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Abstract

Parameter estimation in two-dimensional diffusion models with only one coordinate observed is

highly relevant in many biological applications, but a statistically difficult problem. In neuroscience,

the membrane potential evolution in single neurons can be measured at high frequency, but biophys-

ical realistic models have to include the unobserved dynamics of ion channels. One such model is

the stochastic Morris-Lecar model, where random fluctuations in conductance and synaptic input are

specifically accounted for by the diffusion terms. It is defined through a non-linear two-dimensional

stochastic differential equation with state dependent noise on the non-observed coordinate. The co-

ordinates are coupled, i.e. the unobserved coordinate is non-autonomous, and we are therefore not in

the more well-behaved situation of a hidden Markov model. In this paper, we propose a sequential

Monte Carlo particle filter algorithm to impute the unobserved coordinate, and then estimate param-

eters maximizing a pseudo-likelihood through a stochastic version of the Expectation-Maximization

algorithm. The performance is evaluated in a simulation study, and it turns out that even the rate scal-

ing parameter governing the opening and closing of ion channels of the unobserved coordinate can

be reasonably estimated. Also an experimental data set of intracellular recordings of the membrane

potential of a spinal motoneuron of a red-eared turtle is analyzed.

Keywords: Sequential Monte Carlo; diffusions; pseudo likelihood; Stochastic Approximation Expecta-

tion Maximization; motoneurons; conductance-based neuron models; membrane potential

1 Introduction

In neuroscience, it is of major interest to understand the principles of information processing in the

nervous system, and a basic step is to understand signal processing and transmission in single neurons.

1
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Therefore, there is a growing demand for robust methods to estimate biophysical relevant parameters

from partially observed detailed models. Statistical inference from experimental data in biophysically

detailed models of single neurons is difficult. Data are typically of either of two types: extracellular

recordings, where only the spike times are observed, i.e. a point process, or intracellular recordings,

where the membrane potential is recorded at high frequency, e.g. observations are taken every 0.1 ms.

The data are naturally described by single point models, neglecting morphological properties of the

neuron, since no spatial information is available in the data, and all neuronal properties are collapsed

into a single point in space. Even so, the models can be multi-dimensional and have far more parameters

than the data can provide information about. Often these models are compared to experimental data by

hand-tuning to reproduce the qualitative behaviors observed in experimental data, but without any formal

statistical analysis.

The complexity of neuronal single cell models ranges from detailed biophysical descriptions, exempli-

fied most prominently in the Hodgkin-Huxley model, to simplified one-dimensional diffusion models.

The Hodgkin-Huxley model (Hodgkin and Huxley (1952)) is a conductance-based model, which consists

of four coupled differential equations, one for the membrane voltage, and three equations describing the

gating variables that model the voltage-dependent sodium and potassium channels. Conductance-based

models provide a minimal biophysical interpretation for an excitable cell, including the voltage depen-

dence or time-dependent nature of the conductance due to movement of ions across ion channels in the

membrane. Several simplifications of the Hodgkin-Huxley model has been proposed, most commonly in

order to reduce the four-dimensional system to a two-dimensional system, using the time scale separa-

tions by treating the fast variables as instantaneous variables by a quasi steady-state approximation, and

by collapsing variables with nearly identical dynamics.

The Morris-Lecar model (Morris and Lecar (1981)) has often been used as a good, qualitatively quite

accurate, two-dimensional model of neuronal spiking. It is a conductance-based model like the Hodgkin-

Huxley model, introduced to explain the dynamics of the barnacle muscle fiber. It can be considered a

prototype for a wide variety of neurons. The model is given by two coupled first order differential

equations, the first modeling the membrane potential evolution, and the second equation modeling the

activation of potassium current. If both current and conductance noise should be taken into account,

the stochastic Morris-Lecar model arises, where diffusion terms have been added on both coordinates,

governed by Wiener processes. Typically, the membrane potential will be measured discretely at high

frequency, whereas the second variable cannot be observed. Our goal is to estimate parameters of the

model from discrete observations of the first coordinate. This includes estimation of a central rate param-

eter characterizing the channel kinetics of the unobserved component, and the two diffusion parameters

representing the amplitude of the noise.

In Huys et al. (2006) up to 104 parameters are estimated in a detailed multi-compartmental single neuron

model. Only parameters entering linearly in the loss function are considered, and channel kinetics are

assumed known. It is a quadratic optimization problem solved by least squares, and shown to work well

for low noise and high frequency sampling. When either the discretization step or the noise increase, a

bias is introduced. In Huys and Paninski (2009) they extend the estimation to allow for measurement

noise, first smoothing the data by a particle filter, and then maximizing the likelihood through a Monte

Carlo EM-algorithm.

In this paper, we propose to approximate the non-linear two-dimensional model through an Euler-

Maruyama scheme to obtain a tractable pseudo-likelihood. Then we consider the statistical model as
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an incomplete data model, where the unobserved part is imputed by a Sequential Monte Carlo (SMC)

algorithm. This is not straightforward for the type of conductance based model, we are studying. It is

a multi-dimensional coupled stochastic differential equation (SDE), where only one coordinate is ob-

served. This means that the unobserved coordinate is non-autonomous, and the model does not fit into

the hidden Markov model framework. Furthermore, the diffusion is not time reversible. Thus, we cannot

directly apply the SMC algorithm proposed in Del Moral et al. (2001), which assumes the non-observed

data autonomous, nor the algorithms proposed in Fearnhead et al. (2008), which assumes the drift to

be of gradient type. In the ergodic case this corresponds to a time reversible diffusion. In the parti-

cle filter proposed in our paper, the observed coordinate is not re-simulated. Finally, we maximize the

pseudo-likelihood, based on an Euler-Maruyama approximation of the SDE defining the model, through

a Stochastic Approximation Expectation-Maximization (SAEM) algorithm, where the unobserved data

are imputed at each iteration of the algorithm. We prove that the estimator obtained from this combined

SAEM-SMC algorithm converges with probability one to a local maximum of the pseudo-likelihood.

We also prove that the pseudo-likelihood converges to the true likelihood as the time step between ob-

servations go to zero.

The paper is organized as follows: In Section 2 the model is presented, the special noise structure, we are

considering, is motivated, and the pseudo likelihood arising from the Euler-Maruyama approximation is

found. In Section 3 we present the proposed estimation procedure and the assumptions needed for the

convergence results to hold. In Section 4 we conduct a simulation study to document the performance of

the method, and in Section 5 we apply the method on an experimental data set of intracellular recordings

of the membrane potential of a motoneuron of an adult turtle. Proofs and technical results can be found

in the Appendix.

2 Stochastic Morris-Lecar model

2.1 Exact diffusion model

We consider a stochastic Morris-Lecar model including both current and channel noise, defined as
{
dVt = f(Vt, Ut)dt+ γdB̃t,
dUt = b(Vt, Ut)dt + σ(Vt, Ut)dBt,

(1)

where

f(Vt, Ut) =
1

C
(−gCam∞(Vt)(Vt − VCa

)− gKUt(Vt − VK)− gL(Vt − VL) + I) ,

b(Vt, Ut) = (α(Vt)(1− Ut)− β(Vt)Ut) ,

m∞(v) =
1

2

(
1 + tanh

(
v − V1
V2

))
,

α(v) =
1

2
φ cosh

(
v − V3
2V4

)(
1 + tanh

(
v − V3
V4

))
,

β(v) =
1

2
φ cosh

(
v − V3
2V4

)(
1− tanh

(
v − V3
V4

))
,

and the initial condition (V0, U0) is random with density p(V0, U0). Processes (B̃t)t≥t0 and (Bt)t≥t0

are independent Brownian motions. The variable Vt represents the membrane potential of the neuron at
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Figure 1: Simulated trajectory of the stochastic Morris-Lecar model: (Vt) as a function of time (left, top),

(Ut) as a function of time (left, bottom), and (Ut) against (Vt) (right). Parameters are given in Section 4.

Time is measured in ms, voltage in mV, the conductance is normalized between 0 and 1.

time t, and Ut represents the normalized conductance of the K+ current. This is a variable between 0

and 1, and could be interpreted as the probability that a K+ ion channel is open at time t. The equation

for f(·) describing the dynamics of Vt contains four terms, corresponding to Ca2+ current, K+ current,

a general leak current, and the input current I . The functions α(·) and β(·) model the rates of open-

ing and closing, respectively, of the K+ ion channels. The function m∞(·) represents the equilibrium

value of the normalized Ca2+ conductance for a given value of the membrane potential. The parameters

V1, V2, V3 and V4 are scaling parameters; gCa, gK and gL are conductances associated with Ca2+, K+

and leak currents, respectively; VCa, VK and VL are reversal potentials for Ca2+, K+ and leak currents,

respectively; C is the membrane capacitance; φ is a rate scaling parameter for the opening and closing

of the K+ ion channels; and I is the input current.

Parameter γ scales the current noise. Function σ(Vt, Ut) models the channel or conductance noise. We

consider the following function that ensures that Ut stays bounded in the unit interval if σ ≤ 1 (Ditlevsen

and Greenwood, 2012)

σ(Vt, Ut) = σ

√
2
α(Vt)β(Vt)

α(Vt) + β(Vt)
Ut(1− Ut).

A trajectory of the model is simulated in Fig. 1. The peaks of (Vt) corresponds to spikes of the neuron.

Data consist in discrete measurements of (Vt) while (Ut) is not measured. We denote t0 ≤ t1 ≤ . . . ≤ tn
the discrete observation times. We denote Vi = Vti the observation at time ti and V0:n = (Vt0 , . . . , Vtn)
the vector of all the observed data. We focus on the estimation of parameters from observations V0:n.

Let θ ∈ Θ ⊆ R
p be the vector of parameters to be estimated. We will consider two cases: Estimation of

all identifiable parameters of the observed coordinate, where all parameters of the unobserved channel

dynamics are assumed known except for the volatility parameter, θ = (gCa, gK , gL, VCa, VK , I, γ, σ);
and estimation of θ = (gCa, gK , gL, VCa, VK , I, γ, σ, φ), where also the rate parameter of the unob-

served coordinate is estimated. Note that C is a proportionality factor of the conductance parameters

and thus unidentifiable, as well as the constant level in f(·) is given by gLVL + I , and thus VL (or I) is

unidentifiable. An ideal estimator for θ is the maximum likelihood estimator, obtained by maximizing
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the likelihood of V0:n. However, this likelihood is intractable, as explained below.

The likelihood function p(V0:n; θ) of model (1) has a complex form for several reasons. Let us first write

the likelihood function of the ideal case where the second coordinate (Ut) is also discretely observed. Let

U0:n denote a realization of (Ut) at observation times t0, . . . , tn. Since the vector (Vi, Ui) is Markovian,

the likelihood p(V0:n, U0:n; θ) can be written as a product of conditional densities

p(V0:n, U0:n; θ) = p(V0, U0; θ)
n∏

i=1

p(Vi, Ui|Vi−1, Ui−1; θ),

where p(Vi, Ui|Vi−1, Ui−1; θ) is the transition density of (Vi, Ui) given (Vi−1, Ui−1). Unfortunately, the

density p(Vi, Ui|Vi−1, Ui−1; θ) has no explicit form because the diffusion is highly non-linear. Therefore,

even when (Ut) is discretely observed at the same time points as (Vt), the likelihood is not explicit and

the maximum likelihood estimator is not available. In this ideal case, minimum contrast estimators based

on the Euler-Maruyama approximation of the diffusion have been proposed by Kessler (1997).

When the second coordinate (Ut) is not observed, the estimation is much more difficult. Indeed, although

(Vt, Ut) is Markovian, the single coordinate (Vt) is not Markovian. The process (Ut) is a latent or hidden

variable which has to be integrated out to compute the likelihood

p(V0:n; θ) =

∫
. . .

∫
p(V0, U0; θ)

n∏

i=1

p(Vi, Ui|Vi−1, Ui−1; θ)dU0 . . . dUn. (2)

Again, the transition density p(Vi, Ui|Vi−1, Ui−1; θ) is generally not available and has to be approxi-

mated. We therefore introduce an approximate diffusion based on the Euler-Maruyama scheme.

2.2 Approximate diffusion

Let ∆ denote the step size between two observation times. Here we assume that ∆ does not depend

on i. The extension to unequally spaced observation times is straightforward. The Euler-Maruyama

approximation of model (1) leads to a discretized model defined as follows

Vi+1 = Vi +∆f(Vi, Ui) +
√
∆ γ η̃i, (3)

Ui+1 = Ui +∆b(Vi, Ui) +
√
∆σ(Vi, Ui)ηi,

where (η̃i) and (ηi) are independent centered Gaussian variables. To ease readability the same notation

(Vi, Ui) is used for the original and the approximated processes. This should not lead to confusion,

as long as the transition densities are distinguished, as done below. The likelihood of the approximate

model is equal to

p∆(V0:n; θ) =

∫
. . .

∫
p(V0, U0; θ)

n∏

i=1

p∆(Vi, Ui|Vi−1, Ui−1; θ)dU0 . . . dUn, (4)

where p∆(Vi, Ui|Vi−1, Ui−1; θ) is the transition density of model (3):

p∆(Vi, Ui|Vi−1, Ui−1; θ) =
1√

2π∆γ
exp

(
−(Vi − Vi−1 −∆f(Vi−1, Ui−1))

2

2∆γ2

)

× 1√
2π∆σ(Vi−1, Ui−1)

exp

(
−(Ui − Ui−1 −∆b(Vi−1, Ui−1))

2

2∆σ2(Vi−1, Ui−1)

)
.
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We aim at estimating the maximum of the likelihood (4) of the approximate model, which corresponds

to a pseudo-likelihood for the exact diffusion.

3 Estimation method

The multiple integrals of equation (4) are difficult to handle. Thus, it is not possible to maximize the

likelihood directly.

A solution is to consider the statistical model as an incomplete data model. The observable vector V0:n is

then part of a so-called complete vector (V0:n, U0:n), where U0:n has to be imputed. Simulation under the

smoothing distribution p∆(U0:n |V0:n; θ)dU0:n is likely to be a complex problem, and direct simulation of

the non-observed data (U0:n) is not possible. A Sequential Monte Carlo (SMC) algorithm, also known

as Particle Filtering, provides a way to approximate this distribution (Doucet et al., 2001). We have

adapted this algorithm to handle a coupled two-dimensional SDE, i.e. the unobserved coordinate is

non-autonomous. Thus, we are not in the more well-behaved situation of a hidden Markov model.

To maximize the likelihood of the complete data vector (V0:n, U0:n), we propose to use a stochastic

version of the Expectation-Maximization (EM) algorithm, namely the SAEM algorithm (Delyon et al.,

1999). Thus, we combine the SAEM algorithm with the SMC algorithm, where the unobserved data are

filtered at each iteration step, to estimate the parameters of model (3). Details on the SMC are given in

Section 3.1, and the SAEM algorithm is presented in Section 3.2. Convergence of this new SAEM-SMC

algorithm is stated in Section 3.3.

3.1 SMC, a particle filter algorithm

In this section, the aim is to approximate the distribution p∆(U0:n|V0:n; θ)dU0:n, for a fixed value of θ.

When included in the stochastic EM algorithm, this value will be the current value θ̂m of the parameter

at the given iteration. The SMC algorithm provides a set of K particles (U
(k)
0:n)k=1...K and weights

(W
(k)
0:n )k=1...K approximating the conditional distribution p∆(U0:n|V0:n; θ)dU0:n (see Doucet et al., 2001,

for a complete review). The SMC method relies on proposal distributions q(Ui|Vi, Vi−1, Ui−1; θ)dUi to

sample what we call particles from these distributions. We write V0:i = (V0, . . . , Vi) and likewise for

U0:i.

Algorithm 1 (SMC algorithm)

• At time i = 0: ∀ k = 1, . . . ,K

1. sample U
(k)
0 from p(U0|V0; θ)

2. compute and normalize the weights:

w0

(
U

(k)
0

)
= p

(
V0, U

(k)
0 ; θ

)
, W0

(
U

(k)
0

)
=

w0

(
U

(k)
0

)

∑K
k=1w0

(
U

(k)
0

)
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• At time i = 1, . . . , n: ∀ k = 1, . . . ,K

1. resample the particles, i.e. sample the indicesA
(k)
i−1 from a multinomial distribution such that

P (A
(k)
i−1 = l) =Wi(U

(l)
0:i−1), ∀ l = 1, . . . ,K

and put U
′(k)
0:i−1 = U

(A
(k)
i−1)

0:i−1 .

2. sample U
(k)
i ∼ q

(
·|Vi, Vi−1, U

′(k)
i−1 ; θ

)
and set U

(k)
0:i = (U

′(k)
0:i−1, U

(k)
i )

3. compute and normalize the weights:

wi

(
U

(k)
0:i

)
=

p∆

(
V0:i, U

(k)
0:i ; θ

)

p∆

(
V0:i−1, U

′(k)
0:i−1; θ

)
q
(
U

(k)
i |Vi, Vi−1, U

′(k)
0:i−1; θ

)

Wi(U
(k)
0:i ) =

wi

(
U

(k)
0:i

)

∑K
k=1wi

(
U

(k)
0:i

)

Finally, the SMC algorithm provides an empirical measure

ΨK
n,θ =

K∑

k=1

Wn(U
(k)
0:n)1U(k)

0:n

which is an approximation to the smoothing distribution p∆(U0:n|V0:n; θ)dU0:n. Here, 1x is the Dirac

measure in x. A draw from this distribution can be obtained by sampling an index k from a multinomial

distribution with probabilities Wn and setting the draw U0:n equal to U0:n = U
(k)
0:n .

As in any importance sampling method, the choice of the proposal distribution q is crucial to ensure good

convergence properties. The first classical choice of q is q(Ui|Vi, Vi−1, Ui−1; θ) = p∆(Ui|Vi−1, Ui−1; θ),

i.e. the transition density. In this case, the weight reduces to wi

(
U

(k)
0:i

)
= p∆(Vi|U (k)

i , Vi−1, U
(k)
0:i−1; θ).

A second choice for the proposal is q(Ui|Vi, Vi−1, Ui−1; θ) = p∆(Ui|Vi, Vi−1, Ui−1; θ), i.e. the condi-

tional distribution. In this case, the weight reduces to wi

(
U

(k)
0:i

)
= p∆(Vi|Vi−1, U

(k)
0:i−1; θ). Transition

densities and conditional distributions are detailed in Appendix A for the approximate model (3). When

the two Brownian motions are independent, as we assume, the two choices are equivalent.

We can compare this particle filter with previous filters proposed in the literature. Del Moral et al. (2001)

propose a particle filter for a two-dimensional SDE, where the second equation is autonomous. Although

the first coordinate is observed at discrete times, Del Moral et al. (2001) propose to simulate the V0:n
at each iteration of the filter with the proposal p∆(Vi, Ui|Vi−1, Ui−1). The weights are computed with

a bounded function of the difference between the observed value Vi and the simulated particles V
(k)
i .

Fearnhead et al. (2008) generalise this particle filter with any proposal distribution to simulate the Vi at

each iteration. The weights then reduce to a Dirac mass of the difference between the observed value Vi
and the simulated particles V

(k)
i , which is likely to be almost surely equal to zero. To avoid this problem

of zero weights, the SMC algorithm proposed here is slightly different as V0:n is not re-simulated.

The convergence of Algorithm 1 is studied in Appendix D.
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3.2 SAEM algorithm

The EM algorithm (Dempster et al., 1977) is useful in situations where the direct maximization of the

marginal likelihood θ → p∆(V0:n ; θ) is more difficult than the maximization of the conditional expec-

tation of the complete likelihood

Q(θ|θ′) = E∆

[
log p∆(V0:n, U0:n; θ)|V0:n; θ′

]
,

where p∆(V0:n, U0:n; θ) is the likelihood of the complete data (V0:n, U0:n) of the approximate model (3)

and the expectation is under the conditional distribution ofU0:n given V0:n with density p∆(U0:n|V0:n; θ′).
The EM algorithm is an iterative procedure: at the mth iteration, given the current value θ̂m−1 of the

parameter, the E-step is the evaluation of Qm(θ) = Q(θ | θ̂m−1), while the M-step updates θ̂m−1 by

maximizing Qm(θ). To fulfill convergence conditions of the algorithm, we consider the particular case

of a distribution from an exponential family. More precisely, we assume:

(M1) The parameter space Θ is an open subset of Rp. The complete likelihood p∆(V0:n, U0:n; θ) belongs

to a curved exponential family, i.e.

log p∆(V0:n, U0:n; θ) = −ψ(θ) + 〈S(V0:n, U0:n), ν(θ)〉 ,

where ψ and ν are two functions of θ, S(V0:n, U0:n) is known as the minimal sufficient statistic of

the complete model, taking its value in a subset S of Rd, and 〈·, ·〉 is the scalar product on R
d.

The approximate Morris-Lecar model (3) satisfies this assumption when we assume the scaling parame-

ters V1, V2, V3, V4 known. Details of the sufficient statistic S are given in Appendix B.

Under assumption (M1), the E-step reduces to the computation of E∆

[
S(V0:n, U0:n)|V0:n; θ̂m−1

]
. When

this expectation has no closed form, Delyon et al. (1999) propose the Stochastic Approximation EM

algorithm (SAEM) replacing the E-step by a stochastic approximation of Qm(θ). The E-step is then

divided into a simulation step (S-step) of the non-observed data (U
(m)
0:n ) with the conditional density

p∆(U0:n |V0:n; θ̂m−1) and a stochastic approximation step (SA-step) of E∆

[
S(V0:n, U0:n)|V0:n; θ̂m−1

]
.

We write sm for the approximation of this expectation. Iterations of the SAEM algorithm are written as

follows:

Algorithm 2 (SAEM algorithm)

• Iteration 0: initialization of θ̂0 and set s0 = 0.

• Iteration m ≥ 1:

S-Step: simulation of the non-observed data (U
(m)
0:n ) conditionally on the observed data from the

distribution p∆(U0:n|V0:n; θ̂m−1)dU0:n.

SA-Step: update sm−1 using the stochastic approximation scheme:

sm = sm−1 + am−1

[
S(V0:n, U

(m)
0:n )− sm−1

]
(5)

where (am)m∈N is a sequence of positive numbers decreasing to zero.
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M-Step: update of θ̂m by:

θ̂m = argmax
θ∈Θ

(−ψ(θ) + 〈sm, ν(θ)〉) .

At the S-step, the simulation under the smoothing distribution p∆(U0:n |V0:n; θ̂m−1)dU0:n is done by

SMC, as explained in Section 3.1. We call this algorithm the SAEM-SMC algorithm. The standard

errors of the parameter estimators can be evaluated through the Fisher information matrix. Details are

given in Appendix C.

An advantage of the SAEM algorithm is the low-level dependence on the initialization θ̂0, due to the

stochastic approximation of the E-step. The other advantage of the SAEM algorithm over a Monte-Carlo

EM algorithm is the computational time. Indeed, only one simulation of the hidden variables U0:n is

needed in the simulation step while an increasing number of simulated hidden variables is required in a

Monte-Carlo EM algorithm.

3.3 Convergence of the SAEM-SMC algorithm

The SAEM algorithm we propose in this paper is based on an approximate simulation step performed

with an SMC algorithm. We prove that even if this simulation is not exact, the SAEM algorithm still

converges towards the maximum of the likelihood of the approximated diffusion (3). This is true because

the SMC algorithm has good convergence properties.

Let us be more precise. We introduce a set of convergence assumptions which are the classic ones for

the SAEM algorithm (Delyon et al., 1999).

(M2) The functions ψ(θ) and ν(θ) are twice continuously differentiable on Θ.

(M3) The function s̄ : Θ −→ S defined by s̄(θ) =
∫
S(v, u)p∆(u|v; θ)dv du is continuously differen-

tiable on Θ.

(M4) The function ℓ∆(θ) = log p∆(v, u, θ) is continuously differentiable on Θ and

∂θ

∫
p∆(v, u; θ)dv du =

∫
∂θp∆(v, u; θ)dv du.

(M5) Define L : S × Θ −→ R by L(s, θ) = −ψ(θ) + 〈s, ν(θ)〉. There exists a function θ̂ : S −→ Θ
such that

∀θ ∈ Θ, ∀s ∈ S, L(s, θ̂(s)) ≥ L(s, θ).

(SAEM1) The positive decreasing sequence of the stochastic approximation (am)m≥1 is such that
∑

m am =
∞ and

∑
m a

2
m <∞.

(SAEM2) ℓ∆ : Θ → R and θ̂ : S → Θ are d times differentiable, where d is the dimension of S(v, u).

(SAEM3) For all θ ∈ Θ,
∫
||S(v, u)||2 p∆(u|v; θ)du < ∞ and the function Γ(θ) = Covθ(S(·, U0:n)) is

continuous, where the covariance is under the conditional distribution p∆(U0:n|V0:n; θ).
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(SAEM4) For any positive Borel function f

E∆(f(U
(m+1)
0:n )|Fm) =

∫
f(u)p∆(u|v, θ̂m)du,

where {Fm} is the increasing family of σ-algebras generated by the random variables s0, U
(1)
0:n,

U
(2)
0:n, . . . , U

(m)
0:n .

Assumptions (M1)-(M5) ensure the convergence of the EM algorithm when the E-step is exact (Delyon

et al., 1999). Assumptions (M1)-(M5) and (SAEM1)-(SAEM4) together with the additional assumption

that (sm)m≥0 takes its values in a compact subset of S ensure the convergence of the SAEM estimates

to a stationary point of the observed likelihood p∆(V0:n; θ) when the simulation step is exact (Delyon

et al., 1999).

Here the simulation step is not exact and we have three additional assumptions on the SMC algorithm to

bound the error induced by this algorithm and prove the convergence of the SAEM-SMC algorithm.

(SMC1) The number of particlesK used at each iteration of the SAEM algorithm varies along the iteration:

there exists a function g(m) → ∞ when m→ ∞ such that K(m) ≥ g(m) log(m).

(SMC2) The function S is bounded uniformly in u.

(SMC3) The functions p∆(Vi|Ui, Vi−1, Ui−1; θ) are bounded uniformly in θ.

Theorem 1. Assume that (M1)-(M5), (SAEM1)-(SAEM3), and (SMC1)-(SMC3) hold. Then, with proba-

bility 1, limm→∞ d(θ̂m,L) = 0 where L = {θ ∈ Θ, ∂θℓ∆(θ) = 0} is the set of stationary points of the

log-likelihood ℓ∆(θ) = log p∆(V0:n; θ).

Theorem 1 is proved in Appendix D. Note that assumption (SAEM4) is not needed thanks to the condi-

tional independence of the particles generated by the SMC algorithm, as detailed in the proof. Similarly,

the additional assumption that (sm)m≥0 takes its values in a compact subset of S is not needed, as it is

directly satisfied under assumption (SMC2).

We deduce that the SAEM algorithm converges to a (local) maximum of the likelihood under standard

additional assumptions (LOC1)-(LOC3) proposed by Delyon et al. (1999) on the regularity of the log-

likelihood ℓ∆(V0:n; θ) that we do not recall here.

Corollary 1. Under the assumptions of Theorem 1 and additional assumptions (LOC1)-(LOC3), the

sequence θ̂m converges with probability 1 to a (local) maximum of the likelihood p∆(V0:n; θ).

Proof is given in Appendix D.

In practice, the SAEM algorithm is implemented with a fixed number of particles, although an increasing

number is needed to prove the theoretical convergence. Assumption (SMC1) provides the order of mag-

nitude of the number of particles needed to obtain satisfactory results for a given number of iterations of

the SAEM algorithm.

Assumptions (M1)-(M5) are classically satisfied. Assumption (SAEM1) is easily satisfied by choosing

properly the sequence (am). Assumptions (SAEM2) and (SAEM3) depend on the regularity of the

model. They are satisfied for the approximate Morris-Lecar model.
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Assumption (SMC2) is satisfied for the approximate Morris-Lecar model because the variables U are

bounded between 0 and 1 and the variables V are fixed at their observed values. This would not have

been the case with the filter of Del Moral et al. (2001), which resimulates the variables V at each iteration.

Assumption (SMC3) is satisfied if we require that γ is strictly bounded away from zero; γ ≥ ǫ > 0.

3.4 Properties of the approximate diffusion

The SAEM-SMC algorithm provides a sequence which converges to the set of stationary points of the

log-likelihood ℓ∆(θ) = log p∆(V0:n; θ). The following result aims at comparing this likelihood, which

corresponds to the Euler approximate model (3), with the true likelihood p(V0:n; θ) in (2).

The result is based on the bound of the Euler approximation which has been proved by Bally and Talay

(1996a). Their result holds under the following assumption

(H1) Functions f , b, σ are 2 times differentiable with bounded derivatives with respect to u and v of all

orders up to 2.

Let us assume we apply the SAEM algorithm on an approximate model obtained with an Euler scheme

of step size δ = ∆/L. Then we have the following result

Theorem 2. Under assumption (H1), there exists a constant C, independent of θ, such that for any

θ ∈ Θ, and any vector V0:n

|p(V0:n; θ)− pδ(V0:n; θ)| ≤ C
1

L
n∆

Proof is given in Appendix D.

Assumption (H1) does not hold for the Morris-Lecar model, but if the state variables were bounded,

assumption (H1) would hold. This is the case for Ut, whereas Vt is not. Nevertheless, the tails of Vt
behave as an Ornstein-Uhlenbeck process, and could be truncated at an arbitrary large value, and the

behavior would be approximately the same.

4 Simulation study

Parameter values of the Morris-Lecar model used in the simulations are the same as those of Tateno

and Pakdaman (2004) for a class II membrane, except that we set the membrane capacitance constant to

C = 1µF/cm2, which is the standard value reported in the literature. Conductances and input current

were correspondingly changed, and thus, the two models are the same. The values are: VK = −84
mV, VL = −60 mV, VCa = 120 mV, C = 1µF/cm2, gL = 0.1µS/cm2, gCa = 0.22µS/cm2, gK =
0.4µS/cm2, V1 = −1.2 mV, V2 = 18 mV, V3 = 2 mV, V4 = 30 mV, φ = 0.04 ms−1. Input is chosen

to be I = 4.5µA/cm2. Initial conditions of the Morris-Lecar model are Vt0 = −26 mV, Ut0 = 0.2.

The volatility parameters are γ = 1 mV ms−1/2, σ = 0.03 ms−1/2. Trajectories are simulated with

time step ∆ = 0.1 ms and n = 2000 points, and either θ = (gCa, gK , gL, VCa, VK , I, γ, σ) or θ =
(gCa, gK , gL, VCa, VK , I, γ, σ, φ) are estimated on each simulated trajectory. A hundred repetitions are
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Figure 2: Filtering of (Ut) with the particle filter algorithm (200 particles): hidden simulated trajectory

of the Morris-Lecar model (Ut) (black), mean filtered signal (grey full drawn line), 95% confidence

interval of filtered signal (grey dashed lines).

used to evaluate the performance of the estimators. An example of a simulated trajectory (for n = 10000)

is given in Figure 1.

4.1 Filtering results

The Particle filter aims at filtering the hidden process (Ut) from the observed process (Vt). We illustrate

its performance on a simulated trajectory, with parameter θ fixed at its true values. The SMC Particle

filter algorithm is implemented with K = 100 particles and the transition density as proposal. Figure 2

presents the result of the Particle filter procedure. The true hidden process, the mean filtered signal and

its 95% confidence interval are plotted. The filtered process appears satisfactory. The confidence interval

includes the true hidden process (Ut).

4.2 Estimation results

The performance of the SAEM-SMC algorithm is illustrated on 100 simulated trajectories. The SAEM

algorithm is implemented with m = 100 iterations and a sequence (am) equal to 1 during the 30 first

iterations and equal to am = 1/(m − 30)0.8 for m > 30. The SMC algorithm is implemented with

K = 50 particles at each iteration of the SAEM algorithm. Two types of initialization of the SAEM

algorithm are used. The first is a random initialization of θ̂0 centered around the true value: θ̂0 =
θtrue + θtrue/3N (0, 1). The second type is a random initialization of θ̂0 not centered around the true

value: θ̂0 = θtrue + 0.1 + θtrue/3N (0, 1).

An example of the convergence of the SAEM algorithm for one of the iterations is presented in Fig. 3. It

is seen that the algorithm converges for most of the parameters in very few iterations to a neighborhood
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Figure 3: Convergence of the SAEM algorithm for the 9 estimated parameters on a simulated data set.

True values used in the simulation are given by the gray lines.

of the true value, even if the initial values are far from the true ones. Only for φ and σ more iterations are

needed, which is expected since these two parameters appear in the second, non-observed coordinate.

The SAEM algorithm is used to estimate either θ = (gCa, gK , gL, VCa, VK , I, γ, σ) (φ fixed at the true

value) or θ = (gCa, gK , gL, VCa, VK , I, γ, σ, φ). The SAEM estimators are compared with the pseudo

maximum likelihood estimator obtained if both Vt and Ut were observed. Results are given in Table

1. The parameters are well estimated in this ideal case. When only Vt is observed, the initialization of

the SAEM algorithm has low influence on the results. The parameters are well estimated, except the

parameter σ which is biased. The estimation of φ, which is the only parameter in the drift of the hidden

coordinate Ut, is good and does not deteriorate the estimation of the other parameters. In Fig. 4 we

show boxplots of the estimates of the nine parameters for the three estimation settings; both coordinates

observed, or only one observed with either φ fixed at the true value, or also estimated. All parameters

appear well estimated, except for σ, which is only well estimated when both coordinates are observed.

As expected, the variances of the estimators of φ and σ hugely increase when only one coordinate is

observed, but interestingly, the variance of the parameters of the observed coordinate do not seem much

affected by this loss of information.
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Parameters

Estimator gL gCa gK σ γ VK φ VCa I

true values 0.100 0.220 0.400 0.030 1.00 -84.00 0.040 120.00 4.400

With both Vt and Ut observed (pseudo maximum likelihood estimator)

mean 0.101 0.219 0.411 0.030 0.996 -83.20 0.040 121.97 4.539

RMSE 0.017 0.019 0.041 0.001 0.019 7.61 0.001 8.50 0.560

With only Vt observed (SAEM estimator)

φ fixed at the true value, θ̂0 centered at the true value

mean 0.093 0.226 0.440 0.060 1.004 -77.01 – 119.61 3.884

RMSE 0.016 0.022 0.067 0.031 0.017 9.80 – 10.00 0.836

φ estimated, θ̂0 centered around the true value

mean 0.092 0.213 0.414 0.058 1.000 -85.72 0.046 123.90 4.550

RMSE 0.021 0.022 0.124 0.029 0.019 10.19 0.018 10.90 1.714

φ estimated, θ̂0 not centered around the true value

mean 0.090 0.225 0.464 0.059 1.003 -78.622 0.041 119.677 4.060

RMSE 0.021 0.024 0.144 0.029 0.017 9.459 0.013 10.218 1.028

estimated

SE 0.016 0.019 0.042 0.001 0.016 4.96 0.001 7.31 0.561

Table 1: Simulation results obtained from 100 simulated Morris-Lecar trajectories (n = 2000, ∆ = 0.1
ms). Four estimators are compared: 1/ The pseudo maximum likelihood estimator in the ideal case where

both Vt and Ut are observed; 2/ SAEM estimator when only Vt is observed with the SAEM initialization

at a random value centered around the true value θ, φ fixed at the true value; 3/ SAEM estimator when

only Vt is observed with the SAEM initialization at a random value centered around the true value θ, φ
estimated; 4/ SAEM estimator when only Vt is observed with the SAEM initialization at a random value

not centered around the true value θ. An example of standard errors (SE) estimated with the SAEM-SMC

algorithm on one single simulated dataset is also given.
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Figure 4: Boxplots of 100 estimates from simulated data sets for the 9 parameters. True values used in

the simulations are given by the gray lines. A: Both Vt and Ut are observed. B: Only Vt is observed, φ is

fixed at the true value. C: Only Vt is observed, φ is also estimated.
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Figure 5: Observations of the membrane potential in a spinal motoneuron of an adult red-eared turtle

during 600 ms (upper panel), and the filtered hidden process of the normalized conductance associated

with K+ current (lower panel) for the estimated parameters with the scaling parameters fixed at V1 =
−2.4 mV, V2 = 36 mV, V3 = 4 mV and V4 = 60 mV.

The SAEM-SMC algorithm provides estimates of the standard errors (SE) of the estimators (see Ap-

pendix C). These should be close to the RMSE obtained from the 100 simulated datasets. As an example,

the SE for one dataset estimated by SAEM are reported in the last line of Table 1. The estimated SE are

satisfactory for most of the parameters, but tends to underestimate. The worst SE estimate is the one

corresponding to σ. This might be explained by the fact that this parameter is estimated with bias.

5 Intracellular recordings from a turtle motoneuron

The membrane potential from a spinal motoneuron in segment D10 of an adult red-eared turtle (Trache-

mys scripta elegans) was recorded while a periodic mechanical stimulus was applied to selected regions

of the carapace with a sampling step of 0.1 ms (for details see Berg et al. (2007, 2008)). The turtle

responds to the stimulus with a reflex movement of a limb known as the scratch reflex, causing an in-

tense synaptic input to the recorded neuron. Due to the time varying stimulus, a model for the complete

data set needs to incorporate the time-inhomogeneity, as done in Jahn et al. (2011). The data can only

be assumed stationary during short time windows, which is required for the Morris-Lecar model with

constant parameters. Therefore, we only analyze a short trace where the input is approximately constant

during an on-cycle (following Jahn et al. (2011)). The analyzed data are plotted in Fig. 5, together with

a filtered trace of the unobserved coordinate.

First the model was fitted with the values of the scaling parameters V1–V4 as in Section 4. Most of

the estimates are reasonable and in agreement with the expected order of magnitudes for the parameter

values, except for the VCa reversal potential, which in the literature is reported to be around 100–150
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Parameter gL gCa gK σ γ VK φ VCa I

With V1 = −1.2 mV, V2 = 18 mV, V3 = 2 mV, V4 = 30 mV

Estimate -0.962 9.555 7.280 0.091 3.003 -89.862 2.916 44.705 -2.511

SE 0.001 0.049 0.051 0.000 0.001 4.684 0.002 0.597 0.089

With V1 = −2.4 mV, V2 = 36 mV, V3 = 4 mV, V4 = 60 mV

Estimate 1.292 11.564 18.631 0.095 2.694 -65.582 2.683 106.368 -65.162

SE – 0.028 0.081 – 0.025 0.434 0.120 0.440 0.506

Table 2: Parameter estimates obtained from observations of the membrane potential of a spinal motoneu-

ron of an adult red-eared turtle during 600 ms for two different sets of scaling parameters.

mV (estimated to 44.7 mV), and the leak conductance, which is estimated to be negative. Conductances

are always non-negative. This is probably due to wrong choices of the scaling constants V1–V4. For the

parameters of the model given in Section 4, the average of the membrane potential Vt between spikes

is around -26 mV, whereas the average of the experimental trace between spikes is around -56 mV, a

factor two larger. We therefore rerun the estimation procedure fixing V1–V4 to twice the value from

before, which provides approximately the same equilibrium values of the normalized Ca2+ conductance,

m∞(·), and the rates of opening and closing of K+ ion channels, α(·) and β(·), as in the theoretical

model. Results are presented in Table 2. In this case all parameters are reasonable and in agreement with

the expected order of magnitudes. In Fig. 6 the convergence of the SAEM algorithm is presented. As in

the simulated data examples, it is seen that the algorithm converges for the parameters of the observed

coordinate in very few iterations to a neighborhood of some value. Only for the parameters of the un-

observed coordinate, φ and σ, more iterations are needed. For two parameters, gL and σ, the estimated

variances were negative, but very small in absolute values. This can be due to numerical instabilities, and

should be interpreted as being close to zero. The SEs are probably underestimated, though, as shown in

the simulation study.

6 Discussion

To the authors knowledge, this is the first time the rate parameter of the unobserved coordinate, φ, is

estimated from experimental data. It is comforting to observe that the estimated value do not seem to

be very sensitive to the choice of scaling parameters. Other parameters, like the conductances and the

reversal potentials, are more sensitive to this choice, and should be interpreted with care.

The estimation procedure builds on the pseudo likelihood, which approximates the true likelihood by

an Euler scheme. This approximation is only valid for small sampling step, i.e. for high frequency

data, which is the case for the type of neuronal data considered here. If data were sampled less often, a

possibility could be to simulate diffusion bridges between the observed points, and apply the estimation

procedure to an augmented data set consisting of the observed data and the imputed values.

There are several issues that deserve further study. First, it is important to understand the influence

of the scaling parameters V1 − V4, and how to estimate them for a given data set. The model is not

exponential in these parameters (assumption (M1)) and new estimation procedures have to be considered.

Secondly, one should be aware of the possible misspecification of the model. More detailed models

incorporating further types of ion channels could be explored, but increasing the model complexity might
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Figure 6: Convergence of the SAEM algorithm for the 9 estimated parameters on the experimental data

set consisting in observations of the membrane potential of a spinal motoneuron of an adult red-eared

turtle during 600 ms.
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deteriorate the estimates, since the information contained in only observing the membrane potential

is limited. Furthermore, the sensitivity on the choice of tuning parameters of the algorithm, like the

decreasing sequence of the stochastic approximation, (am), number of SAEM iterations, and the number

of particles in the SMC algorithm, needs further investigation. Finally, an automated procedure to find

starting values for the procedure is warranted.
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Appendix

A Distributions of approximate model (3)

Consider the general approximate model

(
Vi+1

Ui+1

)
=

(
Vi
Ui

)
+∆

(
f(Vi, Ui)
b(Vi, Ui)

)
+

√
∆

(
γ ρ
ρ σ(Vi, Ui)

)(
η̃i
ηi

)

where ρ is the correlation coefficient between the two Brownian motions or perturbations.

The distribution of the couple (Vi+1, Ui+1) conditionally on (Vi, Ui) is

(
Vi+1

Ui+1

)∣∣∣∣
(
Vi
Ui

)
∼ N

([
Vi +∆f(Vi, Ui)
Ui +∆b(Vi, Ui)

]
,∆

[
(γ2 + ρ2) ρ(γ + σ(Vi, Ui))

ρ(γ + σ(Vi, Ui)) (σ2(Vi, Ui) + ρ2)

])

The marginal distributions of Vi+1 conditionally on (Vi, Ui) and Ui+1 conditionally on (Vi, Ui) are

Vi+1|Vi, Ui ∼ N
(
Vi +∆f(Vi, Ui),∆(γ2 + ρ2)

)

Ui+1|Vi, Ui ∼ N
(
Ui +∆b(Vi, Ui),∆(σ2(Vi, Ui) + ρ2)

)
(6)

The conditional distributions of Vi+1 conditionally on (Ui+1, Vi, Ui) andUi+1 conditionally on (Vi+1, Vi, Ui)
are

Vi+1|Ui+1, Vi, Ui ∼ N (mV , V arV )

Ui+1|Vi+1, Vi, Ui ∼ N (mU , V arU ) (7)
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where

mV = Vi +∆f(Vi, Ui) +
ρ(γ + σ(Vi, Ui))

σ2(Vi, Ui) + ρ2
(Ui+1 − Ui −∆b(Vi, Ui))

V arV = ∆(γ2 + ρ2)− ∆ρ2(γ + σ(Vi, Ui))
2

σ2(Vi, Ui) + ρ2

mU = Ui +∆b(Vi, Ui) +
ρ(γ + σ(Vi, Ui))

γ2 + ρ2
(Vi+1 − Vi −∆f(Vi, Ui))

V arU = ∆(σ2(Vi, Ui) + ρ2)− ∆ρ2(γ + σ(Vi, Ui))
2

γ2 + ρ2

The distributions in (6) and (7) are equal when the Brownian motions are independent, i.e. when ρ = 0.

B Sufficient statistics of the approximate model (3)

We detail some sufficient statistics functions. Consider the n× 6-matrix

X =
(
−V0:(n−1),−m∞(V0:(n−1))V0:(n−1),−U0:(n−1)V0:(n−1), U0:(n−1),1,m∞(V0:(n−1))

)

where 1 is the vector of 1’s of size n. Then the vector

S1(V0:(n−1), U0:(n−1)) = (X ′X)−1 X ′ (V1:n − V0:(n−1))

is the sufficient statistic vector corresponding to the parameters ν1(θ) = (gL, gCa, gK , gKVK , gLVL +
I, gCaVCa), where ′ denotes transposition.

The sufficient statistics corresponding to ν2(θ) = 1/γ2 are

n∑

i=1

(Vi − Vi−1)Ui−1,
n∑

i=1

U2
i−1,

n∑

i=1

(Vi − Vi−1)Vi−1m∞(Vi−1),

n∑

i=1

(Vi − Vi−1)Ui−1Vi−1,
n∑

i=1

U2
i−1V

2
i−1.

The sufficient statistics corresponding to ν3(θ) = 1/σ2 are

n∑

i=1

(Ui − Ui−1)
2 ,

n∑

i=1

(Ui − Ui−1) (α(Vi−1)(1− Ui−1)/φ− β(Vi−1)Ui−1/φ) ,

n∑

i=1

(α(Vi−1)(1− Ui−1)/φ− β(Vi−1)Ui−1/φ)
2 .

The sufficient statistics corresponding to φ is also explicit but more complex and not detailed here.
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C Fisher information matrix

The standard errors (SE) of the parameter estimators can be evaluated as the diagonal elements of the

inverse of the Fisher information matrix estimate. Its evaluation is difficult because it has no analytic

form. We adapt the estimation of the Fisher information matrix, proposed by Delyon et al. (1999) and

based on the Louis missing information principle.

The Hessian of the log-likelihood ℓ∆(θ) can be expressed as:

∂2θ ℓ∆(θ) = E
[
∂2θL(S(V0:n, U0:n), θ)|V0:n, θ

]

+ E
[
∂θL(S(V0:n, U0:n), θ) (∂θL(S(V0:n, U0:n), θ))

′|V0:n, θ
]

− E [∂θL(S(V0:n, U0:n), θ)|V0:n, θ] E [∂θL(S(V0:n, U0:n), θ)|V0:n, θ]′ .
The derivatives ∂θL(S(V0:n, U0:n), θ) and ∂2θL(S(V0:n, U0:n), θ) are explicit for the Euler approximation

of the Morris-Lecar model. Therefore we implement their estimation using the stochastic approximation

procedure of the SAEM algorithm. At themth iteration of the algorithm, we evaluate the three following

quantities:

Gm+1 = Gm + am

[
∂θL(S(V0:n, U

(m)
0:n ), θ)−Gm

]

Hm+1 = Hm + am

[
∂2θL(S(V0:n, U

(m)
0:n ), θ) + ∂θL(S(V0:n, U

(m)
0:n ), θ) (∂θL(S(V0:n, U

(m)
0:n ), θ))′ −Hm

]

Fm+1 = Hm+1 −Gm+1 (Gm+1)
′.

As the sequence (θ̂m)m converges to the maximum of the likelihood, the sequence (Fm)m converges to

the Fisher information matrix.

D Proof of the convergence results

We start by a Lemma which generalizes the result of Del Moral et al. (2001) to the particle filter we

propose. Then we prove Theorem 1, Corollary 1 and Theorem 2.

D.1 Convergence results of Algorithm 1

Let us introduce some notation. For any bounded Borel function f : R 7→ R, we denote πn,θf =
E∆ (f(Un)|V0:n; θ), the conditional expectation under the exact smoothing distribution p∆(U0:n|V0:n; θ)
of the approximate model, and ΨK

n,θf =
∑K

k=1 f(U
(k)
n )Wn,θ(U

(k)
0:n), the conditional expectation of f

under the empirical measure ΨK
n,θ obtained by the SMC algorithm for a given value of θ.

The following lemma is an extension of the result of Del Moral et al. (2001) to a particle filter adapted to

a non-autonomous equation for the second coordinate of the system and in which V0:n is not resimulated.

Lemma 1. Under assumption (SMC3), for any ε > 0, and for any bounded Borel function f on R, there

exist constants C1 and C2, independent of θ, such that

P
(∣∣ΨK

n,θf − πn,θf
∣∣ ≥ ε

)
≤ C1 exp

(
−K ε2

C2‖f‖2
)

(8)
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where ‖f‖ is the sup-norm of f .

Proof. We omit θ in the proof for clarity. The conditional expectation πnf can be written

πnf =

∫
µ(U0)

∏n
i=1 p∆(Vi, Ui|Vi−1, Ui−1)f(Un)dU0 . . . dUn∫

µ(U0)
∏n

i=1 p∆(Vi, Ui|Vi−1, Ui−1)dU0 . . . dUn
(9)

where µ is the distribution of U0. We have

π0f =

∫
f(u)µ(du).

Consider for i = 1, . . . , n, the kernels Hi from R into itself by

Hif(u) =

∫
p∆(Vi, u

′|Vi−1, u)f(u
′)du′. (10)

Then πn can be expressed recursively by

πnf =
πn−1Hnf

πn−1Hn1
.

These kernels are extensions of the kernels considered by Del Moral et al. (2001). Note that the de-

nominator of (9) is µH1 · · ·Hn1 = p∆(V0:n), which is different from 0 since it is normal, and bounded

following from assumption (SMC3). We write νn = µH1 · · ·Hn1 for this constant conditioned on the

observed values V0:n. Also (10) is bounded, i.e. Hi1(u) ≤ C for all u ∈ R and i = 1, . . . , n, for some

constant C. It directly follows that µH1 · · ·Hi−11 ≤ Ci−1. Furthermore, we obtain the bound

µH1 · · ·Hi1 ≥ µH1 · · ·Hi+11

C
≥ · · · ≥ νn

Cn−i
.

Finally, using the above bounds and that πi−1 is a transition measure, we obtain

νn
Cn−1

≤ πi−1Hi1 ≤ C. (11)

Consider the SMC sampled particles in algorithm 1. Define the two empirical measures obtained at time

i: Ψ
′K
i = 1

K

∑K
k=1 1U

′(k)
0:i

and ΨK
i =

∑K
k=1Wi(U

(k)
0:i )1U(k)

0:i

. We also decompose the weights and write

ΥK
i f = 1

K

∑K
k=1 f(U

(k)
i )wi(U

(k)
0:i ). Then Wi(U

(k)
0:i ) = wi(U

(k)
0:i )/(KΥK

i 1) and ΨK
i f = ΥK

i f/Υ
K
i 1.

Recall the following general result (Del Moral et al., 2001) for ξ1, . . . , ξK random variables, which

conditioned on a σ-field G are independent, centered and bounded |ξk| ≤ a. Then for any ε > 0 we have

P

(∣∣∣∣∣
1

K

K∑

k=1

ξk

∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(
−K ε2

2a2

)
. (12)

Let f be a bounded function on R. Then under assumption (SMC3)

Ψ
′K
i f −ΨK

i f =
1

K

K∑

k=1

(
f(U

′(k)
i )−ΨK

i f
)
=

1

K

K∑

k=1

ξk
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fulfills the conditions for (12) to hold with a = 2‖f‖, since E(f(U
′(k)
i )|G) = ΨK

i f , where G is the

σ-algebra generated by U
(k)
0:i . Thus, for any ε > 0 we obtain

P

(∣∣∣Ψ′K
i f −ΨK

i f
∣∣∣ ≥ ε

)
≤ 2 exp

(
−K ε2

8‖f‖2
)
. (13)

Likewise, as Hif(u) = Qi(fwi)(u) with Qi(f)(u) =
∫
q(u′|Vi, Vi−1, u)f(u

′)du′, we have

ΥK
i f −Ψ

′K
i−1Hif =

1

K

K∑

k=1

(
f(U

(k)
i )wi(U

(k)
0:i )−Qi(fwi)(U

′(k)
i−1 )

)
=

1

K

K∑

k=1

ξk

which fulfills the conditions for (12) to hold, now with a = 2C‖f‖ and G is the σ-algebra generated by

U
′(k)
0:i−1. Hence, for any ε > 0 we obtain

P

(∣∣∣ΥK
i f −Ψ

′K
i−1Hif

∣∣∣ ≥ ε
)

≤ 2 exp

(
−K ε2

8C2‖f‖2
)
. (14)

We want to show the following two bounds

P
(∣∣ΨK

i f − πif
∣∣ ≥ ε

)
≤ 2Ii exp

(
−K ε2

8Ji‖f‖2
)
, i = 1, . . . , n (15)

P

(∣∣∣Ψ′K
i f − πif

∣∣∣ ≥ ε
)

≤ 2I
′

i exp

(
−K ε2

8J
′

i‖f‖2
)
, i = 0, 1, . . . , n (16)

by induction on i, for some constants Ii, I
′

i , Ji, J
′

i increasing with i to be computed later. Note first that

since π0 = µ and U
′(k)
0 are i.i.d. with law µ, then (12) with ξk = f(U

′(k)
0 )− µ(f) yields (16) for i = 0

with I
′

i = J
′

i = 1. Let i ≥ 1 and assume (16) holds for i− 1. We can write

ΨK
i f − πif =

1

πi−1Hi1

(
ΥK

i f

ΥK
i 1

(πi−1H11−ΥK
i 1) + (ΥK

i f − πi−1Hif)

)
.

Note that ΥK
i 1 > 0 because the weights wi are strictly positive. Define Lif = ΥK

i f − πi−1Hif and use

that |ΥK
i f | ≤ ‖f‖ΥK

i 1 (because f is bounded) and (11) to see that

|ΨK
i f − πif | ≤ Cn−1

νn
(‖f‖|Li1|+ |Lif |) (17)

and

|Lif | ≤ |ΥK
i f −Ψ

′K
i−1Hif |+ |Ψ′K

i−1Hif − πi−1Hif |. (18)

Assuming that (16) holds for i− 1 and using (14) and that ‖Hif‖ ≤ C‖f‖ yield

P (|Lif | ≥ ε) ≤ 2 exp

(
−K ε2

32C2‖f‖2
)
+ 2I

′

i−1 exp

(
−K ε2

32J
′

i−1C
2‖f‖2

)
.

We obtain

P
(∣∣ΨK

i f − πif
∣∣ ≥ ε

)
≤ P

(
|Li1| ≥

ενn
2Cn−1‖f‖

)
+ P

(
|Lif | ≥

ενn
2Cn−1

)

≤ 4 exp

(
−K ε2ν2n

128C2n‖f‖2
)
+ 4I

′

i−1 exp

(
−K ε2ν2n

128J
′

i−1C
2n‖f‖2

)
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Hence, (15) holds with Ii ≥ 2(1 + I
′

i−1) and Ji ≥ 16C2nJ
′

i−1/ν
2
n ≥ 16J

′

i−1 since νn ≤ Cn. By (13)

and (15) we then conclude that (16) also holds for i if I
′

i = 1 + Ii and J
′

i = 4Ji. These conditions are

fulfilled by choosing Ii = 3i+1 − 3 and Ji = 16i.

Thus, (8) holds with C1 = 6(3n − 1) and C2 = 8 · 16n. This concludes the proof.

D.2 Proof of Theorem 1

Proof. To prove the convergence of the SAEM-SMC algorithm, we study the stochastic approximation

scheme used during the SA step. The stochastic approximation (5) can be decomposed into:

sm+1 = sm + amh(sm) + amem + amrm

with
h(sm) = πn,θ̂(sm)S − sm

em = S(V0:n, U
(m)
0:n )−Ψ

K(m)

n,θ̂(sm)
S

rm = Ψ
K(m)

n,θ̂(sm)
S − πn,θ̂(sm)S

where we denote by πn,θ̂(sm)S = E∆(S(V0:n, U0:n)|V0:n; θ) the expectation of the sufficient statistic S

under the exact distribution p∆(U0:n|V0:n; θ), and by Ψ
K(m)

n,θ̂(sm)
S the expectation of the sufficient statistic

S under the empirical measure obtained with the SMC algorithm with K(m) particles and current value

of parameters θ̂(sm) at iteration m of the SAEM-SMC algorithm.

Following Theorem 2 of Delyon et al. (1999) on the convergence of the Robbins-Monro scheme, the

convergence of the SAEM-SMC algorithm is ensured if we prove the following assertions:

1. The sequence (sm)m≥0 takes its values in a compact set.

2. The function V (s) = −ℓ∆(θ̂(s)) is such that for all s ∈ S , F (s) = 〈∂sV (s), h(s)〉 ≤ 0 and such

that the set V ({s, F (s) = 0}) is of zero measure.

3. limm→∞
∑m

ℓ=1 aℓeℓ exists and is finite with probability 1.

4. limm→∞ rm = 0 with probability 1.

Assertion 1 follows from assumption (SMC2) and by construction of sm in formula (5).

Assertion 2 is proved by Lemma 2 of Delyon et al. (1999) under assumptions (M1)-(M5) and (SAEM2).

Assertion 3 is proved similarly as Theorem 5 of Delyon et al. (1999). By construction of the SMC

algorithm, the equivalent of assumption (SAEM3) is checked for the expectation taken under the ap-

proximate empirical measure Ψ
K(m)

n;θ̂m
. Indeed, the assumption of independence of the non-observed vari-

ables U
(1)
0:n, . . . , U

(m)
0:n given θ̂0, . . . , θ̂m is verified. As a consequence, for any positive Borel function f ,

E
K(m)
∆ (f(U

(m+1)
0:n )|Fm) = Ψ

K(m)

n;θ̂m
f . Then

∑m
ℓ=1 aℓeℓ is a martingale, bounded in L2 under assumptions

(M5) and (SAEM1)-(SAEM2).
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To verify assertion 4, we use Lemma 1. Under assumptions (SMC2)-(SMC3) and assertion 1, Lemma 1

yields that for any ε > 0, there exist two constants C1, C2, independent of θ, such that

M∑

m=1

P (|rm| > ε) =

M∑

m=1

P

(∣∣∣ΨK(m)

n,θ̂(sm)
S − πn,θ̂(sm)S

∣∣∣ ≥ ε
)

≤ C1

M∑

m=1

exp

(
−K(m)

ε2

C2‖S‖2
)
.

Finally, assumptions (SMC1)-(SMC2) imply that there exists a constant C3, independent of θ, such that

M∑

m=1

P (|rm| > ε) ≤ C1

M∑

m=1

1

mC3g(m)ε2

which is finite when M goes to ∞. This proves the a.s. convergence of rm to 0.

D.3 Proof of Corollary 1

Proof. Theorem 6 of Delyon et al. (1999) can be extended without difficulty to our algorithm. It proves

that under assumptions of Theorem 1 and (LOC1), the sequence θ̂m converges to a fixed point of the

EM-mapping T (θ̂m) = θ̂(s(θ̂m)). Assumptions (LOC2)-(LOC3), Lemma 3 of Delyon et al. (1999) and

application of Brandière and Duflo (1996) imply that the sequence θ̂m converges with probability 1 to a

proper maximum of the likelihood.

D.4 Proof of Theorem 2

Proof. The Markov property yields

|p(V0:n; θ)− pδ(V0:n; θ)| ≤
∫

|p(V0:n, U0:n; θ)− pδ(V0:n, U0:n; θ)| dU0:n

≤
∫ ∣∣∣∣∣

n∏

i=1

p (Vi, Ui|Vi−1, Ui−1; θ)−
n∏

i=1

pδ (Vi, Ui|Vi−1, Ui−1; θ)

∣∣∣∣∣ dU0:n

≤
∫ n∑

i=1

|p (Vi, Ui|Vi−1, Ui−1; θ)− pδ (Vi, Ui|Vi−1, Ui−1; θ)|

i−1∏

j=1

p (Vj , Uj |Vj−1, Uj−1; θ)
n∏

j=i+1

pδ (Vj , Uj |Vj−1, Uj−1; θ) dU0:n

Bally and Talay (1996a,b) provide that under assumption (H1), there exist constants C1 > 0, C2 > 0,

C3 > 0, C4 > 0 independent of θ such that

|pδ(Vi, Ui|Vi−1, Ui−1; θ) + p(Vi, Ui|Vi−1, Ui−1; θ)| ≤ C1e
−C2‖(Vi,Ui)−(Vi−1,Ui−1)‖

2

|pδ(Vi, Ui|Vi−1, Ui−1; θ)− p(Vi, Ui|Vi−1, Ui−1; θ)| ≤ δ C3e
−C4‖(Vi,Ui)−(Vi−1,Ui−1)‖

2
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We deduce that for all i = 1, . . . , n, there exists a constant C > 0 independent of θ such that

∫
|p (Vi, Ui|Vi−1, Ui−1; θ)− pδ (Vi, Ui|Vi−1, Ui−1; θ)|

i−1∏

j=1

p (Vj , Uj |Vj−1, Uj−1; θ)

×
n∏

j=i+1

pδ (Vj , Uj |Vj−1, Uj−1; θ) dU0:n ≤ Cδ

Finally, we get |p(V0:n; θ)− pδ(V0:n; θ)| ≤ Cnδ = C 1
Ln∆.
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