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L. Birgé : Laboratoire de Probabilités et Modèles Aléatoires, CNRS-UMR 7599,
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Université Paris VI & Université Paris VII, 4 place Jussieu, Case 188, F-75252 Paris

Cedex 05 & Université du Maine.
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Abstract

Given an n-sample from some unknown density f on [0, 1], it is easy to construct
an histogram of the data based on some given partition of [0, 1], but not so much is
known about an optimal choice of the partition, especially when the set of data is not
large, even if one restricts to partitions into intervals of equal length. Existing methods
are either rules of thumbs or based on asymptotic considerations and often involve some
smoothness properties of f . Our purpose in this paper is to give a fully automatic and
simple method to choose the number of bins of the partition from the data. It is based
on a nonasymptotic evaluation of the performances of penalized maximum likelihood
estimators in some exponential families due to Castellan and heavy simulations which
allowed us to optimize the form of the penalty function. These simulations show that the
method works quite well for sample sizes as small as 25.

1 Introduction

Among the numerous problems that have been considered for a long time in Statistics, a quite

simple one is: “How many bins should be used to build a regular histogram?” Here, by regular

histogram, we mean one which is based on a partition into intervals of equal length. One can

of course argue that this question is of little relevance nowadays since the histogram is an old

fashioned estimator and that much more sophisticated and better methods are now available,

such as variable bandwiths kernels or all kinds of wavelets thresholding. This is definitely true.

Nevertheless, histograms are still in wide use and one can hardly see any other density estimator

in newspapers. It is by far the simplest density estimator and probably the only one that can

be taught to most students that take Statistics at some elementary level. And when you teach

regular histograms to students, you unavoidably end up with the same question: “how many

bins?”. The question was also repeatedly asked to one of the authors by colleagues who were

not professional mathematicians but still did use histograms or taught them to students.
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Unfortunately, when faced to such a question, the professional statistician has no really
definitive answer or rather he has too many ones in view of the number of methods which have
been suggested in the literature, none of them being completely convincing in the sense that it
has been shown to be better than the others.

The purpose of this paper is to propose a new simple and fully automatic method to choose
the number of bins to be used for building a regular histogram from data. The procedure is
not based on any smoothness assumptions and works quite well for all kinds of densities, even
discontinuous, and sample sizes as small as 25.

The limitation to densities with support on [0, 1] may seem restrictive, but real data can
always be considered as generated from a compactly supported density. If the support is known,
one can assume, by a suitable transformation of the data, that it is [0, 1]. If it is unknown, one
can merely replace it by the range of the data since we cannot get any information of what
happens outside this range without extra assumptions.

There have been many attempts in the past to solve the problem of choosing an optimal
number of bins from the data and we shall recall a number of them in Section 4.1 below. Let us
just mention here that, apart from some rules of thumbs like Sturges’ rule (take approximately
1 + log

2
n bins) or recommendations of the type: “one should have at least k observations in

each cell” (k depending on the author), all the methods we know about are based on some
asymptotic considerations. Rules of thumbs are very simple and do not aim at any optimality
property. More sophisticated rules are based on the minimization of some asymptotic estimate
of the risk. This is the case of methods like cross-validation or those based on the evaluation
of the asymptotically optimal binwidth under smoothness assumptions for the underlying den-
sity. Methods connected with penalized maximum likelihood estimation, like Akaike’s criterion
or rules based on stochastic complexity or minimum description length are also derived from
asymptotic considerations. It follows that the main drawback of all these rules is their asymp-
totic nature which does not warrant good performance for small sample sizes. Moreover, many
of them are based on prior smoothness assumptions about the underlying density.

Our estimator is merely a generalization of Akaike’s. This choice was motivated by some
considerations about the nonasymptotic performances of penalized maximum likelihood estima-
tors derived by Barron, Birgé and Massart (1999). For the specific case of histogram estimators,
their results have been substantially improved by Castellan (1999) and our study is based on
her theoretical work. Roughly speaking, she has shown that a suitably penalized maximum
likelihood estimator provides a data-driven method for selecting the number of bins which re-
sults in an optimal value of the Hellinger risk, up to some universal constant κ. The proof does
not require any smoothness assumption and allows to consider discontinuous densities. Unfor-
tunately, although Castellan’s study indicates which penalty structure is suitable to get such
a risk bound, theoretical studies are not powerful enough to derive a precise penalty function
that would minimize the value of κ for small or moderate sample sizes.

In order to solve this problem, we performed an extensive simulation study including a
large variety of densities and sample sizes in order to determine by an optimization procedure a
precise form of the penalty function leading to a small value of κ. The resulting estimator is as
follows. Assume that we have at disposal an n-sample X1, . . . , Xn from some unknown density
f (with respect to Lebesgue measure) on [0, 1] and we want to design an histogram estimator
f̂D based on some partition {I1, . . . , ID} of [0, 1] into D intervals of equal length. We then
choose for D the value D̂(X1, . . . , Xn) which maximizes Ln(D)− pen(D) for 1 ≤ D ≤ n/ log n,
where

Ln(D) =
D∑

j=1

Nj log(DNj/n) with Nj =
n∑

i=1

1lIj
(Xi), (1.1)

is the log-likelihood of the histogram with D bins and the penalty pen(D) is given by

pen(D) = D − 1 + (log D)2.5 for D ≥ 1. (1.2)



The resulting estimator f̂D̂ will be denoted f̃1 from now on. A few simulation results describing

graphically the performances of f̃1 are given in Figure 1 .

In order to test this new procedure, we conducted another simulation study involving a
large family of densities, sample sizes ranging from 25 to 1000 and different loss functions, in
order to compare f̃1 with a number of existing methods. The conclusion of this large scale
empirical study, which is given in Section 4, is that our method, on the whole, outperforms all
the others, although one of them, namely the one based on Rissanen’s minimum complexity
ideas (Rissanen, 1987) and introduced, in the context of histogram estimation, by Hall and
Hannan (1988), is almost as good, in many cases. This is not so surprising since Rissanen’s
method and our approach are based on similar theoretic arguments.

The next section recalls the theoretical grounds on which our method is based while Section 3
describes the details of our simulation study. The results of the comparison with previous
methods are given in Section 4. The Appendix contains some additional technical details.

2 Some theoretical grounds

2.1 Histograms and oracles

Let us first describe more precisely what is the mathematical problem to be solved. Let
X1, . . . , Xn be an n-sample from some unknown distribution with density f with respect to
Lebesgue measure on [0, 1]. The histogram estimator of f based on the regular partition with

D pieces, i.e. the partition ID of [0, 1] consisting of D intervals I1, . . . , ID of equal length 1/D
is given by

f̂D = f̂D(X1, . . . , Xn) =
D

n

D
∑

j=1

Nj1lIj
, with Nj =

n
∑

i=1

1lIj
(Xi). (2.1)

It is probably the oldest and simplest nonparametric density estimator. It is called the regular

histogram with D pieces and it is the maximum likelihood estimator with respect to the set of
piecewise constant densities on ID. In order to measure the quality of such an estimator, we
choose some loss function ℓ and compute its risk

Rn(f, f̂D, ℓ) = Ef

[

ℓ
(

f, f̂D(X1, . . . , Xn)
)]

. (2.2)

From this decision theoretic point of view, the optimal value Dopt = Dopt(f, n) of D is given by
Rn(f, f̂Dopt , ℓ) = infD≥1 Rn(f, f̂D, ℓ).

Unfortunately, no genuine statistical procedure can tell us what is the exact value of
Dopt(f, n) because it depends on the unknown density f to be estimated. This is why the
procedure f̂Dopt is called an oracle and Rn(f, f̂Dopt , ℓ) is the risk of the oracle. Obviously, an
oracle is of no practical use but its risk can serve as a benchmark to evaluate the performance
of any genuine data driven selection procedure D̂(X1, . . . , Xn). The quality of such a procedure
at f can be measured by the value of the ratio

Rn(f, f̂D̂, ℓ)

Rn(f, f̂Dopt , ℓ)
=

Rn(f, f̂D̂, ℓ)

infD≥1 Rn(f, f̂D, ℓ)
, (2.3)

where f̂D̂ denotes the histogram estimator based on the regular partition with D̂ pieces.
Ideally, one would like this ratio to be bounded uniformly with respect to f by some constant

Cn tending to one when n goes to infinity and that Cn − 1 stay reasonably small even for
moderate values of n. This is unfortunately impossible since, when f = 1l[0,1], Dopt = 1,



f̂1 = f and the ratio (2.3) is infinite. Even if f is different from 1l[0,1] but is very close to it,

Rn(f, f̂1, ℓ) may be arbitrarily close to zero and there is not hope to get a small value for (2.3).
A more precise discussion of this problem in the context of Gaussian frameworks can be found
in Section 2.3.3 of Birgé and Massart (2001). This implies that, in order to judge the quality
of a procedure D̂, we should only consider the ratio (2.3) for densities which are far enough —
see the precise condition (3.1) below — from the uniform.
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Figure 1: 6 examples, the dashed black line represents the true density and the thick grey line
the estimator



2.2 Loss functions

Clearly, the value of Dopt and the performances of a given selection procedure D̂ depend on the
choice of the loss function ℓ. Popular loss functions include powers of Lp-norms, for 1 ≤ p < +∞
or the L∞-norm, i.e.

ℓ(f, g) = ‖f − g‖p
p or ℓ(f, g) = ‖f − g‖∞,

(with a special attention given to the cases p = 1 and 2), the squared Hellinger distance

h2(f, g) =
1

2

∫

1

0

(

√

f(y) −
√

g(y)
)2

dy, (2.4)

and the Kullback-Leibler divergence (which is not a distance and possibly infinite) given by

K(f, g) =

∫

1

0

log

(

f(y)

g(y)

)

f(y) dy ≤ +∞. (2.5)

This last loss function is definitely not suitable to judge the quality of classical histograms since,
as soon as D ≥ 2, there is a positive probability that one of the intervals Ij be empty, implying

that K(f, f̂D) = +∞. A similar problem occurs with K(f̂D, f) when f is not bounded away
from 0.

Since we want to be able to deal with discontinuous densities f , the L∞-norm is also
inappropriate as a loss function since discontinuous functions cannot be properly approximated
by piecewise constant functions on fixed partitions in L∞-norm. By some continuity argument,
large values of p should also be avoided and we shall restrict ourselves hereafter to Hellinger
distance and Lp-norms for moderate values of p.

The most popular loss function in our context is probably the squared L2-loss for the reason
that it is more tractable. Indeed,

Ef

[

∥

∥

∥
f − f̂D

∥

∥

∥

2
]

= Ef

[

∥

∥

∥
f̄D − f̂D

∥

∥

∥

2
]

+
∥

∥f − f̄D

∥

∥

2

, (2.6)

where f̄D denotes the orthogonal projection (in the L2 sense) of f onto the D-dimensional
linear space generated by the set of functions {1lIj

}1≤j≤D. In this case, the risk is split into
a stochastic term and a bias term which may be analyzed separately. This accounts for the
fact that optimizing the squared L2-risk of histogram estimators has been a concern of many
authors, in particular Scott (1979), Freedman and Diaconis (1981), Daly (1988), Wand (1997)
and Birgé and Massart (1997).

Since the distribution of any selection procedure D̂(X1, . . . , Xn) only depends on the under-
lying distribution of the observations, it seems natural to evaluate its performances by a loss
function which does not depend on the choice of the dominating measure. This is why some
authors favour the systematic use of L1-loss for its nice invariance properties as explained by
Devroye and Györfi (1985, p. 2) and the preface of Devroye (1987).

Although it is less popular, may be because of its more complicated expression, we shall
use here the squared Hellinger distance as our reference loss function to determine a suitable
penalty, this choice being actually based on theoretical grounds only. First, as the L1-distance,
it is a distance between probabilities, not only between densities. Then it is known that it
is the natural distance to use in connection with maximum likelihood estimation and related
procedures, as demonstrated many years ago by Le Cam (see, for instance, Le Cam, 1986 or
Le Cam and Yang, 2000). Finally, the results of Castellan (1999) that we use here are based
on it.

Of course, the choice of a “nice” loss function is, in a large part, a question of personal taste.
Hellinger distance has already been used as loss function in the context of regular histogram



density estimation by Kanazawa (1993) but other authors do prefer Lp-losses and one should
read for instance the arguments of Devroye mentioned above or those of Jones (1995). Therefore,
although we shall base our choice of the procedure D̂ on the Hellinger loss, we shall also use
other loss functions, including squared L2, to evaluate its performances and compare it to other
methods.

2.3 Hellinger risk

Before we consider the problem of choosing an optimal value of D we need an evaluation of the
risk of regular histograms f̂D for a given value of D since the ratio (2.3) involves it. There is
actually nothing special with regular histograms from this point of view and a general result in
this direction is as follows. Given an histogram estimator f̂I of the form (2.7) below based on

some arbitrary partition I, its risk is given by Ef

[

h2(f, f̂I)
]

. Asymptotic evaluations of this

risk are given by Castellan (1999) but we were unable to find a non-asymptotic bound for it in
the literature. It can actually be proved (see our Appendix) that

Theorem 1 Let f be some density with respect to some measure µ on X , X1, . . . , Xn be an

n-sample from the corresponding distribution and f̂I be the histogram estimator based on some

partition I = {I1, . . . , ID} of X , i.e.

f̂I(X1, . . . , Xn) =
1

n

D
∑

j=1

Nj

µ(Ij)
1lIj

, with Nj =
n

∑

i=1

1lIj
(Xi). (2.7)

Setting pj =
∫

Ij
fdµ, we get

E

[

h2(f, f̂I)
]

≤ h2(f, f̄I) +
D − 1

2n
with f̄I =

D
∑

j=1

pj

µ(Ij)
1lIj

. (2.8)

Moreover

E

[

h2(f, f̂I)
]

= h2(f, f̄I) +
D − 1

8n
[1 + o(1)], (2.9)

when n(inf1≤j≤D pj) tends to infinity.

Remark: It should be noticed that f̄I minimizes both the L2-distance between f and the space
HI of piecewise constant functions on I and the Kullback-Leibler information number K(f, g)
between f and some element g of HI , but not the Hellinger distance h(f, HI). In the case of a
regular partition, f̄I = f̄D as in (2.6).

2.4 Penalized maximum likelihood estimators

The theoretical properties of penalized maximum likelihood estimators over spaces of piecewise
constant densities, on which our work is based, have been studied by Castellan (1999). We recall
that a penalized maximum likelihood estimator derived from a penalty function D 7→ pen(D)
is the histogram estimator f̂D̂ where D̂ is a maximizer with respect to D of Ln(D) − pen(D)
with Ln(D) given by (1.1). Roughly speaking, Castellan’s results say (not going into details in
order to avoid technicalities) that one should use penalties of the form

pen(D) = c1(D − 1)
(

1 +
√

c2LD

)

2

with c1 > 1/2, LD > 0, (2.10)

where c2 is a suitable positive constant and the numbers LD satisfy
∑

D≥1

exp[−(D − 1)LD] = Σ < +∞. (2.11)



Let us observe that this family of penalties includes the classical Akaike’s AIC criterion cor-
responding to pen(D) = D − 1 (choose for instance c1 = 3/4 and LD = L in a suitable way).
Defining D̂(X1, . . . , Xn) as the maximizer of Ln(D) − pen(D) for 1 ≤ D ≤ D̄ = Γn/(log n)2,
Castellan proves, under suitable assumptions (essentially that f is bounded away from 0), that

Ef

[

h2(f, f̂D̂)
]

≤ κ(c1) inf
1≤D≤D̄

{

K(f, f̄D) + n−1 pen(D)
}

+ n−1κ′, (2.12)

where κ, κ′ are positive constants, κ depending on c1, κ′ on the parameters involved in the
assumptions and in particular being increasing with respect to Σ. This bound and (2.11)
suggest to choose some non-increasing sequence (LD)D≥1 leading to some Σ of moderate size,
which we shall assume from now on.

The asymptotic evaluations of Castellan also suggest to choose c1 = 1 in order to minimize
κ(c1), at least when Dopt goes to infinity. In this case, the penalty given by (2.10) can be
viewed as a modified AIC criterion with an additional correction term which warrants its good
behaviour when the number of observations and therefore the number of cells to be considered
in the partition, are not large. Both criteria are equivalent when D tends to infinity.

It is also known (see for instance Birgé and Massart, 1998, Lemma 5) that, when
∣

∣log(f/f̄D)
∣

∣

is small, K(f, f̄D) is approximately equal to 4h2(f, f̄D). Therefore, under suitable assumptions
on f , setting c1 = 1, one can show, by the boundedness of the sequence (LD)D≥1, that

Ef

[

h2(f, f̂D̂)
]

≤ κ1 inf
1≤D≤D̄

{

h2(f, f̄D) +
D − 1

n

}

+
κ2

n
, (2.13)

where κ2 is an increasing function of Σ. In view of Theorem 1, one can finally derive from
(2.13) that, under suitable restrictions on f and for n large enough,

Ef

[

h2(f, f̂D̂)
]

≤ κ′
1Ef

[

h2(f, f̂Dopt)
]

+ κ′
2/n. (2.14)

3 From theory to practice

3.1 Some heuristics

Although the asymptotic considerations suggest to choose c1 = 1 (and this was actually con-
firmed by our simulations), the theoretical approach is not powerful enough to indicate precisely
how one should choose the sequence (LD)D≥1 in order to minimize the risk. It simply suggests
that Σ should not be large in order to keep the remainder term κ2/n of moderate size when n
is not very large. In order to derive a form of the penalty that leads to a low value of the risk,
one needs to perform an optimization based on simulations and, at this stage, some heuristics
will be useful. In particular we shall pretend that the asymptotic formula (2.9) is exact, and
use the approximation

Ef

[

h2(f, f̂D)
]

≈ h2(f, f̄D) + (D − 1)/(8n)

which implies that Ef

[

h2(f, f̂D)
]

' (8n)−1 for D ≥ 2. Together with (2.14), this implies that

Ef

[

h2(f, f̂D̂)
]

≤ κ3Ef

[

h2(f, f̂Dopt)
]

for Dopt > 1.

If Dopt = 1, this bound still holds provided that

8nh2(f, 1l[0,1]) ≥ 1 (3.1)



since f̄1 = 1l[0,1], whatever f , which means that f is not too close to the uniform. This restriction
confirms the arguments of Section 2.1.

If c1 = 1, (2.10) can be written

pen(D) = D − 1 + c2(D − 1)
(

2
√

LD + LD

)

.

Moreover, the constant c2 is only known approximately and (2.11) requires that (D − 1)LD

tends to infinity with D. Since LD should not be large because it influences the risk as shown
by (2.12), it seems natural to look for penalties of the form pen(D) = D − 1 + g(D) where the
function g tends to infinity but not too fast. We actually restricted our search to functions g(x)
of the three following types:

αxβ, 0 < β < 1; αx(1 + log x)−β, β > 0 and α(log x)β, β > 1, (3.2)

with α > 0, varying the values of both parameters. We also replaced the restriction 1 ≤ D ≤ D̄
with D̄ = Γn/(log n)2 with some constant Γ > 0 of Castellan’s Theorem by the simpler condition
D̄ = n/ log n which did not lead to any trouble in practise.

3.2 The operational procedure

We proceeded in two steps. The first one was an optimization step to choose a convenient
form for the function g just mentioned; the second one was a comparison step to compare
our new procedure with more classical ones. In both cases, we had to choose some specific
densities to serve as references, i.e. for which we should evaluate the performances of the
different estimators. The chosen densities are of piecewise polynomial form. To define them we
used the trivial partition with a single element which leads to continuous densities, and some
regular or irregular partitions with several elements. Both the partitions and the coefficients
of the polynomials given by their linear expansion within the Legendre basis were drawn using
a random device which ensured positivity. We also added to the resulting family some special
piecewise constant densities which were known to be difficult to estimate and ended up with
a set of 45 different densities, ranging from smooth to rather erratic, which are described in
Figure 6 in the Appendix.

Many of these densities are far from smooth and this choice was made deliberately. His-
tograms are all purpose rough estimates which should cope with all kinds of densities. Testing
their performances only with smooth densities like the normal or beta is not sufficient.

We then selected a large range of values for n, namely n = 25, 50, 100, 250, 500 and 1000 and
this resulted in a set F of 264 pairs (f, n) after we excluded, in view of the previous arguments,
six pairs which did not satisfy the requirement (3.1).

In both steps, we had to evaluate risks Rn(f, f̃ , ℓ) for various procedures f̃ . There are typi-
cally no closed form formulas for such theoretical risks and we had to replace them by empirical
risks based on simulations. We systematically used the same method: given the pair (f, n) we
generated on the computer 1000 pseudo-random samples Xj

1 , . . . , X
j
n, 1 ≤ j ≤ 1000 of size n and

density f . We then performed all our computations replacing the theoretical distributions of
losses of the procedures f̃ at hand: Pf [ℓ(f, f̃(X1, . . . , Xn)) ≤ t] by their empirical counterparts

Pn

[

ℓ
(

f, f̃(X1, . . . , Xn)
)

≤ t
]

=
1

1000

1000
∑

j=1

1l[0,t]

[

ℓ
(

f, f̃(Xj
1 , . . . , X

j
n)

)]

.

In particular we approximated the true risk Rn(f, f̃ , ℓ) by its empirical version

Rn(f, f̃ , ℓ) =
1

1000

1000
∑

j=1

ℓ
(

f, f̃(Xj
1 , . . . , X

j
n)

)



and the upper 95% quantile of the distribution of ℓ(f, f̃(X1, . . . , Xn)) by the corresponding up-
per 95% quantile Q(0.95)(n, f, f̃ , ℓ) of the empirical distribution of the variables ℓ(f, f̃(Xj

1 , . . . , X
j
n)).

Note here that such computations required the evaluations of quantities of the form ℓ(f, f̃),
namely h2(f, f̃) or ‖f − f̃‖p

p. Since both f (piecewise polynomial) and f̃ (piecewise con-
stant) were piecewise continuous, we could compute the losses by numerical integration sep-
arately on each of the intervals where both functions were continuous. The precise details
of the procedures and the corresponding MATLAB functions can be found on the WEB site
http://www.proba.jussieu.fr/~rozen/histograms.

3.3 The optimization

In this step, we wanted to compare the performances of the various penalized maximum likeli-
hood estimators with penalties of the form pen(D) = D − 1 + g(D) according to the possible
values of g over the testing class F . As we previously mentioned, the performance of a se-
lection procedure D̂(g) based on the penalty involving some function g can be evaluated by a
comparison of its risk with the optimal risk corresponding to D = Dopt.

Ideally, one would like to minimize the ratio

Mn(f, f̂D̂(g), h
2) =

Rn(f, f̂D̂(g), h
2)

infD≥1 Rn(f, f̂D, h2)
, (3.3)

with respect to g for all pairs (f, n) ∈ F ′. Of course the optimal strategy depends on the pair
and we looked for some uniform bound for Mn but it appeared that, roughly speaking, Mn

behaves as a decreasing function of Dopt(f, n) and we actually tried to minimize approximately
with respect to g

sup
{(f,n) |Dopt(f,n)=k}

Mn(f, f̂D̂(g), h
2),

for all values of k simultaneously. Again, this is not a well-defined problem and some com-
promises were needed, but we finally concluded that the choice g(x) = (log x)2.5 was the most
satisfactory and ended up with the estimator f̃1 described in the introduction.

3.4 Some performances of our estimator

In order to evaluate the performances of f̃1, we compared its risk with the oracle for all pairs
(f, n) ∈ F and various loss functions. We actually considered, for all our comparisons, four
typical loss functions, which are powers of either the Hellinger or some Lp-distances. More
precisely,

ℓ0(f, f ′) = hp0(f, f ′) and ℓi(f, f ′) = ‖f − f ′‖pi

pi
for i = 1, 2, 3,

with
p0 = p2 = 2, p1 = 1 and p3 = 5.

In order to facilitate comparisons between the different loss functions and to balance the effect
of the differences in the powers pi, we expressed our results in terms of a normalized version
M

⋆

n of Mn, setting, for any density f and estimator f̃ ,

M
⋆

n(f, f̃ , ℓi) =
[

Mn(f, f̃ , ℓi)
]1/pi

.

The results of the comparisons are summarized in Table 1 below. For each n, we denote by
Fn the set of densities f such that (f, n) ∈ F . For n ≥ 100, Fn contains all 45 densities we
started with, but some (at most three when n = 25), which are too close to the uniform, had to
be excluded for smaller values of n since they do not satisfy (3.1). Table 1 gives the values of



supf∈Fn

M
⋆

n(f, f̃1, ℓi) for the different values of n and i. We see that all values of M
⋆

n(f, f̃1, h
2)

are smaller than 1.5 and not much larger for the L1 and L2 losses, although our procedure was
not optimized for those losses. Not surprisingly, the results for L5 are worse for small values of
n but improve substantially for n ≥ 500.

i \ n 25 50 100 250 500 1000

0 1.40 1.38 1.43 1.30 1.30 1.26
1 1.48 1.54 1.49 1.34 1.33 1.26
2 1.84 1.64 1.49 1.48 1.42 1.38
3 2.94 2.89 2.85 2.55 1.62 1.53

Table 1: Maximum normalized mean ratio: supf∈Fn

M
⋆

n(f, f̃1, ℓi)

Apart from these worst-case results, it is also interesting to notice that some values of
M

⋆

n(f, f̃1, ℓi), when n is large and f is a “nice” density, are actually smaller than one, which
means that, under favorable circumstances, our estimator can “beat” the oracle. This is not so
surprising since the oracle has a fixed number Dopt(f, n) of bins (the one which minimizes the
risk, i.e. the average loss) independently of the sample, while our estimator tries to optimize
the number of bins for each sample and can therefore adjust to the peculiarities of the sample.
This means that it is the very notion of an oracle which is questionable as a reference.

4 Comparison with previous methods

4.1 Some historical remarks

The first methods used to decide about the number of bins were just rules of thumbs and
date back to Sturges (1926). According to Wand (1997) such methods are still in use in many
commercial softwares although they do not have any type of optimality property. Methods
based on theoretical grounds appeared more recently and they can be roughly divided into
three classes.

If the density to be estimated is smooth enough (has a continuous derivative, say), it is often
possible, for a given loss function, to evaluate the optimal asymptotic value of the binwidth, the
one which minimizes the risk, asymptotically. Such evaluations have been made by Scott (1979)
and Freedman and Diaconis (1981) for the squared L2-loss, by Devroye and Györfi (1985) for the
L1-loss and by Kanazawa (1993) for the squared Hellinger distance. Unfortunately, the optimal
binwidth is asymptotically of the form cn−1/3 where c is a functional of the unknown density to
be estimated and its derivative. Since an estimation of c involves complicated computations,
most authors suggest a rule of thumbs to evaluate it, typically: pretend that the true density
is normal. Wand (1997) proposes to estimate c by kernel methods.

Methods based on cross-validation have the advantage to avoid the estimation of an asymp-
totic functional and directly provide a binwidth from the data. An application to histograms
and kernel estimators is given in Rudemo (1982). Theoretical comparisons between Kullback
cross-validation and the AIC criterion are to be found in Hall (1990).

The third class of methods includes specific implementations for the case of regular his-
tograms of general criteria used for choosing the number of parameters to put in a statis-
tical model. The oldest method is the minimization of Akaike’s AIC criterion (see Akaike
1974). Akaike’s method is merely a penalized maximum likelihood method with penalty
pen(D) = D − 1 in our case. In view of (1.2), our criterion is just a generalization of AIC
criterion tuned for better performance with small samples. Taylor (1987) derived the cor-
responding asymptotic optimal binwidth (under smoothness assumptions on the underlying



density) which turns out to be the same as the asymptotically optimal binwidth for squared
Hellinger risk, as derived by Kanazawa (1993). Related methods are those based on minimum
description length and stochastic complexity due to Rissanen (see for instance Rissanen, 1987).
Their specific implementation for histograms has been discussed in Hall and Hannan (1988).

Somewhat more exotic methods have been proposed by Daly (1988) and He and Meeden
(1997), the second one being based on Bayesian bootstrap.

4.2 The comparison study

In order to evaluate the performances of our method and to compare it to previous ones, we
selected 14 different estimators f̃2, . . . , f̃15. The selection was based on the previous historical
review and the precise description of the estimators is given in the Appendix. Let us just briefly
mention that f̃2 and f̃3 are respectively L2 and Kullback-Leibler cross-validation methods,
f̃4 is the minimization of AIC, f̃5 and f̃6 are based on stochastic complexity and minimum
description length respectively, f̃7 to f̃10 are estimators based on asymptotic evaluations of an
optimal binwidth according to various criteria, f̃11 is Sturges’rule, f̃12 is due to Daly and f̃13

to He and Meeden. For completeness, we added two estimators f̃14 and f̃15 which do not look
for the optimal regular partition. f̃14 is based on wavelet thresholding since such estimators
are quite fashionable nowadays and also considered as very powerful. In order to have a fair
comparison in terms of bias, we used the Haar wavelet basis in connection with a method
from Herrick, Nason and Silverman (2001) which appeared to be the best among the different
wavelet methods for density estimation we tried. Note that the resulting estimator, although
piecewise constant, is not a regular histogram. The estimator f̃15 is due to Devroye and Lugosi
and described in Section 10.3 of Devroye and Lugosi (2001) but it selects only dyadic partitions.

We actually also studied the performances of modified versions of some of those estimates, as
described by Rudemo (1982), Hall and Hannan (1988), Wand (1997) and various thresholding
strategies for Haar wavelets. Since the performances of the modified methods were similar to
or worse than those of the original estimators, we do not include them here.

4.2.1 Analysis of the results

To compare the performances of the various estimators, we computed, for all 264 pairs (f, n) ∈
F , all estimators f̃k, 1 ≤ k ≤ 15 and the four selected loss functions, the values of M

⋆

n(f, f̃k, ℓi).We
also used as a secondary index of performance the normalized ratio

Q
⋆

n(f, f̃ , ℓi) =

[

Q(0.95)(n, f, f̃ , ℓi))

infD≥1 Rn(f, f̂D, ℓi)

]1/pi

of the empirical version of the 95% quantile of the distribution of f̃ to the corresponding risk
of the oracle. Dividing by the risk of the oracle does not influence the comparisons between
the various estimators but substantially reduces the range of Q(0.95)(n, f, f̃ , ℓi) when f varies in
our test set which drastically improves the legibility of the results.

This simulation study resulted in a large set of data which had to be summarized. Therefore,
for each n, ℓ and k we considered the set S(n, ℓ, k) of the |Fn| values of M

⋆

n(f, f̃k, ℓ) for f ∈ Fn.
Our comparison of the estimates is based on the boxplots of the different sets S(n, ℓ, k). Here,
the box provides the median and quartiles, the tails give the 10 and 90% quantiles and the
additional points give the values which are outside this range. Figure 2 shows the boxplots
corresponding to all methods for n = 25, 100 and 1000, squared Hellinger and L2 losses. It is
readily visible from these plots that estimators f̃6 to f̃15 are not satisfactory for n ≥ 100 as
compared to the others. The complete set of results shows that their performances for other



values of n and loss functions are not better. This is why we do not include them in the final
figures to improve legibility.
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Figure 2: Hellinger (left) and L2 (right) mean ratios for n = 25, 100, 1000.

For the remaining 5 estimators, we provide hereafter in Figures 3 and 4 the complete series
of boxplots corresponding to all values of n and ℓ. Clearly, our method is the best from this
point of view, especially for the smaller values of n. Apart from ours, the best method seems
to be f̃5, based on stochastic complexity. If the performances of f̃5 are roughly equivalent to
those of f̃1 for large values of n (n ≥ 250), this is clearly not true for small n.



4.2.2 A few comments

As we previously noticed, some methods, corresponding to estimators f̃j with 6 ≤ j ≤ 15
were found to behave rather poorly on our test set, especially for large n. This is actually not
surprising for Sturges’rule (f̃11) which is a rule of thumbs, for f̃12 since the theoretical arguments
supporting Daly’s method are not very strong and for f̃13 since the decision theoretic arguments
used by He and Meeden involve a very special loss function different from our criteria.

That all the methods (f̃7 to f̃10) which define an asymptotically optimal binwidth from a
smoothness assumption on the underlying density do not work well for estimating discontinuous
densities is natural either. Since f̃15 only chooses dyadic partitions, this tend to result in an
increased bias. Finally the method f̃14, based on Haar waveled thresholding suffers from the
same problem and moreover considers many more partitions than we do. It should rather
be compared with selection procedures involving irregular partitions, since it is known (see
for instance Birgé and Massart, 1997) that thresholding methods are equivalent to penalized
methods for irregular dyadic partitions which do require heavier penalties.

Actually, all the methods that work reasonably well are either based on cross-validation or
some complexity penalization arguments. It was therefore rather surprising for us to notice that
the two estimators studied by Hall and Hannan (1988), which are asymptotically equivalent
and have similar performances for moderate sample sizes according to the authors, appear to
behave quite differently in our study, the estimator based on stochastic complexity being much
better than the one based on minimum description length. This is probably due to the fact
that the equivalence is really of an asymptotic nature and that the testing densities in Hall an
Hannan are very smooth (normal and beta) while ours are not. Rewriting the three estimators
f̃j with j = 1, 5, 6 as f̂D̂j

where D̂j is the maximizer of Ln(D) − πj(D), we compared the

behaviours of π1, π5 and π6 for different simulated examples. Note that here π1(D) = pen(D)
as defined by (1.2). The examples show that π1 and π5 are rather close while π6 tends to be
much smaller leading to larger values for D̂6. An illustration of the phenomenon is shown in
Figure 5
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Figure 3: Hellinger, L1, L2 and L5 mean ratios for n = 25, 50, 100, 250, 500, 1000
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Figure 4: Hellinger, L1, L2 and L5 quantile ratios for n = 25, 50, 100, 250, 500, 1000
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5 Appendix

5.1 Proof of Theorem 1

Since the risk Rn of f̂I is given by

Rn = E

[

h2(f, f̂I)
]

=
D
∑

j=1

E





1

2

∫

Ij

(

√

f(x) −

√

Nj

nµ(Ij)

)2

dµ(x)



 , (5.1)

it suffices to bound each term in the sum. The generic term can be written, omitting the
indices, setting l = µ(I), p =

∫

I
f dµ and denoting by N a binomial B(n, p) random variable,

as

R(I) = E





1

2

∫

I

(

√

f(x) −

√

N

nl

)

2

dµ(x)







=
1

2

(
∫

I

f(x) dµ(x) + E

[

N

n

])

− E

[

√

N

n

]

∫

I

√

f(x)

l
dµ(x)

= p − E

[

√

N

n

]

∫

I

√

f(x)

l
dµ(x).

Introducing f1lI = l−1p1lI and h2 = h2(f1lI , f1lI), we notice that

h2 =
1

2

∫

I

(

√

f(x) −
√

p

l

)2

dµ(x) = p −√
p

∫

I

√

f(x)

l
dµ(x),

which implies that

R(I) = p −
(

p − h2
)

E

[
√

N

np

]

= h2
E

[
√

N

np

]

+ p

(

1 − E

[
√

N

np

])

.

The conclusion then follows from the next lemma and (5.1).

Lemma 1 Let N be a binomial random variable with parameters n and p, 0 < p < 1, then

E

[
√

N

np

]

> 1 − 1 − p

2np
and E

[
√

N

np

]

= 1 − 1 − p

8np

[

1 + O
(

1

np

)]

.

Proof : Setting Z = N − np, we write E

[

√

N/(np)
]

= E

[

√

1 + Z/(np)
]

. The first inequality

follows from the fact that, for u ≥ −1,
√

1 + u ≥ 1 + u/2 − u2/2, E[Z] = 0 and Var(Z) =
np(1 − p). To get the asymptotic result, we use the more precise inequality

1 +
u

2
− u2

8
+

u3

16
− 5u4

16
≤

√
1 + u ≤ 1 +

u

2
− u2

8
+

u3

16

together with the moments of order three and four of Z:

E
[

Z3
]

= np(1 − p)(1 − 2p); E
[

Z4
]

= np(1 − p)
[

1 − 6p + 6p2 + 3np(1 − p)
]

.

5.2 Our set of test estimators

Apart from f̃14, each of the estimators f̃k, 1 ≤ k ≤ 15, that we consider in our study (see
Section 4.2) is based on a specific selection method, D̂k(X1, . . . , Xn) which derives the number
of bins from the data, resulting in f̃k = f̂D̂k

with f̂D given by (2.1). For definiteness, we recall
more precisely in this section the definitions of the various methods involved, adjusted to our
particular situation of a support of length one. In the formulas below Nj, as defined in (1.1),
denotes the number of observations falling in the j-th bin.

The first 6 methods we considered are based on the maximization with respect to the
number D of bins of some specific criterion. We recall that our estimator f̃1 is based on the
minimization of

D
∑

j=1

Nj log Nj + n log D −
[

D − 1 + (log D)2.5
]

.

For L2 and Kullback cross-validation rules D̂2 and D̂3, the functions to maximize are given
respectively (Rudemo, 1982 p. 69 and Hall, 1990 p. 452) by

D(n + 1)

n2

D
∑

j=1

N2

j − 2D and
D
∑

j=1

Nj log(Nj − 1) + n log D,



while AIC criterion D̂4 (Akaike, 1974) corresponds to the maximization of

D∑

j=1

Nj log Nj + n log D − (D − 1).

The estimators f̃5 and f̃6, respectively based on stochastic complexity and minimum description
length considerations, involve the maximization (Hall and Hannan, 1988) of

Dn (D − 1)!

(D + n − 1)!

D∏

j=1

(Nj)!

and

D∑

j=1

(Nj − 1/2) log(Nj − 1/2) − (n − D/2) log(n − D/2) + n log D − (D/2) log n.

Estimators f̃7 to f̃10 are all based on data driven evaluations l̂k, 7 ≤ k ≤ 10 of the binwidth.
Since such evaluations do not lead to an integer number of bins when the support is [0, 1], we
took for D̂k the integer which was closest to l̂−1

k . For k = 7, 8, 9, the respective suggestions for

l̂k by Taylor (1987) or Kanazawa (1993), Devroye and Györfi (1985) and Scott (1979) are

2.29σ̂2/3n−1/3; 2.72σ̂n−1/3; and 3.49σ̂n−1/3,

where σ̂2 denotes some estimator of the variance. We actually used for σ̂2 the unbiased version of
the empirical variance. The previous binwidth estimates are actually based on the assumption
that the shape of the underlying density is not far from a normal N (µ, σ2) distribution. To avoid
the use of such a rule of thumbs, Wand (1997, p. 62) suggests a more complicated evaluation
for l̂10 and we used the one-stage rule that he denotes by h̃1 with M = 400 in his formula (4.1).

For f̃11, we merely used Sturges’rule with D̂11 the integer closest to 1 + log2 n. Daly (1988)
suggests to take D̂12 as the minimal value of D such that

(D + 1)
D+1∑

j=1

N2

j (D + 1) − D
D∑

j=1

N2

j (D) <
n2

n + 1
,

where Nj(k) denotes the number of observations falling in the j-th bin of the regular partition
with k bins. We implemented for f̃13 the method given by He and Meeden (1997), without the
restriction they impose that the number of bins should be chosen between 5 and 20 since such
a restriction leads to poor results for small sample sizes. It was replaced by the less restrictive
D > 1. We also computed f̃15 according to the method given in Chapter 10 of Devroye and
Lugosi (2001). More precisely we used the histograms build by data splitting as described in
their Section 10.3 with a maximal number of dyadic bins bounded by 2n (in order to avoid
an algorithmic explosion) and a value of m set to the integer part of n/2. We actually also
experimented smaller values of m but did not notice an improvement.

The last estimator f̃14 we used for the comparison is not a histogram but a piecewise
constant function derived from an expansion within the Haar wavelet basis, the construction
following the recommendations of Herrick, Nason and Silverman (2001) with the use of the
normal approximation with p-value 0.01 and a finest resolution level set to log2 U where U is
the minimum of n2 (to avoid an algorithmic explosion) and the inverse of the smallest distance
between data.
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Figure 6: The used densities


