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Parameter estimation in multi-dimensional diffusion models
with only one coordinate observed is highly relevant in many bi-
ological applications, but a statistically difficult problem. In neuro-
science, the membrane potential evolution in single neurons can
be measured at high frequency, but biophysical realistic models
have to include the unobserved dynamics of ion channels. One such
model is the stochastic Morris-Lecar model, defined by a non-linear
two-dimensional stochastic differential equation. The coordinates
are coupled, i.e. the unobserved coordinate is non-autonomous, the
model exhibits oscillations to mimick the spiking behavior, which
means it is not of gradient-type, and the measurement noise from
intra-cellular recordings is typically negligible. Therefore the hid-
den Markov model framework is degenerate, and available meth-
ods break down. The main contributions of this paper are an ap-
proach to estimate in this ill-posed situation, and non-asymptotic
convergence results for the method. Specifically, we propose a se-
quential Monte Carlo particle filter algorithm to impute the un-
observed coordinate, and then estimate parameters maximizing a
pseudo-likelihood through a stochastic version of the Expectation-
Maximization algorithm. It turns out that even the rate scaling
parameter governing the opening and closing of ion channels of
the unobserved coordinate can be reasonably estimated. An exper-
imental data set of intracellular recordings of the membrane poten-
tial of a spinal motoneuron of a red-eared turtle is analyzed, and
the performance is further evaluated in a simulation study.

1. Introduction. In neuroscience, it is of major interest to under-
stand the principles of information processing in the nervous system,
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and a basic step is to understand signal processing and transmission in
single neurons. Therefore, there is a growing demand for robust meth-
ods to estimate biophysical relevant parameters from partially observed
detailed models. Statistical inference from experimental data in bio-
physically detailed models of single neurons is difficult. Often these
models are compared to experimental data by hand-tuning to reproduce
the qualitative behaviors observed in experimental data, but without
any formal statistical analysis. It is of particular interest to estimate
conductances, which reflect the synaptic input from the surrounding
network. These can be estimated from intracellular recordings, where
the neuronal membrane potential is recorded at high frequency, and
are typically done using only subthreshold fluctuations, ignoring the
dynamics during action potentials [3, 4, 7, 36, 40, 43]. The aim of this
article is to estimate such biophysical parameters during the dynamics
of spiking from intra-cellular data.

The Morris-Lecar model [37] is a simple biophysical model, and a pro-
totype for a wide variety of neurons. It is a conductance-based model
[21], introduced to explain the dynamics of the barnacle muscle fiber. It
is given by two coupled first order differential equations, the first mod-
eling the membrane potential evolution, and the second the activation
of potassium current. If both current and conductance noise should be
taken into account, the stochastic Morris-Lecar model arises, where dif-
fusion terms have been added on both coordinates. If one of these noise
sources are zero, a hypoelliptic diffusion arises leading to singular tran-
sition densities and particular statistical challenges [39, 44]. Typically,
the membrane potential will be measured discretely at high frequency,
whereas the second variable cannot be observed. Our goal is to estimate
model parameters from discrete observations of the first coordinate in
the non-singular case of non-negligible noise on both coordinates. This
includes estimation of a central rate parameter characterizing the chan-
nel kinetics of the unobserved component, which we believe has not been
done before.

Estimation in these conductance-based models is not straightforward.
Because of the coupling between the coordinates of the stochastic differ-
ential equation (SDE), the unobserved coordinate is non-autonomous,
and the model does not fit into the (non-degenerate) Hidden Markov
Model (HMM) framework, as explained in Section 2.3. Furthermore,
the diffusion is not time reversible and the likelihood is generally not
tractable. Thus, the problem of inference is complex. The literature con-
tains various methodologies when all the coordinates are observed [1, 6,
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17, 30, 38, 45, 46] or the hidden state is Markovian [28]. They strongly
rely on the Markov property and are hard to generalize to the non-
Markovian case we are studying. In the non-Markovian case, methods
are mainly based on data augmentation. The idea is that the likeli-
hood can be approximated given the entire path or a sufficient parti-
tion of it. Therefore the unobserved coordinates are treated as missing
data and are imputed. Most methods propose to approximate the tran-
sition density by the Euler-Maruyama scheme and consider a Bayesian
point of view to estimate the posterior distribution of the parameters
[18, 19, 23, 24]. [23] study a model similar to us but with low frequency
data. So they need to impute data between observations, which is com-
putationally costly. Furthermore, there exists a strong dependence be-
tween the imputed sample paths and the diffusion coefficient and it is
not possible to estimate the diffusion parameter with this kind of ap-
proach. An alternative is reparametrisation of the diffusion but is lim-
ited to scalar diffusions [42] or an autonomous hidden coordinate [31].

In this paper, we propose to estimate the parameters with a maxi-
mum likelihood approach. We approximate the SDE through an Euler-
Maruyama scheme to obtain a tractable pseudo-likelihood. Then we con-
sider the statistical model as an incomplete data model, and maximize
the pseudo-likelihood through a stochastic Expectation-Maximization
(EM) algorithm, where the unobserved data are imputed at each iter-
ation of the algorithm. We are in the setting of high frequency data so
we do not need to impute data between observations, but our approach
could be extended to that type of data as well. A similar but different
method has been proposed by [27], where up to 104 parameters are es-
timated in a detailed multi-compartmental single neuron model. How-
ever, only parameters entering linearly in the loss function are consid-
ered, and channel kinetics are assumed known. It is a quadratic opti-
mization problem solved by least squares, and shown to work well for
low noise and high frequency sampling. When either the discretization
step or the noise increase, a bias is introduced. In [26] they extend the
estimation to allow for measurement noise, first smoothing the data by
a particle filter, and then maximizing the likelihood through a Monte
Carlo EM-algorithm. Because of the measurement noise, the model fits
into the HMM framework and they can use a standard particle filter.
But again, only parameters entering linearly in the pseudo-likelihood
are considered. In particular, all parameters of the hidden coordinate
are assumed known.

Here, we also want to estimate parameters from the hidden coordi-
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nate and we do not consider measurement noise. We propose to impute
the hidden non-Markovian path in the stochastic EM algorithm with
a Sequential Monte Carlo (SMC) algorithm. Monte-Carlo methods for
non-linear filtering are widely spread, with, among other algorithms, se-
quential importance sampling, sequential importance sampling with re-
sampling (SISR), auxiliary SISR, and stratified resampling [see 8, for a
general presentation]. All SISR algorithms are now called SMC. Most of
them are designed for HMM. In the specific setting of multi-dimensional
SDEs, [10] proposes a particle filter for a two-dimensional SDE, where
the second equation is autonomous. Although the first coordinate is ob-
served at discrete times, they propose to simulate it at each iteration
of the filter. [20] generalises this particle filter to a non-autonomous
hidden path but with drift of gradient type. In the ergodic case this cor-
responds to a time reversible diffusion. In particular, models exhibiting
oscillations are not covered, which is the case of any realistic neuronal
model.

These algorithms cannot be directly applied because we are study-
ing a multi-dimensional coupled SDE that is not of gradient type. Thus,
we consider the SMC algorithm proposed by [16] for more general dy-
namic models than HMM. As we combine this SMC with the Stochas-
tic Approximation Expectation-Maximization (SAEM) algorithm which
maximizes the pseudo-likelihood based on an Euler-Maruyama approx-
imation of the SDE defining the model, we need non-asymptotic conver-
gence results for the SMC to obtain the convergence of the SAEM-SMC.
Non-asymptotic results for SMC, such as deviation inequalities, have
been proposed in the literature only in the HMM framework [9, 10, 14,
33], and the Markovian structure of the hidden path is a key element in
the proofs. A major contribution here is that we are able to extend this
result to a SMC for a non-Markovian hidden path. Then we prove that
the estimator obtained from this combined SAEM-SMC algorithm con-
verges with probability one to a local maximum of the pseudo-likelihood.
We also prove that the pseudo-likelihood converges to the true likelihood
as the time step between observations go to zero.

The paper is organized as follows: In Section 2 the model is presented,
the noise structure is motivated, and the pseudo likelihood arising from
the Euler-Maruyama approximation is found. In Section 3, the filter-
ing problem is presented, as well as the SMC algorithm and deviation
inequalities. In Section 4 we present the estimation procedure and the
assumptions needed for the convergence results to hold. In Section 5 we
apply the method on an experimental data set of intracellular record-
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ings of the membrane potential of a motoneuron of a turtle, and in Sec-
tion 6 we conduct a simulation study to document the performance of
the method. Proofs and technical results can be found in the Appendix.

2. Stochastic Morris-Lecar model.

2.1. Exact diffusion model. The stochastic Morris-Lecar model in-
cluding both current and channel noise is defined as the solution to

(1)
{
dVt = f(Vt, Ut)dt+ γdB̃t,
dUt = b(Vt, Ut)dt + σ(Vt, Ut)dBt,

where

f(Vt, Ut) =
1

C
(−gCam∞(Vt)(Vt − VCa)− gKUt(Vt − VK)− gL(Vt − VL) + I) ,

b(Vt, Ut) = (α(Vt)(1− Ut)− β(Vt)Ut) ,

m∞(v) =
1

2

(
1 + tanh

(
v − V1

V2

))
,

α(v) =
1

2
φ cosh

(
v − V3

2V4

)(
1 + tanh

(
v − V3

V4

))
,

β(v) =
1

2
φ cosh

(
v − V3

2V4

)(
1− tanh

(
v − V3

V4

))
,

and the initial condition (V0, U0) is random with density p(V0, U0). Pro-
cesses (B̃t)t≥t0 and (Bt)t≥t0 are independent Brownian motions. The vari-
able Vt represents the membrane potential of the neuron at time t, and
Ut represents the normalized conductance of the K+ current. It varies
between 0 and 1, and can be interpreted as the probability that a K+ ion
channel is open at time t. The equation for f(·) describing the dynamics
of Vt contains four terms, corresponding to Ca2+ current, K+ current,
a general leak current, and the input current I. The functions α(·) and
β(·) model the rates of opening and closing of the K+ ion channels. The
function m∞(·) represents the equilibrium value of the normalized Ca2+

conductance for a given value of the membrane potential. The parame-
ters V1, V2, V3 and V4 are scaling parameters; gCa, gK and gL are conduc-
tances associated with Ca2+, K+ and leak currents; VCa, VK and VL are
reversal potentials for Ca2+, K+ and leak currents; C is the membrane
capacitance; φ is a rate scaling parameter for the opening and closing of
the K+ ion channels; and I is the input current.
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FIG 1. Simulated trajectory of the stochastic Morris-Lecar model: (Vt) as a function of
time (left, top), (Ut) as a function of time (left, bottom), and (Ut) against (Vt) (right). Pa-
rameters are given in Section 6. Time is measured in ms, voltage in mV, the conductance
is normalized between 0 and 1.

Various noise sources are present in single neurons, and they act on
many different spatial and temporal scales [21, 35]. A main component
arises from the synaptic bombardment from other neurons in the net-
work, and in the diffusion limit appears as an additive noise on the
current equation. Parameter γ scales this current noise. Conductance
fluctuations caused by random opening and closing of ion channels leads
to multiplicative noise on the conductance equation. Function σ(Vt, Ut)
models this channel or conductance noise. We consider the following
function that ensures that Ut stays bounded in the unit interval if σ ≤ 1

[13]: σ(Vt, Ut) = σ
√

2 α(Vt)β(Vt)
α(Vt)+β(Vt)

Ut(1− Ut). A trajectory of the model is
simulated in Fig. 1. The peaks of (Vt) correspond to spikes of the neu-
ron.

2.2. Observations and approximate model. Data are discrete mea-
surements of (Vt) while (Ut) is not measured. We denote t0 ≤ t1 ≤
· · · ≤ tn the discrete observation times. We denote Vi = Vti the obser-
vation at time ti and V0:n = (Vt0 , . . . , Vtn) the vector of all the observed
data. Let θ ∈ Θ ⊆ Rp be the vector of parameters to be estimated. We
consider estimation of all identifiable parameters of the observed co-
ordinate, and the rate parameter of the unobserved channel dynamics
θ = (gCa, gK , gL, VCa, VK , I, γ, φ). Note that C is a proportionality factor
of the conductance parameters and thus unidentifiable, as well as the
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constant level in f(·) is given by gLVL+ I, and thus VL (or I) is unidenti-
fiable. We conjecture that the information about σ in the observed coor-
dinate is close to zero, and thus, in practice also σ is unidentifiable from
observations of V0:n only, at least for any finite sample size. This hap-
pens because σ is mainly shaping the dynamics of Ut between spikes,
while the dynamics during spikes resemble deterministic behavior, and
the influence of Ut on Vt is only strong during spikes. This is confirmed in
Sections 5 and 6 where misspecification of σ is shown not to deteriorate
the estimation of θ. Finally, we assume the scaling parameters V1 − V4

known because otherwise the model does not belong to an exponential
family, as required by assumption (M1) below. This could be solved by
introducing an extra optimization step in the EM-algorithm at the cost
of precision and computer time. It is not pursued further in this work.

The aim is to estimate θ by maximum likelihood. However, this likeli-
hood is intractable, as the transition density of model (1) is not explicit.
Let ∆ denote the step size between two observation times, which we
for simplicity assume does not depend on i. The extension to unequally
spaced observation times is straightforward. The Euler-Maruyama ap-
proximation of model (1) leads to a discretized model defined as follows

Vi+1 = Vi + ∆f(Vi, Ui) +
√

∆ γ η̃i,(2)
Ui+1 = Ui + ∆b(Vi, Ui) +

√
∆σ(Vi, Ui)ηi,

where (η̃i) and (ηi) are independent centered Gaussian variables. To
ease readability the same notation (Vi, Ui) is used for the original and
the approximated processes. This should not lead to confusion, as long
as the transition densities are distinguished, as done below.

2.3. Property of the observation model. The observation model is a
degenerate HMM. Let us recall the definition proposed by [8]: A HMM
with not countable state space is defined as a bivariate Markov chain
(Xi, Yi) with only partial observations Yi, whose transition kernel has a
special structure: both the joint process (Xi, Yi) and the marginal hidden
chain (Xi) are Markovian.

In our model, (Ui) is not Markovian, only (Vi, Ui) is Markovian. So set
Xi = (Vi, Ui), with Markov kernel R(Xi−1, dXi) = p∆(dVi, dUi|Vi−1, Ui−1),
the transition density of model (2), and Yi = X

(1)
i , the first coordinate

of Xi with transition kernel F (X, dY ) = 1{Y=X(1)}. Here, 1x is the Dirac
measure in x. Thus, the kernel F is zero almost everywhere and the
HMM is degenerate. This leads to an intrinsic degeneracy of the particle
filter used in the standard HMM toolbox, as explained below.
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Therefore we consider the observation model as a bivariate Markov
chain (Vi, Ui) with only partial observations Vi whose hidden coordinate
Ui is not Markovian. It is not a HMM but a general dynamic model as
considered by [2]. The hidden process Ui is distributed as

U0 ∼ µ(dU0), Ui|(U0:i−1, V0:i−1) ∼ K(dUi|U0:i−1, V0:i−1)

for some conditional distribution function K and the observed process
Vi is distributed as

Vi|(U0:i, V0:i−1) ∼ G(dVi|U0:i, V0:i−1)

for some distribution function G. Given the Markovian structure of the
pair (Vi, Ui), we haveK(dUi|U0:i−1, V0:i−1) = K(dUi|Ui−1, Vi−1) andG(dVi|
U0:i, V0:i−1) = G(dVi|Ui−1:i, Vi−1). To simplify, we use the same notation
for random variables and their realizations and assume that G(dVi|U0:i,
V0:i−1) = G(Vi|U0:i, V0:i−1)dVi.

2.4. Likelihood function. We want to estimate the parameter θ by
maximum likelihood of the approximate model, with likelihood

(3) p∆(V0:n; θ) =

∫
p(V0, U0; θ)

n∏
i=1

p∆(Vi, Ui|Vi−1, Ui−1; θ)dU0:n.

It corresponds to a pseudo-likelihood for the exact diffusion. The multi-
ple integrals of equation (3) are difficult to handle and it is not possible
to maximize the pseudo-likelihood directly.

A solution is to consider the statistical model as an incomplete data
model. The observable vector V0:n is then part of a so-called complete
vector (V0:n, U0:n), where U0:n has to be imputed. To maximize the likeli-
hood of the complete data vector (V0:n, U0:n), we propose to use a stochas-
tic version of the EM algorithm, namely the SAEM algorithm [11]. Sim-
ulation under the smoothing distribution p∆(U0:n |V0:n; θ) is likely to be
difficult, and direct simulation of the non-observed data (U0:n) is not
possible. A SMC algorithm, also known as Particle Filtering, provides
a way to approximate this distribution [16]. We have adapted this al-
gorithm to handle a coupled two-dimensional SDE, i.e. the unobserved
coordinate is non-autonomous and non-Markovian. Then, we combine
the SAEM algorithm with the SMC algorithm, where the unobserved
data are filtered at each iteration step, to estimate the parameters of
model (2). Details on the filtering are given in Section 3, and the SAEM
algorithm is presented in Section 4.1. To prove the convergence of this
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new SAEM-SMC algorithm, a non-asymptotic deviation inequality is re-
quired for the SMC algorithm. Then we derive the convergence of the
SAEM-SMC algorithm to a maximum of the likelihood.

3. Filtering.

3.1. The filtering problem and the SMC algorithm. For any bounded
Borel function f : R 7→ R, we denote πn,θf = E∆ (f(Un)|V0:n; θ), the condi-
tional expectation under the exact smoothing distribution p∆(U0:n|V0:n; θ)
of the approximate model. The aim is to approximate this distribution
for a fixed value of θ. When included in the stochastic EM algorithm,
this value will be the current value θ̂m at the given iteration. For nota-
tional simplicity, θ is omitted in the rest of this Section.

We now argue why the HMM point of view is ill-posed for the filtering
problem. Considering the model as a HMM, Xi = (Vi, Ui) is the hidden
Markov chain and Yi = X

(1)
i . But then the filtering problem πnf is the

ratio of
∫
µ(dU0)R(X0, dX1)F (X0;Y1) · · ·R(Xn−1, dXn)F (Xn−1;Yn)f(Xn)

and
∫
µ(dU0)R(X0, dX1)F (X0;Y1) · · ·R(Xn−1, dXn)F (Xn−1;Yn). Since

F (Xn−1;Yn) = 1{Yn=X
(1)
n−1}

and the state space is continuous, the denom-
inator is zero almost surely and the filtering problem is ill-posed.

Now consider the model in a more general framework with the hidden
state Ui not Markovian, and introduce for i = 1, . . . , n the kernels Hi

from R into itself by

(4) Hif(u) =

∫
K(dz|u, Vi−1)G(Vi|u, Vi−1, z)f(z) =

∫
p∆(Vi, z|Vi−1, u)f(z)dz.

Then πn can be expressed recursively by

πnf =
πn−1Hnf

πn−1Hn1
=

∫
µ(U0)

∏n
i=1 p∆(Vi, Ui|Vi−1, Ui−1)f(Un)dU0:n∫

µ(U0)
∏n
i=1 p∆(Vi, Ui|Vi−1, Ui−1)dU0:n

.(5)

Note that the denominator of (5) is µH1 · · ·Hn1 = p∆(V0:n), which is
different from 0 since it has support the real line. Thus, the filtering
problem is well-posed.

The kernels Hi are extensions of the kernels considered by [10] in
the context of two-dimensional SDEs with hidden coordinate Ut au-
tonomous (and thus Markovian). We do not extend their particle filter
since it is based on simulation of both Vi and Ui with transition kernel
p∆(Vi, Ui|Vi−1, Ui−1). They avoid the degeneracy of the weights by intro-
ducing an instrumental function ψ and the weights are computed as
ψ(V

(k)
i − Vi). The choice of this instrumental function may influence the
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numerical properties of the filter. Therefore, we adopt the general filter
proposed by [2] for more general dynamic system, that we recall here.

The SMC algorithm provides a set of K particles (U
(k)
0:n)k=1...K and

weights (W
(k)
0:n )k=1...K approximating the conditional smoothing distri-

bution p∆(U0:n|V0:n) [see 16]. The SMC method relies on proposal distri-
butions q(Ui|Vi, Vi−1, Ui−1) to sample what we call particles from these
distributions. We write V0:i = (V0, . . . , Vi) and likewise for U0:i.

Algorithm 1 (SMC algorithm)

• At time i = 0: ∀ k = 1, . . . ,K

1. sample U (k)
0 from p(U0|V0)

2. compute and normalize the weights: w0

(
U

(k)
0

)
= p

(
V0, U

(k)
0

)
,

W0

(
U

(k)
0

)
=

w0

(
U

(k)
0

)
∑K

k=1 w0

(
U

(k)
0

)
• At time i = 1, . . . , n: ∀ k = 1, . . . ,K

1. Sample indices A(k)
i−1 ∼ r(·|Wi−1(U

(1)
0:i−1), . . . ,Wi−1(U

(K)
0:i−1)) and

set U
′(k)
0:i−1 = U

(A
(k)
i−1)

0:i−1

2. sample U (k)
i ∼ q

(
·|Vi−1:i, U

′(k)
i−1

)
and set U (k)

0:i = (U
′(k)
0:i−1, U

(k)
i )

3. compute and normalize the weights Wi(U
(k)
0:i ) =

wi

(
U

(k)
0:i

)
∑K

k=1 wi

(
U

(k)
0:i

)
with wi

(
U

(k)
0:i

)
=

p∆

(
V0:i,U

(k)
0:i

)
p∆

(
V0:i−1,U

′(k)
0:i−1

)
q
(
U

(k)
i |Vi−1:i,U

′(k)
0:i−1

)
Finally, the SMC algorithm provides an empirical measure ΨK

n =∑K
k=1Wn(U

(k)
0:n)1

U
(k)
0:n

which is an approximation to the smoothing distri-
bution p∆(U0:n|V0:n). A draw from this distribution can be obtained by
sampling an index k from a multinomial distribution with probabilities
Wn(U

(1)
0:n), . . . ,Wn(U

(K)
0:n ) and setting the draw U0:n equal to U0:n = U

(k)
0:n .

The variable A(k)
i−1 plays an important role to discard the samples with

small weights and multiply those with large weights [25]. It generates
a number of offspring N (`)

i−1, ` = 1, . . . ,K, such that
∑K

`=1N
(`)
i−1 = K and

E(N
(`)
i−1) = KWi−1(U

(l)
0:i−1). Many schemes for r have been presented in

the literature, including multinomial sampling [25], residual sampling
[34] or stratified resampling [15]. They differ in terms of var(N (`)

i−1) [see
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15]. The key property that we need in order to prove the deviation in-
equality is that E(1{A(k)

i−1=`}) = Wi−1(U
(l)
0:i−1).

Since our model is not a HMM, the weights wi
(
U

(k)
0:i

)
cannot be writ-

ten in terms of a Markov transition kernel of the hidden path as is usu-
ally done. It follows that the proposal q, which is crucial to ensure good
convergence properties, has to depend on Vi. The first classical choice
of q is q(Ui|Vi−1:i, Ui−1) = p∆(Ui|Vi−1, Ui−1), i.e. the transition density. In
this case, the weight reduces to wi

(
U

(k)
0:i

)
= p∆(Vi|Vi−1, U

(k)
0:i ). A second

choice for the proposal is q(Ui|Vi−1:i, Ui−1) = p∆(Ui|Vi−1:i, Ui−1), i.e. the
conditional distribution. In this case, the weight reduces to wi

(
U

(k)
0:i

)
=

p∆(Vi|Vi−1, U
(k)
0:i−1). Transition densities and conditional distributions are

detailed in Appendix A. When the two Brownian motions are indepen-
dent, as we assume, the two choices are equivalent.

This SMC algorithm is plugged into the EM algorithm to estimate the
parameters. We thus need non-asymptotic convergence results on the
SMC algorithm to ensure the convergence of the EM algorithm. This is
discussed in the next section.

3.2. Deviation inequality. In the literature, deviation inequalities
for SMC algorithms only appear for HMM. To our knowledge, this is
the first non-asymptotic result proposed for a SMC applied to a non-
Markovian hidden path. The only result of this type with SDEs has
been obtained by [10], with autonomous second coordinate. Here, we
generalize their deviation inequality to a non-autonomous hidden path.

For a bounded Borel function f , denote ΨK
n f =

∑K
k=1 f(U

(k)
n )Wn,θ(U

(k)
0:n),

the conditional expectation of f under the empirical measure ΨK
n,θ ob-

tained by the SMC algorithm for a given value of θ. We have:

Proposition 1. Under assumption (SMC3), for any ε > 0, and for
any bounded Borel function f on R, there exist constants C1 and C2,
independent of θ, such that

P
(∣∣ΨK

n,θf − πn,θf
∣∣ ≥ ε) ≤ C1 exp

(
−K ε2

C2‖f‖2

)
(6)

where ‖f‖ is the sup-norm of f .

The proof is provided in Appendix D. A similar result can be obtained
with respect to the exact smoothing distribution of the exact diffusion
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model, under assumptions on the number of particles and the step size
of the Euler approximation.

4. Estimation method.

4.1. SAEM algorithm. The EM algorithm [12] is useful in situa-
tions where the direct maximization of the marginal likelihood θ →
p∆(V0:n ; θ) is more difficult than the maximization of the conditional ex-
pectation of the complete likelihoodQ(θ|θ′) = E∆ [log p∆(V0:n, U0:n; θ)|V0:n; θ′] ,
where p∆(V0:n, U0:n; θ) is the likelihood of the complete data (V0:n, U0:n)
of the approximate model (2) and the expectation is under the condi-
tional distribution of U0:n given V0:n with density p∆(U0:n|V0:n; θ′). The
EM algorithm is an iterative procedure: at the mth iteration, given the
current value θ̂m−1, the E-step is the evaluation of Qm(θ) = Q(θ | θ̂m−1),
while the M-step updates θ̂m−1 by maximizing Qm(θ). To fulfill conver-
gence conditions of the algorithm, we consider the particular case of a
distribution from an exponential family. More precisely, we assume:

(M1) The parameter space Θ is an open subset of Rp. The complete like-
lihood p∆(V0:n, U0:n; θ) belongs to a curved exponential family, i.e.
log p∆(V0:n, U0:n; θ) = −ψ(θ) + 〈S(V0:n, U0:n), ν(θ)〉, where ψ and ν
are two functions of θ, S(V0:n, U0:n) is known as the minimal suffi-
cient statistic of the complete model, taking its value in a subset S
of Rd, and 〈·, ·〉 is the scalar product on Rd.

The approximate Morris-Lecar model (2) satisfies this assumption when
the scaling parameters V1, V2, V3 and V4 are known. Details of the suffi-
cient statistic S are given in Appendix B.

Under assumption (M1), the E-step reduces to the computation of
E∆

[
S(V0:n, U0:n)|V0:n; θ̂m−1

]
. When this expectation has no closed form,

[11] propose the Stochastic Approximation EM algorithm (SAEM) re-
placing the E-step by a stochastic approximation of Qm(θ). The E-step
is then divided into a simulation step (S-step) of the non-observed data
(U

(m)
0:n ) with the conditional density p∆(U0:n |V0:n; θ̂m−1) and a stochastic

approximation step (SA-step) of E∆

[
S(V0:n, U0:n)|V0:n; θ̂m−1

]
with a se-

quence of positive numbers (am)m∈N decreasing to zero. We write sm for
the approximation of this expectation. At the S-step, the simulation un-
der the smoothing distribution is done by SMC, as explained in Section
3. We call this algorithm the SAEM-SMC algorithm. Iterations of the
SAEM-SMC algorithm are written as follows:
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Algorithm 2 (SAEM-SMC algorithm)

• Iteration 0: initialization of θ̂0 and set s0 = 0.
• Iteration m ≥ 1:

S-Step: simulation of the non-observed data (U
(m)
0:n ) with SMC target-

ing the distribution p∆(U0:n|V0:n; θ̂m−1).
SA-Step: update sm−1 using the stochastic approximation:

(7) sm = sm−1 + am−1

[
S(V0:n, U

(m)
0:n )− sm−1

]
M-Step: update of θ̂m by θ̂m = arg max

θ∈Θ
(−ψ(θ) + 〈sm, ν(θ)〉) .

Standard errors of the estimators can be evaluated through the Fisher
information matrix. Details are given in Appendix C. An advantage of
the SAEM algorithm is the low-level dependence on the initialization θ̂0,
due to the stochastic approximation of the E-step. The other advantage
over a Monte-Carlo EM algorithm is the computational time. Indeed,
only one simulation of the hidden variables U0:n is needed in the simu-
lation step while an increasing number of simulated hidden variables is
required in a Monte-Carlo EM algorithm.

4.2. Convergence of the SAEM-SMC algorithm. The SAEM algorithm
we propose in this paper is based on an approximate simulation step
performed with an SMC algorithm. We prove that even if this simula-
tion is not exact, the SAEM algorithm still converges towards the max-
imum of the likelihood of the approximated diffusion (2). This is true
because the SMC algorithm has good convergence properties.

Let us be more precise. We introduce a set of convergence assump-
tions which are the classic ones for the SAEM algorithm [11].

(M2) The functions ψ(θ) and ν(θ) are twice continuously differentiable
on Θ.

(M3) The function s̄ : Θ −→ S defined by s̄(θ) =
∫
S(v, u)p∆(u|v; θ)dv du

is continuously differentiable on Θ.
(M4) The function `∆(θ) = log p∆(v, u, θ) is continuously differentiable

on Θ and ∂θ
∫
p∆(v, u; θ)dv du =

∫
∂θp∆(v, u; θ)dv du.

(M5) Define L : S ×Θ→ R by L(s, θ) = −ψ(θ) + 〈s, ν(θ)〉. There exists a
function θ̂ : S → Θ such that ∀θ ∈ Θ, ∀s ∈ S, L(s, θ̂(s)) ≥ L(s, θ).

(SAEM1) The positive decreasing sequence of the stochastic approximation
(am)m≥1 is such that

∑
m am =∞ and

∑
m a

2
m <∞.
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(SAEM2) `∆ : Θ→ R and θ̂ : S → Θ are d times differentiable, where d is the
dimension of S(v, u).

(SAEM3) For all θ ∈ Θ,
∫
||S(v, u)||2 p∆(u|v; θ)du <∞ and the function Γ(θ) =

Covθ(S(·, U0:n)) is continuous, where the covariance is under the
conditional distribution p∆(U0:n|V0:n; θ).

(SAEM4) Let {Fm} be the increasing family of σ-algebras generated by the
random variables s0, U

(1)
0:n, U (2)

0:n, . . . , U
(m)
0:n . For any positive Borel

function f , E∆(f(U
(m+1)
0:n )|Fm) =

∫
f(u)p∆(u|v, θ̂m)du.

Assumptions (M1)-(M5) ensure the convergence of the EM algorithm
when the E-step is exact [11]. Assumptions (M1)-(M5) and (SAEM1)-
(SAEM4) together with the additional assumption that (sm)m≥0 takes
its values in a compact subset of S ensure the convergence of the SAEM
estimates to a stationary point of the observed likelihood p∆(V0:n; θ)
when the simulation step is exact [11].

Here the simulation step is not exact and we have three additional
assumptions on the SMC algorithm to bound the error induced by this
algorithm and prove the convergence of the SAEM-SMC algorithm.

(SMC1) The number of particles K used at each iteration of the SAEM al-
gorithm varies along the iteration: there exists a function g(m)→
∞ when m→∞ such that K(m) ≥ g(m) log(m).

(SMC2) The function S is bounded uniformly in u.
(SMC3) The functions p∆(Vi|Ui, Vi−1, Ui−1; θ) are bounded uniformly in θ.

THEOREM 1. Assume that (M1)-(M5), (SAEM1)-(SAEM3), and (SMC1)-
(SMC3) hold. Then, with probability 1, limm→∞ d(θ̂m,L) = 0 where
L = {θ ∈ Θ, ∂θ`∆(θ) = 0} is the set of stationary points of the log-
likelihood `∆(θ) = log p∆(V0:n; θ).

Theorem 1 is proved in Appendix D. Note that assumption (SAEM4)
is not needed thanks to the conditional independence of the particles
generated by the SMC algorithm, as detailed in the proof. Similarly, the
additional assumption that (sm)m≥0 takes its values in a compact subset
of S is not needed, as it is directly satisfied under assumption (SMC2).

We deduce that the SAEM algorithm converges to a (local) maxi-
mum of the likelihood under standard additional assumptions (LOC1)-
(LOC3) proposed by [11] on the regularity of the log-likelihood `∆(V0:n; θ)
that we do not recall here.

COROLLARY 1. Under the assumptions of Theorem 1 and additional
assumptions (LOC1)-(LOC3), the sequence θ̂m converges with probability
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1 to a (local) maximum of the likelihood p∆(V0:n; θ).

The classical assumptions (M1)-(M5) are usually satisfied. Assump-
tion (SAEM1) is easily satisfied by choosing properly the sequence (am).
Assumptions (SAEM2) and (SAEM3) depend on the regularity of the
model. They are satisfied for the approximate Morris-Lecar model.

In practice, the SAEM algorithm is implemented with an increas-
ing number equal to the iteration number, which satisfies Assumption
(SMC1). Assumption (SMC2) is satisfied for the approximate Morris-
Lecar model because the variables U are bounded between 0 and 1 and
the variables V are fixed at their observed values. This would not have
been the case with the filter of [10], which resimulates the variables V
at each iteration. Assumption (SMC3) is satisfied if we require that γ is
strictly bounded away from zero; γ ≥ ε > 0.

4.3. Properties of the approximate diffusion. The SAEM-SMC algo-
rithm provides a sequence which converges to the set of stationary points
of the log-likelihood `∆(θ) = log p∆(V0:n; θ). The following result aims at
comparing this likelihood, which corresponds to the Euler approximate
model (2), with the true likelihood p(V0:n; θ). The result is based on the
bound of the Euler approximation proved by [22]. Their result holds un-
der the following assumption

(H1) Functions f , b, σ are 2 times differentiable with bounded deriva-
tives with respect to u and v of all orders up to 2.

Let us assume we apply the SAEM algorithm on an approximate model
obtained with an Euler scheme of step size δ = ∆/L. Then we have

THEOREM 2. Under assumption (H1), there exists a constant C, in-
dependent of θ, such that for any θ ∈ Θ, and any vector V0:n

|p(V0:n; θ)− pδ(V0:n; θ)| ≤ C 1

L
n∆

Proof is given in Appendix D. Assumption (H1) is a strong assump-
tion, which is sufficient and not necessary. It does not hold for the Morris-
Lecar model. Different sets of weaker assumptions have been proposed
to prove the convergence of the Euler scheme in the strong sense (ex-
pectation of the absolute error between the exact and approximated
process). The proofs are mainly based on localization arguments, see
[32] for a review paper. The convergence of the densities has been less
studied, and it is beyond the scope of this paper.
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FIG 2. Observations of the membrane potential in a spinal motoneuron of an adult red-
eared turtle during 600 ms (upper panel), and the filtered hidden process of the normal-
ized conductance associated with K+ current (lower panel) for the estimated parameters
with the scaling parameters fixed at V1 = −2.4 mV, V2 = 36 mV, V3 = 4 mV and V4 = 60
mV.

5. Intra-cellular recordings from a turtle motoneuron. The
membrane potential from a spinal motoneuron in segment D10 of an
adult red-eared turtle (Trachemys scripta elegans) was recorded while
a periodic mechanical stimulus was applied to selected regions of the
carapace with a sampling step of 0.1 ms (for details see [4, 5]). The tur-
tle responds to the stimulus with a reflex movement of a limb known
as the scratch reflex, causing an intense synaptic input to the recorded
neuron. Due to the time varying stimulus, a model for the complete data
set needs to incorporate the time-inhomogeneity, as done in [29]. How-
ever, in [29] only one-dimensional diffusions are considered, and spikes
are modeled as single points in time by adding a jump term with state-
dependent intensity function to the SDE, ignoring the detailed dynam-
ics during spikes. In this paper we aim at estimating parameters dur-
ing spiking activity by explicit modeling of time-varying conductances.
Therefore, we only analyze four traces during on-cycles (following [29])
where spikes occur. Furthermore, in these time windows, the input is
approximately constant, which is required for the Morris-Lecar model
with constant parameters. An example of the analyzed data is plotted
in Fig. 2, together with a filtered trace of the unobserved coordinate.
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Parameter gL gCa gK γ VK φ VCa I

With V1 = −1.2 mV, V2 = 18 mV, V3 = 2 mV, V4 = 30 mV
Estimate -0.296 11.274 6.553 2.801 -124.481 1.989 35.769 -5.024
SE 0.001 0.028 0.049 0.001 14.563 0.000 0.122 0.052
With V1 = −2.4 mV, V2 = 36 mV, V3 = 4 mV, V4 = 60 mV
Estimate 1.046 12.906 20.878 2.466 -67.097 2.153 98.698 -65.403
SE 0.009 0.008 0.021 0.001 0.227 0.001 0.198 1.204

TABLE 1
Parameter estimates obtained from observations of the membrane potential of a spinal
motoneuron of an adult red-eared turtle during 600 ms for two different sets of scaling

parameters. With σ = 0.05 fixed. First trace.

Parameter gL gCa gK γ VK φ VCa I

σ fixed to 0.02
Estimate 1.302 12.460 16.550 2.280 -74.301 2.881 99.398 -52.742
SE 0.003 0.028 0.131 0.000 0.703 0.001 2.384 2.727
σ fixed to 0.05
Estimate 1.046 12.906 20.878 2.466 -67.097 2.153 98.698 -65.403
SE 0.009 0.008 0.021 0.001 0.227 0.001 0.198 1.204
σ fixed to 0.15
Estimate 1.308 12.442 16.419 2.301 -74.576 2.911 99.417 -52.341
SE 0.002 0.007 0.120 0.000 0.021 0.000 4.529 1.558

TABLE 2
Parameter estimates obtained from observations of the membrane potential of a spinal
motoneuron of an adult red-eared turtle during 600 ms for three different values of σ.

With V1 = −2.4 mV, V2 = 36 mV, V3 = 4 mV, V4 = 60 mV fixed. First trace.

First the model was fitted with the values of the scaling parameters
V1–V4 given in [41] and used in Section 6 below, see Table 1 for one of the
traces. Most of the estimates are reasonable and in agreement with the
expected order of magnitudes for the parameter values, except for the
VCa reversal potential, which in the literature is reported to be around
100–150 mV (estimated to 44.7 mV), and the leak conductance, which is
estimated to be negative. Conductances are always non-negative. This
is probably due to wrong choices of the scaling constants V1–V4. For the
parameters given in [41], the average of the membrane potential Vt be-
tween spikes is around -26 mV, whereas the average of the experimental
trace between spikes is around -56 mV, a factor two larger. We therefore
rerun the estimation procedure fixing V1–V4 to twice the value from be-
fore, which provides approximately the same values of the normalized
Ca2+ conductance, m∞(·), and the rates of opening and closing of K+

ion channels, α(·) and β(·), as in the theoretical model when Vt is at
its equilibrium value. In this case all parameters are reasonable and in
agreement with the expected order of magnitudes.
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Parameter gL gCa gK γ VK φ VCa I

First trace
Estimate 1.046 12.906 20.878 2.466 -67.0.97 2.153 98.698 -65.403
SE 0.009 0.008 0.021 0.001 0.227 0.001 0.198 1.204
Second trace
Estimate 1.430 11.705 15.791 2.253 -73.029 3.138 103.709 -53.183
SE 0.003 0.008 0.029 0.000 0.641 0.001 1.269 0.651
Third trace
Estimate 1.371 11.878 15.379 2.210 -75.024 3.004 99.887 -49.499
SE 0.002 0.013 0.017 0.000 0.195 0.000 0.464 0.614
Fourth trace
Estimate 1.197 11.452 12.521 2.012 -85.982 3.776 99.615 -37.017
SE 0.002 0.055 0.017 0.000 0.089 0.000 1.466 0.861

TABLE 3
Parameter estimates obtained from four different traces of the membrane potential of a

spinal motoneuron of an adult red-eared turtle. Each trace has 6000 observations
points with a sampling step of 0.1 ms. With V1 = −2.4 mV, V2 = 36 mV, V3 = 4 mV,

V4 = 60 mV and σ = 0.05 fixed.

To check the robustness to misspecifications in the diffusion param-
eter σ of the unobserved coordinate, we fitted the model for three dif-
ferent values of σ, see Table 2. Results are stable and suggest that σ
is primarily affecting the subthreshold fluctuations of the channel dy-
namics, and mainly the spiking dynamics of the unobserved coordinate
influences the first coordinate.

Final results for all four traces are presented in Table 3. It is reassur-
ing that the parameter estimates seem so reproducible over different
traces; the largest variation was below 10%. This is not due to start-
ing values, e.g. the starting value for gL was 0.1, and all four estimates
ended up between 1.3 and 1.4, and the starting value for VK was −55,
and all four estimates ended up between −75.4 and −74.4.

6. Simulation study. Parameter values of the Morris-Lecar model
used in the simulations are the same as those of [41, 47] for a class
II membrane, except that we set the membrane capacitance constant
to C = 1µF/cm2, which is the standard value reported in the litera-
ture. Conductances and input current were correspondingly changed,
and thus, the two models are the same. The values are: VK = −84
mV, VL = −60 mV, VCa = 120 mV, C = 1µF/cm2, gL = 0.1µS/cm2,
gCa = 0.22µS/cm2, gK = 0.4µS/cm2, V1 = −1.2 mV, V2 = 18 mV, V3 = 2
mV, V4 = 30 mV, φ = 0.04 ms−1. Input is chosen to be I = 4.5µA/cm2.
Initial conditions of the Morris-Lecar model are Vt0 = −26 mV, Ut0 = 0.2.
The volatility parameters are γ = 1 mV ms−1/2, σ = 0.03 ms−1/2. Tra-
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FIG 3. Filtering of (Ut) with the particle filter algorithm (100 particles): hidden sim-
ulated trajectory of the Morris-Lecar model (Ut) (black), mean filtered signal (grey full
drawn line), 95% confidence interval of filtered signal (grey dashed lines).

jectories are simulated with time step δ = 0.01 ms and n = 2000 points
are subsampled with observations time step ∆ = 10δ. Then θ is esti-
mated on each simulated trajectory. A hundred repetitions are used to
evaluate the performance of the estimators. An example of a simulated
trajectory (for n = 10000) is given in Figure 1.

6.1. Filtering results. The Particle filter aims at filtering the hid-
den process (Ut) from the observed process (Vt). We illustrate its per-
formance on a simulated trajectory, with θ fixed at its true value. The
SMC Particle filter algorithm is implemented with K = 100 particles
and the transition density as proposal, see Figure 3. The true hidden
process, the mean filtered signal and its 95% confidence interval are
plotted. The filtered process appears satisfactory. The confidence inter-
val includes the true hidden process (Ut).

6.2. Estimation results. The performance of the SAEM-SMC algo-
rithm is illustrated on 100 simulated trajectories. The SAEM algorithm
is implemented with m = 200 iterations and a sequence (am) equal to
1 during the 100 first iterations and equal to am = 1/(m − 100)0.8 for
m > 100. The SMC algorithm is implemented with K(m) = min(m, 100)
particles at each iteration of the SAEM algorithm. The SAEM algorithm
is initialized by a random draw of θ̂0 not centered around the true value:
θ̂0 = θtrue + 0.1 + θtrue/3N (0, 1).



20 S. DITLEVSEN AND A. SAMSON

An example of the convergence of the SAEM algorithm for one of the
iterations is presented in Fig. 4. It is seen that the algorithm converges
for most of the parameters in few iterations to a neighborhood of the
true value, even if the initial values are far from the true ones. Only for
φ more iterations are needed, which is expected since this parameter
appears in the second, non-observed coordinate.
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FIG 4. Estimation results for simulated data. Left panels: Boxplots of 100 estimates
from simulated data sets for the 8 parameters. True values used in the simulations are
given by the gray lines. A: Both Vt and Ut are observed. B: Only Vt is observed, σ is
fixed at the true value 0.03. C: Only Vt is observed, σ is fixed at a wrong value 0.04.
Right panels: Convergence of the SAEM algorithm for the 8 estimated parameters on a
simulated data set. True values used in the simulation are given by the gray lines.

The SAEM estimator is compared with the pseudo maximum likeli-
hood estimator obtained if both Vt and Ut were observed. Results are
given in Table 4. The parameters are well estimated in this ideal case.
The estimation of φ, which is the only parameter in the drift of the hid-
den coordinate Ut, is good and does not deteriorate the estimation of the
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Parameters
Estimator gL gCa gK γ VK φ VCa I

true values 0.100 0.220 0.400 1.00 -84.00 0.040 120.00 4.400
With both Vt and Ut observed (pseudo maximum likelihood estimator)
mean 0.101 0.219 0.411 0.996 -83.20 0.040 121.97 4.539
RMSE 0.017 0.019 0.041 0.019 7.61 0.001 8.50 0.560
With only Vt observed (SAEM estimator)
mean 0.090 0.225 0.464 1.003 -78.622 0.041 119.677 4.060
RMSE 0.021 0.024 0.144 0.017 9.459 0.013 10.218 1.028
estimated
SE 0.016 0.019 0.042 0.016 4.96 0.001 7.31 0.561

TABLE 4
Simulation results obtained from 100 simulated Morris-Lecar trajectories (n = 2000,

∆ = 0.1 ms). Two estimators are compared: The pseudo maximum likelihood estimator
in the ideal case where both Vt and Ut are observed; and the SAEM estimator when

only Vt is observed with the SAEM initialization at a random value not centered
around the true value θ. An example of standard errors (SE) estimated with the

SAEM-SMC algorithm on one single simulated dataset is also given.

other parameters. In Fig. 4 we show boxplots of the estimates of the
eight parameters for the three estimation settings; both coordinates ob-
served, or only one observed with σ fixed at either the true or a wrong
value. All parameters appear well estimated. As expected, the variance
of the estimator of φ hugely increases when only one coordinate is ob-
served, but interestingly, the variance of the parameters of the observed
coordinate do not seem much affected by this loss of information.

The SAEM-SMC algorithm provides estimates of the standard errors
(SE) of the estimators (see Appendix C). These should be close to the
RMSE obtained from the 100 simulated datasets. As an example, the
SE for one dataset estimated by SAEM are reported in the last line of
Table 4. The estimated SE are satisfactory for most of the parameters,
but tends to underestimate.

7. Discussion. The main contribution of this paper is an algorithm
to handle a more general model than a HMM, and show non-asymptotic
convergence results for the method. It turns out that some of the com-
mon problems encountered with particle filters is not present in our
case, namely the filter does not degenerate, and we run the algorithm
on large data sets of 6000 observations points in reasonable time (35
minutes on a standard portable computer for one of the simulated data
sets).

To the authors’ knowledge, this is the first time the rate parameter
of the unobserved coordinate, φ, is estimated from experimental data.
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It is comforting to observe that the estimated value do not seem to be
very sensitive to the choice of scaling parameters. Other parameters,
like the conductances and the reversal potentials, are more sensitive to
this choice, and should be interpreted with care.

The estimation procedure builds on the pseudo likelihood, which ap-
proximates the true likelihood by an Euler scheme. This approximation
is only valid for small sampling step, i.e. for high frequency data, which
is the case for the type of neuronal data considered here. If data were
sampled less often, a possibility could be to simulate diffusion bridges
between the observed points, and apply the estimation procedure to an
augmented data set consisting of the observed data and the imputed
values.

There are several issues that deserve further study. First, it is im-
portant to understand the influence of the scaling parameters V1 − V4,
and how to estimate them for a given data set. The model is not ex-
ponential in these parameters (assumption (M1)) and new estimation
procedures have to be considered. Secondly, one should be aware of the
possible misspecification of the model. More detailed models incorpo-
rating further types of ion channels could be explored, but increasing
the model complexity might deteriorate the estimates, since the infor-
mation contained in only observing the membrane potential is limited.
Furthermore, the sensitivity on the choice of tuning parameters of the
algorithm, like the decreasing sequence of the stochastic approximation,
(am), and the number of SAEM iterations, needs further investigation.
Finally, an automated procedure to find starting values for the proce-
dure is warranted.
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APPENDIX A: DISTRIBUTIONS OF APPROXIMATE MODEL

Consider the general approximate model (see (2))(
Vi+1

Ui+1

)
=

(
Vi
Ui

)
+ ∆

(
f(Vi, Ui)
b(Vi, Ui)

)
+
√

∆

(
γ ρ
ρ σ(Vi, Ui)

)(
η̃i
ηi

)
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with ρ the correlation coefficient between the two Brownian motions or
perturbations. The distribution of (Vi+1, Ui+1) conditionally on (Vi, Ui) is(

Vi+1

Ui+1

)∣∣∣∣ ( Vi
Ui

)
∼ N

([
Vi + ∆f(Vi, Ui)
Ui + ∆b(Vi, Ui)

]
,∆

[
(γ2 + ρ2) ρ(γ + σ(Vi, Ui))

ρ(γ + σ(Vi, Ui)) (σ2(Vi, Ui) + ρ2)

])
The marginal distributions of Vi+1 conditionally on (Vi, Ui) and Ui+1

conditionally on (Vi, Ui) are

Vi+1|Vi, Ui ∼ N
(
Vi + ∆f(Vi, Ui),∆(γ2 + ρ2)

)
Ui+1|Vi, Ui ∼ N

(
Ui + ∆b(Vi, Ui),∆(σ2(Vi, Ui) + ρ2)

)
(8)

The conditional distributions of Vi+1 conditionally on (Ui+1, Vi, Ui) and
Ui+1 conditionally on (Vi+1, Vi, Ui) are

Vi+1|Ui+1, Vi, Ui ∼ N (mV , V arV )

Ui+1|Vi+1, Vi, Ui ∼ N (mU , V arU )(9)

where

mV = Vi + ∆f(Vi, Ui) +
ρ(γ + σ(Vi, Ui))

σ2(Vi, Ui) + ρ2
(Ui+1 − Ui −∆b(Vi, Ui))

V arV = ∆(γ2 + ρ2)− ∆ρ2(γ + σ(Vi, Ui))
2

σ2(Vi, Ui) + ρ2

mU = Ui + ∆b(Vi, Ui) +
ρ(γ + σ(Vi, Ui))

γ2 + ρ2
(Vi+1 − Vi −∆f(Vi, Ui))

V arU = ∆(σ2(Vi, Ui) + ρ2)− ∆ρ2(γ + σ(Vi, Ui))
2

γ2 + ρ2

The distributions in (8) and (9) are equal when the Brownian motions
are independent, i.e. when ρ = 0.

APPENDIX B: SUFFICIENT STATISTICS

We here provide the sufficient statistics of the approximate model (2).
Consider the n× 6-matrix

X =
(
−V0:(n−1),−m∞(V0:(n−1))V0:(n−1),−U0:(n−1)V0:(n−1), U0:(n−1),1,m∞(V0:(n−1))

)
where 1 is the vector of 1’s of size n. Then the vector

S1(V0:(n−1), U0:(n−1)) = (X ′X)−1 X ′ (V1:n − V0:(n−1))
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is the sufficient statistic vector corresponding to the parameters ν1(θ) =
(gL, gCa, gK , gKVK , gLVL + I, gCaVCa), where ′ denotes transposition.

The sufficient statistics corresponding to ν2(θ) = 1/γ2 are

n∑
i=1

(Vi − Vi−1)Ui−1,

n∑
i=1

U2
i−1,

n∑
i=1

(Vi − Vi−1)Vi−1m∞(Vi−1),

n∑
i=1

(Vi − Vi−1)Ui−1Vi−1,

n∑
i=1

U2
i−1V

2
i−1.

The sufficient statistics corresponding to φ is also explicit but more
complex and not detailed here.

APPENDIX C: FISHER INFORMATION MATRIX

The standard errors (SE) of the parameter estimators can be evalu-
ated from the diagonal elements of the inverse of the Fisher information
matrix estimate. Its evaluation is difficult because it has no analytic
form. We adapt the estimation of the Fisher information matrix, pro-
posed by [11] and based on the Louis missing information principle.

The Hessian of the log-likelihood `∆(θ) can be expressed as:

∂2
θ `∆(θ) = E

[
∂2
θL(S(V0:n, U0:n), θ)|V0:n, θ

]
+ E

[
∂θL(S(V0:n, U0:n), θ) (∂θL(S(V0:n, U0:n), θ))′|V0:n, θ

]
− E [∂θL(S(V0:n, U0:n), θ)|V0:n, θ] E [∂θL(S(V0:n, U0:n), θ)|V0:n, θ]

′ .

where ′ denotes transposition. The derivatives ∂θL(S(V0:n, U0:n), θ) and
∂2
θL(S(V0:n, U0:n), θ) are explicit for the Euler approximation of the Morris-

Lecar model. Therefore we implement their estimation using the stochas-
tic approximation procedure of the SAEM algorithm. At the mth itera-
tion of the algorithm, we evaluate the three following quantities:

Gm+1 = Gm + am

[
∂θL(S(V0:n, U

(m)
0:n ), θ)−Gm

]
Hm+1 = Hm + am

[
∂2
θL(S(V0:n, U

(m)
0:n ), θ)

+ ∂θL(S(V0:n, U
(m)
0:n ), θ) (∂θL(S(V0:n, U

(m)
0:n ), θ))′ −Hm

]
Fm+1 = Hm+1 −Gm+1 (Gm+1)′.

As the sequence (θ̂m)m converges to the maximum of the likelihood, the
sequence (Fm)m converges to the Fisher information matrix.
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APPENDIX D: PROOF OF THE CONVERGENCE RESULTS

D.1. Convergence results of Proposition 1. We omit θ in the
proof for clarity. The conditional expectation πnf is given by (5) and
the kernels Hi from R into itself are defined by (4). We write νn =
µH1 · · ·Hn1 for the constant conditioned on the observed values V0:n.
Also (4) is bounded, i.e. Hi1(u) ≤ C for all u ∈ R and i = 1, . . . , n, for
some constant C. It directly follows that µH1 · · ·Hi−11 ≤ Ci−1. Further-
more, we obtain the bound

µH1 · · ·Hi1 ≥
µH1 · · ·Hi+11

C
≥ · · · ≥ νn

Cn−i
.

Using the above bounds and that πi−1 is a transition measure, we obtain

νn
Cn−1

≤ πi−1Hi1 ≤ C.(10)

Define the two empirical measures obtained at time i: Ψ
′K
i = 1

K

∑K
k=1 1U

′(k)
0:i

and ΨK
i =

∑K
k=1Wi(U

(k)
0:i )1

U
(k)
0:i

. We also decompose the weights and write

ΥK
i f = 1

K

∑K
k=1 f(U

(k)
i )wi(U

(k)
0:i ). Then Wi(U

(k)
0:i ) = wi(U

(k)
0:i )/(KΥK

i 1) and
ΨK
i f = ΥK

i f/Υ
K
i 1.

Recall the following general result [10] for ξ1, . . . , ξK random vari-
ables, which conditioned on a σ-field G are independent, centered and
bounded |ξk| ≤ a. Then for any ε > 0 we have

P

(∣∣∣∣∣ 1

K

K∑
k=1

ξk

∣∣∣∣∣ ≥ ε
)
≤ 2 exp

(
−K ε2

2a2

)
.(11)

Let f be a bounded function on R. Then under assumption (SMC3)

Ψ
′K
i f −ΨK

i f =
1

K

K∑
k=1

(
f(U

′(k)
i )−ΨK

i f
)

=
1

K

K∑
k=1

ξk

fulfills the conditions for (11) to hold with a = 2‖f‖, since E(f(U
′(k)
i )|G) =

ΨK
i f , where G is the σ-algebra generated by U (k)

0:i . Thus, for any ε > 0,

P
(∣∣∣Ψ′Ki f −ΨK

i f
∣∣∣ ≥ ε) ≤ 2 exp

(
−K ε2

8‖f‖2

)
.(12)

Define Qi(f)(u) =
∫
q(u′|Vi, Vi−1, u)f(u′)du′. By definition of the unnor-

malized weights in step 3 of the SMC algorithm,wi(u, u′) = p∆(Vi, Vi−1, u, u
′)/
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p∆(Vi−1, u)q(u′|Vi, Vi−1, u), so thatQi(fwi)(u) =
∫
p∆(Vi, u

′|Vi−1, u)f(u′)du′ =
Hif(u). We therefore have

ΥK
i f −Ψ

′K
i−1Hif =

1

K

K∑
k=1

(
f(U

(k)
i )wi(U

(k)
0:i )−Qi(fwi)(U

′(k)
i−1 )

)
=

1

K

K∑
k=1

ξk

which fulfills the conditions for (11) to hold, now with a = 2C‖f‖ and G is
the σ-algebra generated by U

′(k)
0:i−1, since U (k)

i is drawn from q(·|Vi−1:i, U
′(k)
i−1 ),

see step 2 of the SMC algorithm. Hence, for any ε > 0 we obtain

P
(∣∣∣ΥK

i f −Ψ
′K
i−1Hif

∣∣∣ ≥ ε) ≤ 2 exp

(
−K ε2

8C2‖f‖2

)
.(13)

We want to show the following two bounds

P
(∣∣ΨK

i f − πif
∣∣ ≥ ε) ≤ 2Ii exp

(
−K ε2

8Ji‖f‖2

)
, i = 1, . . . , n(14)

P
(∣∣∣Ψ′Ki f − πif

∣∣∣ ≥ ε) ≤ 2I
′
i exp

(
−K ε2

8J
′
i‖f‖2

)
, i = 0, 1, . . . , n(15)

by induction on i, for some constants Ii, I
′
i , Ji, J

′
i increasing with i to be

computed later. Note first that since π0 = µ and U
′(k)
0 are i.i.d. with law

µ, then (11) with ξk = f(U
′(k)
0 )−µ(f) yields (15) for i = 0 with I ′i = J

′
i = 1.

Let i ≥ 1 and assume (15) holds for i− 1. We can write

ΨK
i f − πif =

1

πi−1Hi1

(
ΥK
i f

ΥK
i 1

(πi−1H11−ΥK
i 1) + (ΥK

i f − πi−1Hif)

)
.

Note that ΥK
i 1 > 0 because the weights wi are strictly positive. De-

fine Lif = ΥK
i f − πi−1Hif and use that |ΥK

i f | ≤ ‖f‖ΥK
i 1 (because f is

bounded) and (10) to see that

|ΨK
i f − πif | ≤

Cn−1

νn
(‖f‖|Li1|+ |Lif |)

and

|Lif | ≤ |ΥK
i f −Ψ

′K
i−1Hif |+ |Ψ

′K
i−1Hif − πi−1Hif |.

Assuming that (15) holds for i−1 and using (13) and that ‖Hif‖ ≤ C‖f‖
yield

P (|Lif | ≥ ε) ≤ 2 exp

(
−K ε2

32C2‖f‖2

)
+ 2I

′
i−1 exp

(
−K ε2

32J
′
i−1C

2‖f‖2

)
.
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We obtain

P
(∣∣ΨK

i f − πif
∣∣ ≥ ε) ≤ P

(
|Li1| ≥

ενn
2Cn−1‖f‖

)
+ P

(
|Lif | ≥

ενn
2Cn−1

)
≤ 4 exp

(
−K ε2ν2

n

128C2n‖f‖2

)
+ 4I

′
i−1 exp

(
−K ε2ν2

n

128J
′
i−1C

2n‖f‖2

)

Hence, (14) holds with Ii ≥ 2(1 + I
′
i−1) and Ji ≥ 16C2nJ

′
i−1/ν

2
n ≥ 16J

′
i−1

since νn ≤ Cn. By (12) and (14) we then conclude that (15) also holds for
i if I ′i = 1 + Ii and J

′
i = 4Ji. These conditions are fulfilled by choosing

Ii = 3i+1 − 3 and Ji = 16i. Thus, (6) holds with C1 = 6(3n − 1) and
C2 = 8 · 16n. This concludes the proof.

D.2. Proof of Theorem 1. To prove the convergence of the SAEM-
SMC algorithm, we study the stochastic approximation scheme used
during the SA step. The scheme (7) can be decomposed into:

sm+1 = sm + amh(sm) + amem + amrm

with
h(sm) = πn,θ̂(sm)S − sm
em = S(V0:n, U

(m)
0:n )−Ψ

K(m)

n,θ̂(sm)
S

rm = Ψ
K(m)

n,θ̂(sm)
S − πn,θ̂(sm)S

where we denote by πn,θS = E∆(S(V0:n, U0:n)|V0:n; θ) the expectation
of the sufficient statistic S under the exact distribution p∆(U0:n|V0:n; θ),
and by Ψ

K(m)

n,θ̂(sm)
S the expectation of the sufficient statistic S under the

empirical measure obtained with the SMC algorithm with K(m) parti-
cles and current value of parameters θ̂(sm) at iteration m of the SAEM-
SMC algorithm.

Following Theorem 2 of [11] on the convergence of the Robbins-Monro
scheme, the convergence of the SAEM-SMC algorithm is ensured if we
prove the following assertions:

1. The sequence (sm)m≥0 takes its values in a compact set.
2. The function V (s) = −`∆(θ̂(s)) is such that for all s ∈ S, F (s) =
〈∂sV (s), h(s)〉 ≤ 0 and such that the set V ({s, F (s) = 0}) is of zero
measure.

3. limm→∞
∑m

`=1 a`e` exists and is finite with probability 1.
4. limm→∞ rm = 0 with probability 1.
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Assertion 1 follows from assumption (SMC2) and by construction of
sm in formula (7). Assertion 2 is proved by Lemma 2 of [11] under as-
sumptions (M1)-(M5) and (SAEM2). Assertion 3 is proved similarly as
Theorem 5 of [11]. By construction of the SMC algorithm, the equiva-
lent of assumption (SAEM3) is checked for the expectation taken un-
der the approximate empirical measure Ψ

K(m)

n;θ̂m
. Indeed, the assump-

tion of independence of the non-observed variables U (1)
0:n, . . . , U

(m)
0:n given

θ̂0, . . . , θ̂m is verified. As a consequence, for any positive Borel function f ,
EK(m)

∆ (f(U
(m+1)
0:n )|Fm) = Ψ

K(m)

n;θ̂m
f . Then

∑m
`=1 a`e` is a martingale, bounded

in L2 under assumptions (M5) and (SAEM1)-(SAEM2).
To verify assertion 4, we use Proposition 1. Under assumptions (SMC2)-

(SMC3) and assertion 1, Proposition 1 yields that for any ε > 0, there
exist two constants C1, C2, independent of θ, such that

M∑
m=1

P (|rm| > ε) =

M∑
m=1

P
(∣∣∣ΨK(m)

n,θ̂(sm)
S − πn,θ̂(sm)S

∣∣∣ ≥ ε)
≤ C1

M∑
m=1

exp

(
−K(m)

ε2

C2‖S‖2

)
.

Finally, assumptions (SMC1)-(SMC2) imply that there exists a constant
C3, independent of θ, such that

M∑
m=1

P (|rm| > ε) ≤ C1

M∑
m=1

1

mC3g(m)ε2

which is finite when M →∞, proving the a.s. convergence of rm to 0.

D.3. Proof of Theorem 2. The Markov property yields
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|p(V0:n; θ)− pδ(V0:n; θ)| ≤
∫
|p(V0:n, U0:n; θ)− pδ(V0:n, U0:n; θ)| dU0:n

≤
∫ ∣∣∣∣∣

n∏
i=1

p (Vi, Ui|Vi−1, Ui−1; θ)−
n∏
i=1

pδ (Vi, Ui|Vi−1, Ui−1; θ)

∣∣∣∣∣ dU0:n

≤
∫ n∑

i=1

|p (Vi, Ui|Vi−1, Ui−1; θ)− pδ (Vi, Ui|Vi−1, Ui−1; θ)|

i−1∏
j=1

p (Vj , Uj |Vj−1, Uj−1; θ)
n∏

j=i+1

pδ (Vj , Uj |Vj−1, Uj−1; θ) dU0:n

[22] provide that under assumption (H1), there exist constants C1 > 0,
C2 > 0, C3 > 0, C4 > 0 independent of θ such that

|pδ(Vi, Ui|Vi−1, Ui−1; θ) + p(Vi, Ui|Vi−1, Ui−1; θ)| ≤ C1e
−C2‖(Vi,Ui)−(Vi−1,Ui−1)‖2

|pδ(Vi, Ui|Vi−1, Ui−1; θ)− p(Vi, Ui|Vi−1, Ui−1; θ)| ≤ δ C3e
−C4‖(Vi,Ui)−(Vi−1,Ui−1)‖2

We deduce that for all i = 1, . . . , n, there exists a constant C > 0 inde-
pendent of θ such that∫

|p (Vi, Ui|Vi−1, Ui−1; θ)− pδ (Vi, Ui|Vi−1, Ui−1; θ)|
i−1∏
j=1

p (Vj , Uj |Vj−1, Uj−1; θ)

×
n∏

j=i+1

pδ (Vj , Uj |Vj−1, Uj−1; θ) dU0:n ≤ Cδ

Finally, we get |p(V0:n; θ)− pδ(V0:n; θ)| ≤ Cnδ = C 1
Ln∆.
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