1T ](α1)

∣∣2 ∣∣d[s2T ](α2)
∣∣2 − E

∣∣d[s1T ](α1)
∣∣2E

∣∣d[s2T ](α2)
∣∣2. Let us study the

term G(α1, α2, s1, s2). Since dk(.) is a Gaussian process, setting ξ1 = d[s1T ](α1), ξ2 = d[s1T ](−α1),
ξ3 = d[s2T ](α2) and ξ4 = d[s2T ](−α2), vector (ξ1, ξ2, ξ3, ξ4) satisfies the Gaussian identity

E ξ1ξ2ξ3ξ4 = E ξ1ξ2E ξ3ξ4 + E ξ1ξ3E ξ2ξ4 + E ξ1ξ4E ξ2ξ3. (29)

Therefore,

E ξ1ξ3E ξ2ξ4

=




[s1T ]∑

j1=1

h(
j1
T

)e−ij1α1

[s2T ]∑

j3=1

h(
j3
T

)eij3α2

∫

T

e−i(j1−j3)β1f(β1)dλ(β1)







[s1T ]∑

j2=1

h(
j2
T

)e−iij2α1

[s2T ]∑

j4=1

h(
j4
T

)eij4α2

∫

T

e−i(j2−j4)β2f(β2)dλ(β2)




=

∫

T2

dλ(β1)dλ(β2)f(β1)f(β2)
[
H

[s1T ]
1 (α1 + β1)H

[s2T ]
1 (−α2 − β1)H

[s1T ]
1 (−α1 + β2)H

[s2T ]
1 (α2 − β2)

]

where Hk
p (α) is defined in (1). Substituting α2 in −α2, we obtain the expression of E ξ1ξ4E ξ2ξ3. Now

for γ = (γ1, γ2, γ3), let us define

g̃(γ) =

∫

T

1λ1
(α)1λ2

(γ1 + γ2 − α)f(γ1 − α)f(γ3 + α)dλ(α)

+

∫

T

1λ1
(α)1λ2

(α − γ1 − γ2)f(γ1 − α)f(γ3 + α)dλ(α) (30)

and

Φs1,s2,s3,s4

T (γ) =

H
[s1T ]
1 (γ1)H

[s2T ]
1 (γ2)H

[s3T ]
1 (γ3)H

[s4T ]
1 (−

3∑
j=1

γj)

H
[s1T ]∧[s2T ]
4

. (31)

With these notations the covariances, defined in (28), may be expressed as

cov
(
Z̃T (ϕ1, s1), Z̃T (ϕ2, s2)

)
=

H
[s1T ]∧[s2T ]
4

T
Φs1,s1,s2,s2

T ∗ g̃(0, 0, 0). (32)

Noting that g̃(0, 0, 0) =
∫ λ1∧λ2

0
f2(α)dλ(α), and that H

[s1T ]∧[s2T ]
4 /T tends to s1 ∧ s2 as T → ∞, we

achieve the proof using Lemma 3.2.
Q.E.D.
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Proposition 3 Assume that (Xj) is in G. Then, for all λ1, . . . , λl in [0, π], all s1, . . . , sm in [0, 1], and
all real numbers aj1,j2 , j1 = 1, . . . , l, j2 = 1, . . . ,m, the random variable

l∑

j1=1

m∑

j2=1

aj1,j2Z̃T (λj1 , sj2)/Var




l∑

j1=1

m∑

j2=1

aj1,j2Z̃T (λj1 , sj2)


 D−→ N (0, 1).

Proof The asymptotic normality of the finite dimensional distributions is obtained using the same
approach as Ibragimov in [25, Th. 3.1 pp.379-80]. In the quadratic decomposition proposed by Ibragimov

l∑

j1=1

m∑

j2=1

aj1,j2Z̃T (λj1 , sj2) = (BT X̂T , X̂T ) − E (BT X̂T , X̂T )

where X̂T is the column vector t(X1, . . . , XT ), only the T × T matrix BT changes

BT =


 1√

T

l∑

j1=1

m∑

j2=1

aj1,j2

λj1∫

0

h(
k1

T
)h(

k2

T
)ei(k2−k1)α11≤k1,k2≤[sj2T ]dλ(α)




1≤k1,k2≤T

So we only need to generalize the upper-bound for ||BT ||. We have

||BT || =
1√
T

sup
||x||=1

∣∣∣∣∣∣∣

∑

j1,j2

aj1,j2

T∑

k1,k2=1

xk1xk2

λj1∫

0

h(
k1

T
)h(

k2

T
)ei(k2−k1)αdλ(α)

∣∣∣∣∣∣∣

≤ ml√
T

sup
j1,j2

|aj1,j2 | sup
||x||=1

∫

T

∣∣∣∣∣
T∑

k=1

xkh(
k

T
)e−ikα

∣∣∣∣∣

2

dλ(α).

This is the L2-norm of the function having for Fourrier coefficients the finite sequence (x1h( 1
T ), . . .,

xT h(T
T )). Hence, using the Parseval equality and the Schwarz inequality

∫

T

∣∣∣∣∣
T∑

k=1

xkh(
k

T
)e−ikα

∣∣∣∣∣

2

dλ(α) = x2
1h

2(
1

T
) + . . . + x2

T h2(
T

T
) ≤ ||h||2∞ ||x||2 ≤ ||h||2∞ .

Thus,

||BT || ≤
ml√
T

sup
j1,j2

|aj1,j2 | ||h||2∞ . (33)

So ||BT || is always a O(T−1/2) and we can apply the sketch of proof proposed by Ibragimov.
Q.E.D.

4.2 Tightness

To prove the tightness of the process ZT (., .) we use as in [31] the Csensov tightness criterion (see [10])
for continuous processes:

A family of process {YT , T > 0} of C([0, π] × [0, 1],R) is tight if

1. The family {YT (0, 0), T > 0} is tight in R,

2. The family {YT (0, .), T > 0} is tight in C([0, 1],R),

3. The family {YT (., 0), T > 0} is tight in C([0, π],R),

10



4. There exist constants C > 0, γ1 > 1, γ2 > 0 and a modulus of continuity ω̃ defined on [0, π] such
that, for all B = [λ1, λ2] × [s1, s2] included in [0, π] × [0, 1],

E

∣∣∣ŶT (B)
∣∣∣
γ1

≤ C[(s2 − s1)ω̃(λ2 − λ1)]
γ2

where ŶT (B) = YT (λ2, s2) − YT (λ2, s1) + YT (λ1, s1) − YT (λ1, s2).

As the process ZT (., .) is not continuous with respect to its second coordinate, we introduce the process
LT (., .) with continuous sample path defined by

LT (λ, s) =
1√
T

∫ λ

0

lT (α, s)dλ(α) (34)

where lT (., .) is the polygonal line which joins the points ((α, k/T ), zT (α, k/T )) where

zT (α, s) =

∣∣∣∣∣∣

[sT ]∑

j=1

Xjh(
j

T
)e−ijα

∣∣∣∣∣∣

2

− E

∣∣∣∣∣∣

[sT ]∑

j=1

Xjh(
j

T
)e−ijα

∣∣∣∣∣∣

2

=
∣∣d[sT ](α)

∣∣2 − E
∣∣d[sT ](α)

∣∣2.

We first prove that the continuous process LT (., .) satisfies Csensov tightness criterion (Proposition 4),
then to obtain the tightness of ZT (see [11, Déf. 7.3.25-b p.219]) we prove the contiguity (see [?, Chap

3.1 pp.19-24] or [?, Chap. 6 pp.85-91]]) of Z̃T and LT (Proposition 5).

Proposition 4 Assume that (Xj) is in G, then the family of processes (LT ) is tight.

Proof Since here, we have LT (0, 0) = LT (0, .) = LT (., 0) = 0 the first three conditions of Csensov
criterion are obvious. Define for B = [λ1, λ2] × [s1, s2]

L̂T (B) =
1√
T

λ2∫

λ1

[lT (α, s2) − lT (α, s1)] dλ(α). (35)

Our aim is to control

E

∣∣∣L̂T (B)
∣∣∣
2

=
1

T
E

λ2∫

λ1

λ2∫

λ1

[lT (α, s2) − lT (α, s1)] [lT (−β, s2) − lT (−β, s1)] dλ(α)dλ(β). (36)

The technical part of this proof is to control E

∣∣∣L̂T (B)
∣∣∣
2

when 0 ≤ s2 − s1 ≤ 1
T . The general case is a

direct consequence of this particular one. For this and before considering the general case, let us denote
by

∆n(α) =
n∑

j=1

e−ijα the Dirichlet kernel and ϕn(λ) =

λ∫

0

∆n(α)dλ(α). (37)

[39, Lemma 8.2 p.57] assure that the functions ϕn are continuous on the torus and are uniformly bounded
in n and λ so one can find a uniform modulus of continuity ω(.) for the family (ϕn)n∈N i.e. which satisfies
sup0<|µ−λ|<δ |ϕn(µ) − ϕn(λ)| ≤ ω(δ) for all integer n, we prove the following lemma

Lemma 4.1 Let ω(.) be an uniform modulus of continuity for all the ϕn defined by (37), then for B =
[λ1, λ2] × [s1, s2] such that [s1T ] ≤ s1T < s2T ≤ [s1T ] + 1, the following inequality holds

E

∣∣∣L̂T (B)
∣∣∣
2

≤ C1(s2 − s1)
[
(λ2 − λ1) ∨ ω2(λ2 − λ1)

]
.
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Proof We note k = [s1T ] and Yj = h(j/T )Xj the tapered data. Then, using that 0 ≤ s2−s1 ≤ 1/T ,
it follows

lT (α, s2) − lT (α, s1) = T (s2 − s1)

(
zT (α,

k + 1

T
) − zT (α,

k

T
)

)
(38)

and

E

∣∣∣L̂T (B)
∣∣∣
2

≤ (s2−s1)

λ2∫

λ1

λ2∫

λ1

cov

[
zT (α,

k + 1

T
) − zT (α,

k

T
), zT (β,

k + 1

T
) − zT (β,

k

T
)

]
dλ(α)dλ(β). (39)

Now, noting that

zT (α,
k + 1

T
)−zT (α,

k

T
) = Y 2

k+1−E Y 2
k+1+2Yk+1Re

k∑

j=1

Yje
−i(k+1−j)α−2E


Yk+1Re

k∑

j=1

Yje
−i(k+1−j)α


,

we obtain

E

∣∣∣L̂T (B)
∣∣∣
2

≤ (s2 − s1)(λ2 − λ1)
2var Y 2

k+1 + Re (R1) + R2, with (40)

R1 = 4(s2 − s1)(λ2 − λ1)
λ2∫
λ1

cov

(
Yk+1

k∑
j=1

Yje
−i(k+1−j)α, Y 2

k+1

)
dλ(α),

R2 = 4(s2 − s1)
λ2∫
λ1

λ2∫
λ1

cov

(
Yk+1

k∑
j=1

Yj cos[(k + 1 − j)α], Yk+1

k∑
j=1

Yj cos[(k + 1 − j)β]

)
dλ(α)dλ(β).

Since (Xj) is a Gaussian stationary process, var X2
j is constant, and

(s2 − s1)(λ2 − λ1)
2var Y 2

k+1 ≤ πvar X2
0 ||h||2∞ (s2 − s1)(λ2 − λ1). (41)

The two last right terms of (40) are controlled by the two following lemma

Lemma 4.2 : |R1| ≤ 8
√

πE X2
0 ||h||4∞ ||f ||2 (s2 − s1)(λ2 − λ1)

Proof Using the identity for Gaussian vector

cov


Yk+1

k∑

j=1

Yje
−i(k+1−j)α, Y 2

k+1


 = 2E Y 2

k+1

k∑

j=1

e−i(k+1−j)αE YjYk+1

= 2E X2
0h(

k + 1

T
)3
∫

T

f(β)
k∑

j=1

h(
j

T
)e−i(k+1−j)(α+β)dλ(β) = 2E X2

0h(
k + 1

T
)3H̃k

1 ∗ f(α) (42)

with H̃k
1 (α) = e−i(k+1)αHk

1 (α).

Lemma 4.3 Let H̃k
1 (α) =

∑k
j=1 h(j/T )e−ij(k+1−j)α, then for all f in L2(T),

∣∣∣
∣∣∣H̃k

1 ∗ f
∣∣∣
∣∣∣
2
≤ ||h||∞ ||f ||2.

Proof Let f̂(m) be the Fourier coefficients of f , then

∫

T

H̃k
1 (α)f(α + β)dλ(α) =

∫

T

k∑

j=1

h(
j

T
)ei(j−k−1)α

∑

m∈Z

f̂(m)eim(α+β)dλ(α)

=
∑

m∈Z

f̂(m)eimβ

∫

T

k∑

j=1

h(
j

T
)ei(j+m−k−1)αdλ(α) =

k∑

j=1

f̂(k + 1 − j)h(
j

T
)ei(k+1−j)β .
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By Parseval equality, it follows
∣∣∣
∣∣∣H̃k

1 ∗ f
∣∣∣
∣∣∣
2

2
=

k∑
j=1

h2( j
T )
∣∣∣f̂(k + 1 − j)

∣∣∣
2

≤ ||h||2∞ ||f ||22.
Q.E.D.

Now, applying Schwarz inequality and Lemma 4.3 to (42), it follows

|R1| ≤ 8
√

πE X2
0 ||h||3∞ (s2 − s1)(λ2 − λ1)

∣∣∣
∣∣∣H̃k

1 ∗ f
∣∣∣
∣∣∣
2
≤ 8

√
πE X2

0 ||h||4∞ ||f ||2 (s2 − s1)(λ2 − λ1).

Q.E.D.

Lemma 4.4 : |R2| ≤ 4 ||h||2∞ (||f ||22 + (E X2
0 )2)(s2 − s1)

[
(λ2 − λ1) ∨ ω2(λ2 − λ1)

]

Proof Using again the identity for Gaussian vector

R2 = 4(s2 − s1)

λ2∫

λ1

λ2∫

λ1

cov


Yk+1

k∑

j=1

Yj cos[(k + 1 − j)α], Yk+1

k∑

j=1

Yj cos[(k + 1 − j)β]


 dλ(α)dλ(β)

= S1 + S2, with (43)

S1 = 4(s2 − s1)




λ2∫

λ1

E


Yk+1

k∑

j=1

Yj cos[(k + 1 − j)α]


 dλ(α)




2

,

S2 = 4(s2 − s1)E Y 2
k+1E




λ2∫

λ1

k∑

j=1

Yj cos[(k + 1 − j)α]dλ(α)




2

.

The bound for S1 is close the one of R1 developed in Lemma 4.2. By Schwarz inequality and lemma 4.3
it follows

|S1| ≤ 4(s2 − s1)

∣∣∣∣∣∣

λ2∫

λ1

E


Yk+1

k∑

j=1

Yje
−i(k+1−j)α


 dλ(α)

∣∣∣∣∣∣

2

≤ 4(s2 − s1)

∣∣∣∣∣∣

λ2∫

λ1

H̃k
1 ∗ f(α)dλ(α)

∣∣∣∣∣∣

2

≤ 4(s2 − s1)(λ2 − λ1) ||h||2∞ ||f ||22 . (44)

To control S2 in (43), let us first consider ω a uniform modulus of continuity for all the integrated Dirichlet

kernels
∫ λ

0
∆n(α)dλ(α) where ∆n = Hk

0 (see 1), see for example [39, lemma Lemma 8.2 p.57] for the
existence of such modulus.

Lemma 4.5 |S2| ≤ 4 ||f ||2 (V (h))2E Y 2
0 (s2 − s1)ω

2(λ2 − λ1)

Proof Let us denote by Ỹj = Yk+1−j , we have to control the following term

V = E




λ2∫

λ1

k∑

j=1

Ỹj cos(jα)dλ(α)




2

≤ E

∣∣∣∣∣∣

λ2∫

λ1

k∑

j=1

Ỹje
−ijαdλ(α)

∣∣∣∣∣∣

2

. (45)

Considering this last inequality, it follows

V ≤ E




λ2∫

λ1

k∑

j1=1

Ỹje
−ij1αdλ(α)

λ2∫

λ1

k∑

j2=1

Ỹje
ij2βdλ(β)


 =

λ2∫

λ1

λ2∫

λ1

k∑

j1=1

k∑

j2=1

E (Ỹj1 Ỹj2)e
−ij1αeij2βdλ(α)dλ(β)

=

λ2∫

λ1

λ2∫

λ1

k∑

j1=1

k∑

j2=1


h(

k + 1 − j1
T

)h(
k + 1 − j2

T
)

∫

T

f(γ)e−i(j2−j1)γdλ(γ)


 e−ij1αeij2βdλ(α)dλ(β)
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=

∫

T




λ2∫

λ1

k∑

j1=1

h(
k + 1 − j1

T
)e−ij1(α−γ)dλ(α)






λ2∫

λ1

k∑

j2=1

h(
k + 1 − j2

T
)eij2(β−γ)dλ(β)


 f(γ)dλ(γ)

=

∫

T

∣∣∣∣∣∣

λ2∫

λ1

k∑

j=1

h(
k + 1 − j

T
)e−ij(α−γ)dλ(α)

∣∣∣∣∣∣

2

f(γ)dλ(γ).

Let us denote λ̃i = λi − γ. By an Abel transformation (e−ijα = ∆j(α) − ∆j−1(α)), we have

λ2∫

λ1

k∑

j=1

h(
k + 1 − j

T
)e−ij(α−γ)dλ(α) = h(

1

T
)

λ̃2∫

λ̃1

∆k(α)dλ(α)+
k−1∑

j=1

[
h(

k + 1 − j

T
) − h(

k − j

T
)

] λ̃2∫

λ̃1

∆j(α)dλ(α)

it follows that ∣∣∣∣∣∣

λ2∫

λ1

k∑

j=1

h(
k + 1 − j

T
)e−ij(α−γ)dλ(α)

∣∣∣∣∣∣
≤ V (h).ω(λ2 − λ1)

and using Schwarz inequality

V = E




λ2∫

λ1

k∑

j=1

Ỹj cos(jα)dλ(α)




2

≤
√

2π ||f ||2 (V (h))2ω2(λ2 − λ1).

Reporting this last inequality in the definition of S2 (see (43)), it follows that

|S2| ≤ 4 ||f ||2 ||h||
2
∞ (V (h))2E X2

0 (s2 − s1)ω
2(λ2 − λ1).

Q.E.D.
Now, using (44) and Lemma 4.5, we obtain for R2 defined in (43)

|R2| ≤ C2(s2 − s1)
(
ω2(λ2 − λ1) ∨ (λ2 − λ1)

)

so the Lemma 4.4 is proved
Q.E.D.

Finally using (41), Lemma 4.2 and Lemma 4.4, we prove that when [s1T ] ≤ s1T < s2T ≤ [s1T ] + 1,
the following inequality holds

E

∣∣∣L̂T (B)
∣∣∣
2

≤ C1(s2 − s1)
[
(λ2 − λ1) ∨ ω2(λ2 − λ1)

]
,

this ends the proof of Lemma 4.1
Q.E.D.

To close the proof of the tightness, we have to extend the result of Lemma 4.1 to the general case
where |s2 − s1| ≥ 1/T . It is the object of the following Lemma.

Lemma 4.6 Let ω(.) an uniform modulus of continuity for all ϕn (see (37)), then for B = [λ1, λ2] ×
[s1, s2] such that |s2 − s1| ≥ 1/T the following inequality holds

E

∣∣∣L̂T (B)
∣∣∣
2

≤ C2(s2 − s1)
[
(λ2 − λ1) ∨ ω2(λ2 − λ1)

]
.

Proof We consider ti = [s1T ]+i
T , for i ≥ 0 and we note p = [s2T ] − [s1T ]. So we have

t0 ≤ s1 < t1 < . . . < tp ≤ s2 < tp+1.
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Clearly,

L̂T (B) = L̂T ([λ1, λ2] × [s1, t1]) +

p−1∑

j=1

L̂T ([λ1, λ2] × [tj , tj+1]) + L̂T ([λ1, λ2] × [tp, s2]) (46)

and by Schwarz inequality it follows, using that 1/T ≤ s2 − s1 and [s2T ] − [s1T ] − 1 ≤ (s2 − s1)T

E

∣∣∣L̂T (B)
∣∣∣
2

≤ C1(p + 1)
1

T

[
ω2(λ2 − λ1) ∨ (λ2 − λ1)

]
≤ C1

[s2T ] − [s1T ] + 1

T

[
ω2(λ2 − λ1) ∨ (λ2 − λ1)

]

≤ 3C1(s2 − s1)
[
ω2(λ2 − λ1) ∨ (λ2 − λ1)

]
.

Q.E.D.
As for δ > 0, ω̃(δ) = ω2(δ)∨ δ clearly define a modulus of continuity, the fourth condition of Csensov

criterion holds for E |L̂T (B)|2 with γ1 = 2 and γ2 = 1 so the continuous process (LT )T∈N is tight in
C([0, π] × [0, 1],R). So the proof of Proposition 4 is complete.

Q.E.D.

Proposition 5 The two families of processes (LT )T and (ZT )T are contiguous (see [?, Chap 3.1 pp.19-
24] or [?, Chap. 6 pp.85-91] for definition of the contiguity).

Proof Since Proposition 1 holds we prove that (LT ) and the centered process (Z̃T ) (see (27)) are
contiguous. For this we prove the following more general result:

P

(
sup

λ∈[0,π]

sup
s∈[0,1]

∣∣∣LT (λ, s) − Z̃T (λ, s)
∣∣∣ > ǫ

)
→ 0 as T → +∞.

Applying the fourth condition of Csensov criterion to the process (LT ) with B = [0, λ] × [ k
T , k+1

T ], it
follows for k = 1, . . . , T

E

∣∣∣∣L̂T ([0, λ] × [
k

T
,
k + 1

T
])

∣∣∣∣
2

≤ C
ω̃(π)

T
. (47)

As λ 7→ L̂T ([0, λ] × [ k
T , k+1

T ]) is continuous on [0, π], it exists λk such that

sup
λ∈[0,π]

∣∣∣∣L̂T ([0, λ] × [
k

T
,
k + 1

T
])

∣∣∣∣ =
∣∣∣∣L̂T ([0, λk] × [

k

T
,
k + 1

T
])

∣∣∣∣ .

As k takes only a finite number of values, there exists k0 such that

sup
k=1,...,T

∣∣∣∣L̂T ([0, λk] × [
k

T
,
k + 1

T
])

∣∣∣∣ = sup
k=1,...,T

sup
λ∈[0,π]

∣∣∣∣L̂T ([0, λ] × [
k

T
,
k + 1

T
])

∣∣∣∣ =
∣∣∣∣L̂T ([0, λk0 ] × [

k0

T
,
k0 + 1

T
])

∣∣∣∣ .

It follows from this last equality and from (47) that

E

(
sup

k=1,...,T
sup

λ∈[0,π]

∣∣∣∣L̂T ([0, λ] × [
k

T
,
k + 1

T
])

∣∣∣∣

)2

= E

∣∣∣∣L̂T ([0, λk0 ] × [
k0

T
,
k0 + 1

T
])

∣∣∣∣
2

≤ C
ω̃(π)

T
. (48)

Now, as Z̃T (λ, s) = LT (λ, [sT ]/T ), it follows, using that lT is piecewiese affine

LT (λ, s) − Z̃T (λ, s) = LT (λ, s) − LT (λ,
[sT ]

T
) = T (s − [sT ]

T
)L̂T ([0, λ] × [

[sT ]

T
,
[sT ] + 1

T
]).

Applying (48), its follows

E

(
sup

λ∈[0,π]

sup
s∈[0,1]

∣∣∣LT (λ, s) − Z̃T (λ, s)
∣∣∣
)2

≤ C
ω̃(π)

T
.
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Using Tchebicev inequality, we deduce that

P

(
sup

λ∈[0,π]

sup
s∈[0,1]

∣∣∣LT (λ, s) − Z̃T (λ, s)
∣∣∣ > ǫ

)
≤ C

ω̃(π)

Tǫ2
→ 0 as T → +∞.

So (LT ) and (ZT ) are contiguous.
Q.E.D.

5 Asymptotic distribution of the test statistics under the null

hypothesis

We prove in this section our main theorem that is Theorem 1. The convergence of the statistic constructed
on (Y T

1 ) is a direct consequence of relation (12) and Theorem 2: as the limiting process Z is in C([0, π]×
[0, 1],R), we just need to apply the classical functional theorems in C (see [3, Th. 4.4 p 27 & Th. 5.1 p.

30]) and to remark that the sequence (
HT

2

T )T converges to H2 which is assumed to be finite and non zero.

We also have to prove that the two processes (Y T
j )T , j = 1, 2 have the same limiting distribution. For

this we prove the convergence in distribution to 0 under the null hypothesis of the sequence of processes
(ΩT )T>0 defined by (13) and (14).

Theorem 3 If X. is a process in G then ΩT → 0 as T → ∞.

Proof Let us first investigate the finite distributions of (ΩT (., .))T

Lemma 5.1 If X. is a process in G then process (ΩT (., .))T converges in probability to 0.

Proof The proof splits into to steps
Step 1 Process (ΩT (., .))T is uniformly asymptotically unbiased. Remark that

ΩT (λ, s) = ZT (λ, 1) − ZT (λ, s) − Z∗
T (λ, 1 − s) (49)

where

Z∗
T (λ, 1 − s) =

Ȟ
T−[sT ]
2√

T

(
F̌T−[sT ](λ) − F (λ)

)

is the “reverse-time” process of ZT constructed on h(T
T )XT , . . . , h( [sT ]+1

T )X[sT ]+1. Clearly, the process
Z∗

T has the same properties as ZT . In particular, Z∗
T satisfies Proposition 1. Therefore, the same is true

for ΩT and we have sup(λ,s)∈[0,π]×[0,1] |E ΩT (λ, s)| = o(1).

Step 2 For all (λ, s), the variance of ΩT (λ, s) tends to 0 as T → ∞. Following the same lines of proof as
in Proposition 2 and considering that Z∗

T (λ, 1− s) is defined on the variables XT , . . . , X[sT ]+1 and using

the taper h on the set {T
T ,. . . , [sT ]+1

T } which converge to [s, 1], we prove that

lim
T→∞

cov(Z∗
T (λ, 1 − s), Z∗

T (λ, 1 − s′)) =

λ∫

0

f2(α)dλ(α)

∫

[s,1]∧[s′,1]

h4(u)du =

λ∫

0

f2(α)dλ(α)

1∫

s∨s′

h4(u)du.

Now, as ZT (λ, 1) = Z∗
T (λ, 1), using (49) to compute var ΩT (λ, s) gives

lim
T→∞

var ΩT (λ, s) = 2 lim
T→∞

cov(ZT (λ, s), Z∗
T (λ, 1 − s)).

We just need to prove that cov(ZT (λ, s), Z∗
T (λ, 1 − s)) → 0. Following the same lines as in Lemma 2, it

follows that
cov(ZT (λ, s), Z∗

T (λ, 1 − s)) = Ψs
T ∗ g̃(0, 0, 0) (50)
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with g̃ defined by (30). For all γ = (γ1, γ2, γ3)

Ψs
T (γ) =

1

T
H

[sT ]
1 (γ1)H

[sT ]
1 (γ2)Ȟ

T−[sT ]
1 (γ3)Ȟ

T−[sT ]
1 (−γ1 − γ2 − γ3)

with ȞT−k
1 (α) = HT

1 (α) − Hk
1 (α). Since Ψs

T =
H

[sT ]
4

T (Φs,s,1,1
T − Φs,s,1,s

T − Φs,s,s,1
T + Φs,s,s,s

T ) (see (31) for

the definition of Φs1,s2,s3,s4

T ) using that Φs,s,1,1
T , Φs,s,1,s

T , Φs,s,s,1
T and Φs,s,s,s

T are approximate identities
(see Lemma 3.2) their product of convolution with g̃ at point (0, 0, 0) tends to g̃(0, 0, 0) as T tends to ∞.
It follows that the right term of (50) tends to 0.

Applying Chebishev inequality, Lemma 5.1 is obtained.
Q.E.D.

Lemma 5.2 If X. is a process in G then the sequence of processes (ΩT )T∈N is tight.

Proof Using that process (ΩT (., .))T is uniformly asymptotically unbiased, it is enough to prove that

(ΩT − E ΩT ) is contiguous to the C-tighted process L′
T = 1√

T

λ∫
0

l′T (α, s)dλ(α) where l′T (α, s) is the

polygonal line which joins the points ((α, k/T ), z′T (α, k/T )) with

z′T (α, s) =




k∑

j1=1

Yje
−ij1α

T∑

j2=k+1

Yje
ij2α


− E




k∑

j1=1

Yje
−ij1α

T∑

j2=k+1

Yje
ij2α


 ,

and with Yj = h(j/T )Xj and k = [sT ]. Equation (35) to (39) are still valid, replacing zT , lT , LT , L̂T by

z′T , l′T , L′
T , L̂′

T , so that

z′T (α,
k + 1

T
) − z′T (α,

k

T
) =




k+1∑

j1=1

Yje
−ij1α

T∑

j2=k+2

Yje
ij2α −

k∑

j1=1

Yje
−ij1α

T∑

j2=k+1

Yje
ij2α




−E




k+1∑

j1=1

Yje
−ij1α

T∑

j2=k+2

Yje
ij2α −

k∑

j1=1

Yje
−ij1α

T∑

j2=k+1

Yje
ij2α




=


Yk+1e

−i(k+1)α
T∑

j2=k+2

Yje
ij2α −

k∑

j1=1

Yje
−ij1αYk+1e

i(k+1)α




−E


Yk+1e

−i(k+1)α
T∑

j2=k+2

Yje
ij2α −

k∑

j1=1

Yje
−ij1αYk+1e

i(k+1)α




=
[
Yk+1(dk(α) − ďT−k−1(α))

]
− E

[
Yk+1(dk(α) − ďT−k−1(α))

]

with dk(α) defined in (2) and ďT−k(α) = dT (α)−dk(α). It follows that, for [s1T ] ≤ s1T < s2T ≤ [s1T ]+1,

E |L̂′
T (B)|2 ≤ (s2 − s1)

λ2∫

λ1

λ2∫

λ1

cov
(
Yk+1(dk(α) − ďT−k−1(α)), Yk+1(dk(β) − ďT−k−1(β))

)
dλ(α)dλ(β).

The righthand term is similar to the quantity R2 appearing in (40), therefore, it is controlled in a same
way (see Lemma 4.4). Such control leads to the following inequality

E |L̂′
T (B)|2 ≤ C (s2 − s1)

[
(λ2 − λ1) ∨ ω2(λ2 − λ1)

]
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which holds for [s1T ] ≤ s1T < s2T ≤ [s1T ] + 1. Now, as (46)-(48) hold for L̂′
T (B), Lemma 4.6 and

Proposition 5 can be extended to process L̂′
T (B) and ΩT . Therefore (ΩT )T>0 is contiguous to a C-tighted

process so is tighted (see [3]).
Q.E.D.

This proves Theorem 3 together with the asymptotic equivalence of the sequence (Y 1
T )T>0 and

(Y 2
T )T>0. So the two families of test statistics S1

T (h) and S2
T (h) are also asymptotically equivalent

Q.E.D.

6 Critical region and applications

First, our purpose here, is to obtain the asymptotic form of the reject region. Then, we prove the
consistency of our tests when G2 is known or not. Finally, we present some numerical simulation results.
We observe on these simulations that tapering improves detection.

6.1 Critical region

We establish here the following result
Corollary 2 When T is large, the level of the test associated with the critical regions Rj

T , j = 1, 2 can
be approximated using the limits

lim
T→+∞

PH0
(Rj

T ) = P( sup
u∈[0,1]

sup
s∈[0,1]

∣∣∣∣B(u, s) − H2[H
−1
4 (s.H4)]

H2
B(u, 1)

∣∣∣∣ > c)

where H−1
4 (.) is the inverse or pseudo-inverse function of H4(.) and where B is the Gaussian process of

C([0, 1]2,R) with mean zero and covariance function

E B(u, s)B(u′, s′) = u ∧ u′.s ∧ s′

Proof Since the two statistics Sj
T (h), j = 1, 2 have the same limit under H0 we only prove Corollary1.1

for S1
T (h). Let us consider the time change

u =
G2(λ)

G2
u′ =

G2(λ
′)

G2
v =

H4(s)

H4
v′ =

H4(s
′)

H4

with G2(λ) =
∫ λ

0
f2(α)dλ(α) and H4(.) defined in (1). Denote by Z̃ the process defined on [0, 1] × [0, 1]

by Z̃(u, v) = Z(λ, s). It is easy to verify

sup
λ∈[0,π]

sup
s∈[0,1]

∣∣∣∣
1

H2

(
Z(λ, s) − H2(s)

H2
Z(λ, 1)

)∣∣∣∣ =
1

H2
sup

u∈[0,1]

sup
v∈[0,1]

∣∣∣∣Z̃(u, v) − H2(H
−1
4 (H4.v))

H2
Z̃(u, 1)

∣∣∣∣ .

The process Z̃/
√

G2H4 has the same covariance function that the process B defined in Corollary 1.1. So,
it is enough to prove Corollary 1.1

Q.E.D.

6.2 Consistency and practical use

If G2 is known, it is clear that under H1 the statistic S2
T (h) converges in probability to +∞. So our test

is consistent. To get such a result for S1
T (h), we need more assumptions on the two processes before and

after the change-point, due to the presence of the crossed term ΩT (see (13) and (14)), for example.

Theorem 4 Under H1, if the processes X̃1 and X̃2 are independent, the statistic S1
T (h) converges in

probability to +∞.
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Proof We prove that S1
T (h) has the same limit as S2

T (h). Using (13), we only have to prove that the

process ΩT is bounded in probability. For this, we remark first that, as the processes X̃1 and X̃2 being
independent, ΩT is unbiased. Let Φ̃s0

T = Φs0,s0,s0,s0

T defined in (31) and

Φ̂s0

T (γ) =

K
[s0T ]
1 (γ1)K

[s0T ]
1 (γ2)K

[s0T ]
1 (γ3)K

[s0T ]
1 (−

3∑
j=1

γj)

HT
2 − H

[s0T ]
2

with K
[sT ]
1 (α) =

T∑
j=[sT ]+1

h( j
T )e−ijα. Following the proof of Proposition 2 we obtain

var2ΩT (λ0, s0) ≤ H
[s0T ]
2

T

∫

T3

Φ̃s0

T (γ)dλ(γ)

∫

T

f1(γ1 − α)f1(γ2 + α)dλ(α)

+
HT

2 − H
[s0T ]
2

T

∫

T3

Φ̂s0

T (γ)dλ(γ)

∫

T

f2(γ1 − α)f2(γ2 + α)dλ(α) (51)

where γ = (γ1, γ2, γ3) with dλ(γ) = dλ(γ)1dλ(γ)2dλ(γ)3, f1 and f2 denote the spectral density before

and after change-point. The sequence of kernels (Φ̃s0

T )T is an approximated identity for convolution

(see Lemma 3.2). It is easy to see that the sequence (Φ̂s0

T )T defined also an approximated identity for
convolution. So the right term in (51) converges and the covariance is bounded. Applying the Bienayme-
Chebyshev inequality, we get the announced result.

Q.E.D.

Consider now the case where G2 is unknown. We also have under H1 to control the estimated G̃2

defined in (8) which appears in the critical regions (see (7). In fact, we can show that it converges under
H1 to a finite value which is

1

2

[
s2
0‖f1‖2

2 + (1 − s0)
2‖f2‖2

2

]1/2
.

So the test can be extended to the case G2 unknown.

6.3 Numerical results

To present our numerical results we consider the polynomial taper

hρ,n(x) =





4n.(x
ρ )n.(1 − x

ρ )n x ∈ [0, ρ
2 ),

1 x ∈ [ρ
2 , 1 − ρ

2 ],
hρ,n(1 − x) x ∈ (1 − ρ

2 , 1],

with n ≥ 1 and 0 ≤ ρ ≤ 1. The parameter ρ controls how much tapered the data are: as ρ goes to 0,
hρ,n tends to 1 which corresponds to the untapered case. The parameter n controls the smoothness of
the tapering: the larger n is, the smoother the tapering.

Before presenting some simulation results, we have to say a few words about the tabulation of the
limiting distribution.

Since the limit distribution of our test is not independent from h, we need to tabulate it for each h.
It may be of interest to bypass this problem by looking for a family of tapers (hT )T indexed by T such
that hT converges to 1 when T goes to +∞. Doing this we obtain the following result

Theorem 5 If (hρT ,nT
)T is a sequence of tapers such that

• (ρT )T is a sequence of integer which tends to 0 when T goes to +∞,

• lim infT→∞ T.ρT > 0,
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• (nT )T is a bounded sequence such that nT ≥ 1,

the level of the test associated to the critical regions Rj
T , j = 1, 2 can be approximated using the following

limits
lim

T→+∞
PH0

(Rj
T ) = P( sup

u∈[0,1]

sup
s∈[0,1]

|W (u, s)| > c)

where W (u, s) = B(u, s) − sB(u, 1), and where B is defined in corollary 1.1.

Proof The proof may be found in totality in the thesis [33, Th 10.0.12 pp. 90-94].
Q.E.D.

In fact for small T , it is more interesting to adapt our taper hρ,n to the expecting number of false
alarms. The following tables present for T = 50 and T = 150 the percentage of false alarms detected
with each taper for 1000 trajectories of i.i.d. N(0, 1)

• T = 50

α 30% 20% 15% 10% 5% 2.5% 1%
h ≡ 1 8 5 2 2 0 0 0

h = h0.10,4 8 4 4 2 1 0 0
h = h0.20,4 6 4 4 1 1 0 0
h = h0.50,4 11 5 3 1 0 0 0
h = h0.60,4 10 4 2 1 0 0 0
h = h0.70,4 14 8 7 3 1 0 0
h = h0.80,4 19 12 10 8 3 1 0
h = h0.85,4 21 14 12 11 7 3 0
h = h0.90,4 29 19 15 11 11 6 3

• T = 150

α 30% 20% 15% 10% 5% 2.5% 1%
h ≡ 1 15 8 5 3 1 1 0

h = h0.10,4 22 16 13 8 6 0 0
h = h0.20,4 25 18 13 7 3 1 0
h = h0.50,4 28 16 13 5 1 1 0
h = h0.55,4 26 15 12 5 1 1 0
h = h0.60,4 25 17 15 10 4 1 0
h = h0.65,4 33 22 17 13 4 2 0

On the first table, we see that the hρ,n adapted taper is, for T = 50, obtained for ρ between 0.85 and
0.90. For T = 150, the second table shows that we have to take a value of ρ between 0.60 and 0.65. As
the value of n does not change these results significantly we have only worked with n = 4.

For these two adapted tapers, we have tested a change-point in a process Xt constructed as follows

• X0, . . . , X[s0T ] are i.i.d. Gaussian N(0, 1).

• X[s0T ]+1, . . . , XT are the trace of an AR(1) with root 0.3.

The following table gives the percentage of alarms detected when s = 0.1 and s = 0.5 and s = 0.9
with or without taper

• T = 50
α 30% 20% 15% 10% 5% 2.5% 1%

s0 = 0.1 h ≡ 1 24 25 24 23 20 16 15
h = h0.9,4 44 39 37 36 32 30 26

s0 = 0.5 h ≡ 1 14 14 9 7 7 4 3
h = h0.9,4 26 21 18 14 13 10 6

s0 = 0.9 h ≡ 1 9 6 3 3 3 1 1
h = h0.9,4 32 20 13 11 6 6 0
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• T = 150
α 30% 20% 15% 10% 5% 2.5% 1%

s0 = 0.1 h ≡ 1 34 23 20 15 11 7 5
h = h0.6,4 40 31 23 22 19 16 9

s0 = 0.5 h ≡ 1 28 19 17 16 12 11 9
h = h0.6,4 32 21 18 13 11 10 6

s0 = 0.9 h ≡ 1 14 11 8 6 3 3 0
h = h0.6,4 23 12 9 7 5 2 1

These last two tables clearly show the effect of tapering when T is small (T = 50). In this case, we
have, on average, twice more alarms detected with the taper. The case T = 150 shows that, even if we
always have a better score with the taper, this taper effect is less when T grows up.

To conclude this numerical part we represent the field Y 2
T (., .) with or without taper. We clearly see

on the following two figures what the taper effect is: smoothness and concentration.

fig 1 : Y 2
T with tapering fig 2 : Y 2

T without tapering
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