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In this work we build two families of nonparametric tests using tapered data for the off-line detection of change-points in the spectral characteristics of a stationary Gaussian process. This is done using the Kolmogorov-Smirnov's Statistics based on integrated tapered periodograms.

The convergence is obtained under the null hypothesis by means of a double indexed (frequency -time) process together with some extensions of Dirichlet and Fejer kernels. Consistency is proved using these statistics under the alternative.

Then using numerical simulations, we observe that the use of tapered data significantly improves the properties of the test, especially in the case of small samples.

Introduction

The problem of detecting a change-point in the properties of a process has been extensively studied, see for a general survey the books [START_REF] Basseville | Detection of abrupt changes in signals and dynamical systems[END_REF], [START_REF] Basseville | Detection of abrupt changes -Theory and applications[END_REF] and [START_REF] Brodsky | Nonparametric methods in change-point problems[END_REF] or more recently the works of [START_REF] Giraitis | The change-point problem for dependent observations[END_REF] or [START_REF] Lavielle | Optimal segmentation of random processes[END_REF].

The change point problem can be formulated in two different ways: a sequential problem called "online" and another one a posteriory called "off-line". We consider here this last case where one has to decide between homogeneity and change-point after observing a given set of random data.

Different kinds of changes can affect a stochastic process: changes in the mean, in the covariance structure, etc. In the present work, our aim is to detect changes in the spectrum of a strictly stationary time series, while assuming no change in the mean. As the distributions are a priori unknown, we restrict ourselves to a nonparametric framework and we build two families of nonparametric test-statistics for change-point detection using estimates of the spectral measure.

Several authors have investigated such problems of detecting change in the spectral distribution function in an off-line case. We can quote for instance [START_REF] Picard | Testing and estimating change-points in time series[END_REF] for Gaussian processes, [START_REF] Giraitis | A fuctionnal clt for nonparametric estimates of spectrum and the change point problem for a spectral function[END_REF], [START_REF] Giraitis | Testing and estimating in the change point problem of the spectral function[END_REF], [START_REF] Giraitis | The change-point problem for dependent observations[END_REF] for linear processes and [START_REF] Lavielle | Detection of changes in the spectrum of a multidimensionnal process[END_REF] for multidimensional Gaussian processes.

On the other hand, it is well known that, for estimating the spectral measure of a stationary process, the use of the periodogram requires a large number of data. To bypass this problem of sample sizes, Dahlhaus has shown, in a series of papers [START_REF] Dahlhaus | Spectral analysis with tapered data[END_REF] [14] [START_REF] Dahlhaus | Empirical spectral processes and their applications to time series analysis[END_REF] [START_REF] Dahlhaus | Nonparametric high resolution spectral estimation[END_REF] that the use of tapered data improves spectral estimation: The increase in the asymptotic variance is balanced by a reduction of the bias which leads to better results for small samples sizes. This is the old remedy to reduce leakage effects pointed out by [START_REF] Tukey | An introduction to the calculations of numerical spectrum analysis[END_REF] or more recently in the papers of [START_REF] Zhang | Reduction of the asymptotic bias of autoregressive and spectral estimators by tapering[END_REF], [START_REF] Sachs | Peak-intensive spectrum estimation[END_REF], and [START_REF] Janas | Consistency for non-linear functions of the periodogram of tapered data[END_REF].

2 Statement of the results

Notations and assumptions

Let G denote the set of stationary real centered Gaussian processes with absolutely continuous spectral measure with density f w.r.t. the normalized Lebesgue measure on the torus T = [-π, +π[, dλ(α) = dα/2π, which satisfy • (A-i) F (λ) = λ 0 f (α)dλ(α) is an increasing function on [0, π],

• (A-ii) G 2 = π 0 f 2 (α)dλ(α) < +∞. We test the following hypotheses H 0 : "(X j ) j=1...T is the restriction to {1, . . . , T } of a process belonging to G". against H 1 : "there exists k 0 , 1 < k 0 < T such that X j = X 1 j if j ≤ k 0 and X j = X 2 j if j > k 0 where X 1 and X 2 are both in G and have two unknown different spectral measures F 1 and F 2 (F i denotes the spectral measure of X i , i = 1, 2)".

Let h be a non negative C 1 -function defined on [0, 1]: the taper. For k = 0, 1, . . . , T and s ∈ [0, 1], let us define

H k p (α) = k j=1 h p ( j T )e -ijα , H k p = H k p (0), H 0 p = 0, H p (s) = s 0 h p (u)du, H p = H p (1). ( 1 
)
Consider now the tapered periodograms I k (α) (respectively ǏT -k (α) built on the first k data (resp. on the last Tk data), as in [START_REF] Dahlhaus | Spectral analysis with tapered data[END_REF] 

d k (α) = k j=1 X j h( j T )e -ijα , I k (α) = |d k (α)| 2 H k 2 , ǏT -k (α) = |d T (α) -d k (α)| 2 H T 2 -H k 2 (2) 
2 with I 0 (α) = ǏT (α) = 0. The associated estimates of the spectral distribution function are respectively

F k (λ) = λ 0 I k (α)dλ(α), FT -k (λ) = λ 0 ǏT -k (α)dλ(α). (3) 
The asymptotic properties of F T have been studied, in the non tapered case (h identically equal to 1), in [START_REF] Ibragimov | On estimation of the spectral function of a stationnary gaussian process[END_REF], [START_REF] Malevitch | The asymptotic behaviour of an estimate for the spectral function of a stationnary gaussian process[END_REF], and in the tapered case by [START_REF] Dahlhaus | Spectral analysis with tapered data[END_REF] [14] [START_REF] Dahlhaus | Nonparametric high resolution spectral estimation[END_REF]. In particular, Dahlhaus has first pointed out the interest of data tapering by numerical simulations results and then, through his theory of "high-resolution", [START_REF] Dahlhaus | Nonparametric high resolution spectral estimation[END_REF] proved it. For a spectral density having high peaks the estimates based on tapered data behave better (especially around the peaks). Indeed, for small T , this is because their bias is reduced. For large T , they are uniformly more efficient with respect to the supremum of the integrated mean square error; this supremum is taken on a class of densities which contain the ARMA processes, whose roots belong to the disk with radius 1 -1/T .

Denote by [a] the integer part of a and define

Y 1 T (λ, s) = √ T H [sT ] 2 H T 2 F [sT ] (λ) -F T (λ) , (4) 
Y 2 T (λ, s) = √ T H [sT ] 2 H T 2 H T 2 -H [sT ] 2 H T 2 F [sT ] (λ) -FT -[sT ] (λ) . (5) 
The associated tests statistics are

S i T (h) = sup λ∈[0,π] sup s∈[0,1] Y i T (λ, s) , i = 1, 2 (6) 
and the critical regions are, using the notations of (A-ii) and ( 1)

R j T = S j T (h) > c H 2 G 2 H 4 , j = 1, 2. ( 7 
)
The properties of the statistic S 2 T (h) under the null hypothesis H 0 in the non tapered case (i.e. h ≡ 1) have been studied by [START_REF] Picard | Testing and estimating change-points in time series[END_REF]. In the non tapered case, [START_REF] Giraitis | Testing and estimating in the change point problem of the spectral function[END_REF] have studied tests for linear (non necessarily Gaussian) processes using analogous test-statistics.

Main Results

Our first aim is to obtain the asymptotic distributions of the above statistics in order to get the asymptotic level of our test.

Let us stress upon the fact that the critical regions are not free. The unknown parameter G 2 defined in (Aii) remains in the test. Hence, this value must be known or substituted by a consistent estimate G 2 in order to perform the test. For example G 2 can be replaced by Theorem 1 Assume that (X j ) j∈N belongs to G. Then, as T → +∞, under the null hypothesis H 0 , the two sequences (Y 1 T ) and (Y 2 T ) converge in distribution in D to the centered Gaussian process

G 2 = 1 2 |u|< √ T   1 T T -|u| j=1 X j X j+u   2 . ( 8 
) Let D = D([0, π] × [0, 1], R)
1 H 2 Z(λ, s) - H 2 (s) H 2 Z(λ, 1) (λ,s)∈[0,π]×[0,1] (9) 
where H 2 and H 2 (.) are defined in [START_REF] Basseville | Detection of abrupt changes in signals and dynamical systems[END_REF] and where Z(., .) is the continuous Gaussian process with mean zero and covariance function

E Z(λ, s)Z(λ ′ , s ′ ) = s∧s ′ 0 h 4 (u)du. λ∧λ ′ 0 f 2 (α)dλ(α). ( 10 
)
The proof of Theorem 1 is given in Section 4. Now, we can study the levels of the tests associated with the critical regions R j T defined in [START_REF] Brodsky | Nonparametric methods in change-point problems[END_REF].

Corollary 1.1 Assume that (X j ) j∈N belongs to G. Then, as T → +∞, lim

T →+∞ P H0 (R j T ) = P( sup u∈[0,1] sup s∈[0,1] B(u, s) - H 2 [H -1 4 (s.H 4 )] H 2 B(u, 1) > c)
where H -1 4 (.) denotes the inverse (or pseudo-inverse) function of H 4 (.) and B is the standard bidimensional Brownian motion on R 2 centered with covariance function

E B(u, s)B(u ′ , s ′ ) = (u ∧ u ′ ).(s ∧ s ′ ).
The proof in given in Section 6. Therefore, for T large enough, we obtain approximations for the levels which only depend on the taper h. To obtain this result, we introduce, as in [START_REF] Picard | Testing and estimating change-points in time series[END_REF] [START_REF] Giraitis | Testing and estimating in the change point problem of the spectral function[END_REF], the process Z T with values in D defined by

Z T (λ, s) = H [sT ] 2 √ T (F [sT ] (λ) -F (λ)). (11) 
Then, the following holds for Y 1 T and Y 2 T ,

Y 1 T (λ, s) = T H T 2 Z T (λ, s) - H [sT ] 2 H T 2 Z T (λ, 1) (12) 
Y 2 T (λ, s) = Y 1 T (λ, s) + T H [sT ] 2 (H T 2 ) 2 Ω T (λ, s) (13) 
where

Ω T (λ, s) = 2 √ T Re λ 0   [sT ] j=1 h( j T )X j e -ijα T j=[sT ]+1 h( j T )X j e ijα   dλ(α). (14) 
All the results quoted above rely on the next theorem which states, under the null hypothesis H 0 , the weak convergence of the process Z T (., .). Theorem 2 Assume that (X j ) j∈N belongs to G. Then (Z T ) T ∈N converges in distribution to the centered Gaussian process Z of C([0, π] × [0, 1], R) with covariance function given in [START_REF] Csensov | Limit theorems for some classe of random functions[END_REF].

The proof of Theorem 2, is given in Section 4. Some preliminary results are useful for obtaining the limiting covariances together with the tightness of the sequence Z T (., .).

Preliminary results

This section is devoted to studying the kernels that appear in the proof of the functional central limit theorem.

Let us define, for p and j arbitrary integers and for α ∈ [-π, π], the functions

L p j L p j (α) =      j π 2 , if |α| ≤ 2 j , π(p -p ) log p (e p j|α|/2) |α| , if 2 j ≤ |α| ≤ π.
For α ∈ R, denote by L p j the 2π-periodic extension of L p j .

Property 1 The function L p j (α) has the following properties 1. For all p and j, α → L p j (α) is continuous, odd, and, for α in [0, π], non increasing. It is an increasing function w.r.t. j and p.

2. For all p, q, n > 1 and j, there is a constant K, which does not depend on j such that (a).

T L p j (α)dλ(α) ≤ K(log j) p+1 , (b) 
.

T [L p T (α)] n dλ(α) ≤ KT n-1 , (15) (c). 
T

L p j (γ + α)L q j (β -α)dλ(α) ≤ KL p+q+1 j (β + γ). ( 16 
)
The proof is omitted here, since this result is similar to the one stated in [12, lemma 1 and 2]. The only difference lies in the definition of the L p T . A detailed proof can be found in [START_REF] Rozenholc | Détection de ruptures non paramétriques à l'aide de données rabotées[END_REF].

Lemma 3.1 Let |α| ≤ π, and consider two integers

k 1 , k 2 , k 1 < k 2 , set k2 j=k1+1 h( j T )e -ijα ≤ C h L 0 k2-k1 (α).
Proof Now, let us consider the Dirichlet kernels ∆ k (α) = H k 0 (α) (see [START_REF] Basseville | Detection of abrupt changes in signals and dynamical systems[END_REF]). By an Abel transformation, we obtain

k2 j=k1+1 h( j T )e -ijα =   h( k 2 T )∆ k2-k1 (α) - k2-1 j=k1+1 h( j + 1 T ) -h( j T ) ∆ j-k1 (α)   e -ik1α .
So,

k2 j=k1+1 h( j T )e -ijα ≤   h( k 2 T ) + k2-1 j=k1+1 h( j + 1 T ) -h( j T )   sup j=1,...,k2-k1 |∆ j (α)|.
As h is C 1 , the term between brackets is bounded by a constant C h depending only on h. As the functions L p j (α) are increasing with j, we just have to prove that, for |α| ≤ π

|∆ j (α)| = sin(jα/2) sin(α/2) ≤ L 0 j (α).
Since sin x ≤ x, for x ∈ [0, π] and 2 π x ≤ sin x for x ∈ [0, π/2], then one easy checks that

• for |α| ≤ 2/j, |∆ j (α)| ≤ j |α| 2 2 π |α| 2 = πj 2 = L 0 j (α), (17) 
• for 2/j ≤ |α| ≤ π,

|∆ j (α)| ≤ 1 2 π |α| 2 = π |α| = L 0 j (α). ( 18 
)
This completes the proof of Lemma 3.1 Q.E.D.

Let us now introduce some kernels based on the taper h, which are approximate identities for convolution. Set s = min(s 1 , . . . , s m ) and define on T m-1 the function Φ s1,...,sm T by Φ s1,...,sm

T (γ 1 , . . . , γ m-1 ) =        H [s 1 T ] 1 (γ1)...H [s m-1 T ] 1 (γm-1)H [sm T ] 1 (- m-1 j=1 γj ) H [sT ] m , if H [sT ] m = 0, 1, otherwise. ( 19 
)
Lemma 3.2 Let m ∈ N, s 1 , . . . , s m in [0, 1] and h be C 1 such that H m (s) = 0. Then, the sequence of functions (Φ s1,...,sm T ) ∞ T =1 is an approximate identity for convolution.

First (see [START_REF] Rudin | Functionnal analysis[END_REF]Chaper 6]), recall that a family (Φ T ) T ∈N of Lebesgue integrable functions on T m-1 with values in C is called an approximate identity for convolution if, for γ = (γ 1 , . . . , γ m-1 ) and ||γ|| = sup i=1,...,m-1 |γ i |, (i) sup

T ∈N T m-1 |Φ T (γ)| dλ(γ) < ∞, (ii) lim T →∞ T m-1 Φ T (γ)dλ(γ) = 1, (iii) lim T →∞ T m-1 \{γ,||γ||<δ}
|Φ T (γ)| dλ(γ) = 0, for all δ > 0.

Then, for all bounded continuous complex functions g on T m-1 , lim

T →∞ ||Φ T * g -g|| ∞ = 0.
Proof This result was shown by [START_REF] Dahlhaus | Spectral analysis with tapered data[END_REF]Lemma 3] in the case s 1 = . . . = s m = 1. We follow the sketch of his proof in our case,that is to say that (Φ s1,...,sm T ) ∞ T =1 satisfies the three assertions (i)-(iii). As the functions L 0 k (α) increase with k, by applying Lemma 3.1 to k 1 = 0 and k 2 = [sT ], we get

H [sT ] 1 (α) ≤ C h L 0 [sT ] (α) ≤ C h L 0 T (α).
Therefore,

|Φ s1,...,sm T (γ 1 , . . . , γ m-1 )| ≤ (C h ) m H [sT ] m L 0 T (γ 1 ) . . . L 0 T (γ m-1 )L 0 T (- m-1 j=1 γ j ). (20) 
Assertion (i) is obtained noting that the limit of the sequence (

H [sT ] m T ) is H m (s) = 0

by assumption, and using inequality (16).

Set h s = h.1 [0,s] and let us check (ii). One has

T m-1 Φ s1,...,sm T (γ)dλ(γ) = 1 
H [sT ] m T j1=1 . . . T jm=1 h sm ( j m T ) m-1 l=1 h s l ( j l T ) T e i(j l -jm)γ l dλ(γ l ) = 1 H [sT ] m T j=1 h s1 ( j T ) . . . h sm ( j T ) = 1 H [sT ] m T j=1 h s ( j T ) m = 1 H [sT ] m [sT ] j=1 h( j T ) m = 1.
Fix δ > 0 and T 0 such that δ ≥ π T0 . Now, using that {||γ|| ≥ δ} = ∪ m-1 j0=1 {|γ j0 | ≥ δ} and noticing that

|γ j0 | ≥ δ ≥ 2 T implies L 0 T (γ j0 ) = 2 γj 0 ≤ 2 δ , inequality (20) leads to T m-1 \{γ,||γ||<δ} |Φ T (γ 1 , . . . , γ m-1 )| m-1 j=1 dλ(γ j ) ≤ π(C h ) m δH [sT ] m m-1 j0=1 T m-2 L 0 T (- m-1 j=1 γ j ) 1 ≤ j ≤ m -1 j = j 0 L 0 T (γ j )dλ(γ 1 ) . . . dλ(γ m-1 ).
Then, inequalities [START_REF] Dahlhaus | Nonparametric high resolution spectral estimation[END_REF] give that this last term is an O( ln m-1 T T

). We obtain assertion (iii) using again

the assumption

H m (s) = 0 to control H [sT ]
m . This completes the proof of Lemma 3.2 Q.E.D.

Functional central limit theorem

To obtain a functional limit theorem for the process Z T defined in [START_REF] Dacunha-Castelle | Probabilités et statistiques -Tome 2[END_REF], we follow a classical scheme. We first investigate the limits of the finite dimensional distributions of Z T and then we prove the tightness of Z T .

Finite dimensional distributions

We first prove that Z T is asymptotically uniformly centered, then exhibit its limiting covariance function and finally study its finite dimensional distributions.

Proposition 1 Suppose (X j ) belongs to G. Then, as T → ∞ sup s∈[0,1],λ∈[0,π] |E Z T (λ, s)| = o(1).
Proof We extend to tapered data inequality (1.5) of [25, p. 369]. If f is a function defined on the torus T, denote by f (n) its n th Fourier coefficient. The expectation of Z T satisfies, using definitions (1), ( 2) and ( 11)

E Z T (λ, s) = H [sT ] 2 √ T λ 0 E I [sT ] (α) -f (α) dλ(α) = H [sT ] 2 √ T +∞ n=-∞ ϕ(n) E I [sT ] (n) -f (n) , with ϕ = 1 [0,λ] and ϕ(n) = (e -inλ -1)/n. Now, let K k (α) = 1 k H k 1 (α) 2 be the tapered generalization of the Fejer kernel. It follows that E I k (α) = K k * f (α), so that E I k (n) = K k (n). f (n).
Hence, the Fourier coefficients of K k are null for n > k, since they verify

K k (n) = 1 H k 2 inf(k,(k-n)) j=sup(1,(1-n)) h( j T )h( j + n T ).
The expectation of Z T splits into two terms

E Z T (λ, s) = H [sT ] 2 √ T   [sT ] n=-[sT ] ϕ(n) f (n) K [sT ] (n) -1 - |n|>[sT ] ϕ(n) f (n)   = H [sT ] 2 √ T A [sT ] -B [sT ] (21) 
with

A [sT ] = [sT ] n=-[sT ] ϕ(n) f (n) K [sT ] (n) -1 and B [sT ] = |n|>[sT ] ϕ(n) f (n).
Using |n ϕ(n)| ≤ 2 and the Schwarz inequality, we get

B 2 [sT ] ≤ 4 |n|>[sT ] 1 |n| 2 |n|>[sT ] f (n) 2 . Since |n|>[sT ] 1 |n| 2 ≤ 2[sT ] -1 , we get H [sT ] 2 √ T B [sT ] ≤ ||h|| 2   [sT ] T |n|>[sT ] | f (n)| 2   1/2 . ( 22 
)
Fix ε > 0, the behavior of B [sT ] varies according to the position of s w.r.t. ε.

• If 0 ≤ s < ε, using [sT ] T ≤ ε and the Parseval equality yields

H [sT ] 2 √ T B [sT ] ≤ ||h|| 2 f 2 ε 1/2 . • If ε ≤ s ≤ 1, as [sT ] T ≤ 1, H [sT ] 2 √ T B [sT ] ≤ ||h|| 2 |n|>[εT ] | f (n)| 2 1/2 . Taking ε = 1/ √ T , we get that sup s∈[0,1] H [sT ] 2 √ T B [sT ] ≤ ||h|| 2 sup   1 √ T , |n|> √ T | f (n)| 2   1/2 = o(1). ( 23 
)
To study

A [sT ] , first consider ∆ [sT ] (n) -1 = 1 H [sT ] 2   inf([sT ],([sT ]-n)) j=sup(1,(1-n)) h( j T ) h( j + n T ) -h( j T ) - j (n) h 2 ( j T )   (24) 
where

(n) j means [sT ] j=[sT ]-n+1 if n > 0 and
-n j=1 if n < 0. This sum has at most n terms, so

j (n) h 2 ( j T ) ≤ |n| h 2 .
Expanding h in Taylor series, leads to

H [sT ] 2 ∆ [sT ] (n) -1 ≤ [sT ] h |n| T h ′ + |n| h 2 ≤ C h |n| . (25) 
Plugging this in A [sT ] (see 21), we get

| H [sT ] 2 √ T A [sT ] | ≤ C h √ T |n|≤[sT ] |n ϕ(n) f (n)| ≤ C h 2 √ T |n|≤[sT ] | f (n)| ≤ C h 2 √ T |n|≤T | f (n)|. ( 26 
)
As Proposition 2 If (X j ) is in G, then, for all s 1 and s 2 in [0, 1] and all λ 1 and λ 2 in [0, π],

f is in L 2 , |n|≤T | f (n)| = o( √ T ),
lim T →∞ cov[Z T (λ 1 , s 1 ), Z T (λ 2 , s 2 )] = λ1∧λ2 0 f 2 (α)dλ(α) s1∧s2 0 h 4 (u)du.
Proof As Z T (., .) is uniformly centered, it is enough to prove this result for the centered process Z T defined by

Z T (λ, s) = Z T (λ, s) -E Z T (λ, s) = 1 √ T λ 0 |d [sT ] (α)| 2 -E |d [sT ] (α)| 2 dλ(α) (27) 
where d k (α) is defined in [START_REF] Basseville | Detection of abrupt changes -Theory and applications[END_REF]. Clearly,

cov( Z T (λ 1 , s 1 ), Z T (λ 2 , s 2 )) = λ1 0 λ2 0 G(α 1 , α 2 , s 1 , s 2 )dλ(α 1 )dλ(α 2 ) ( 28 
)
where

G(α 1 , α 2 , s 1 , s 2 ) = E d [s1T ] (α 1 ) 2 d [s2T ] (α 2 ) 2 -E d [s1T ] (α 1 ) 2 E d [s2T ] (α 2 ) 2 . Let us study the term G(α 1 , α 2 , s 1 , s 2 ). Since d k (.) is a Gaussian process, setting ξ 1 = d [s1T ] (α 1 ), ξ 2 = d [s1T ] (-α 1 ), ξ 3 = d [s2T ] (α 2 ) and ξ 4 = d [s2T ] (-α 2 ), vector (ξ 1 , ξ 2 , ξ 3 , ξ 4
) satisfies the Gaussian identity

E ξ 1 ξ 2 ξ 3 ξ 4 = E ξ 1 ξ 2 E ξ 3 ξ 4 + E ξ 1 ξ 3 E ξ 2 ξ 4 + E ξ 1 ξ 4 E ξ 2 ξ 3 . (29) 
Therefore,

E ξ 1 ξ 3 E ξ 2 ξ 4 =   [s1T ] j1=1 h( j 1 T )e -ij1α1 [s2T ] j3=1 h( j 3 T )e ij3α2 T e -i(j1-j3)β1 f (β 1 )dλ(β 1 )     [s1T ] j2=1 h( j 2 T )e -iij2α1 [s2T ] j4=1 h( j 4 T )e ij4α2 T e -i(j2-j4)β2 f (β 2 )dλ(β 2 )   = T 2 dλ(β 1 )dλ(β 2 )f (β 1 )f (β 2 ) H [s1T ] 1 (α 1 + β 1 )H [s2T ] 1 (-α 2 -β 1 )H [s1T ] 1 (-α 1 + β 2 )H [s2T ] 1 (α 2 -β 2 )
where H k p (α) is defined in [START_REF] Basseville | Detection of abrupt changes in signals and dynamical systems[END_REF]. Substituting α 2 in -α 2 , we obtain the expression of E ξ 1 ξ 4 E ξ 2 ξ 3 . Now for γ = (γ 1 , γ 2 , γ 3 ), let us define

g(γ) = T 1 λ1 (α)1 λ2 (γ 1 + γ 2 -α)f (γ 1 -α)f (γ 3 + α)dλ(α) + T 1 λ1 (α)1 λ2 (α -γ 1 -γ 2 )f (γ 1 -α)f (γ 3 + α)dλ(α) (30) 
and

Φ s1,s2,s3,s4 T (γ) = H [s1T ] 1 (γ 1 )H [s2T ] 1 (γ 2 )H [s3T ] 1 (γ 3 )H [s4T ] 1 (- 3 j=1 γ j ) H [s1T ]∧[s2T ] 4 . ( 31 
)
With these notations the covariances, defined in [START_REF] Lavielle | Optimal segmentation of random processes[END_REF], may be expressed as

cov Z T (ϕ 1 , s 1 ), Z T (ϕ 2 , s 2 ) = H [s1T ]∧[s2T ] 4 T Φ s1,s1,s2,s2
T * g(0, 0, 0). [START_REF] Pollard | Convergence of stochastic processes[END_REF] Noting that g(0, 0, 0) = λ1∧λ2 0 f 2 (α)dλ(α), and that

H [s1T ]∧[s2T ] 4
/T tends to s 1 ∧ s 2 as T → ∞, we achieve the proof using Lemma 3.2.

Q.E.D.

Proposition 3 Assume that (X j ) is in G. Then, for all λ 1 , . . . , λ l in [0, π], all s 1 , . . . , s m in [0, 1], and all real numbers a j1,j2 , j 1 = 1, . . . , l, j 2 = 1, . . . , m, the random variable

l j1=1 m j2=1 a j1,j2 Z T (λ j1 , s j2 )/Var   l j1=1 m j2=1 a j1,j2 Z T (λ j1 , s j2 )   D -→ N (0, 1).
Proof The asymptotic normality of the finite dimensional distributions is obtained using the same approach as Ibragimov in [25, Th. 3.1 pp.379-80]. In the quadratic decomposition proposed by Ibragimov

l j1=1 m j2=1 a j1,j2 Z T (λ j1 , s j2 ) = (B T XT , XT ) -E (B T XT , XT )
where XT is the column vector t (X 1 , . . . , X T ), only the T × T matrix B T changes

B T =    1 √ T l j1=1 m j2=1 a j1,j2 λj 1 0 h( k 1 T )h( k 2 T )e i(k2-k1)α 1 1≤k1,k2≤[sj 2 T ] dλ(α)    1≤k1,k2≤T
So we only need to generalize the upper-bound for ||B T ||. We have

||B T || = 1 √ T sup ||x||=1 j1,j2 a j1,j2 T k1,k2=1 x k1 x k2 λj 1 0 h( k 1 T )h( k 2 T )e i(k2-k1)α dλ(α) ≤ ml √ T sup j1,j2 |a j1,j2 | sup ||x||=1 T T k=1 x k h( k T )e -ikα 2 dλ(α).
This is the L 2 -norm of the function having for Fourrier coefficients the finite sequence (x 1 h( 1 T ), . . ., x T h( T T )). Hence, using the Parseval equality and the Schwarz inequality

T T k=1 x k h( k T )e -ikα 2 dλ(α) = x 2 1 h 2 ( 1 T ) + . . . + x 2 T h 2 ( T T ) ≤ ||h|| 2 ∞ ||x|| 2 ≤ ||h|| 2 ∞ .
Thus,

||B T || ≤ ml √ T sup j1,j2 |a j1,j2 | ||h|| 2 ∞ . (33) 
So

||B T || is always a O(T -1/2
) and we can apply the sketch of proof proposed by Ibragimov.

Q.E.D.

Tightness

To prove the tightness of the process Z T (., .) we use as in [START_REF] Picard | Testing and estimating change-points in time series[END_REF] the Csensov tightness criterion (see [START_REF] Csensov | Limit theorems for some classe of random functions[END_REF]) for continuous processes:

A family of process {Y T , T > 0} of C([0, π] × [0, 1], R) is tight if 1. The family {Y T (0, 0), T > 0} is tight in R, 2. The family {Y T (0, .), T > 0} is tight in C([0, 1], R), 3. The family {Y T (., 0), T > 0} is tight in C([0, π], R),
4. There exist constants C > 0, γ 1 > 1, γ 2 > 0 and a modulus of continuity ω defined on [0, π] such that, for all

B = [λ 1 , λ 2 ] × [s 1 , s 2 ] included in [0, π] × [0, 1], E Y T (B) γ1 ≤ C[(s 2 -s 1 )ω(λ 2 -λ 1 )] γ2
where

Y T (B) = Y T (λ 2 , s 2 ) -Y T (λ 2 , s 1 ) + Y T (λ 1 , s 1 ) -Y T (λ 1 , s 2 ).
As the process Z T (., .) is not continuous with respect to its second coordinate, we introduce the process L T (., .) with continuous sample path defined by

L T (λ, s) = 1 √ T λ 0 l T (α, s)dλ(α) (34) 
where l T (., .) is the polygonal line which joins the points ((α, k/T ), z T (α, k/T )) where

z T (α, s) = [sT ] j=1 X j h( j T )e -ijα 2 -E [sT ] j=1 X j h( j T )e -ijα 2 = d [sT ] (α) 2 -E d [sT ] (α) 2 .
We first prove that the continuous process L T (., .) satisfies Csensov tightness criterion (Proposition 4), then to obtain the tightness of Z T (see [11, Proposition 4 Assume that (X j ) is in G, then the family of processes (L T ) is tight.

Proof Since here, we have L T (0, 0) = L T (0, .) = L T (., 0) = 0 the first three conditions of Csensov criterion are obvious. Define for

B = [λ 1 , λ 2 ] × [s 1 , s 2 ] L T (B) = 1 √ T λ2 λ1 [l T (α, s 2 ) -l T (α, s 1 )] dλ(α). ( 35 
)
Our aim is to control

E L T (B) 2 = 1 T E λ2 λ1 λ2 λ1 [l T (α, s 2 ) -l T (α, s 1 )] [l T (-β, s 2 ) -l T (-β, s 1 )] dλ(α)dλ(β). (36) 
The technical part of this proof is to control E L T (B)

2 when 0 ≤ s 2 -s 1 ≤ 1 T .
The general case is a direct consequence of this particular one. For this and before considering the general case, let us denote by

∆ n (α) = n j=1 e -ijα the Dirichlet kernel and ϕ n (λ) = λ 0 ∆ n (α)dλ(α). ( 37 
)
[39, Lemma 8.2 p.57] assure that the functions ϕ n are continuous on the torus and are uniformly bounded in n and λ so one can find a uniform modulus of continuity ω(.) for the family (ϕ n ) n∈N i.e. which satisfies sup 0<|µ-λ|<δ |ϕ n (µ)ϕ n (λ)| ≤ ω(δ) for all integer n, we prove the following lemma Lemma 4.1 Let ω(.) be an uniform modulus of continuity for all the ϕ n defined by [START_REF] Sachs | Peak-intensive spectrum estimation[END_REF], then for

B = [λ 1 , λ 2 ] × [s 1 , s 2 ] such that [s 1 T ] ≤ s 1 T < s 2 T ≤ [s 1 T ] + 1, the following inequality holds E L T (B) 2 ≤ C 1 (s 2 -s 1 ) (λ 2 -λ 1 ) ∨ ω 2 (λ 2 -λ 1 ) .
Proof We note k = [s 1 T ] and Y j = h(j/T )X j the tapered data. Then, using that 0 ≤ s 2s 1 ≤ 1/T , it follows

l T (α, s 2 ) -l T (α, s 1 ) = T (s 2 -s 1 ) z T (α, k + 1 T ) -z T (α, k T ) (38) 
and

E L T (B) 2 ≤ (s 2 -s 1 ) λ2 λ1 λ2 λ1 cov z T (α, k + 1 T ) -z T (α, k T ), z T (β, k + 1 T ) -z T (β, k T ) dλ(α)dλ(β). (39) 
Now, noting that

z T (α, k + 1 T )-z T (α, k T ) = Y 2 k+1 -E Y 2 k+1 +2Y k+1 Re k j=1 Y j e -i(k+1-j)α -2E   Y k+1 Re k j=1 Y j e -i(k+1-j)α   ,
we obtain

E L T (B) 2 ≤ (s 2 -s 1 )(λ 2 -λ 1 ) 2 var Y 2 k+1 + Re (R 1 ) + R 2 , with (40) 
R 1 = 4(s 2 -s 1 )(λ 2 -λ 1 ) λ2 λ1 cov Y k+1 k j=1 Y j e -i(k+1-j)α , Y 2 k+1 dλ(α), R 2 = 4(s 2 -s 1 ) λ2 λ1 λ2 λ1 cov Y k+1 k j=1 Y j cos[(k + 1 -j)α], Y k+1 k j=1 Y j cos[(k + 1 -j)β] dλ(α)dλ(β).
Since (X j ) is a Gaussian stationary process, var X 2 j is constant, and

(s 2 -s 1 )(λ 2 -λ 1 ) 2 var Y 2 k+1 ≤ πvar X 2 0 ||h|| 2 ∞ (s 2 -s 1 )(λ 2 -λ 1 ). (41) 
The two last right terms of (40) are controlled by the two following lemma Lemma 4.2 :

|R 1 | ≤ 8 √ πE X 2 0 ||h|| 4 ∞ ||f || 2 (s 2 -s 1 )(λ 2 -λ 1 )
Proof Using the identity for Gaussian vector

cov   Y k+1 k j=1 Y j e -i(k+1-j)α , Y 2 k+1   = 2E Y 2 k+1 k j=1 e -i(k+1-j)α E Y j Y k+1 = 2E X 2 0 h( k + 1 T ) 3 T f (β) k j=1 h( j T )e -i(k+1-j)(α+β) dλ(β) = 2E X 2 0 h( k + 1 T ) 3 H k 1 * f (α) (42) with H k 1 (α) = e -i(k+1)α H k 1 (α). Lemma 4.3 Let H k 1 (α) = k j=1 h(j/T )e -ij(k+1-j)α , then for all f in L 2 (T), H k 1 * f 2 ≤ ||h|| ∞ ||f || 2 .
Proof Let f (m) be the Fourier coefficients of f , then

T H k 1 (α)f (α + β)dλ(α) = T k j=1 h( j T )e i(j-k-1)α m∈Z f (m)e im(α+β) dλ(α) = m∈Z f (m)e imβ T k j=1 h( j T )e i(j+m-k-1)α dλ(α) = k j=1 f (k + 1 -j)h( j T )e i(k+1-j)β .
By Parseval equality, it follows

H k 1 * f 2 2 = k j=1 h 2 ( j T ) f (k + 1 -j) 2 ≤ ||h|| 2 ∞ ||f || 2 2 .
Q.E.D. Now, applying Schwarz inequality and Lemma 4.3 to (42), it follows

|R 1 | ≤ 8 √ πE X 2 0 ||h|| 3 ∞ (s 2 -s 1 )(λ 2 -λ 1 ) H k 1 * f 2 ≤ 8 √ πE X 2 0 ||h|| 4 ∞ ||f || 2 (s 2 -s 1 )(λ 2 -λ 1 ). Q.E.D. Lemma 4.4 : |R 2 | ≤ 4 ||h|| 2 ∞ (||f || 2 2 + (E X 2 0 ) 2 )(s 2 -s 1 ) (λ 2 -λ 1 ) ∨ ω 2 (λ 2 -λ 1 )
Proof Using again the identity for Gaussian vector

R 2 = 4(s 2 -s 1 ) λ2 λ1 λ2 λ1 cov   Y k+1 k j=1 Y j cos[(k + 1 -j)α], Y k+1 k j=1 Y j cos[(k + 1 -j)β]   dλ(α)dλ(β) = S 1 + S 2 , with (43) 
S 1 = 4(s 2 -s 1 )   λ2 λ1 E   Y k+1 k j=1 Y j cos[(k + 1 -j)α]   dλ(α)   2 , S 2 = 4(s 2 -s 1 )E Y 2 k+1 E   λ2 λ1 k j=1 Y j cos[(k + 1 -j)α]dλ(α)   2 .
The bound for S 1 is close the one of R 1 developed in Lemma 4.2. By Schwarz inequality and lemma 4.3 it follows

|S 1 | ≤ 4(s 2 -s 1 ) λ2 λ1 E   Y k+1 k j=1 Y j e -i(k+1-j)α   dλ(α) 2 ≤ 4(s 2 -s 1 ) λ2 λ1 H k 1 * f (α)dλ(α) 2 ≤ 4(s 2 -s 1 )(λ 2 -λ 1 ) ||h|| 2 ∞ ||f || 2 2 . ( 44 
)
To control S 2 in (43), let us first consider ω a uniform modulus of continuity for all the integrated Dirichlet kernels λ 0 ∆ n (α)dλ(α) where ∆ n = H k 0 (see 1), see for example [39, lemma Lemma 8.2 p.57] for the existence of such modulus.

Lemma 4.5 |S 2 | ≤ 4 ||f || 2 (V (h)) 2 E Y 2 0 (s 2 -s 1 )ω 2 (λ 2 -λ 1 )
Proof Let us denote by Y j = Y k+1-j , we have to control the following term

V = E   λ2 λ1 k j=1 Y j cos(jα)dλ(α)   2 ≤ E λ2 λ1 k j=1 Y j e -ijα dλ(α) 2 . ( 45 
)
Considering this last inequality, it follows

V ≤ E   λ2 λ1 k j1=1 Y j e -ij1α dλ(α) λ2 λ1 k j2=1 Y j e ij2β dλ(β)   = λ2 λ1 λ2 λ1 k j1=1 k j2=1 E ( Y j1 Y j2 )e -ij1α e ij2β dλ(α)dλ(β) = λ2 λ1 λ2 λ1 k j1=1 k j2=1   h( k + 1 -j 1 T )h( k + 1 -j 2 T ) T f (γ)e -i(j2-j1)γ dλ(γ)   e -ij1α e ij2β dλ(α)dλ(β) 13 = T   λ2 λ1 k j1=1 h( k + 1 -j 1 T )e -ij1(α-γ) dλ(α)     λ2 λ1 k j2=1 h( k + 1 -j 2 T )e ij2(β-γ) dλ(β)   f (γ)dλ(γ) = T λ2 λ1 k j=1 h( k + 1 -j T )e -ij(α-γ) dλ(α) 2 f (γ)dλ(γ).
Let us denote λ i = λ iγ. By an Abel transformation (e -ijα = ∆ j (α) -∆ j-1 (α)), we have

λ2 λ1 k j=1 h( k + 1 -j T )e -ij(α-γ) dλ(α) = h( 1 T ) λ2 λ1 ∆ k (α)dλ(α)+ k-1 j=1 h( k + 1 -j T ) -h( k -j T ) λ2 λ1 ∆ j (α)dλ(α) it follows that λ2 λ1 k j=1 h( k + 1 -j T )e -ij(α-γ) dλ(α) ≤ V (h).ω(λ 2 -λ 1 )
and using Schwarz inequality

V = E   λ2 λ1 k j=1 Y j cos(jα)dλ(α)   2 ≤ √ 2π ||f || 2 (V (h)) 2 ω 2 (λ 2 -λ 1 ).
Reporting this last inequality in the definition of S 2 (see ( 43)), it follows that

|S 2 | ≤ 4 ||f || 2 ||h|| 2 ∞ (V (h)) 2 E X 2 0 (s 2 -s 1 )ω 2 (λ 2 -λ 1 ).
Q.E.D. Now, using (44) and Lemma 4.5, we obtain for R 2 defined in (43)

|R 2 | ≤ C 2 (s 2 -s 1 ) ω 2 (λ 2 -λ 1 ) ∨ (λ 2 -λ 1 )
so the Lemma 4.4 is proved Q.E.D. Finally using (41), Lemma 4.2 and Lemma 4.4, we prove that when [s

1 T ] ≤ s 1 T < s 2 T ≤ [s 1 T ] + 1, the following inequality holds E L T (B) 2 ≤ C 1 (s 2 -s 1 ) (λ 2 -λ 1 ) ∨ ω 2 (λ 2 -λ 1 ) ,
this ends the proof of Lemma 4.1

Q.E.D. To close the proof of the tightness, we have to extend the result of Lemma 4.1 to the general case where |s 2s 1 | ≥ 1/T . It is the object of the following Lemma. Lemma 4.6 Let ω(.) an uniform modulus of continuity for all ϕ n (see [START_REF] Sachs | Peak-intensive spectrum estimation[END_REF]), then for

B = [λ 1 , λ 2 ] × [s 1 , s 2 ] such that |s 2 -s 1 | ≥ 1/T the following inequality holds E L T (B) 2 ≤ C 2 (s 2 -s 1 ) (λ 2 -λ 1 ) ∨ ω 2 (λ 2 -λ 1 ) . Proof We consider t i = [s1T ]+i T , for i ≥ 0 and we note p = [s 2 T ] -[s 1 T ]. So we have t 0 ≤ s 1 < t 1 < . . . < t p ≤ s 2 < t p+1 .
Clearly,

L T (B) = L T ([λ 1 , λ 2 ] × [s 1 , t 1 ]) + p-1 j=1 L T ([λ 1 , λ 2 ] × [t j , t j+1 ]) + L T ([λ 1 , λ 2 ] × [t p , s 2 ]) (46)
and by Schwarz inequality it follows, using that 1/T ≤ s 2s 1 and [

s 2 T ] -[s 1 T ] -1 ≤ (s 2 -s 1 )T E L T (B) 2 ≤ C 1 (p + 1) 1 T ω 2 (λ 2 -λ 1 ) ∨ (λ 2 -λ 1 ) ≤ C 1 [s 2 T ] -[s 1 T ] + 1 T ω 2 (λ 2 -λ 1 ) ∨ (λ 2 -λ 1 ) ≤ 3C 1 (s 2 -s 1 ) ω 2 (λ 2 -λ 1 ) ∨ (λ 2 -λ 1 ) .
Q.E.D. As for δ > 0, ω(δ) = ω 2 (δ) ∨ δ clearly define a modulus of continuity, the fourth condition of Csensov criterion holds for E | L T (B)| 2 with γ 1 = 2 and γ 2 = 1 so the continuous process (L T ) T ∈N is tight in C([0, π] × [0, 1], the proof of Proposition 4 is complete.

Q.E.D.

Proposition 5

The two families of processes (L T ) T and (Z T ) T are contiguous (see [?, Chap 3.1 pp. [START_REF] Giraitis | A fuctionnal clt for nonparametric estimates of spectrum and the change point problem for a spectral function[END_REF][START_REF] Giraitis | Testing and estimating in the change point problem of the spectral function[END_REF][START_REF] Giraitis | The change-point problem for dependent observations[END_REF][START_REF] Hannan | Testing for a jump in the spectral function[END_REF][START_REF] Hinkley | Inference about the change point in a sequence of random variables[END_REF][START_REF] Hinkley | Inference about the change point from a cumulative sum tests[END_REF] or [?, Chap. 6 pp.85-91] for definition of the contiguity).

Proof Since Proposition 1 holds we prove that (L T ) and the centered process ( Z T ) (see ( 27)) are contiguous. For this we prove the following more general result:

P sup λ∈[0,π] sup s∈[0,1] L T (λ, s) -Z T (λ, s) > ǫ → 0 as T → +∞.
Applying the fourth condition of Csensov criterion to the process (L T ) with

B = [0, λ] × [ k T , k+1 T ], it follows for k = 1, . . . , T E L T ([0, λ] × [ k T , k + 1 T ]) 2 ≤ C ω(π) T . ( 47 
) As λ → L T ([0, λ] × [ k T , k+1 T ]) is continuous on [0, π], it exists λ k such that sup λ∈[0,π] L T ([0, λ] × [ k T , k + 1 T ]) = L T ([0, λ k ] × [ k T , k + 1 T ]) .
As k takes only a finite number of values, there exists k 0 such that sup k=1,...,T

L T ([0, λ k ] × [ k T , k + 1 T ]) = sup k=1,...,T sup λ∈[0,π] L T ([0, λ] × [ k T , k + 1 T ]) = L T ([0, λ k0 ] × [ k 0 T , k 0 + 1 T ]) .
follows from this last equality and from (47) that

E sup k=1,...,T sup λ∈[0,π] L T ([0, λ] × [ k T , k + 1 T ]) 2 = E L T ([0, λ k0 ] × [ k 0 T , k 0 + 1 T ]) 2 ≤ C ω(π) T . (48) 
Now, as Z T (λ, s) = L T (λ, [sT ]/T ), it follows, using that l T is piecewiese affine

L T (λ, s) -Z T (λ, s) = L T (λ, s) -L T (λ, [sT ] T ) = T (s - [sT ] T ) L T ([0, λ] × [ [sT ] T , [sT ] + 1 T ]).
Applying (48), its follows

E sup λ∈[0,π] sup s∈[0,1] L T (λ, s) -Z T (λ, s) 2 ≤ C ω(π) T .
Using Tchebicev inequality, we deduce that

P sup λ∈[0,π] sup s∈[0,1] L T (λ, s) -Z T (λ, s) > ǫ ≤ C ω(π) T ǫ 2 → 0 as T → +∞.
So (L T ) and (Z T ) are contiguous. Q.E.D.

Asymptotic distribution of the test statistics under the null hypothesis

We prove in this section our main theorem that is Theorem 1. The convergence of the statistic constructed on (Y T 1 ) is a direct consequence of relation ( 12) and Theorem 2: as the limiting process 

Z is in C([0, π] × [0, 1], R),
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) and to remark that the sequence (

H T 2 
T ) T converges to H 2 which is assumed to be finite and non zero.

We also have to prove that the two processes (Y T j ) T , j = 1, 2 have the same limiting distribution. For this we prove the convergence in distribution to 0 under the null hypothesis of the sequence of processes (Ω T ) T >0 defined by ( 13) and [START_REF] Dahlhaus | Small sample effects in time series analysis : a new asymptotic theory and a new estimate[END_REF].

Theorem 3 If X . is a process in G then Ω T → 0 as T → ∞.
Proof Let us first investigate the distributions of (Ω T (., .)) T Lemma 5.1 If X . is a process in G then process (Ω T (., .)) T converges in probability to 0.

Proof The proof splits into to steps

Step 1 Process (Ω T (., .)) T is uniformly asymptotically unbiased. Remark that

Ω T (λ, s) = Z T (λ, 1) -Z T (λ, s) -Z * T (λ, 1 -s) (49) 
where

Z * T (λ, 1 -s) = ȞT -[sT ] 2 √ T FT -[sT ] (λ) -F (λ) is the "reverse-time" process of Z T constructed on h( T T )X T , . . . , h( [sT ]+1 T )X [sT ]+1 .
Clearly, the process Z * T has the same properties as Z T . In particular, Z * T satisfies Proposition 1. Therefore, the same is true for Ω T and we have sup

(λ,s)∈[0,π]×[0,1] |E Ω T (λ, s)| = o(1).
Step 2 For all (λ, s), the variance of Ω T (λ, s) tends to 0 as T → ∞. Following the same lines of proof as in Proposition 2 and considering that Z * T (λ, 1s) is defined on the variables X T , . . . , X [sT ]+1 and using the taper h on the set { T T ,. . . , [sT ]+1 T } which converge to [s, 1], we prove that lim

T →∞ cov(Z * T (λ, 1 -s), Z * T (λ, 1 -s ′ )) = λ 0 f 2 (α)dλ(α) [s,1]∧[s ′ ,1] h 4 (u)du = λ 0 f 2 (α)dλ(α) 1 s∨s ′ h 4 (u)du.
Now, as Z T (λ, 1) = Z * T (λ, 1), using (49) to compute var Ω T (λ, s) gives lim

T →∞ var Ω T (λ, s) = 2 lim T →∞ cov(Z T (λ, s), Z * T (λ, 1 -s)).
We just need to prove that cov(Z T (λ, s), Z * T (λ, 1s)) → 0. Following the same lines as in Lemma 2, it follows that cov(Z T (λ, s), Z * T (λ, 1s)) = Ψ s T * g(0, 0, 0)

with g defined by [START_REF] Pages | Détections de changements brusques des caractéristiques spectrales d'un signal numérique[END_REF]. For all γ = (γ 1 , γ 2 , γ 3 )

Ψ s T (γ) = 1 T H [sT ] 1 (γ 1 )H [sT ] 1 (γ 2 ) ȞT -[sT ] 1 (γ 3 ) ȞT -[sT ] 1 (-γ 1 -γ 2 -γ 3 ) with ȞT -k 1 (α) = H T 1 (α) -H k 1 (α). Since Ψ s T = H [sT ] 4 T (Φ s,s,1,1 T -Φ s,s,1,s T -Φ s,s,s,1 T + Φ s,s,s,s T
) (see [START_REF] Picard | Testing and estimating change-points in time series[END_REF] for the definition of Φ s1,s2,s3,s4 T ) using that Φ s,s,1,1 T , Φ s,s,1,s T , Φ s,s,s,1 T and Φ s,s,s,s T are approximate identities (see Lemma 3.2) their product of convolution with g at point (0, 0, 0) tends to g(0, 0, 0) as T tends to ∞. It follows that the right term of (50) tends to 0.

Applying Chebishev inequality, Lemma 5.1 is obtained.

Q.E.D.

Lemma 5.2 If X . is a process in G then the sequence of processes (Ω T ) T ∈N is tight.

Proof Using that process (Ω T (., .)) T is uniformly asymptotically unbiased, it is enough to prove that

(Ω T -E Ω T ) is contiguous to the C-tighted process L ′ T = 1 √ T λ 0 l ′ T (α, s)dλ(α)
where l ′ T (α, s) is the polygonal line which joins the points ((α, k/T ), z ′ T (α, k/T )) with

z ′ T (α, s) =   k j1=1 Y j e -ij1α T j2=k+1 Y j e ij2α   -E   k j1=1 Y j e -ij1α T j2=k+1 Y j e ij2α   ,
and with Y j = h(j/T )X j and k = [sT ]. Equation [START_REF] Alley | Rupture dans une série chronologique. application à la détection de rupture dans les champs aléatoires stationnaires[END_REF] to [START_REF] Zygmund | Trigonometric series. Volumes I and II combined[END_REF] are still valid, replacing z T , l T , L T , L T by

z ′ T , l ′ T , L ′ T , L ′ T , so that z ′ T (α, k + 1 T ) -z ′ T (α, k T ) =   k+1 j1=1 Y j e -ij1α T j2=k+2 Y j e ij2α - k j1=1 Y j e -ij1α T j2=k+1 Y j e ij2α   -E   k+1 j1=1 Y j e -ij1α T j2=k+2 Y j e ij2α - k j1=1 Y j e -ij1α T j2=k+1 Y j e ij2α   =   Y k+1 e -i(k+1)α T j2=k+2 Y j e ij2α - k j1=1 Y j e -ij1α Y k+1 e i(k+1)α   -E   Y k+1 e -i(k+1)α T j2=k+2 Y j e ij2α - k j1=1 Y j e -ij1α Y k+1 e i(k+1)α   = Y k+1 (d k (α) -ďT -k-1 (α)) -E Y k+1 (d k (α) -ďT -k-1 (α)) with d k (α) defined in (2) and ďT -k (α) = d T (α)-d k (α). It follows that, for [s 1 T ] ≤ s 1 T < s 2 T ≤ [s 1 T ]+1, E | L ′ T (B)| 2 ≤ (s 2 -s 1 ) λ2 λ1 λ2 λ1 cov Y k+1 (d k (α) -ďT -k-1 (α)), Y k+1 (d k (β) -ďT -k-1 (β)) dλ(α)dλ(β).
The righthand term is similar to the quantity R 2 appearing in (40), therefore, it is controlled in a same way (see Lemma 4.4). Such control leads to the following inequality

E | L ′ T (B)| 2 ≤ C (s 2 -s 1 ) (λ 2 -λ 1 ) ∨ ω 2 (λ 2 -λ 1 )
which holds for [s 1 T ] ≤ s 1 T < s 2 T ≤ [s 1 T ] + 1. Now, as ( 46)-(48) hold for L ′ T (B), Lemma 4.6 and Proposition 5 can be extended to process L ′ T (B) and Ω T . Therefore (Ω T ) T >0 is contiguous to a C-tighted process so is tighted (see [3]).

Q.E.D.

This proves Theorem 3 together with the asymptotic equivalence of the sequence (Y 1 T ) T >0 and (Y 2 T ) T >0 . So the two families of test statistics S 1 T (h) and S 2 T (h) are also asymptotically equivalent Q.E.D.

Critical region and applications

First, our purpose here, is to obtain the asymptotic form of the reject region. Then, we prove the consistency of our tests when G 2 is known or not. Finally, we present some numerical simulation results. We observe on these simulations that tapering improves detection.

Critical region

We establish here the following result Corollary 2 When T is large, the level of the test associated with the critical regions R j T , j = 1, 2 can be approximated using the limits lim

T →+∞ P H0 (R j T ) = P( sup u∈[0,1] sup s∈[0,1] B(u, s) - H 2 [H -1 4 (s.H 4 )] H 2 B(u, 1) > c)
where H -1 4 (.) is the inverse or pseudo-inverse function of H 4 (.) and where B is the Gaussian process of C([0, 1] 2 , R) with mean zero and covariance function

E B(u, s)B(u ′ , s ′ ) = u ∧ u ′ .s ∧ s ′
Proof Since the two statistics S j T (h), j = 1, 2 have the same limit under H 0 we only prove Corollary1.1 for S 1 T (h). Let us consider the time change

u = G 2 (λ) G 2 u ′ = G 2 (λ ′ ) G 2 v = H 4 (s) H 4 v ′ = H 4 (s ′ ) H 4 with G 2 (λ) = λ 0 f 2 ( 
α)dλ(α) and H 4 (.) defined in [START_REF] Basseville | Detection of abrupt changes in signals and dynamical systems[END_REF]. Denote by Z the process defined on

[0, 1] × [0, 1] by Z(u, v) = Z(λ, s). It is easy to verify sup λ∈[0,π] sup s∈[0,1] 1 H 2 Z(λ, s) - H 2 (s) H 2 Z(λ, 1) = 1 H 2 sup u∈[0,1] sup v∈[0,1] Z(u, v) - H 2 (H -1 4 (H 4 .v)) H 2 Z(u, 1) .
The process Z/ √ G 2 H 4 has the same covariance function that the process B defined in Corollary 1.1. So, it is enough to prove Corollary 1.1 Q.E.D.

Consistency and practical use

If G 2 is known, it is clear that under H 1 the statistic S 2 T (h) converges in probability to +∞. So our test is consistent. To get such a result for S 1 T (h), we need more assumptions on the two processes before and after the change-point, due to the presence of the crossed term Ω T (see [START_REF] Dahlhaus | Empirical spectral processes and their applications to time series analysis[END_REF] and (14)), for example.

Theorem 4 Under H 1 , if the processes X 1 and X 2 are independent, the statistic S 1 T (h) converges in probability to +∞.

Proof We prove that S 1 T (h) has the same limit as S 2 T (h). Using (13), we only have to prove that the process Ω T is bounded in probability. For this, we remark first that, as the processes X 1 and X 2 being independent, Ω T is unbiased. Let Φ s0 T = Φ s0,s0,s0,s0 T defined in [START_REF] Picard | Testing and estimating change-points in time series[END_REF] and

Φ s0 T (γ) = K [s0T ] 1 (γ 1 )K [s0T ] 1 (γ 2 )K [s0T ] 1 (γ 3 )K [s0T ] 1 (- 3 j=1 γ j ) H T 2 -H [s0T ] 2 with K [sT ] 1 (α) = T j=[sT ]+1
h( j T )e -ijα . Following the proof of Proposition 2 we obtain

var 2 Ω T (λ 0 , s 0 ) ≤ H [s0T ] 2 T T 3 Φ s0 T (γ)dλ(γ) T f 1 (γ 1 -α)f 1 (γ 2 + α)dλ(α) + H T 2 -H [s0T ] 2 T T 3 Φ s0 T (γ)dλ(γ) T f 2 (γ 1 -α)f 2 (γ 2 + α)dλ(α) (51) 
where γ = (γ 1 , γ 2 , γ 3 ) with dλ(γ) = dλ(γ) 1 dλ(γ) 2 dλ(γ) 3 , f 1 and f 2 denote the spectral density before and after change-point. The sequence of kernels ( Φ s0 T ) T is an approximated identity for convolution (see Lemma 3.2). It is easy to see that the sequence ( Φ s0 T ) T defined also an approximated identity for convolution. So the right term in (51) converges and the covariance is bounded. Applying the Bienayme-Chebyshev inequality, we get the announced result.

Q.E.D.

Consider now the case where G 2 is unknown. We also have under H 1 to control the estimated G 2 defined in (8) which appears in the critical regions (see [START_REF] Brodsky | Nonparametric methods in change-point problems[END_REF]. In fact, we can show that it converges under H 1 to a finite value which is 1 2

s 2 0 f 1 2 2 + (1 -s 0 ) 2 f 2 2 2 1/2 .
So the test can be extended to the case G 2 unknown.

Numerical results

To present our numerical results we consider the polynomial taper

h ρ,n (x) =    4 n .( x ρ ) n .(1 -x ρ ) n x ∈ [0, ρ 2 ), 1 x ∈ [ ρ 2 , 1 -ρ 2 ], h ρ,n (1 -x) x ∈ (1 -ρ 2 , 1],
with n ≥ 1 and 0 ≤ ρ ≤ 1. The parameter ρ controls how much tapered the data are: as ρ goes to 0, h ρ,n tends to 1 which corresponds to the untapered case. The parameter n controls the smoothness of the tapering: the larger n is, the smoother the tapering. Before presenting some simulation results, we have to say a few words about the tabulation of the limiting distribution.

Since the limit distribution of our test is not independent from h, we need to tabulate it for each h. It may be of interest to bypass this problem by looking for a family of tapers (h T ) T indexed by T such that h T converges to 1 when T goes to +∞. Doing this we obtain the following result Theorem 5 If (h ρ T ,n T ) T is a sequence of tapers such that • (ρ T ) T is a sequence of integer which tends to 0 when T goes to +∞,

• lim inf T →∞ T.ρ T > 0,

• (n T ) T is a bounded sequence such that n T ≥ 1, the level of the test associated to the critical regions R j T , j = 1, 2 can be approximated using the following limits lim Proof The proof may be found in totality in the thesis [33, Th 10.0.12 pp. 90-94].

Q.E.D. In fact for small T , it is more interesting to adapt our taper h ρ,n to the expecting number of false alarms. The following tables present for T = 50 and T = 150 the percentage of false alarms detected with each taper for 1000 trajectories of i.i.d. N (0, 1)

• T = 50 On the first table, we see that the h ρ,n adapted taper is, for T = 50, obtained for ρ between 0.85 and 0.90. For T = 150, the second table shows that we have to take a value of ρ between 0.60 and 0.65. As the value of n does not change these results significantly we have only worked with n = 4.

α
For these two adapted tapers, we have tested a change-point in a process X t constructed as follows

• X 0 , . . . , X [s0T ] are i.i.d. Gaussian N (0, 1).

• X [s0T ]+1 , . . . , X T are the trace of an AR(1) with root 0.3.

The following table gives the percentage of alarms detected when s = 0.1 and s = 0.5 and s = 0.9 with or without taper These last two tables clearly show the effect of tapering when T is small (T = 50). In this case, we have, on average, twice more alarms detected with the taper. The case T = 150 shows that, even if we always have a better score with the taper, this taper effect is less when T grows up.

To conclude this numerical part we represent the field Y 2 T (., .) with or without taper. We clearly see on the following two figures what the taper effect is: smoothness and concentration. 

1 TY 2 T

 12 be the space of real functions on [0, π] × [0, 1] which are right-continuous with left-hand limits, endowed with the Skorohod topology. Let C = C([0, π] × [0, 1], R) be the space of continuous real functions on [0, π] × [0, 1], with the uniform convergence topology. Clearly processes Y and are D-valued. The following holds

  so the expression in the right hand-side of (26) goes to 0 as T → +∞ uniformly in s ∈ [0, 1]. Joining this and (23) completes the proof of Proposition 1 Q.E.D.

  Déf. 7.3.25-b p.219]) we prove the contiguity (see [?, Chap 3.1 pp.19-24] or [?, Chap. 6 pp.85-91]]) of Z T and L T (Proposition 5).

  we just need to apply the classical functional theorems in C (see [3, Th. 4.4 p 27 & Th. 5.1 p.

1 ]

 1 |W (u, s)| > c)where W (u, s) = B(u, s)s B(u, 1), and where B is defined in corollary 1.1.

fig 1 :

 1 fig 1 : Y 2 T with tapering fig 2 : Y 2 T without tapering