
HAL Id: hal-00712345
https://hal.science/hal-00712345v1

Submitted on 28 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generalization of the normal-exponential model:
exploration of a more accurate parametrisation for the

signal distribution on Illumina BeadArrays.
Sandra Plancade, Yves Rozenholc, Eiliv Lund

To cite this version:
Sandra Plancade, Yves Rozenholc, Eiliv Lund. Generalization of the normal-exponential model: ex-
ploration of a more accurate parametrisation for the signal distribution on Illumina BeadArrays..
BMC Bioinformatics, 2012, 13, pp.16. �10.1186/1471-2105-13-329�. �hal-00712345�

https://hal.science/hal-00712345v1
https://hal.archives-ouvertes.fr


Plancade et al. BMC Bioinformatics 2012, 13:329
http://www.biomedcentral.com/1471-2105/13/329

RESEARCH ARTICLE Open Access

Generalization of the normal-exponential
model: exploration of a more accurate
parametrisation for the signal distribution on
Illumina BeadArrays
Sandra Plancade1*, Yves Rozenholc2 and Eiliv Lund1

Abstract

Background: Illumina BeadArray technology includes non specific negative control features that allow a precise
estimation of the background noise. As an alternative to the background subtraction proposed in BeadStudio which
leads to an important loss of information by generating negative values, a background correction method modeling
the observed intensities as the sum of the exponentially distributed signal and normally distributed noise has been
developed. Nevertheless, Wang and Ye (2012) display a kernel-based estimator of the signal distribution on Illumina
BeadArrays and suggest that a gamma distribution would represent a better modeling of the signal density. Hence,
the normal-exponential modeling may not be appropriate for Illumina data and background corrections derived from
this model may lead to wrong estimation.

Results: We propose a more flexible modeling based on a gamma distributed signal and a normal distributed
background noise and develop the associated background correction, implemented in the R-package
NormalGamma. Our model proves to be markedly more accurate to model Illumina BeadArrays: on the one hand, it
is shown on two types of Illumina BeadChips that this model offers a more correct fit of the observed intensities. On
the other hand, the comparison of the operating characteristics of several background correction procedures on
spike-in and on normal-gamma simulated data shows high similarities, reinforcing the validation of the
normal-gamma modeling. The performance of the background corrections based on the normal-gamma and
normal-exponential models are compared on two dilution data sets, through testing procedures which represent
various experimental designs. Surprisingly, we observe that the implementation of a more accurate parametrisation in
the model-based background correction does not increase the sensitivity. These results may be explained by the
operating characteristics of the estimators: the normal-gamma background correction offers an improvement in
terms of bias, but at the cost of a loss in precision.

Conclusions: This paper addresses the lack of fit of the usual normal-exponential model by proposing a more
flexible parametrisation of the signal distribution as well as the associated background correction. This new model
proves to be considerably more accurate for Illumina microarrays, but the improvement in terms of modeling does
not lead to a higher sensitivity in differential analysis. Nevertheless, this realistic modeling makes way for future
investigations, in particular to examine the characteristics of pre-processing strategies.
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Background
Illumina BeadArray platform is a microarray technology
offering highly replicable measurements of gene expres-
sion in a biological sample. Each probe is measured on
average of thirty to sixty beads randomly distributed on
the surface of the array, avoiding spatial artifacts and the
reported probe intensity is the robust mean of the bead
measurements. Fluorescence intensity measured on each
bead is subject to several sources of noise (non-specific
binding, optical noise, . . .). Thus the intensities produced
by the microarray require a background correction in
order to account measurement error. For that purpose,
Illumina microarray design includes a set of non specific
negative control probes which provides an estimate of the
background noise distribution.
In genome-wide microarrays, the observed intensity of

a probe is usually modeled as the sum of a signal and a
background noise. Namely, let X be the observed intensity
of a given probe, we assume that

X = S + B (1)

where S is the true signal which counts for the abundance
of the probe complementary sequence in the target sam-
ple and is independent of the background noise B. Only
X is observed but the quantity of interest is the signal S.
Therefore, a background correction adjusting the effect of
noise on the true signal is necessary to enhance the biolog-
ical validity of the results. In this context the knowledge of
both signal and noise distributions provides a background
correction procedure: the signal S is estimated by the con-
ditional expectation of S given the observation X = x
and given the distributions of B and S. Under parametric
assumptions on B and S, the problem is limited to the esti-
mation of the parameters. Besides, in many experimental
contexts involving measurement error the normal distri-
bution of the noise is assumed. Specific arguments for
microarray data find their origins in analytical chemistry
(see e.g. [1]).
Background correction of Affymetrix and two-color

microarray data has been widely developed in litera-
ture (see [2] for a review and a comparison). Irizarry
et al [3] proposed a parametric model for Affymetrix
based on a exponential distribution of the signal, called
normexp model. Several estimation procedures have been
developed for this model. The first parameter estima-
tion, still popular today, is the Robust Multi-array Aver-
age (RMA) procedure. Maximum Likelihood Estimation
(MLE), incorporating the negative controls, has been later
proposed and is considered to be more sensitive to the
true parameter values (see [4]). These procedures can be
found in Bioconductora packages including limma [5].
Illumina design differs from those of Affymetrix and

two-color microarrays by including a set of negative
probes which do not specifically target any regular probe.

Aside from non specific hybridization, these negative
probes do not hybridize and then have signals close to
zero. Thus their observed intensity is X = B. As all probes
from a given array correspond to the same biological sam-
ple and are subject to the same technical steps during the
analysis process, the noise is generally assumed identically
distributed on an array and the negative probes provide a
sample from its distribution.
The background correction implemented in Illumina

BeadStudio software is the subtraction of the estimated
mean of the negative probe distribution. However, it cre-
ates a large amount of probes with negative intensities
unusable in further analysis. The deletion of these probes
is considered in some studies as an opportunity to gain
statistical power when the number of strongly differ-
entially expressed genes is large, but it can lead to an
important loss of information. Ding et al [6] illustrate this
phenomenon in their mice leukemia study: a large amount
of corrected values are negative only in one group sug-
gesting that the corresponding probes have discriminating
ability. This issue is confirmed by Dunning et al [7] on
spike-in data.
To avoid this problem, parametric models have been

used on Illumina data with parameter estimations tak-
ing into account the specific design of Illumina microar-
rays. In this context, the normexp model has been first
adapted. Ding et al [6] use the Maximum Likelihood Esti-
mation (MLE) based on a Monte-Carlo Markov chain
approximation and compare their method to an Illumina-
adapted RMA procedure using an ad hoc rule of thumbs
to estimate the parameters. Xie et al [8] go into details
in normexp method comparison on experimental and
simulated data. Lin et al [9] present a variance stabi-
lizing transformation (VST) on a model involving both
additive and multiplicative noises, which simultaneously
denoise and transform the data. Replacing the classi-
cal log-transformation, VST produces less directly inter-
pretable results and tends to produces very small fold
changes, as underlined by Shi et al [10] who propose an
original approach to compare methods offering different
bias-precision trade-off by aligning the innate offset gen-
erated by each pre-processing strategy. They conclude in
favor of the normexp model with robust ’non-parametric’
parameters associated to a quantile-normalization using
control and regular probes. Besides, Chen et al [11] pro-
pose a gamma parametrisation of the background noise
distribution to handle with the departure from normality
observed on negative probes, associated with an expo-
nential distribution of the signal. They emphasize that
gamma-exponential model can provide an improvement
in terms of differential analysis, but might not be an
adequate parametrisation in some cases.
The spread of each background correction among the

Illumina users is hard to evaluate since many authors do
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not mention precisely the pre-processing steps performed
in their study. Nevertheless, the normexp model that will
be especially examined in this paper is included in sev-
eral widely used packages such as lumi and limma of
Bioconductora.
Despite its popularity the normexp model does not

properly fit Illumina microarray data. This issue was
raised by Wang and Ye [12], who estimate the density
of the signal on an Illumina microarray with a kernel-
based deconvolution procedure. The shape of the esti-
mated signal density does not present the characteristics
of an exponential distribution and a gamma modeling
seems more appropriate. We confirm these findings by
implementing the kernel-based estimator by Wang and
Wang [13] available in the R package decon. (The results
are displayed in Additional file 1, Section 1). The signal
density estimate exhibits a heavy tail which can not be
fitted by an exponential distribution density. Neverthe-
less, kernel-based density estimators does not appear effi-
cient to recover breakpoints in the density, and presents
instabilities, which limits the interpretation of the sig-
nal density estimate in the microarray context. In this
paper, we emphasize that the normal-exponential model
is not flexible enough to model the signal-noise decom-
position on Illumina microarrays by showing that the
distance between the reconstructed density from the esti-
mated parameters and the distribution of the observed
intensities is large.
We propose an alternative model thereafter called

“normal-gamma model” which addresses this lack of fit.
In our model, the normal noise distribution is assumed
and the signal on one array is assumed to be gamma
distributed. As the exponential distribution is a special
case of the gamma distribution, this model extends the
normexp model. The potential of such generalization was
already suggested by Xi et al [8] in their discussion. We
derive the necessary estimation procedure by likelihood
maximization. The good quality of fit is attested on two
types of Illumina microarrays. The associated background
correction is compared to methods based on the norm-
exp model in terms of quality of estimation of the signal
and checked for robustness on simulated data. The char-
acteristics of the background correction procedures are
compared on a set of spike-in data, and a parallel is drawn
with the same characteristics studied on normal-gamma
simulated data. Finally, the normexp and normal-gamma
background corrections are compared on two dilution
data sets.
The paper is organized as follows. The experimental and

simulated data sets as well as the estimation procedures
are presented in Section “Methods”: the notations and the
general model-based background correction formula are
gathered in Section “General model-based background
correction formula”; the previous models developed for

Illumina microarray background correction, including
the normexp model, are summarized in Section “Previous
modelings”; Section “A newmodeling: the normal-gamma
model” presents the proposed alternative parametric
model built with normal noise and gamma distributed
signal, as well as a parametric estimation procedure and
its associated background correction. The performances
of this new model are evaluated on simulated, spike-in
and dilution data sets in Section “Results and discussion”.
The impact of this more flexible parametrisation on back-
ground correction as well as the perspectives for further
pre-processing analyses are discussed in Section “Conclu-
sions”. The normal-gamma parameter estimation and the
associated background correction are implemented in the
R-package NormalGamma. The scripts used to produce
the tables and figures are available in Additional file 2.

Methods
Materials
Experimental data sets

• (E1) Nowac data [14]. The gene expression profile in
peripheral blood from ten controls in the Norwegian
Woman And Cancer study has been analysed on
Human HT-6 v4 Expression BeadChips. The whole
probe set including 48,000 bead types has been
considered, as well as a restricted set of 25,519 bead
types according to Illumina annotation files. Details
on laboratory experiments are given in Additional
file 1: Section 2.1. The data are provided in
Additional file 3.

• (E2) Leukemia mice data [6]. Total RNA from
samples of spleen cells from four mice have been
analysed on Mouse-6 v1 BeadChips. Experiment
description and data are available in [6]

• (E3) Spike-in data [15]. HumanWG-6 v2 BeadChips
have been customized to include 34 bead types,
refered as ’spikes’, whose corresponding target
sequence is absent from the human genome in
addition to the 48,000 regular probes. The 34 spikes
were introduced at 12 different concentrations (0pm,
0.01pm, 0.03pm, 0.1pm, 0.3pm, 1pm, 3pm, 10pm,
30pm, 100pm, 300pm, 1000pm) in a human
biological sample. Each sample corresponding to a
spike concentration has been analysed on four arrays.
The data are available at http://rafalab.jhsph.edu/.

• (E4) MAQC data [16]. Two pure samples, Universal
Reference RNA (HBRR) and Human Brain Reference
RNA (UHRR) were mixed in four different
proportions (100%/0%, 75%/25%, 25%/75%,
0%/100%). Five replications of each sample have been
analysed on HumanWG-6 v1 BeadChips. The data
are available on GEO (access number GSE5350).

• (E5) Dilution data [17]. The pure samples UHRR
and HBRR were mixed at different proportions
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(100%/0%, 99%/1%, 95%/5%, 90%/10%, 75%/25%,
50%/50%, 25%/75%, 10%/90%, 0%/100%). Each mixed
sample has been analysed with four different starting
RNA quantities (250ng, 100ng, 50ng, 10ng). Six
HumanWG-6 v3 BeadChips were
used.

Simulated data sets
For each data set, N = 100 random arrays including a
vector X� of length nreg = 25000 corresponding to the
regular probe intensities and a vectorX0,� of length nneg =
1000 corresponding to the negative probe intensities are
generated. The values of the nine parameter sets as well as
the details of the simulations are given in Additional file 1:
Section 2.2

• (S1) Normal-gamma and normexp models. For
each repetition � = 1, . . . ,N , X� is generated as the
sum of a gamma and a normal-distributed sample,
and X0,� is drawn from a normal distribution. Six sets
of parameters are computed from two microarrays in
data sets (E1) and (E2), based on normexp and
normal-gamma models in order to get realistic values
(sets 1-6). The normexp parameters are actually
degenerated normal-gamma parameters where the
shape is equal to 1.

• (S2) Mixture noise distribution. A mixture of
normal and χ2 distributions with different
proportions (0, 0.1, 0.25, 0.5, 0.75,1) is considered for
the background noise. These distributions model a
departure from normality with a heavier right tail for
larger values of p. The mixture densities are
presented in Additional file 1: Section 5. The signal is
generated from a gamma distribution with parameter
values from set 1.

• (S3) Replicates. We mimic replicate measurements
from a biological sample by simulating N arrays with
the same signal sample generated from a gamma
distribution. The background noise and negative
probe intensities are independently drawn from a
normal distribution for each array. The values of the
parameters are computed from the first array in (E3)
(set 7). Replicates from the normal-exponential
model are drawn in the same way with parameter
values estimated on the same array with two
normexp estimates (sets 8 and 9).

• (S4) Replicates with empirical background noise.
Similarly to (S3), the signal drawn from a gamma
distribution with parameter values from set 7 is
identical on each array. In order to get a realistic noise
distribution, the negative probe and background
noise intensities are sampled from the global set of
quantile-normalised negative probe intensities
measured in the experimental data set (E3).

General model-based background correction formula
Notations
Throughout this article, the background correction is pro-
cessed on one single array corresponding to one biological
sample. For a given probe j, we denote by Xj the observed
intensity, Sj the non-observable underlying signal and Bj
its background noise. For a negative control probe, Sj is
assumed to be 0. Let J and J0 be respectively the index of
regular and negative probes on the array. We denote by fX ,
fS and fB the densities of respectively the observed inten-
sity, the unknown signal of interest and the background
noise.
We denote by f norm

μ,σ 2 the density of the normal dis-
tribution with mean μ and variance σ 2 and by φ and
� the density and cumulative distribution function of
the normal distribution with mean 0 and variance 1.
We denote by f expα = (1/α) exp(−x/α) the density of
the exponential distribution with mean α and f gam

θ ,k =
xk−1 exp (−x/θ) /(θk�(k)) the density of the gamma dis-
tribution with scale parameter θ and shape parameter k.
The exponential distribution is a special case with k = 1
and θ = α.
Given a parametric density and a procedure of estima-

tion of its parameters, we call plug-in density, this density
for the estimated parameters.

Model-based background correction
The model based background correction (BgC) incorpo-
rates information from both signal and noise distribu-
tions. Under the additive model (1) assuming indepen-
dence of S and B, fX is the convolution product of fS and fB.
For an observed probe intensity x, the signal S is estimated
by the conditional expectation of S given the observation
X = x and the densities fB and fS (more details can be
found in [8]):

Ŝ(x) = E
[
S|X = x, fB, fS

] =
∫

s fS(s)fB(x − s)
fX(x) ds

=
∫

sfS(s)fB(x − s)ds
/∫

fS(s)fB(x − s)ds. (2)

Previousmodelings
The normalmodel for negative probes
The design of Illumina BeadArrays provides a sample of
the background distribution through the negative probes.
We have compared the density histogram of negative
probes to the plug-in normal density f norm

μ̂,σ̂ obtained by
using robust estimators of the parameters on data sets (E1)
and (E2).
The results of this comparison are presented in Addi-

tional file 1: Section 3.1. As expected, the empirical distri-
bution is essentially normal but we notice a slightly heav-
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ier right tail. It may be interpreted as intensities of wrongly
designed negative probes which partially hybridize with
some material present in the biological sample.

The normal-exponentialmodel
The normexp model is a parametric model for the noise-
signal decomposition on one array. We recall it briefly and
refer for example to [8] for more details. For every probe j,

Xj = Sj + Bj,

Sj ∼
{
Exp(α), if j ∈ J ,
0 if j ∈ J0,

Bj ∼ N (μ, σ 2),
Sj ⊥ Bj,

where ⊥ denotes the independence between variables.
The parameters (μ, σ , α) depend on the given array.
For computational reason, the Xj’s are usually and often

implicitly assumed to be independent. The existence of
pathways between genes violates this assumption. Nev-
ertheless, as a small proportion of genes are involved,
results are reliable. According to the convolution structure
(see Section “Model-based background correction”), the
density of the Xj’s is:

f nexpμ,σ ,α(x) = 1
α
exp

(
σ 2

2α2 − x − μ

α

)
� (x̄) , (3)

where x̄ = (x−μ−σ 2/α)/σ . Denoting	 = (μ, σ , α), from
(2), the background corrected intensity for an observed
intensity x is:

Ŝnexp(x|	) = σ

(
x̄ + φ(x̄)

�(x̄)

)
. (4)

Normal-exponentialmodel fit
We consider the data sets (E1) and (E2). For each array,
the following procedure is implemented:

• Computation of the estimators (μ̂, σ̂ , α̂) of the
normexp model with the methods described in [8]:

1. Maximum Likelihood Estimation (MLE) using
both regular and negative probes,

2. Robust Multiarray Analysis (RMA) adapted from
Affymetrix method,

3. NP estimation obtained by the method of
moments applied to negative and regular probes,

4. Bayesian estimation. Note that the bayesian
estimation results are not presented as they are
nearly identical to MLE, as pointed out by Xie
et al [8].

• For each parameter estimation method, plot of the
plug-in density f nexpμ̂,̂σ ,̂α .• Plot of an irregular density histogram of all regular
probe intensities of the array using the R-package

histogram available on the CRAN with default
irregular setting (see [18]). Even though adaptive
irregular histograms are not commonly used to
describe microarray data, they have been proved to
offer a better approximation in a general framework.
Moreover, they appear especially relevant to estimate
microarray distributions which present high
irregularities.

Figure 1 shows the results for this procedure on
one array from (E1) after removal of imperfectly
designed probes (more arrays are presented in Addi-
tional file 1: Section 3.2). Apart from the RMA
method, the estimated density does not fit the den-
sity histogram and even the RMA estimator is not
satisfying from a statistical point of view. One can
remark that RMA underestimates the high expressions
while the other methods tend to overestimate their
contributions.
Besides Xie et al [8] show that the MLE and the NP

estimation provide satisfying estimators of the param-
eters on normexp simulated data. Thus the difference
between the histogram of the observed intensities and the
plug-in density does not come from a poor estimation of
the parameters but results from an unsuitable parametric
model.

A newmodeling: the normal-gammamodel
The poor fitting of the normexp model shown above,
as well as the preliminary observations based on non-
parametric estimation procedures, call for a more suitable
parametric model for Illumina BeadArrays. According to
Section “Previous modelings” the normal assumption for
the negative probes appears relevant. We consider the
gamma distribution as an extension of the exponential
distribution to model the signal intensities. Besides, as
a scale mixture of exponential distributions (see [19]),
the gamma distribution is a natural generalization which
helps to take into account different probe hybridization
behaviors which could count for different exponential
life times. This defines a more flexible parametric model
called the normal-gammamodel that we propose to apply
to Illumina BeadArrays.

The normal-gammamodel
The normal-gamma model is defined as follows. For every
probe j:

Xj = Sj + Bj,

Sj ∼
{

�(θ , k), if j ∈ J ,
0 if j ∈ J0,

Bj ∼ N (μ, σ 2),
Sj ⊥ Bj. (5)
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Figure 1 Normal-exponential fit. Normal-Exponential estimation for one array from (E1) after removal of imperfectly designed probes: irregular
density histogram of all regular probe intensities and the plug-in normexp density of the regular probes with MLE, RMA and NP parameter estimates.

The parameters (μ, σ , k, θ) depend on the given array.
Thismodel offersmore flexibility than the normexpmodel
but requires the estimation of one more parameter.
According to the convolution structure (see Section

“Model-based background correction”), the density of Xj
is the convolution product of the densities of Sj and Bj,
namely:

f ng
μ,σ ,k,θ (x) =

∫
f gamk,θ (t)f normμ,σ (x − t)dt. (6)

This density does not have any analytic expression as
the normexp density (3). Nevertheless, good and fast
numerical approximations can be computed using the
Fast Fourier Transform (fft) and tail approximations to
ensure stability. Our implementation based on fft is
detailed in Additional file 1: Section 7.

Parameter estimation in the normal-gammamodel
The parameters (μ, σ , k, θ) of the normal-gamma distri-
bution are estimated by theMaximum Likelihood Estima-
tor (MLE):

(μ̂, σ̂ , k̂, θ̂) = arg max
(μ,σ ,k,θ)

L
(
(μ, σ , k, θ)|X,X0) (7)

where

L
(
(μ, σ , k, θ)|X,X0) =

∏
j∈J

f ng
μ,σ ,k,θ (Xj) ·

∏
j∈J0

f normμ,σ (Xj)

is the likelihood from the two sets of observations X =
{Xj, j ∈ J} and X0 = {Xj, j ∈ J0} measured on regular
and negative probes, respectively. Thanks to the fft-
based approximation of f ng

μ,σ ,k,θ the maximum likelihood
estimation can be numerically computed using classical
minimization algorithms (see Additional file 1: Section 7).

Background corrected intensity for the normal-gammamodel
Denoting now	=(μ, σ , k, θ), we derive from (2) the back-
ground corrected intensity for an observed intensity x:

Ŝng(x|	) =
∫

sf gamk,θ (s)f normμ,σ (x − s) ds
/
f ng
μ,σ ,k,θ (x)

= kθ f ng
μ,σ ,k+1,θ (x)

/
f ng
μ,σ ,k,θ (x) (8)

using the equality sf gamk,θ (s) = kθ f gamk+1,θ (s) valid for every
s > 0. This formula allows fft-based computations for
the background correction.

Inferenceof negative probes from Illumina detectionp-values
Most publicly available data sets do not present the neg-
ative probe intensities. Nevertheless, for each regular
probe, Illumina provides a detection p-value equal to
the proportion of negative probes which have intensities
greater than that probe on a given array. Following the
idea from Shi et al [20] we propose to infer the negative
probe intensities from the detection p-values (see details
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in Additional file 1: Section 8.1). For the normexp and
the normal-gamma models, the estimates of the parame-
ters and reconstructed signals obtained with the true and
inferred negative probe intensities are compared on the
ten arrays from (E1). We observe that the error resulting
from inference of the negative probe is negligible, with a
relative error of order 10−3 to 10−4 on parameter estima-
tion and 10−4 to 10−5 on signal estimation (see Additional
file 1: Section 8.2).

Results and discussion
Fit on Illumina BeadArray data
Similarly to Section “Previousmodelings”, we compare the
irregular density histogramof the regular probe intensities
with the plug-in normexp densities using RMA, MLE, NP
methods and the plug-in normal-gamma density using a
Maximum Likelihood Estimate of (μ, σ , k, θ) on the data
sets (E1) and (E2). The results, similar along the arrays,
are illustrated in Figure 2 on one array from (E1) (more
plots are presented in Additional file 1: Section 3.2). We
do not add the MLE and NP plug-in density estimates for
the normexp model which have already been shown not
to fit the data.
Thanks to the larger flexibility of the normal-gamma

model, we observe that the distance between the MLE
plug-in normal-gamma density and the histogram of the
intensities is smaller than the corresponding distance

using the normexp model with any estimation procedure.
This graphical result is confirmed numerically using the
L1-distance between the histogram and the reconstructed
density defined by

�1(f̂ , ĥ) =
∫

|f̂ (x) − ĥ(x)| dx, (9)

where f̂ represents one plug-in density estimate using
either the normexp model or the normal-gamma model
and ĥ represents the irregular density histogram obtained
with the R-package histogram. Table 1 presents the
mean of the relative deviation for the normexp estima-
tors with respect to the deviation for the normal-gamma
estimator:

mean

(
�1(f̂i, ĥi)

�1(f̂ ngi , ĥi)

)

where f̂i is a normexp estimator of the regular probes den-
sity, and f̂ ngi is the normal-gamma estimator for individual
i. The mean is computed over the ten arrays from (E1)
(with and without the non specific binding probes) and
over the four arrays from (E2).
The mean absolute deviation is 3 times smaller in favor

of the normal-gamma density with respect to the normexp
density using the RMA estimate, and 4 to 8 with respect
to the normexp model using the MLE or NP estimates.

50 100 150 200 250

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05 normal−gamma

normexp−RMA

Figure 2 Normal-exponential and normal-gamma fit. Normal-Gamma estimation for one array from (E1) after removal of imperfectly designed
probes: irregular density histogram of all regular probe intensities, plug-in normexp density with RMA estimate and plug-in normal-gamma density
with MLE estimate.
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Table 1 Deviation between reconstructed intensities and
observation histogram

Human Human Mice

(all probes) (remove bad probes)

nexp MLE 7.09 5.14 4.83

nexp RMA 2.96 3.18 2.71

nexp NP 7.69 5.50 5.29

Abs Dev normgam 0.17 0.21 0.20

Average deviation between normexp reconstructed density and histogram
divided by the deviation between normal-gamma reconstructed density and
histogram (First row: RMA estimator; second row: MLE normexp estimator; third
row: NP normexp estimator). The fourth row gives the mean deviation of the
normal-gamma estimator as a reference. The mean is computed over the ten
arrays from (E1) with (first column) or without (second column) the non specific
binding probes and over the four arrays from (E2) (third column).

Quality of estimation on simulated data
The quality of estimation of the normal-gamma model is
assessed on the simulation data set (S1). The first two sets
of parameters are non degenerate normal-gamma param-
eters, more realistic for modeling Illumina microarrays as
shown in Section “Fit on Illumina BeadArray data”. They
are used to evaluate the MLE normal-gamma parameter
estimation and validate the associated background cor-
rection, and to quantify the improvement brought by the
new normal-gamma background correction. The last four
sets are actually degenerate normal-gamma parameters
where the shape parameter k is set to 1, corresponding to
normexp data, which enables to assess the potential loss
of precision in parameter estimation brought by a more
flexible modeling.

Parameter estimation
For each repetition � = 1, . . . ,N we compute the normal-
gamma MLE (μ̂�, σ̂ �, k̂�, θ̂ �) of the parameters. Table 2
presents the relative L1-error for each parameter β ∈
{μ, σ , k, θ}:

1
N

N∑
�=1

∣∣∣β − β̂�
∣∣∣ /β .

The parameter estimation is of excellent quality for the
gaussian distribution and of good quality for the gamma
distribution.

Table 2 Relative L1-error for each parameter in the
normal-gammamodel usingMLE estimates

μ σ k θ

set 1 7.1E-4 5.6E-3 9.3E-3 1.7E-2

set 2 1.3E-3 5.5E-3 1.0E-2 1.8E-2

set 3 3.5E-3 1.6E-2 6.9E-3 8.3E-3

set 4 4.5E-3 1.3E-2 8.9E-3 9.8E-3

set 5 2.1E-3 7.6E-3 2.6E-2 1.7E-2

set 6 3.5E-3 7.2E-3 3.9E-2 2.4E-2

To check wether the introduction of a fourth parameter
in our model leads to a loss of precision in the parameter
estimation, we compare the relative L1 errors of the MLE
parameter estimation in the normal-gamma and normexp
models using the parameter sets 3 to 6, corresponding to
normexp data. The results summarized in Table 3 indicate
that the quality is unchanged for the variance parameter
and that we pay a price of order 2 for μ and θ . Never-
theless, since the relative errors in these cases have order
10−2, this loss is negligible.

Background corrected intensity
We now study the performance of the normal-gamma
background correction (BgC) obtained in (8) with respect
to the existing BgC methods in terms of quality of esti-
mation of the signal on the simulated data set (S1). We
compare the following BgC methods, detailed in [8]:

0. Normal-gamma BgC in (8) with true parameters,
1. Normal-gamma BgC in (8) with MLE parameters,
2. Normal-exponential BgC in (4) with MLE

parameters (referred to as normexp-MLE),
3. Normal-exponential BgC in (4) with RMA

parameters (referred to as normexp-RMA),
4. Normal-exponential BgC in (4) with NP parameters

(referred to as normexp-NP),
5. Background subtraction:

Ŝsub(x) = max
(
x − median{Xj, j ∈ J0}, 0

)
.

These methods are further denoted by Ŝ(i) for i =
0, . . . , 5. For methods 1 to 4, the BgC is a two-step pro-
cedure: the parameters are estimated and then plugged
respectively into (8) for method 1, and into (4) for meth-
ods 2 to 4. From a practical point of view, as the parame-
ters are unknown, Ŝ(0) is unavailable. Nevertheless, as the
result of a procedure with a perfect first estimation step,
it allows a comparison to quantify the performance of the
second step.
For each parameter set and for each BgC method Ŝ =

Ŝ(i), i = 0, . . . , 5 we compute the Mean Absolute Devia-
tion (MAD):

Table 3 Error in parameter estimation

μ σ θ

set 3 1.1 1.0 1.6

set 4 1.2 1.0 1.8

set 5 2.1 1.0 2.3

set 6 1.9 1.0 1.9

Ratio between the relative L1 errors of the MLE estimation in the normal-gamma
and in the normexp models for (μ, σ , θ) from normexp data.
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MAD(̂S) = 1
N

N∑
�=1

⎛⎝ 1
nreg

nreg∑
j=1

∣∣∣̂S(X�
j |	̂�) − S�

j

∣∣∣
⎞⎠

where 	̂� = (μ̂�, σ̂�, k̂�, θ̂�) denotes for each simulated
array � the estimated parameters corresponding to the
used methods with the following conventions: 1/ 	̂� is the
true parameters for i = 0; 2/ k̂� = 1 for i = 2, . . . , 4 corre-
sponding to the exponential distribution; 3/ 	̂� represents
themedian overX0,� for i = 5. Simulation results are sum-
marized in Table 4 for the parameter sets 1-6. The five first
columns correspond to the excess risk ratio:

R(i) = MAD(̂S(i))/MAD(̂S(0)), for i = 1, . . . , 5 (10)

and the last column indicates the reference risk
MAD(̂S(0)).
The normal-gamma BgC provides the same quality

when the parameters are known or estimated. This holds
when the data are generated either from a normal-gamma
or a normexp model. Normexp-NP shows good behaviors
when the data come from a normexp model but has a risk
increase of order 60% if the data come from a normal-
gamma model. Normexp-MLE provides good results for
normal-exponential data but fails when the data come
from a normal-gamma model. Not surprisingly, as already
pointed by Xie et al [8], normexp-RMA has a poor behav-
ior. The background subtraction method with a maximal
quality loss of 32% offers an acceptable alternative in terms
of risk. Indeed, most of the intensities being small, putting
them to 0 does not affect significantly the MAD value.
Let us recall, however, that from a practical point of view,
the major disadvantage of background subtraction is the
elimination of a considerable number of probes.
In practical experiments, the data are usually trans-

formed before the analysis. To address this issue, the
MAD is computed on log-transformed intensities (see
Additional file 1: Section 4 for details), and the excess

Table 4 Excess risk ratio of background corrected
raw-scale intensities

(μ,σ , k,θ) R(1) R(2) R(3) R(4) R(5) MAD(̂S(0)
)

set 1 1.00 4.16 1.77 1.52 1.16 2.34

set 2 1.00 4.10 1.90 1.66 1.20 11.7

set 3 1.00 1.00 4.69 1.00 1.00 4.57

set 4 1.00 1.00 3.71 1.00 1.02 31.4

set 5 1.00 1.00 2.11 1.00 1.15 2.95

set 6 1.00 1.00 1.46 1.00 1.35 17.2

Mean Absolute Deviation (MAD) of the background corrected intensities for
methods Ŝ(j), j = 1, . . . , 5 divided by the MAD for the theoretical normal-gamma
BgC with the true parameters (method Ŝ(0)), from the simulation data set (S1).
Column 1: normal-gamma, column 2: normexp-MLE, column 3: normexp-RMA,
column 4: normexp-NP, column 5: background subtraction. The MAD of the
theoretical normal-gamma deconvolution with the true parameters is given as
reference in column 6.

risk ratio is displayed in Table 5. The normal-gamma BgC
presents a smaller error of estimation than the methods
based on the normexp model. The MAD from normexp-
MLE generates the highest value, and normexp-RMA and
normexp-NP show a a similar moderate excess risk. Nev-
ertheless the differences between the BgC methods are
less pronounced than the one observed at the raw scale.
However, with an excess risk ratio between 16% and 33%,
the normexp methods notably under perform the BgC
based on the normal-gamma model in terms of signal
estimation.
The MAD computation offers a global comparison of

the various BgC methods in terms of signal estimation.
We refine this analysis by examining the absolute devia-
tion (AD) of the estimated signal for each signal intensity
at the raw and log scales, respectively defined as:

AD(Sj) = 1
N

N∑
�=1

∣∣∣̂S(X�
j |	̂�) − S�

j

∣∣∣
AD(log(Sj)) = 1

N

N∑
�=1

∣∣∣log (̂S(X�
j |	̂�)

)
− log

(
S�
j
)∣∣∣

The first row of Figure 3 displays the logarithm of the
AD at the raw scale, as a function of the log-signal inten-
sity. We observe that normexp-MLE presents a larger
AD for all values of the signal. On small intensities,
the normal-gamma BgC outperforms the other meth-
ods, whereas normexp-RMA and normexp-NP present a
smaller deviation on moderate intensities. For high val-
ues of the signal, normal-gamma shows a smaller error of
estimation together with normexp-NP.
The absolute deviation on log-transformed intensities

is presented on the second row of Figure 3. The normal-
gamma BgC still presents the smallest error of estima-
tion on weak intensities, but is outperformed by the
other methods on moderate intensities. The four meth-
ods present similar AD values on high intensities. Besides,

Table 5 Excess risk ratio of background corrected
log-transformed intensities

(μ,σ , k,θ) R(1) R(2) R(3) R(4)

set 1 1.00 1.32 1.18 1.17

set 2 1.00 1.28 1.16 1.16

set 3 1.00 1.00 2.98 1.00

set 4 1.00 1.00 2.45 1.00

set 5 1.00 1.00 1.81 1.00

set 6 1.00 1.00 1.39 1.00

Mean Absolute Deviation (MAD) of the background corrected intensities for
methods Ŝ(j), j = 1, . . . , 5 divided by the MAD for the theoretical normal-gamma
BgC with the true parameters (method Ŝ(0)), from the simulation data set (S1).
Column 1: normal-gamma, column 2: normexp-MLE, column 3: normexp-RMA,
column 4: normexp-NP.
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Figure 3 Absolute deviation of the signal estimation on
simulated data. Logarithm of the Absolute Deviation of estimated
signal on raw scale (first row), Absolute Deviation of log-transformed
estimated signal (second row) and signal log-density (third row).
Normal-gamma BgC (purple) and normexp BgC with MLE (pink), RMA
(blue) and NP (green) parameters.

we observe than the error of estimation for all methods
increases as the signal become weaker.

Robustness
In Section “Previous modelings”, we have underlined the
slightly heavier right tail of the negative probe distribu-
tion. To ensure that the estimation remains acceptable
under the assumption of an imperfect noise parametri-
sation, we compare the robustness of the normal-gamma
method with normexp-NP, stated as the most robust by
[8] and which we found competitive (see Section “Model-
based background correction”). The errors of estimation
computed from the simulation data set (S2) are presented
in Additional file 1: Section 5. Both methods are robust
with respect to non-normal noise distribution, and the
normal-gamma BgC still offers a better quality of esti-
mation than normexp-NP when the noise distribution
departs from normality.
In conclusion, the normal-gamma background correc-

tion globally offers a better quality in signal estimation
with respect to the normexp methods. Nevertheless, this
improvement depends on the scale considered and does
not steadily hold over the range of intensities.

Operating characteristics
Beyond the quality of estimation of the signal, the per-
formance of a BgC procedure in practical experiments
depends on its characteristics in terms of bias and vari-
ance. In this section, we compare the operating charac-
teristics of the normal-gamma and normexp BgC both on
simulated and spike-in data. The results are gathered in
Figure 4. The background subtraction leading to probe
deletion is not further considered. The data from (E3) are
background corrected with the methods 1 to 4 described
in Section “Background corrected intensity”. Quantile nor-
malization based on both regular and negative probe
intensities is applied, followed by log-transformation. The
same procedures are implemented on the simulation data
sets (S3) and (S4).

Bias-precision trade-off
The quality of a pre-processing method in microarray
experiments can be characterised by its ability to distin-
guish between distinct values of the signal. Most of the
procedures underestimate the signal fold-changes. This
bias in fold-change estimation, called compression, has
a negative impact on differential analysis. But the effi-
ciency of a pre-processing method also depends on its
precision, characterised by the variations of the corrected
intensity for a given value of the signal. The trade-off
between bias and precision is an indicator of the perfor-
mance of a procedure. This issue can be understood by the
example of a t-test statistic for a given probe differentially
expressed between two groups: an important compression
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Figure 4 Operating characteristics of the BgCmethods on spike-in and simulated data. Row 1: average spike intensities (left) and standard
deviation of spike replicates (right) for all non-zero spike concentrations. Row 2 to 4: average intensity (left) and standard deviation of replicates
(right) as a function of signal intensity. Row 2: normal-gamma simulation in data set (S3) (parameter set 7); Row 3: gamma signal and empirical
background noise distribution (data set (S4)); Row 4 normal-exponential simulation in data set (S3) (parameter set 9).
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attenuates the difference of average intensities between
the two groups, whereas a poor precision generates a high
variance term in the denominator, which reduces the value
of the test statistic.
The compression and precision obtained with the four

BgC methods on the data set (E3) are presented on the
first row of Figure 4. The first column displays the aver-
age intensity over the 34 spike bead types for each spike
concentration. A similar saturation effect is observed for
large concentrations with the four methods: for concen-
trations larger than 100pm, the relationship between log-
intensity and log-concentration is not linear. Moreover, as
the concentration decreases, a compression of the signal
is observed with all the methods, but is significantly less
pronounced with the normal-gamma BgC.
The second column presents the average standard devi-

ation between replicates over all spike bead types. We
observe that the improvement in bias brought by the
normal-gamma model is at the cost of a poorer pre-
cision. More generally, the precision increases with the
compression for the four methods.

Innate offset
Shi et al [10] highlight the role played by the ”innate
offset”, defined as the typical intensity assigned to the
non-expressed genes by a pre-processing procedure, in
the unbalanced bias-variance trade-off of the various BgC
methods: the strategies which show the smallest innate
offset usually generate less bias but present a poorer pre-
cision. On spike-in data sets, the innate offset is defined
as the mean of the intensities measured on spike probes
with concentration zero. The results displayed in Table 6
confirm the observations from Shi et al [10]: as underlined
above, the normal-gamma BgC exhibits the smallest pre-
cision associated with the smallest bias with a slope from
the linear regression of intensities on log-concentrations
close to 1. The largest offset combined with the high-
est precision and the largest bias are observed for
normexp-MLE.
Shi et al [10] propose to compare the pre-processing

methods in a more equal way by adding an offset to
the background-corrected quantile-normalised intensities
before log-transformation, in order to align the innate off-
sets of the various pre-processing strategies. Our results

Table 6 Innate offset and operating characteristics

BgC Innate offset Stand. Dev. Slope

normexp MLE 23.4 0.095 0.74

normexp NP 12.4 0.100 0.80

normexp RMA 6.9 0.110 0.86

normal-gamma 1.5 0.200 0.99

Innate offset, average standard deviation of spike replicates and slope of the
linear regression of the spike average intensity on the log-concentration.

presented in Additional file 1: Section 6.1, indicate that
the characteristics between the four BgC present more
similarity after equalizing the innate offsets, but a slight
difference remains between normexp-MLE and the other
BgC methods on small intensities. Nevertheless, prior to
the offset equalisation, the methods studied in this paper
do not present the large range of bias-precision trade-
offs observed in the pre-processing strategies considered
in [10]. In this context, the equalisation of the innate off-
sets does not appear sufficient to completely erase the
differences between BgC methods.

Operating characteristics on simulated data
In order to reinforce the validation of the normal-gamma
parametrisation for the noise-signal distribution, we com-
pare the operating characteristics obtained on spike-in
data to the ones provided by the normal-gamma simu-
lated data from set (S3). The spike concentration, used as
references to assess the bias and precision of the proce-
dures on spike-in data, is replaced by the true value of
the signal. The results are displayed on the second row of
Figure 4. The first column presents the average intensity
as a function of the signal log-intensity, and the standard
deviation of the replicates is shown in the second col-
umn. The trends are very similar to the ones observed on
spike-in data, with a small difference for the variance with
normexp-RMA. Besides, we observe that the compression
in small intensities generated by the four BgC methods is
purely a statistical effect. However, the signal attenuation
in high intensities observed on spike-in data is not present
on simulated data. Indeed, it has already been suggested
that this phenomenon could come from saturation in light
intensity on microarrays.
Furthermore, we address the departure from normal-

ity observed on the negative probe distribution by sim-
ulating microarrays with a gamma distributed signal
and a non-normal background noise (data set (S4)). In
order to get a realistic noise distribution, the back-
ground noise and the negative probe intensities are
sampled from the quantile-normalised negative probe
intensities from all arrays in (E3) (see details in Addi-
tional file 1: Section 2.2). The operating characteristics
of the four BgC methods are presented on the third
row of Figure 4. We observe that the slight difference
between normal-gamma simulations and spike-in data
with normexp-RMA, observed on the second row of
Figure 4, is partially corrected by generating a non-normal
background noise.
The same quantities are computed based on normal-

exponential simulated data with parameter sets 8 and 9.
The results are displayed on the fourth row of Figure 4
for set 9, and on Figure G in Additional file 1 for set
8. The comparison between the operating characteristics
of the four BgC methods are absolutely not consistent
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with the observations from the spike-in data. In particular,
the normal-exponential simulated data provide almost
identical bias and precision curves for normal-gamma,
normexp-NP and normexp-MLE, whereas these methods
exhibit notable differences on spike-in data.
The parallel drawn between the operating characteris-

tics of the four BgC methods on spike-in and simulated
data confirms that the gamma model represents a much
more accurate parametrisation for the signal distribution
than the usual exponential model.

Differential expression analysis
The BgC methods are compared from a practical point of
view through a differential expression analysis performed
on the dilution data set (E4), based on the hierarchical
linear model approach from Smyth [21] implemented in
the limma package. This procedure provides p-values
from a moderated t-statistic. A first analysis is run on the
two pure samples (proportions 100%/0% and 0%/100%)
to define the ”true” differentially expressed (DE) and
non-differentially expressed probes. A second differential
expression analysis performed on the two mixed samples
(proportion 75%/25% and 25%/75%) is used to assess the
performance of the BgC methods. The moderated t-test
statistic implemented in the limma package includes a
variance term representing the variation of the gene inten-
sity across all arrays, as well as hyperparameters computed

from the whole data set intensities. Therefore, in order to
get independent results, the two analyses are performed
on separate linear models.
The estimate proportion of DE probes in pure samples

computed with a convex decreasing density procedure
[22] is 28% for all methods. Thus, in order to be conserva-
tive, we define the probes with the 20% smallest p-values
as ”true DE”, and the probes with the 40% highest p-values
as ”true non-DE”. Moderated t-statistic values are then
computed from the comparison of the two mixed sam-
ples. The p-values from true DE and non-DE probes are
ordered. The area under the ROC curve (AUC) is used to
quantify the sensitivity of each BgC method, the largest
value of the AUC corresponding to the highest sensitiv-
ity. The four methods present similar AUC values but the
normal-gamma BgC is slightly less competitive.
A similar analysis is run with the addition of an off-

set prior to log-transformation. Figure 5 displays the
AUC values as a function of the added offset with each
BgC method. The values observed for an offset equal
to zero correspond to the sensitivity when a simple log-
transformation is applied. As already highlighted by Shi
et al [10], we observe that the addition of a moderate off-
set increases the sensitivity of all BgC methods. For any
value of the offset, the normexp methods outperform the
normal-gamma. The results obtained with the different
normexp BgC methods are very similar, but we note that
the highest sensitivity is achieved with normexp-RMA for

Figure 5 AUC as a function of added offset. AUC from moderated t-test for mixed sample differential analysis in data set (E4) (proportion
25%/75% and 75%/25%) for different values of offset.
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offsets smaller than 50, and with normexp-MLE for offsets
larger than 50.
The BgC methods can also be compared regarding their

ability to order a set of measured intensities correspond-
ing to increasing or decreasing probe concentrations.
This framework can refer, for example, to a longitudinal
study where the gene expression is repeatedly measured
at different times. The correlation between the mixture
proportion and the intensity is analysed on the dilu-
tion data set (E5). For the true DE probes, the inten-
sity is expected to be increasing or decreasing with the
proportion.
The dilution data sets (E4) and (E5) are based on the

same pure biological samples. Therefore, true DE and
non-DE probes defined on (E4) can be considered in the
analysis of the data from (E5). The BeadChips used in
experiments (E4) and (E5) are different, but some bead
types are present on both devices. Bymapping the annota-
tion files from both BeadChips, the sets of probes respec-
tively defined as DE and non-DE on (E4), and present on
(E5) are extracted.
For each probe, the Spearman correlation coefficient

is computed between the vector of mixture proportions
and the observed intensities. This provides a test statis-
titic based on the ranking of the background corrected
intensities, which allows a comparison of the BgC meth-
ods independently from the scale at which the data are
analysed, provided that the transformation applied to the
data is increasing. In particular, the results are not affected
by the addition of an offset. The correlation coefficient is
computed separately on microarrays with starting RNA
quantities 250ng, 100ng, 50ng and 10ng. The coefficient
is expected to be close to 1 in absolute values for the DE
probes, and close to 0 for the non-DE. The probes are
ranked according to their correlation coefficient value, and
the resulting AUCs for each starting RNA quantity are
displayed in Table 7. We observe that the normal-gamma
BgC is slightly but steadily less sensitive that the other
methods. The AUCs observed with the different normexp
estimates are very similar and do not allow to assess the
superiority of one method over the others.

Table 7 AUC from Spearman correlation test

Normal- Normexp- Normexp- Normexp-

gamma MLE RMA NP

250ng 0.9778 0.9812 0.9813 0.9820

100ng 0.9774 0.9807 0.9809 0.9808

50ng 0.9805 0.9834 0.9832 0.9841

10ng 0.9782 0.9818 0.9787 0.9816

AUC from Spearman correlation test between the proportion and the intensity
in the dilution data set (E5), for the four BgC methods, and the four RNA starting
concentrations.

Conclusions
In many microarray experiments, background noise cor-
rection is an important issue in order to improve the mea-
surement precision. Model-based background correction
procedures have been developed as an alternative to the
default background subtraction from Illumina BeadStu-
dio which has proved to remove informative probes. The
usual normal-exponential model considered for the noise-
signal distribution has already been pointed out as inap-
propriate for Illumina BeadArrays [12]. Our observations
confirm this result by highlighting the poor fitting of the
normexp reconstructed densities on observed intensities
with three different parameter estimates. We propose an
alternative model based on a more flexible parametrisa-
tion of the signal which is assumed to follow a gamma
distribution, as well as the associated background cor-
rection. The reconstructed density offers a better fit of
the distribution of the observed intensities, validating this
new model as more appropriate for Illumina microarrays.
Moreover, the estimators based on the normal-gamma
model are likely to apply to other microarray technolo-
gies including Affymetrix and single color Agilent, as an
extension of the normexp model.
We compare the performance of the background cor-

rection procedures based on the normal-gamma and
normal-exponential models on simulated and experimen-
tal data sets. Our simulation study indicates that the
normal-gamma model brings an overall improvement in
terms of signal estimation, characterised by a smaller
average difference between the true signal and the back-
ground corrected intensity. But surprisingly, the differ-
ential expression analysis run on two dilution data sets
shows that the improvement in terms of parametrisation
does not have a positive impact on practical experiments,
the normal-gamma correction exhibiting a slightly poorer
sensitivity than the normexp methods. This result may be
explained in two ways.
On one side, the operating characteristics of the back-

ground correction procedures are compared on a set of
spike-in data, which allow to connect the probe intensity
with the concentration of the target gene in the biological
sample. We note that the normal-gamma model generates
less bias than the normexp methods, but at the cost of a
loss in precision.With the addition of an offset prior to the
log-transformation, which provides balance in the bias-
precision trade-off of the different methods, the operating
characteristics appear similar, suggesting comparable per-
formance.
On the other side, we examine the error in signal esti-

mation as a function of the signal on log-scale simulated
data. The normal-gamma model outperforms the other
methods on small intensities, but is less competitive on
moderate intensities. Due to the marked compression of
the recovered intensity when the signal decreases, the
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improvement in terms of signal estimation for the small
intensities has a weak effect on the differential expres-
sion analysis. Thus, the smaller average error of estimation
observed with the normal-gamma background correc-
tion does not result in a higher sensitivity in practical
experiments.
Besides, the parallel drawn between the operating

characteristics of the different background corrections
obtained, on the one hand with spike-in data and on
the other hand with normal-gamma simulated data,
highlights high similarities. The simulations from the
normal-gammamodel recover subtile differences between
background correction procedures, whereas simulations
from the normexp model totally fail to reproduce the
trends observed on spike-in data. These considerations
enhance the validation of the normal-gamma model
for Illumina microarrays, and illustrate the potential of
the normal-gamma simulations for the comparison of
pre-processing procedures. Furthermore, the similarities
between the observations from spike-in and simulated
data are increased by sampling the background noise from
the empirical negative probe distribution which suggests
that an improvement in modeling could be brought by a
non-normal parametrisation of the background noise.
In conclusion, this paper addresses the lack of fit of

the usual normal-exponential model by proposing a more
flexible parametrisation of the signal distribution as well
as the associated background correction. This new model
proves to be considerably more accurate for Illumina
microarrays, but our results indicate that the improve-
ment in terms of modeling does not lead to a higher
sensitivity in differential analysis. Nevertheless, this real-
istic modeling makes way for future investigations, in
particular to examine the characteristics of pre-processing
strategies.

Endnote
ahttp://www.bioconductor.org
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Additional file 1: SupplementaryMaterial 1 provides a description of
the simulations, computing details and additional figures.

Additional file 2: SupplementaryMaterial 2 gathers the scripts used
to produce the tables and figures.

Additional file 3: SupplementaryMaterial 3 is a zip file which
contains three text files with the observed intensities of the ten
microarrays from data set (E1).
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Cohort profile: the Norwegian women and cancer
study–NOWAC–Kvinner og kreft. Int J Epidemiol 2008, 37:36–41.

15. McCall MNN, Irizarry RAA: Consolidated strategy for the analysis of
microarray spike-in data. Nucleic Acids Res 2008, 3:e108.

16. The MicroArray Quality Control (MAQC) project shows inter- and
intraplatform reproducibility of gene expression measurements.
Nat Biotechnol 2006, 25(9):11–51.

17. Lynch AG, Hadfield J, Dunning MJ, Osborne M, Thorne NP, Tavaré S: The
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