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The method of choice for describing attractive quantum systems is Hartree-Fock-Bogoliubov (HFB)
theory. This is a nonlinear model which allows for the description of pairing effects, the main
explanation for the superconductivity of certain materials at very low temperature.

This paper is the first study of Hartree-Fock-Bogoliubov theory from the point of view of nu-
merical analysis. We start by discussing its proper discretization and then analyze the convergence
of the simple fixed point (Roothaan) algorithm. Following works by Cancès, Le Bris and Levitt for
electrons in atoms and molecules, we show that this algorithm either converges to a solution of the
equation, or oscillates between two states, none of them being a solution to the HFB equations.
We also adapt the Optimal Damping Algorithm of Cancès and Le Bris to the HFB setting and we
analyze it.

The last part of the paper is devoted to numerical experiments. We consider a purely gravita-
tional system and numerically discover that pairing always occurs. We then examine a simplified
model for nucleons, with an effective interaction similar to what is often used in nuclear physics.
In both cases we discuss the importance of using a damping algorithm.

c© 2012 by the authors. This paper may be reproduced, in its entirety, for non-commercial purposes.
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1. Introduction

Hartree-Fock-Bogoliubov (HFB) theory is the method of choice for describing some special

features of attractive fermionic quantum systems [41]. It is a generalization of the famous

Hartree-Fock (HF) method [35] used in quantum chemistry. It also generalizes the Bardeen-

Cooper-Schrieffer (BCS) theory of superconductivity [4] which was invented in 1957 to ex-

plain the complete loss of resistivity of certain materials at very low temperature. In 1958

Bogoliubov realized in [9] that the BCS theory was actually very similar to his previous

works [6, 8, 7] on the superfluidity of certain bosonic systems. He adapted it to fermions,

leading to a model that is now called Hartree-Fock-Bogoliubov, and which is the main in-

terest of this article.

In Hartree-Fock-Bogoliubov theory the state of the system is completely determined

by two operators [3]. The one-particle density matrix γ is the same as in Hartree-Fock

theory [34], whereas the pairing density matrix α describes the Cooper pairing effect. This

effect can only hold in attractive systems. When the interaction potential is positive, the

energy is decreased by replacing α by 0.

One of the most interesting questions in HFB theory is precisely the existence of pairing,

that is, the non-vanishing of the matrix α for a minimizer. This question has been settled

in the simpler translation-invariant BCS theory [5, 48, 49, 39, 18, 23, 26] and in some cases

for the translation-invariant Hubbard model [3]. But it remains completely open for general

attractive systems with a few particles, like those encountered in nuclear physics. In [30],

the first author of this paper has shown with Lenzmann the existence of HFB minimizers

for a purely Newtonian system of N fermions, but it is not yet known if α 6= 0. One of the

purpose of this work is to answer this question numerically.

The HFB energy is a nonlinear function of γ and α. Because of nonlinearity, minimizing

this functional on a computer is not an easy task. The simpler Hartree-Fock model in which

α = 0 is now well understood from the point of view of numerical analysis [29, 11], even
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though most authors have concentrated their attention to the special case of electrons in

an atom or a molecule. Cancès and Le Bris have studied in [13, 12] the simpler fixed point

algorithm called the Roothaan algorithm [42] and they have shown that this algorithm

either converges or oscillates between two points, none of them being the solution of the HF

equation. This result was recently improved by Levitt [31]. Cancès and Le Bris have also

proposed a new algorithm called Optimal Damping, which is now used in several chemistry

programs. It is based on the fact that one can freely minimize the energy over mixed HF

states instead of pure HF states, by Lieb’s variational principle [33].

Because the HFB model is an extension of HF theory, it is natural to believe that these

ideas can be applied to the HFB case as well. In particular, under appropriate assumptions

on the interaction potential, Bach, Fröhlich and Jonsson have recently shown in [2] an HFB

equivalent of Lieb’s variational principle. Up to some difficulties that will be explained later,

we will show in this paper that the previously mentioned results can indeed be transposed

to the Hartree-Fock-Bogoliubov model.

The paper is organized as follows. In the next section we quickly recall the basic for-

mulation of Hartree-Fock-Bogoliubov theory. Then, in Section 3, we derive the discretized

HFB equations and we prove that, in the limit of a large Galerkin basis set, the discretized

solution converges to the true solution. We also discuss at length the possible symmetries of

the system and we formulate the theory when these symmetries are taken into account.

In Section 4 we study the HFB Roothaan algorithm and we prove that it either converges

to a solution of the HFB equation, or oscillate between two points, none of them being a

solution of the equations. We then introduce an equivalent of the Optimal Damping Algo-

rithm of Cancès and Le Bris, which is based on an optimization in the set of mixed HFB

states.

Section 5 is devoted to the presentation of some numerical results. We first consider

the purely gravitational model studied by Lenzmann and Lewin [30] and we numerically

discover that there is always pairing. Then, we introduce a simplified model for nucleons,

for which we as well present some preliminary numerical results. We particularly discuss the

importance of using a damped algorithm instead of a simple fixed point method, a fact which

has already been noticed in nuclear physics [16]. Our approach could help in improving the

existing numerical techniques.

Acknowledgement. The authors would like to thank Laurent Bruneau and Julien Sabin

for useful discussions. They acknowledge financial support from the French Ministry of Re-

search (ANR-10-BLAN-0101) and from the European Research Council under the European

Community’s Seventh Framework Programme (FP7/2007-2013 Grant Agreement MNIQS

258023).

2. A quick review of Hartree-Fock-Bogoliubov theory

2.1. Hartree-Fock-Bogoliubov states and their energy

We consider a system composed of N identical fermions, described by the many-body Hamil-

tonian

H(N) =

N
∑

j=1

Tj +
∑

16k<ℓ6N

Wkℓ, (2.1)
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acting on the fermionic N -body space HN =
∧N

1 H, where H is the space for one particle.

Here, T : H → H is a one-body operator and W : H2 → H2 accounts for the interactions

between the particles. We use the notation Tj for the operator T which acts on the jth

component of the tensor product HN =
∧N

1 H, that is Tj = 1 ⊗ · · · ⊗ T ⊗ · · · ⊗ 1, and a

similar convention for Wkℓ.

Most of what follows is valid in an abstract setting. However, for the sake of simplicity,

in the whole paper we will restrict ourselves to the special case of nonrelativistic fermions

with q internal degrees of freedom, moving in R3 (q = 2 for spin-1/2 particles like electrons).

We also assume that no external force is applied, and that their interaction is translation-

invariant. Then, in units where m = 1/2 and ~ = 1, we have

H = L2(R3,Cq), T = −∆, Wkℓ = W (xk − xℓ).

The N -body space HN =
∧N

1 L2(R3,Cq) consists of wave functions Ψ(x1, σ1, ..., xN , σN )

which are antisymmetric with respect to exchanges of the variables (xi, σi). In principle

W (xk − xℓ) is also a function of the two internal variables σk, σℓ ∈ {1, ..., q} of the particles

k and ℓ. Again for simplicity, we will assume that W only depends on the space variable

xk − xℓ. Finally, we make the assumption that W is smooth and decays fast enough at

infinity to ensure that H is bounded from below. To make this more explicit, we assume in

the whole paper that

W = W1 +W2 ∈ Lp(R3) + Lq(R3) for some 2 6 p 6 q <∞. (2.2)

Sometimes we will make more precise assumptions on W .

We are interested in the case where W is attractive (W 6 0), or at least partially

attractive (W 6 0 on a set of measure non zero). By translation invariance, the Hamiltonian

H(N) has no ground state (that is, the bottom of its spectrum cannot be an eigenvalue).

But it may have one once the center of mass is removed, if W is sufficiently negative.

In a nonlinear model approximating the many-body problem above, there could be a

ground state, even if the system is translation-invariant. Of course, translation invariance

is not lost and there are then infinitely many ground states, obtained by translating the

system arbitrarily. In Hartree-Fock theory [35, 3], such breaking of symmetry is known to

occur for instance when W (x) = −1/|x| is a purely gravitational interaction and T = −∆

(nonrelativistic), or T =
√

1 − ∆ − 1 (pseudo-relativistic), see [30, 32] and Theorem 2.3

below.

For attractive systems, it is often convenient to allow for another symmetry breaking,

namely that of particle number. This means that the fixed particle number N is replaced

by an operator N whose eigenvalues are 0, 1, 2, .... Only the average particle number is well

defined for a quantum state. The classical way to define N is to introduce the fermionic

Fock space

F = C⊕
⊕

n>1

Hn,

which gathers all the possible n-particle subspaces in a direct sum. A (pure) quantum state

in F is a vector Ψ = ψ0 ⊕ ψ1 ⊕ · · · which is normalized in the sense that

||Ψ||2F = |ψ0|2 +
∑

n>1

||ψn||2Hn = 1.
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The average particle number is the diagonal operator

N := 0 ⊕
⊕

n>1

n,

such that the average number of particles in a state Ψ is given by the formula

〈Ψ,NΨ〉 =
∑

n>1

n ||ψn||2Hn .

Instead of imposing that Ψ ∈ HN which is equivalent to Ψ being an eigenvector of N ,

NΨ = NΨ, we will only fix the average particle number of Ψ:

〈Ψ,NΨ〉 = N.

Allowing to have ψn 6= 0 for n 6= N is useful to describe some physical properties of attractive

systems. In most practical cases it is expected that the variance
∑

n>0(n−N)2 ||ψn||2Hn will

be quite small, i.e. that Ψ will live in a neighborhood of HN .

Similarly to the particle number operator N , the many-body Hamiltonian H(N) is now

replaced by a many-body Hamiltonian H on Fock space

H := 0 ⊕
⊕

n>1

H(n) (2.3)

which is nothing else but the diagonal operator which coincides with H(n) on each n-particle

subspace. We will not discuss here the problem of defining H as a self-adjoint operator on

F .

The Hartree-Fock-Bogoliubov (HFB) model generalizes the well-known Hartree-Fock

(HF) method and it allows for breaking of particle number in a very simple fashion. The

method consists in restricting the many-body Hamiltonian H on F to a special class of states

called Hartree-Fock-Bogoliubov states (or quasi-free states), which are completely character-

ized by their one-particle density matices [3].

Let us recall that a state in Fock space has two one-particle density matrices, instead

of one in usual HF theory. These are two operators γ : H → H and α : H → H, which are

defined by means of creation and annihilation operators by the relations [3]
〈

Ψ, a†(f)a(g)Ψ
〉

F = 〈g, γf〉
H
, 〈Ψ, a(f)a(g)Ψ〉F =

〈

g, αf
〉

H
.

When Ψ lives in a particular N -particle subspace HN , then a(f)a(g)Ψ ∈ HN−2 hence

〈Ψ, a(f)a(g)Ψ〉F = 0 for all f, g ∈ H and the matrix α vanishes. However for a general

state Ψ ∈ F , one can have α 6= 0.

The two operators γ and α satisfy several constraints. First, we have γ∗ = γ, 0 6 γ 6 1

(in the sense of operators) and Tr γ = 〈Ψ,NΨ〉 = N , for the one-particle matrix γ. On the

other hand, the so-called pairing matrix α satisfies αT = −α. Its kernel α(x, σ, x′, σ′) =

−α(x′, σ′, x, σ) can thus be seen as an antisymmetric two-body wavefunction in H2. It is

interpreted as describing pairs of virtual particles, called Cooper pairs.

It is well known that a quantum state Ψ ∈ HN such that (γΨ)2 = γΨ is necessarily a

Slater determinant (that is, a Hartree-Fock state). The same is true for states in Fock space.

Consider a pair (γ, α) which is such that

Γ2 = Γ, with Γ :=

(

γ α

α∗ 1 − γ

)

(2.4)
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on H⊕ H. Hence we have for instance αα∗ = γ − γ2. Then there exists a unique state Ψ in

F which has γ and α as density matrices. This state has the property that any observable

can be computed using only γ and α, by Wick’s formula (see Thm 2.3 in [3]). The quantum

states obtained by considering projections Γ are called Hartree-Fock-Bogoliubov states and

they generalize usual Hartree-Fock states. When α ≡ 0, then γ =
∑N

j=1 |ϕj〉〈ϕj | is a rank-N

projection and the corresponding state is the usual Slater determinant

Ψ = ϕ1 ∧ · · · ∧ ϕN =
1√
N !

det
(

ϕi(xj , σj)
)

.

When α 6= 0, Ψ can be obtained by applying a Bogoliubov rotation to the vacuum but we

will not explain this further. For the present work, we will only need the formula of the total

energy, in terms of γ and α:

〈Ψ,HΨ〉F =
∑

n>0

〈ψn, H(n)ψn〉Hn

= Tr(−∆)γ +
1

2

∫

R3

∫

R3

W (x− y)
(

ργ(x)ργ(y) − |γ(x, y)|2 + |α(x, y)|2
)

dx dy

:= E(γ, α) (2.5)

where ργ(x) = TrCq (γ(x, x)) is the density of particles in the system. The terms in the

double integral are respectively called the direct, exchange and pairing terms. Taking α ≡ 0

one recovers the usual Hartree-Fock energy which has been studied by many authors [35, 38,

1, 3]. Our main goal in this paper is to investigate the minimization of the more complicated

nonlinear functional E(γ, α), when γ and α are submitted to the above constraints, and

its numerical implementation. We will show below that the energy E is well defined in an

appropriate function space, under our assumption (2.2) on W .

Note that the variance of the particle number for a HFB state Ψ in Fock space can be

expressed only in terms of α by
〈

Ψ,
(

N − 〈Ψ,NΨ〉F
)2

Ψ
〉

F
=
∑

n>0

(n−N)2 ||ψn||2Hn = 2 TrH(αα∗),

see Lemma 2.7 in [3]. The spreading of the HFB state over the different spaces Hn is therefore

determined by the Hilbert-Schmidt norm of the pairing matrix α. We recover the fact that

an HFB state has a given particle number if and only if its pairing matrix α vanishes.

2.2. Pure vs mixed states

In our previous description, we have only considered pure states in Fock space, that is states

given by a normalized vector Ψ ∈ F . For practical purposes, it is very convenient to extend

the model to mixed states, which are nothing else but convex combinations of pure states,

given by a (many-body) density matrix in F

D =
∑

j

λj |Ψj〉〈Ψj | with λj > 0,
∑

j

λj = 1, 〈Ψi,Ψj〉F = δij .

The average particle number and energy are then given by the formulas

TrF
(

ND) =
∑

j

λj〈Ψj,NΨj〉, TrF
(

HD) =
∑

j

λj〈Ψj,HΨj〉.
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Resorting to mixed states is mandatory at positive temperature, when the equilibrium state

of the system will actually always be a mixed state. But it is also very useful at zero

temperature, even if the true ground state is a pure state. We will recall later the practical

advantages of using mixed HFB states.

Similarly to what we have explained in the previous section, there is a class of mixed

Hartree-Fock-Bogoliubov states, which are completely characterized by their one-particle

density matrices γ and α. The latter now satisfy the constraint
(

0 0

0 0

)

6 Γ :=

(

γ α

α∗ 1 − γ

)

6

(

1 0

0 1

)

(2.6)

on H⊕ H, which is nothing else but the relaxation of the constraint Γ2 = Γ of pure states.

The set of one-particle density matrices of mixed HFB states is therefore a convex set,

whose extremal points are the density matrices of pure HFB states. One should remember

that the set of mixed HFB states is not the convex hull of HFB pure states, however. The

relation between the density matrices (γ, α) and the corresponding HFB states in F is highly

nonlinear.

The energy of a mixed HFB state described by the density matrices (γ, α) is given by

the same formula (2.5) as for pure states. Hence, minimizing this energy under the relaxed

constraint (2.6) is equivalent to minimizing the full quantum energy over all mixed HFB

states. The natural question arises whether a minimizer, when it exists, is automatically a

pure state. The answer to this question is positive in many situations, as we will see below.

Before turning to the comparison between the minimization among pure and mixed

states, we first introduce the variational sets on which the energy is well defined. The sets

of all pure and mixed HFB states with finite kinetic energy are respectively given by

P :=
{

(γ, α) ∈ S1(H) ×S2(H) : αT = −α, Γ = Γ∗ = Γ2, Tr(−∆)γ <∞
}

(2.7)

and

K :=
{

(γ, α) ∈ S1(H) ×S2(H) : αT = −α, 0 6 Γ = Γ∗
6 1H⊕H, Tr(−∆)γ <∞

}

, (2.8)

(the matrix Γ is the one appearing in (2.4)). Here S1(H) and S2(H) denote the spaces of

trace-class and Hilbert-Schmidt operators [44]. The expression Tr(−∆)γ is to be understood

in the sense of quadratic forms, that is

Tr(−∆)γ =

3
∑

k=1

Tr(pkγpk) ∈ [0,+∞], with pk = −i∂xk
.

In practice we want to fix the total average number of particles. For this reason we also

define the constrained sets

P(N) := {(γ, α) ∈ P : Tr γ = N} (2.9)

and

K(N) := {(γ, α) ∈ K : Tr γ = N} , (2.10)

of pure and mixed states with average particle number N . In practice N is an integer but it

is convenient to allow any non-negative real number.

The following lemma says that the energy is a well-defined functional on the largest of

the above sets K, and that it is bounded from below on K(N) for any N > 0.
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Lemma 2.1 (The HFB energy is bounded-below on K(N)). When W = W1 +W2 ∈
Lp(R3) + Lq(R3) with 2 6 p 6 q < ∞, then E(γ, α) is well defined for any (γ, α) ∈ K. It

also satisfies a bound of the form

∀(γ, α) ∈ K, E(γ, α) >
1

2
Tr(−∆)γ − C(N) (2.11)

for some constant C(N) depending only on N = Tr(γ).

Proof. The assumption that W = W1+W2 ∈ Lp(R3)+Lq(R3) with 2 6 p 6 q <∞ implies

thatW is relatively form-bounded with respect to the Laplacian, with relative bound as small

as we want [15]. This means |W | 6 ǫ(−∆) +Cǫ in the sense of quadratic forms, for all ǫ > 0

and for some constant Cǫ. This can now be used to verify that the energy is well defined

under the assumption that Tr(−∆)γ <∞. First, we have for the direct term
∫

R3

∫

R3

|W (x− y)| ργ(x)ργ(y) dx dy 6 ǫN

∫

R3

|∇√
ργ |2 + CǫN

2
6 ǫN Tr(−∆)γ + CǫN

2,

where in the last line we have used the Hoffmann-Ostenhof inequality [27],
∫

R3

|∇√
ργ |2 6 Tr(−∆)γ. (2.12)

The exchange term is bounded similarly by applying the inequality |W | 6 ǫ(−∆) + Cǫ in x

with y fixed:
∫

R3

∫

R3

|W (x− y)| |γ(x, y)|2 dx dy 6 ǫ

∫

R3

∫

R3

|∇xγ(x, y)|2 dx dy + Cǫ

∫

R3

∫

R3

|γ(x, y)|2 dx dy

= ǫTr(−∆)γ2 + Cǫ Tr γ2 6 ǫTr(−∆)γ + CǫN,

since γ2 6 γ. Similarly we have, since αα∗ 6 γ − γ2 6 γ,
∫

R3

∫

R3

|W (x− y)| |α(x, y)|2 dx dy 6 Tr
(

ǫ(−∆) + Cǫ

)

αα∗
6 ǫTr(−∆)γ + CǫN.

All this shows that all the terms in the energy are well defined when (γ, α) ∈ K(N). Also,

we have

E(γ, α) >
(

1 − ǫ − ǫN/2
)

Tr(−∆)γ − CǫN − CǫN
2/2. (2.13)

Taking ǫ = 1/(2 +N) finishes the proof.

Lemma 2.1 allows us to define the minimization problems for pure and mixed states as

follows:

I(N) := inf
(γ,α)∈K(N)

E(γ, α), (2.14)

J(N) := inf
(γ,α)∈P(N)

E(γ, α). (2.15)

Of course we have J(N) > I(N) since P(N) ⊂ K(N). In many cases, we have that I(N) =

J(N) and that any minimizer, when it exists, is automatically a pure HFB state. We give

two results in the literature going in this direction. The first deals with purely repulsive

interactions and it is Lieb’s famous variational principle [33] (see also Thm. 2.11 in [3]).

Theorem 2.1 (Lieb’s HF Variational Principle [33]). Assume that

W > 0
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and let N be an integer. Then for any (γ, α) ∈ K(N), there exists (γ′, 0) ∈ P(N) such that

E(γ, α) > E(γ′, 0).

In particular, we have I(N) = J(N).

If W > 0 a.e., then any minimizer for I(N), when it exists, is necessarily of the form

(γ′, 0) with (γ′)2 = γ′.

We see that for repulsive interactions, W > 0, there is never pairing (α ≡ 0) and the

ground state is always a pure HF state, that is, a Slater determinant. The fact that, in HF

theory, one can minimize over mixed states and get the same ground state energy is very

important from a numerical point of view. This was used by Cancès and Le Bris [13, 12] to

derive well-behaved numerical strategies, to which we will come back later in Section 4.2.

For purely attractive interactions, the following recent result of Bach, Fröhlich and Jon-

sson [2] is relevant.

Theorem 2.2 (HFB Constrained Variational Principle [2]). Assume that the number

of spin states is q = 2 (spin-1/2 fermions), and that W can be decomposed in the form

W (x− y) = −
∫

Ω

dµ(ω)1Aω (x)1Aω (y) (2.16)

on a given measure space (Ω, µ), with Aω a measurable family of bounded domains in R3.

Let N be any positive real number. Then for any (γ, α) ∈ K(N), we have

E(γ, α) > E(γ′, α′), (2.17)

with

γ′ = g ⊗
(

1 0

0 1

)

, α′ =
√

g(1 − g) ⊗
(

0 1

−1 0

)

(2.18)

(the matrices act on the spin variables), and

g = gT = g =
γ↑↑ + γ↓↓ + γ↑↑ + γ↓↓

4
.

This HFB state is pure: (γ′, α′) ∈ P(N). In particular, we have I(N) = J(N).

Furthermore, if W < 0 a.e., then any minimizer for I(N), when it exists, is necessarily

of the previous form.

Remark 2.1. Note that N does not have to be an even integer in this result. Since

TrL2(R3)(g) = N/2, the operator g must have one eigenvalue different from 1 when N is

odd, and it follows that α 6= 0 in this special case.

In Theorem 2.2, we have decomposed the operator γ acting on L2(R3 × {↑, ↓},C) ac-

cording to the spin variables as follows:

γ =

(

γ↑↑ γ↓↑
γ↑↓ γ↓↓

)

.

Theorem 2.2 says that when W satisfies (2.16), one can minimize over states which are pure,

real, and have a simple spin symmetry. The antisymmetry of α is only contained in the spin
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variables, hence the Cooper pairs are automatically in a singlet state. Of course, one can

express the total energy only in terms of the real operator g, as follows

E(γ′, α′) = 2 TrL2(R3)(−∆)g

+

∫

R3

∫

R3

W (x− y)
(

2ρg(x)ρg(y) − |g(x, y)|2 + |
√

g(1 − g)(x, y)|2
)

.

In practice it will be more convenient to keep a pairing term a(x, y) not a priori related to

g and to optimize over both g and a, that is, to consider mixed states. When W satisfies the

assumptions of the theorem, any ground state will automatically lead to a = ±
√

g(1 − g).

Let us conclude our comments on Theorem 2.2, by noticing that several simple attractive

potentials W can be written in the form (2.16). For instance the Fefferman-de la Llave

formula [17]

1

|x− y| =
1

π

∫ ∞

0

dr

r5

∫

R3

dz 1B(z,r)(x)1B(z,r)(y)

shows that a simple Newtonian interaction W (x− y) = −|x− y|−1 is covered (here 1B(z,r)

is the characteristic function of the ball centered at z, of radius r). Hainzl and Seiringer

showed in [25] that any smooth enough radial function W can be written in the form

W (x− y) =

∫ ∞

0

dr g(r)

∫

R3

dz 1B(z,r)(x)1B(z,r)(y)

for some explicit function g, whose sign can easily be studied.

2.3. Existence results and properties of minimizers

Before turning to the discretization and the numerical study of the HFB minimization

problem, we make some comments on the existence of minimizers. In addition to the infinite

dimension and the nonlinearity of the model, an important difficulty is the invariance under

translations. For instance, there are always minimizing sequences which do not converge

strongly (assuming there exists a minimizer, one can simply translate it far away).

Consider the electrons in an atom or in a molecule, with fixed classical nuclei (Born-

Oppenheimer approximation). From the point of view of the electrons, the problem is

no more translation-invariant, once the nuclei have been given a fixed position. Since the

Coulomb interaction between the electrons is repulsive, W (x− y) = |x− y|−1, Theorem 2.1

tells us that there is never pairing, α ≡ 0. In this case there are several existence results,

starting with the fundamental works of Lieb and Simon [35] and continuing with works by

Lions [38], Bach [1], Solovej [46, 47].

For interactions W which have no particular sign, the pure HF problem was studied by

Friesecke in [19] and by the first author of this paper in [32]. There is an HVZ-type theorem

for HF wavefunctions which states that some binding conditions imply the existence of

minimizers (Theorem 22 in [32]).

After the fundamental paper of Bach, Lieb and Solovej [3] with its study of the Hubbard

model, to our knowledge the existence of ground states for the HFB model with pairing

was only studied recently by Lenzmann and the first author of this paper in [30]. Some

caricatures of HFB in nuclear physics had been previously considered by Gogny and Lions

in [22].
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We give here an existence result for the variational problem I(N). In some cases we have

I(N) = J(N) (see the previous section) and for this reason, we only concentrate on I(N).

The next theorem can be proved by following the method of [30], which dealt with the more

complicated case of a pseudo-relativistic kinetic operator
√

1 − ∆ − 1.

Theorem 2.3 (Existence of minimizers and compactness of minimizing se-

quences). We assume as before thatW = W1+W2 ∈ Lp(R3)+Lq(R3) with 2 6 p 6 q <∞.

Let λ > 0. Then the following assertions are equivalent:

(1) All the minimizing sequences (γn, αn) ⊂ K(λ) for I(λ) are precompact up to translations,

that is there exists a sequence (xk) ⊂ R3 and (γ, α) ∈ K(λ) such that, for a subsequence,

lim
k→∞

∣

∣

∣

∣

∣

∣
(1 − ∆)1/2(τxk

γnk
τ−xk

− γ)(1 − ∆)1/2
∣

∣

∣

∣

∣

∣

S1

= lim
k→∞

∣

∣

∣

∣

∣

∣
(1 − ∆)1/2(τxk

αnk
τ−xk

− α)
∣

∣

∣

∣

∣

∣

S2

= 0.

In particular (γ, α) is a minimizer for I(λ).

(2) The binding inequalities

I(λ) < I(λ − µ) + I(µ) for all 0 < µ < λ (2.19)

are satisfied.

Furthermore, if W is Newtonian at infinity, that is

W (x) 6 − a

|x| for a > 0 and |x| > R, (2.20)

then the previous two equivalent conditions are verified.

The assumption that the interaction is Newtonian at infinity is a big simplification, as

it means that two subsystems receiding from each other always attract at large distances.

One can expect that minimizers exist even if the potential is not attractive at infinity, as

soon as it has a sufficiently large negative component. A typical effective potential W (x)

used in nuclear physics is nonnegative for small |x|, and has a negative well at intermediate

distances [41]. At infinity it typically decays like +κ|x|−1 for two protons, and exponentially

fast when one of the two particles is a neutron. Even in HF theory, we are not aware of

any existence result dealing with such potentials, however. We will numerically investigate

a model of this form in Section 5.3.

The form of the nonlinear equation solved by minimizers is well-known in the physics

literature, and it was re-explained in [3]. The following result summarizes some known prop-

erties.

Theorem 2.4 (HFB equation and properties of minimizers [3, 30]). A HFB mini-

mizer on K(N) solves the nonlinear equation

Γ = 1(−∞,0)

(

FΓ − µN
)

+ δ (2.21)

where 0 6 δ 6 1{0}(FΓ − µN ) has the same form as Γ, and where

N :=

(

1 0

0 −1

)

, FΓ =

(

hγ π

π∗ −hγ

)

(2.22)

with hγ = −∆ + ργ ∗W −W (x− y)γ(x, y) and π(x, y) = α(x, y)W (x − y).
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If W (x − y) = −κ|x − y|−1 (Newtonian interaction) and N is an integer, then all the

minimizers are of the special form (2.18). In this case, we have either α ≡ 0 and γ is a

projector of rank N , or α 6= 0 and γ has an infinite rank.

The nonlinear equation (2.21) is in principle similar to the usual equation obtained in

HF theory,

γ = 1(−∞,µ)(hγ) + δ (2.23)

Indeed, (2.21) reduces to (2.23) when α ≡ 0. Let us however emphasize that the mean-field

operator FΓ has a spectrum which is symmetric with respect to 0. Hence FΓ is usually not

even semi-bounded, on the contrary to hγ which is always bounded from below. Furthermore,

the operator N does not commute with FΓ (except when α ≡ 0) and the equation cannot

be written in a simple form as in HF theory. This will cause several difficulties to which we

will come back at length later.

The fact that γ has an infinite rank when there is pairing, α 6= 0, is a dramatic change

of behavior compared to the simple HF case. However, no information on the decay of the

eigenvalues of γ seems to be known.

An important open question is to show that minimizers actually exhibit non-vanishing

pairing α 6= 0, at least for a sufficiently strong attractive potential W . On heuristic grounds,

one expects such a phenomenon of “Cooper pair formation” to be energetically favorable due

to the attractive interaction among particles. However, it seems to be a formidable task to

find mathematical proof for this claim. The existence of pairing is known in some particular

situations (when N is odd and W is Newtonian, see Remark 2.1, for the Hubbard model [3],

or in translation-invariant BCS theory [5, 48, 49, 39, 18, 23, 26]), but for the model presented

here, we are not aware of any result of this sort. One of the purposes of this paper is to

investigate this question numerically.

3. Discretized Hartree-Fock-Bogoliubov theory

In this section, we write and study the Hartree-Fock-Bogoliubov model in a discrete basis.

3.1. Convergence analysis

Here we show that the ground state HFB energy in a finite basis converges to the true

HFB ground state energy when the size of the basis grows. We consider a sequence of finite-

dimensional spaces Vh ⊂ H1(R3,Cq) for h→ 0. We assume that any function f ∈ H1(R3,Cq)

can be approximated by functions from Vh:

∀f ∈ H1(R3,Cq), ∃fh ∈ Vh such that ||f − fh||H1 −→
h→0

0. (3.1)

We typically think of a sequence Vh given by the Finite Elements Method. Let πh denote

the orthogonal projection on Vh in L2(R3,Cq). We define the set of density matrices living

on Vh (with average particle number N) as follows

Kh(N) =
{

(γ, α) ∈ K(N) : πhγπh = γ, πhαπh = α
}

. (3.2)

The corresponding minimization problem is now

Ih(N) = inf
(γ,α)∈Kh(N)

E(γ, α). (3.3)
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Since Kh(N) ⊂ K(N) by definition, it is obvious that Ih(N) > I(N). The following result is

a consequence of Theorem 2.3.

Theorem 3.1 (Convergence of the approximate HFB problem). When W = W1 +

W2 ∈ Lp(R3) + Lq(R3) with 2 6 p 6 q < ∞ and under Assumption (3.1) on the sequence

(Vh), we have

lim
h→0

Ih(N) = I(N). (3.4)

If the binding inequality (2.19) is satisfied, then any sequence of minimizers (γh, αh) ∈
Kh(N) for Ih(N) converges, up to a subsequence and up to a translation, to a minimizer

(γ, α) ∈ K(N) of I(N), in the sense that

lim
hk→0

∣

∣

∣

∣

∣

∣
(1 − ∆)1/2(τxk

γhk
τ−xk

− γ)(1 − ∆)1/2
∣

∣

∣

∣

∣

∣

S1

= lim
hk→0

∣

∣

∣

∣

∣

∣
(1 − ∆)1/2(τxk

αhk
τ−xk

− α)
∣

∣

∣

∣

∣

∣

S2

= 0. (3.5)

Proof. We only have to show that Ih(N) → I(N) as h → 0. Then, any sequence of exact

minimizers (γh, αh) for Ih(N) is also a minimizing sequence for I(N). Applying Theorem 2.3

concludes the proof.

We know that finite-rank operators are dense in K(N). Let (γ, α) ∈ K(N) be any such

finite rank operator. Let (fi)
K
i=1 be an orthonormal basis of the range of γ. By Löwdin’s

theorem (Lemma 13 in [32]), we know that the two-body wavefunction α can be expanded

in the same basis (f1, ..., fK). Now, for every i = 1, ..,K, we apply (3.1) and take a sequence

fh
i ∈ Vh be such that fh

i → fi in H1(R3). The system (fh
i )ki=1 is not necessarily orthonormal

but we have
〈

fh
i , f

h
j

〉

→ 〈fi, fj〉 = δij . Applying the Gram-Schmidt procedure, we can

therefore replace the (fh
i )Ki=1 by an orthonormal set (ghi )Ki=1 ⊂ Vh having the same properties.

An equivalent procedure is to take ghi =
∑K

j=1(S
−1/2
h )jif

h
j where Sh is the Gram matrix

(
〈

fh
i , f

h
j

〉

). Let now Uh be any unitary operator on L2(R3) which is such that Uhfi = ghi for

all i = 1, ...,K. We then take γh := UhγU
∗
h and αh := UhαU

T
h . In words, we just replace the

fi by ghi in the decomposition of γ and α. To see that (γh, αh) ∈ K(N), we just notice that
(

γh αh

α∗
h 1 − γh

)

=

(

Uh 0

0 Uh

)(

γ α

α∗ 1 − γ

)(

U∗
h 0

0 Uh
∗

)

.

Note also that Tr(γh) = Tr(γ) = N since Uh is unitary. Now γh and αh belong to Kh(N) by

definition, hence we have that E(γh, αh) > Ih(N). On the other hand, by the convergence

of fh
i (hence of ghi ) towards fi in H1(R3), we easily see that

lim
h→0

E(γh, αh) = E(γ, α)

by continuity of E . Therefore we have proved that

lim sup
h→0

Ih(N) 6 E(γ, α).

This is valid for all finite-rank (γ, α) ∈ K(N), hence we deduce that

lim sup
h→0

Ih(N) 6 inf
(γ,α)∈K(N)

E(γ, α) = I(N).

On the other hand the inequality Ih(N) > I(N) is always satisfied, hence we have proved

the claimed convergence Ih(N) → I(N).
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3.2. Discretization

In this section we compute the HFB energy E(γ, α) of a discretized state (γ, α) ∈ Kh(N)

and we write the corresponding self-consistent equation. We fix once and for all the ap-

proximation space Vh and we consider a basis set (χi)
Nb
i=1 of Vh, which is not necessarily

orthonormal. We will assume that Vh is stable under complex conjugation, which means

that f ∈ Vh ⇒ f ∈ Vh (this amounts to replacing Vh by Span(Vh, Vh)). Then we can choose

a basis (χi)
Nb
i=1 which is real, that is χi = χi for all i = 1, ..., Nb. This will dramatically

simplify the calculation below.

Since πhγπh = γ and πhαπh = α, we can write the kernels of γ and α as follows

γ(x, y)σ,σ′ =

Nb
∑

i,j=1

Gij χi(x)σχj(y)σ′ , α(x, y)σ,σ′ =

Nb
∑

i,j=1

Aij χi(x)σχj(y)σ′ . (3.6)

The complex conjugation on χj is superfluous but we keep it to emphasize the difference

between γ and α. The matrices G and A (defined by the previous relation) satisfy the

constraints G∗ = G and AT = −A. Note that since A is antisymmetric, we can also write

α(x, y)σ,σ′ =
∑

16i<j6Nb

Aij

(

χi(x)σχj(y)σ′ − χj(x)σχi(y)σ′

)

=
√

2
∑

16i<j6Nb

Aij χi ∧ χj(x, σ, y, σ
′)

where (χi ∧ χj)(x, σ; y, σ′) :=
(

χi(x)σχj(y)σ′ − χi(y)σ′χj(x)σ
)

/
√

2 is a two-body Slater

determinant. Let us also remark that (3.6) can be written in the operator form

γ =

Nb
∑

i,j=1

Gij |χi〉〈χj |, α =

Nb
∑

i,j=1

Aij |χi〉〈χj |.

Again the complex conjugation on χj is superfluous.

Let us define the so-called overlap matrix S = S∗ = S by

Sij = 〈χi, χj〉H =

q
∑

σ=1

∫

R3

χi(x)σχj(x)σ dx =

q
∑

σ=1

∫

R3

χi(x)σχj(x)σ dx. (3.7)

It is tedious but straightforward to verify that the constraint
(

0 0

0 0

)

6 Γ :=

(

γ α

α∗ 1 − γ

)

6

(

1 0

0 1

)

can be written for the matrices G and A in the form
(

0 0

0 0

)

6

(

SGS SAS

SA∗S S − SGS

)

6

(

S 0

0 S

)

(3.8)

or, equivalently,

0 6 ΥSΥ 6 Υ (3.9)

where Υ and S are defined by

Υ :=

(

G A

A∗ S−1 −G

)

and S :=

(

S 0

0 S

)

. (3.10)
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Another way to write the constraint is 0 6 S1/2ΥS1/2
6 1. Let us notice that we have used

everywhere the fact that S = S∗ = S = ST . The formulas are much more complicated when

S is not real.

The energy can be expressed in terms of the matrices G and A, as well. A calculation

shows that

E(γ, α) = Tr(hG) +
1

2
Tr(GJ(G)) − 1

2
Tr(GK(G)) +

1

2
Tr(A∗X(A)). (3.11)

The trace here is the usual one for Nb ×Nb matrices. As we think that there is no possible

confusion with E(γ, α), we will also denote by E(G,A) this discretized energy functional. In

formula (3.11),

hij = 〈χi, (−∆)χj〉 =

q
∑

σ=1

∫

R3

∇χi(x)σ · ∇χj(x)σ dx,

J(G)ij =

Nb
∑

k,ℓ=1

(ij|ℓk)Gkℓ, K(G)ij =

Nb
∑

k,ℓ=1

(ik|ℓj)Gkℓ, X(A)ij =

Nb
∑

k,ℓ=1

(ik|jℓ)Akℓ,

(3.12)

and

(ij|kℓ) :=

∫

R3

∫

R3

W (x− y)χi(x)∗ χj(x) χk(y)∗ χℓ(y) dx dy. (3.13)

We use here the notation a∗b =
∑q

σ=1 aσ bσ (but the complex conjugation is superfluous for

our real basis, hence K = X). Similarly, we have

Tr(γ) = Tr(SG). (3.14)

We define the discretized number operator as

N =

(

S 0

0 −S

)

(3.15)

The constraint Tr(γ) = N can be written equivalently as

Tr(NΥ) = 2N −Nb

We deduce from this calculation that the variational problem Ih(N) can be written in

finite dimension as

Ih(N) = min
{

E(G,A) : 0 6 ΥSΥ 6 Υ, Tr(NΥ) = 2N −Nb

}

(3.16)

where we recall that Υ and S have been defined in (3.10). Here the infimum is always

attained because the problem is finite dimensional.

In this form, the discretized problem is very similar to the usual discretized Hartree-Fock

problem [11, 29], in dimension 2Nb instead of Nb. There is a big difference, however. In HF

theory the constraint involves the matrix S instead of N. This difference will cause several

difficulties. To understand the problem, let us introduce a new variable Υ′ = S1/2ΥS1/2

(which is the same as orthonormalize the basis (χi)). Then the constraint 0 6 ΥSΥ 6 Υ is

transformed into 0 6 Υ′ 6 1. However, the constraint on the number of particles becomes

Tr(S−1/2NS−1/2Υ′) = 2N −Nb. In usual Hartree-Fock theory, the matrix S−1/2NS−1/2 is
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replaced by the identity. The fact that this matrix then commutes with the Fock Hamiltonian

(defined below) simplifies dramatically the self-consistent equations. Here we get

S−1/2NS−1/2 =

(

1 0

0 −1

)

which commutes with the Fock Hamiltonian if and only if A ≡ 0.

The self-consistent equation is obtained like in [3]. The result is as follows.

Lemma 3.1 (Discretized HFB equation). Let Υ be a minimizer for the variational

problem Ih(N). Then there exists µ ∈ R such that Υ solves the linear problem

min
{

Tr(FΥ − µN)Υ̃ : 0 6 Υ̃SΥ̃ 6 Υ̃
}

(3.17)

where

FΥ :=

(

hG X(A)

X(A)∗ −hG

)

, hG := h+ J(G) −K(G). (3.18)

The solution Υ can be written in the form

Υ = S−1/2

(

1(−∞,0)

(

S−1/2(FΥ − µN)S−1/2
)

+ δ

)

S−1/2 (3.19)

where 0 6 δ 6 1 lives only in the kernel of S−1/2(FΥ − µN)S−1/2.

The solution Υ of the self-consistent equation (3.19) may be equivalently written by

considering the generalized eigenvalue problem
(

FΥ − µN
)

fi = ǫi S fi, 〈fi,Sfj〉 = δij . (3.20)

Then we have simply (assuming ǫi 6= 0 for all i = 1, ..., 2Nb)

Υ =
∑

ǫi<0

fi f
∗
i .

Again, this is similar to the Hartree-Fock solution [11, 29] except that µ is unknown and N

does not always commute with FΥ.

Remark that although the basis functions χi are real, the density matrix Υ is not neces-

sarily real. In the next section, we will restrict ourselves to real-valued density matrices and

impose some spin symmetry.

3.3. Using symmetries

The HFB energy E(Γ) has some natural symmetry invariances which we describe in detail

in this section. Recall that since E is a nonlinear functional, it cannot be guaranteed that

the HFB minimizers will all have the same symmetries as the HFB energy. The set of all

minimizers will be invariant under the action of the symmetry group, but each minimizer

alone does not have to be invariant.

We have already allowed for the breaking of particle-number symmetry and we hope to

find an HFB ground state. It will then automatically break the translational invariance of the

system. There are three other symmetries (spin, complex conjugation and rotations) which

are of interest to us. We have the choice of imposing these symmetries by adding appropriate

constraints, or not. Because this reduces the computational cost, it will be convenient to

impose them.
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3.3.1. Time-reversal symmetry

Let us now assume that q = 2, which means that our fermions are spin-1/2 particles. Since

the Laplacian and the interaction function W do not act on the spin variable, the HFB

energy has some spin symmetry, which can be written for q = 2 as

∀k = 1, 2, 3, E(ΣkΓΣ∗
k) = E(Γ)

where

Σk :=

(

iσk 0

0 iσk

)

,

with σ1, σ2, σ3 being the usual Pauli matrices. Note that Σk has the form of a Bogoliubov

transformation, hence ΣkΓΣ∗
k is also an HFB state. The number operator is also invariant

which means that

ΣkNΣ∗
k = N

for all k = 1, 2, 3. Thus, the contraint Tr(γ) = N is conserved and we have ΣkΓΣ∗
k ∈ K(N)

when Γ ∈ K(N).

Another important symmetry is that of complex conjugation which means this time that

E(Γ) = E(Γ)

and which is based on the fact that the Laplacian and W are real operators. Again we have

Tr(γ) = Tr(γ) hence K(N) is invariant under complex conjugation.

As was explained in [24] (see Remark 5 page 1032), the density matrices (γ, α) can be

written in the special form

γ′ = g ⊗
(

1 0

0 1

)

, α′ = a⊗
(

0 1

−1 0

)

, with g = gT = g and a = aT = a (3.21)

(the 2 × 2 matrix refers to the spin variables), if and only if
{

ΣkΓΣ∗
k = Γ, for k = 1, 2, and

Γ = Γ.
(3.22)

In other words, Γ is invariant under the action of the group generated by Σ1, Σ2 and C. This

invariance is sometimes called the time-reversal symmetry. As remarked in [24], imposing

ΣkΓΣ∗
k = Γ for all k = 1, 2, 3 implies α ≡ 0 which is not interesting for us.

When W can be written in the form (2.16), the Theorem 2.2 of Bach, Fröhlich and

Jonsson [2], tells us that there is no breaking of the time-reversal symmetry. That is, we can

always minimize over such special states. For other interactions W this is not necessarily

true but it is often convenient to impose this symmetry anyhow.

Because it holds

FΣkΓΣ∗

k
= ΣkFΓΣ∗

k, FΓ = FΓ,

it can then be verified that minimizers under the additional symmetry constraint, satisfy

the same self-consistent equation as when no constraint is imposed.

When we discretize the problem by imposing time-reversal symmetry, we use two real

symmetric matrices G and A, related through the constraint that

0 6 ΥSΥ 6 Υ, with Υ :=

(

G A

A S−1 −G

)

and S =

(

S 0

0 S

)

. (3.23)
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The energy becomes

E(G,A) = 2 Tr(hG) + 2 Tr(GJ(G)) − Tr(GK(G)) + Tr(AK(A)). (3.24)

and the associated particle number constraint is Tr(SG) = N/2. In practice we always as-

sume that N is even for simplicity. The basis (χi) is now composed of (real-valued) functions

in H1(R3,R), instead of functions in H1(R3,Cq) as before, and the formulas for S, h, J , K

and X are the same as before.

3.3.2. Rotational symmetry

The group SO(3) of rotations in R3 also acts on HFB states and it leaves the energy invariant

when the interaction W is a radial function. In this section we always assume that the spin

variable has already been removed according to the previous section and we denote by g

and a the corresponding (real symmetric) density matrices. If the spin were still present,

rotations would act on it as well.

To any rotation R ∈ SO(3) we can associate a unitary operator on L2(R3), denoted

also by R, defined by (Rϕ)(x) = ϕ
(

R−1x
)

. Now we say that an HFB state Γ with density

matrices (γ, α) is invariant under rotations when it satisfies

R ΓR
∗ = Γ, where R =

(

R 0

0 R

)

.

Note that R is a Bogoliubov rotation since R = R. The density matrices of an invariant

state satisfy

g(Rx,Ry) = g(x, y), a(Rx,Ry) = a(x, y)

for all x, y ∈ R
3 and any rotation R ∈ SO(3).

As the angular momentum L = x × (−i∇) generates the group of rotations, a (smooth

enough) HFB state is invariant under rotations if and only if

L Γ = ΓL , where L =

(

L 0

0 L

)

.

The density matrices g and a can then be written in the special form

g(x, y) =
1

4π

∑

ℓ>0

gℓ(|x|, |y|) (2ℓ+1)Pℓ

(

ωx·ωy

)

, a(x, y) =
1

4π

∑

ℓ>0

aℓ(|x|, |y|) (2ℓ+1)Pℓ

(

ωx·ωy

)

(3.25)

where Pℓ is the Legendre polynomial of degree ℓ, which is such that Pℓ(1) = 1. The constraint

on g and a are transfered in each angular momentum sector (labelled by ℓ > 0), leading to
(

0 0

0 0

)

6

(

gℓ aℓ

aℓ 1 − gℓ

)

6

(

1 0

0 1

)

on L2([0,∞), r2 dr)⊕L2([0,∞), r2 dr). However, there is no such constraint between different

ℓ’s. The total average particle number is given by

Tr(g) =
∑

ℓ>0

(2ℓ+ 1) Tr(gℓ) = N/2.

This is the only constraint which mixes the different angular momentum density matrices.
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Now we can discretize the radial HFB problem. We choose a finite-dimensional subspace

Vrad in L2([0,∞), r2dr) with basis (χ1, ..., χNb
), which we use to expand the density matrices

gℓ and aℓ. Then we fix a maximal angular momentum ℓmax and we truncate the series

in (3.25). This is the same as taking as discretization space

V =
{

f(|x|)Y m
ℓ (ωx) : f ∈ Vrad, 0 6 ℓ 6 ℓmax, −ℓ 6 m 6 ℓ

}

⊂ L2(R3,R)

where Y m
ℓ is the spherical harmonics of total angular momentum ℓ and azimuthal angular

momentum m. We then assume that g and a are radial and live in this space. The matrices

Gℓ and Aℓ of gℓ and aℓ in the basis (χi) are defined similarly as before by

gℓ(r, r′) =

Nb
∑

i,j=1

Gℓ
ij χi(r)χj(r

′), aℓ(r, r′) =

Nb
∑

i,j=1

Aℓ
ij χi(r)χj(r

′). (3.26)

The constraints on the matrices Gℓ and Aℓ are

0 6 ΥℓSΥℓ
6 Υℓ, with Υℓ :=

(

Gℓ Aℓ

Aℓ S−1 −Gℓ

)

and S =

(

S 0

0 S

)

(3.27)

with

Sij =

∫ ∞

0

χi(r)χj(r) r
2 dr

and

ℓmax
∑

ℓ=0

(2ℓ+ 1) Tr(SGℓ) = N/2. (3.28)

The total HFB energy is now

E(G0, ..., Gℓmax , A0, ..., Aℓmax) = 2

ℓmax
∑

ℓ=0

(2ℓ+ 1) Tr(hℓGℓ)

+

ℓmax
∑

ℓ,ℓ′=0

(2ℓ+ 1)(2ℓ′ + 1)
(

2 Tr(Gℓ J(Gℓ′)) − Tr(GℓKℓℓ′(Gℓ′)) + Tr(AℓKℓℓ′(Aℓ′))
)

, (3.29)

where

hℓij :=

∫ ∞

0

χ′
i(r)χ

′
j(r) r

2 dr + ℓ(ℓ+ 1)

∫ ∞

0

χi(r)χj(r) dr,

J(Gℓ′)ij :=

Nb
∑

m,n=0

(ij|nm)0,0G
ℓ′

mn, Kℓℓ′(Gℓ′)ij :=

Nb
∑

m,n=0

(im|jn)ℓ,ℓ′ G
ℓ′

mn,

(ij|mn)ℓ,ℓ′ :=

∫ ∞

0

r2 dr

∫ ∞

0

s2 ds χi(r)χj(r)χm(s)χn(s)wℓ,ℓ′(r, s)

and

wℓ,ℓ′(r, s) :=
1

2

∫ 1

−1

W
(

√

r2 + s2 − 2rst
)

Pℓ(t)Pℓ′ (t) dt.
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Any minimizer (G0, ..., Gℓmax , A0, ..., Aℓmax) of E under the constraints (3.27) and (3.28) will

be of the form

Υℓ =
∑

ǫℓi<0

f ℓ
i

(

f ℓ
i

)T
, 0 6 ℓ 6 ℓmax, (3.30)

where the vectors f ℓ
i ’s solve the generalized eigenvalue problem
(

Fℓ − µ(2ℓ+ 1)N
)

f ℓ
i = ǫℓi S f

ℓ
i , 〈fi,Sfj〉 = δij (3.31)

with

Fℓ :=

(

hℓ 0

0 −hℓ
)

+

ℓmax
∑

ℓ′=0

(

2J
(

Gℓ′
)

−Kℓℓ′
(

Gℓ′
)

Kℓℓ′
(

Aℓ′
)

Kℓℓ′
(

Aℓ′
)

−2J
(

Gℓ′
)

+Kℓℓ′
(

Gℓ′
)

)

.

The Euler-Lagrange multipler µ appearing in (3.31) is common to all the different angular

momentum sectors and it is chosen to ensure the validity of the constraint (3.28).

4. Algorithmic strategies and convergence analysis

In this section we study the convergence of two algorithms which can be used in practice

to solve the HFB minimization problem (2.15). In order to simplify our presentation, we

restrict ourselves to the finite-dimensional case, that is, to the discretized problem (3.16).

We also assume that the discretization basis (χj) is orthonormal, such that S = I2Nb
, the

(2Nb) × (2Nb) identity matrix. Finally, we only consider states which are invariant under

time-reversal symmetry like in Section 3.3.1. This means that the HFB state is described by

real and symmetric matrices G and A such that
(

0 0

0 0

)

6 Υ :=

(

G A

A 1 −G

)

6

(

1 0

0 1

)

(4.1)

The energy is given by (3.24),

E(Υ) = 2 Tr(hG) + 2 Tr(GJ(G)) − Tr(GK(G)) + Tr(AK(A)). (4.2)

The extension to more general situations is straightforward.

The energy E is continuous (it is indeed real-analytic) with respect to Υ. Also the set

K of density matrices Υ of the form (4.1) is compact in finite dimension. Hence minimizers

always exist and, as we have seen, they solve the nonlinear equation

Υ = 1(−∞,0)

(

FΥ − µN
)

+ δ, (4.3)

where µ is a Lagrange multiplier chosen to ensure the constraint that Tr(G) = N/2. Of

course we must have N/2 6 Nb, the dimension of the (no-spin) discretization space Vh,

otherwise the minimization set is always empty.

4.1. Roothaan Algorithm

The most natural technique used in practice to solve the equation (4.3) is a simple fixed

point method [40, 16]. This is usually refered to as the Roothaan algorithm in the chemistry

literature [42]. The iteration scheme is the following

Υn+1 = 1(−∞,0)

(

FΥn − µn+1N
)

+ δn+1. (4.4)
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At each step, one has to determine µn+1 such as to satisfy the constraint Tr(Gn+1) = N/2.

If the operator FΥn −µn+1N has a trivial kernel, then δn+1 ≡ 0. This is the usual situation

encountered in practice. In the iteration (4.4), the state is assumed to be pure at each step

(Υ is an orthogonal projection). Recall that by Theorem 2.2 we know that minimizers of

E under a particle number constraint are always pure, under suitable assumptions on the

interaction potential W . The algorithm is stopped when the commutator
∣

∣

∣

∣

[

Υn, FΥn

]∣

∣

∣

∣

and/or when the variation of the HFB state

||Υn+1 − Υn||

are smaller than a prescribed ε.

Our purpose in this section is to study the behavior of the Roothaan algorithm (4.4).

In the Hartree-Fock case, it was shown in a fundamental work of Cancès and Le Bris [12,

13], that the algorithm converges or oscillate between two points, none of them being a

solution to the equation (4.3). This result was recently improved by Levitt in [31]. We will

explain that the results of Cancès-Le Bris and Levitt can be generalized to the HFB model.

Actually, in a discretization space of dimension Nb, HFB is equivalent to a Hartree-Fock-like

minimization problem in dimension 2Nb, with additional constraints. The adaptation of the

previously cited works in the HF case reduces to handling these contraints.

In order to avoid the convergence problems of the Roothaan algorithm, Cancès and Le

Bris have proposed the Optimal Damping Algorithm (ODA). We will study the equivalent

of this algorithm in HFB theory in Section 4.2.

To start with, we show that the Roothaan algorithm is well defined, in the sense that for

any HFB state Υn, there exists (Υn+1, µn+1, δn+1) solving (4.4). To this end, we follow [12,

13] and introduce the auxillary functional

Ẽ(Υ,Υ′) := Tr(hG) + Tr(hG′) + 2 Tr(GJ(G′)) − Tr(GK(G′)) + Tr(AK(A′)) (4.5)

as well as the variational problem

IΥ(λ) := min
Υ′

{

Ẽ(Υ,Υ′) : Tr(G′) = λ
}

(4.6)

which consists in minimizing over Υ′ with Υ fixed. The matrix Υ′ must be an admissible

HFB state which, in our context, means that
(

0 0

0 0

)

6 Υ′ :=

(

G′ A′

A′ 1 −G′

)

6

(

1 0

0 1

)

, (G′)T = G′ = G′, (A′)T = A′ = A′. (4.7)

Recall that we have chosen an orthonormal basis and that the spin has been eliminated. It is

clear that (4.6) admits at least one solution Υ′, as soon as 0 6 λ 6 Nb, where we recall that

Nb is the dimension of the discretization space Vh. The following says that these solutions

are exactly those solving the equation of the Roothaan method.

Lemma 4.1 (The Roothaan algorithm is well defined). The function λ ∈ [0, Nb] 7→
IΥ(λ) is convex, hence left and right differentiable. For any λ ∈ [0, Nb], the minimizers Υ′

of IΥ(λ) are exactly the states of the form

Υ′ = 1(−∞,0)

(

FΥ − µ′N
)

+ δ′ (4.8)
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where µ′ ∈ [∂−IΥ(λ), ∂+IΥ(λ)] and 0 6 δ′ 6 1{0}(FΥ − µ′N). If 0 /∈ σ(FΥ − µ′N), then

δ′ ≡ 0 and Υ′ is unique, for any such µ′ ∈ [∂−IΥ(λ), ∂+IΥ(λ)].

Proof. To see that IΥ(λ) is convex, let 0 6 λ1 < λ2 6 Nb and let Υ′
i be a minimizer for

IΥ(λi) with i = 1, 2. Then tΥ′
1 +(1− t)Υ′

2 is a test state for the problem IΥ(tλ1 +(1− t)λ2).

Therefore it holds

IΥ(tλ1 + (1 − t)λ2) 6 Ẽ(Υ, tΥ′
1 + (1 − t)Υ′

2) = tẼ(Υ,Υ′
1) + (1 − t)Ẽ(Υ,Υ′

2)

= tIΥ(λ1) + (1 − t)IΥ(λ2).

Then, by convexity we get that IΥ(λ′) > IΥ(λ) + µ(λ′ − λ) for any λ′ ∈ [0, Nb] and any

µ ∈ [∂−IΥ(λ), ∂+IΥ(λ)]. Thus

IΥ(λ) − µλ = min{IΥ(λ′) − µλ′ : 0 6 λ′ 6 Nb}
= min

Υ′

{

Ẽ(Υ,Υ′) − µTr(G′)
}

= Tr(hG) +
1

2
min
Υ′

Tr(FΥ − µN)Υ′.

In the previous two mins, Υ′ is varied over all possible HFB states, without any particle

number constraint. It is well known that the minimizers of the problem on the right side are

exactly the solutions of the equation (4.8).

Lemma 4.1 tells us that for any given Υn, there always exists at least one solution

(Υn+1, µn+1, δn+1) of the equation (4.4). It is obtained by solving the minimization problem

IΥn(N/2), and one has to take µn+1 ∈ [∂−IΥn(N/2), ∂+IΥn(N/2)]. We can always take by

convention

µn+1 :=
∂−IΥn(N/2) + ∂+IΥn(N/2)

2
.

However, Υn+1 is not uniquely defined yet because of the possibility of having δn+1 6= 0. As

we have seen it is unique when

0 /∈ σ
(

FΥn − µn+1N
)

. (4.9)

In this section we always assume that it is possible to find (Υn+1, µn+1, δn+1) exactly. In

practice, we will only know (Υn+1, µn+1, δn+1) approximately. Later in Section 4.3 we explain

how to do this numerically. We will also see that the condition (4.9) is “very often” satisfied.

This vague statement is made precise in Lemma 4.4 below. Following Cancès and Le Bris,

we now introduce the concept of uniform well-posedness.

Definition 4.1 (Uniform well-posedness). We say that for a given initial HFB state

Υ0, the sequence (Υn) generated by the Roothaan algorithm is uniformly well posed when

there exists η > 0 such that

|FΥn − µn+1N| > η (4.10)

for all n > 0, where µn+1 =
(

∂−IΥn(N/2) + ∂+IΥn(N/2)
)

/2.

Note that the condition |FΥn−µn+1N| > η is equivalent to (−η, η)∩σ(FΥn−µn+1N) = ∅.

Later in Section 4.3 we will make several comments concerning Assumption (4.10).
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We have seen that the sequence generated by the Roothaan algorithm can be obtained

by solving the minimization problem

IΥn = min
Υ′

Ẽ(Υn,Υ
′).

Since Ẽ(Υ,Υ′) = Ẽ(Υ′,Υ), we conclude that the Roothaan algorithm is the same as mini-

mizing Ẽ with respect to its first and second variables one after another, inductively. This

fact allows to prove the following result, which is the HFB equivalent of Theorem 7 in [13]

and Theorem 5.1 in [31] in the HF case.

Theorem 4.1 (Convergence of the Roothaan algorithm). Assume that 0 < N/2 <

Nb. Let Υ0 be an initial HFB state such that the sequence (Υn) generated by the Roothaan

algorithm is uniformly well posed. Then

• The sequence Ẽ(Υ2n,Υ2n+1) decreases towards a critical value of Ẽ ;

• The sequence (Υ2n,Υ2n+1) converges towards a critical point (Υ,Υ′) of Ẽ;

• If Υ = Υ′, then this state is a solution of the original HFB equation (4.3), but if Υ 6= Υ′,
then none of these two states is a solution to (4.3).

Theorem 4.1 says that (provided it is uniformly well posed) the sequence Υn will either

converge to a solution of the self-consistent Equation (4.3), or oscillate between two points

Υ and Υ′, none of them being a solution to the desired equation.

Proof. We split the proof into several steps.

Step 1: µn is uniformly bounded. It will be very useful to know that the sequence

µn is uniformly bounded. The following says that, as soon as we fix Tr(G) = N/2 with

0 < N/2 < Nb, the chemical potential µ cannot be too negative and too positive.

Lemma 4.2 (Bounds on the multiplier µ). Let Υ′ be any fixed HFB state and

Υµ := 1(−∞,0)

(

FΥ′ − µN
)

=

(

Gµ Aµ

Aµ 1 −Gµ

)

the corresponding HFB ground state at chemical potential µ. There exists a constant C which

is independent of Υ′ and µ, such that

∀µ 6 −C, TrGµ 6
C

|µ| and ∀µ > C, TrGµ > Nb −
C

µ
. (4.11)

The lemma says that the average number of particles in 1(−∞,0)

(

FΥ − µN
)

tends to Nb

when µ → ∞ whereas it tends to 0 when µ → −∞, this uniformly with respect to the state

Υ′ used to build the mean-field operator FΥ′ .

Proof. We first remark that there exists a constant C such that

||FΥ′ || 6 C (4.12)

for any HFB state Υ′. This follows from the fact that FΥ′ is continuous with respect to Υ′

and that the latter lives in a compact set since we always have 0 6 Υ 6 1. The chosen norm
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for ||FΥ′ || does not matter since we are in finite dimension. Now, for µ large enough we can

use regular perturbation theory and obtain that

∣

∣

∣

∣1(−∞,0)

(

FΥ′ − µN
)

− 1(−∞,0)

(

− µN
)
∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

1(−∞,0)

(

FΥ′

|µ| − µ

|µ| N
)

− 1(−∞,0)

(

− µ

|µ| N
)∣

∣

∣

∣

∣

∣

∣

∣

6
C

|µ| .

Note that

1(−∞,0)

(

− µ

|µ| N
)

=



























(

1 0

0 0

)

for µ > 0,

(

0 0

0 1

)

for µ < 0.

Taking the trace against N gives the result.

From Lemma 4.2 we deduce that our sequence µn is bounded. Indeed, since we have by

construction Tr(Gn+1) = N/2 with 0 < N/2 < Nb, we must have

−max

(

C ,
2C

N

)

6 µn+1 6 max

(

C ,
C

Nb −N/2

)

(4.13)

otherwise Tr(Gn+1) would be too small or too large.

Step 2: convergence of Ẽ(Υn,Υn+1). We now follow [12, 13, 10]. At each step, we know

from Lemma 4.1 that Υn+1 is a solution of the minimization problem minΥ′ Ẽ(Υn,Υ
′). In

particular, we deduce that

Ẽ(Υn,Υn+1) 6 Ẽ(Υn,Υn−1) = Ẽ(Υn−1,Υn). (4.14)

Thus the sequence of real numbers Ẽ(Υn,Υn+1) is non-increasing. It is also bounded from

below, hence it converges to a limit ℓ. We now use the uniform well-posedness to prove an

inequality which is more precise than (4.14). We remark that

Ẽ(Υn,Υn−1) − Ẽ(Υn,Υn+1) =
1

2
TrFΥn

(

Υn−1 − Υn+1

)

=
1

2
Tr
(

FΥn − µn+1N
)(

Υn−1 − Υn+1

)

>
1

2
Tr
∣

∣FΥn − µn+1N
∣

∣

(

Υn−1 − Υn+1

)2

>
η

2
Tr
(

Υn−1 − Υn+1

)2
=
η

2
||Υn−1 − Υn+1||2 . (4.15)

In the above calculation we have used that TrNΥn+1 = TrNΥn−1 = N−Nb. We have also

used that Υn+1 is the negative spectral projector of FΥn − µn+1N, such that we can write

(

FΥn − µn+1N
)

=
∣

∣FΥn − µn+1N
∣

∣

(

Υ⊥
n+1 − Υn+1

)

.

Finally, we have used that 0 6 γ 6 1 is equivalent to (γ−P )2 6 P⊥(γ−P )P⊥−P (γ−P )P ,

for any orthogonal projector P , thus

Υ⊥
n+1

(

Υn−1 − Υn+1

)

Υ⊥
n+1 − Υn+1

(

Υn−1 − Υn+1

)

Υn+1 >
(

Υn−1 − Υn+1

)2
.
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Since Ẽ(Υn,Υn+1) converges to a limit ℓ, we deduce that
∑

n>1

||Υn+1 − Υn−1||2 <∞.

In particular, ||Υn+1 − Υn−1|| → 0 which is called numerical convergence in [12, 13].

Step 3: convergence of Υ2n and Υ2n+1. In order to upgrade the numerical convergence

to true convergence, we use a recent method of Levitt [31]. Namely we show that

(

Ẽ(Υn,Υn−1) − ℓ
)θ

−
(

Ẽ(Υn,Υn+1) − ℓ
)θ

>
η′

2
||Υn−1 − Υn+1|| (4.16)

for a well chosen 0 < θ 6 1/2. Summing over n and using the convergence of Ẽ(Υn,Υn−1),

hence of (Ẽ(Υn,Υn−1) − ℓ)θ, then gives the convergence of Υ2n and Υ2n+1.

For the proof of (4.16), we argue as follow. Consider a (real, no-spin) pure HFB state Υ.

It is possible to parametrize the manifold of pure HFB states around Υ by using Bogoliubov

transformations as follows:

H 7→ eHΥe−H

where H is assumed to be of the form
(

h p

−p −h

)

, hT = −h = −h, pT = p = p.

These constraints ensure that iH is a self-adjoint Hamiltonian such that eH = e−i(iH) is a

Bogoliubov rotation. They also ensure that eHΥe−H stays real. That H 7→ eHΥe−H is a

local chart of the manifold of pure HFB states around Υ follows from the arguments in [3]

as well as simple considerations in linear algebra.

Let us now consider the energy Ẽ in a neighborhood of any fixed (Υ,Υ′). The map

f : (H,H ′) 7→ Ẽ
(

eHΥe−H , eH
′

Υ′e−H′)− µ′

2
TrNeHΥe−H − µ

2
TrNeH

′

Υ′e−H′

is real analytic in a neighborhood of (0, 0) for any fixed µ, µ′ ∈ R and any fixed pure HFB

states (Υ,Υ′). The  Lojasiewicz inequality (Theorem 2.1 in [31]) then tells us that there exist

0 < θ 6 1/2 and a constant κ > 0 such that ||H || + ||H ′|| 6 κ implies

|f(H,H ′) − f(0)|1−θ
6 κ−1

(

|∇Hf(H,H ′)| + |∇H′f(H,H ′)|
)

.

A simple computation shows that

∇Hf(H,H ′) =
1

2

[

FΥ′ − µ′N , eHΥe−H
]

, ∇H′f(H,H ′) =
1

2

[

FΥ − µN , eH
′

Υ′e−H′]

.

If we rephrase all this in our setting, this means that for any fixed pure HFB states (Υ1,Υ
′
1)

and any µ, µ′ ∈ R, there is a κ > 0 such that for any (Υ2,Υ
′
2) another pure HFB state which

is at most at a distance κ from (Υ1,Υ
′
1), we have

∣

∣

∣
Ẽ
(

Υ1,Υ
′
1

)

− Ẽ
(

Υ2,Υ
′
2

)

+ µ′ TrN(G2 −G1) + µTrN(G′
2 −G′

1)
∣

∣

∣

1−θ

6 κ−1
(

∣

∣

∣

∣

[

FΥ′

2
− µ′N , Υ2

]
∣

∣

∣

∣+
∣

∣

∣

∣

[

FΥ2
− µN , Υ′

2

]
∣

∣

∣

∣

)

. (4.17)
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The constants κ and θ depend on µ, µ′ and of the reference point (Υ1,Υ
′
1). But they stay

positive as soon as µ, µ′ and (Υ1,Υ
′
1) stay in a compact set. By a simple compactness

argument, we therefore deduce that there exists a neighborhood of the compact set
{

(Υ,Υ′) : Ẽ(Υ,Υ′) = ℓ, Tr(G) = Tr(G′) = N/2
}

such that for any (Υ,Υ′) in this neighborhood and µ, µ′ in a compact set in R, we have

∣

∣

∣
Ẽ
(

Υ,Υ′)− ℓ+ µ′(N/2 − TrNG
)

+ µ
(

N/2 − TrNG′)
∣

∣

∣

1−θ

6 κ−1
(

∣

∣

∣

∣

[

FΥ′ − µ′N , Υ
]
∣

∣

∣

∣+
∣

∣

∣

∣

[

FΥ − µN , Υ′]∣
∣

∣

∣

)

(4.18)

for some 0 < θ 6 1/2 and some κ > 0. We recall that ℓ is by definition the limit of

Ẽ
(

Υn,Υn+1

)

.

Recall our inequality (4.13) which says that µn is uniformly bounded. Also, we know that

Ẽ(Υn,Υn+1) converges to ℓ so, for n large enough, (Υn,Υn+1) must be in the neighborhood

of the level set ℓ. Choosing µ = µn+1 and µ′ = µn and using that Gn and Gn+1 have the

correct trace, we get the estimate
(

Ẽ
(

Υn,Υn−1

)

− ℓ
)1−θ

6 κ−1
(
∣

∣

∣

∣

[

FΥn − µn+1N , Υn−1

]
∣

∣

∣

∣+
∣

∣

∣

∣

[

FΥn−1
− µnN , Υn

]
∣

∣

∣

∣

)

= κ−1
∣

∣

∣

∣

[

FΥn − µn+1N , Υn−1 − Υn+1

]∣

∣

∣

∣

6 C ||Υn−1 − Υn+1||

for n large enough. Here we have used that Υn commutes with FΥn−1
−µnN and that Υn+1

commutes with FΥn −µn+1N by construction, and that ||FΥn || and µn+1 are both uniformly

bounded. In order to conclude, we use the concavity of x 7→ xθ and (4.15) like in [31] to

obtain
(

Ẽ
(

Υn,Υn−1

)

− ℓ
)θ

−
(

Ẽ
(

Υn,Υn+1

)

− ℓ
)θ

>
θ

(

Ẽ
(

Υn,Υn−1

)

− ℓ
)1−θ

(

Ẽ
(

Υn,Υn−1

)

− Ẽ
(

Υn,Υn+1

)

)

>
η θ

2
(

Ẽ
(

Υn,Υn−1

)

− ℓ
)1−θ

||Υn+1 − Υn−1||2

> ηθ/(2C) ||Υn+1 − Υn−1||
by (4.15). This concludes the proof of the inequality (4.16), hence the proof of the conver-

gence of (Υ2n,Υ2n+1), towards some pure HFB states (Υ,Υ′).

Step 4: the limit (Υ,Υ′) of (Υ2n,Υ2n+1) is a critical point of Ẽ. Since we have

Υ2n → Υ and Υ2n+1 → Υ′, we deduce that FΥ2n → FΥ and FΥ2n+1
→ FΥ′ , by continuity of

the map Υ 7→ FΥ. Extracting a subsequence, we can assume that µ2nk
→ µ′ and µ2nk+1 → µ.

We have

Υ2nk
= 1(−∞,0)(FΥ2nk−1

− µ2nk
N), Υ2nk+1 = 1(−∞,0)(FΥ2nk

− µ2nk+1N)

and, by uniform well-posedness,
∣

∣FΥ2nk−1
− µ2nk

N
∣

∣ > η,
∣

∣FΥ2nk
− µ2nk+1N

∣

∣ > η.
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Passing to the limit k → ∞ we get

Υ = 1(−∞,0)(FΥ′ − µ′N) and Υ′ = 1(−∞,0)(FΥ − µN).

This exactly means that (Υ,Υ′) is a critical point of Ẽ on Ph(N/2) × Ph(N/2). Note that

we have also
∣

∣FΥ′ − µ′N
∣

∣ > η and
∣

∣FΥ − µN
∣

∣ > η.

The remaining statements are verified exactly like in the HF case. This concludes the

proof of Theorem 4.1.

4.2. Optimal Damping Algorithm

In the previous section we have studied the convergence properties of the Roothaan algo-

rithm, which consists in solving the self-consistent equation by a fixed point method. We

have seen that the algorithm can either converge or oscillate between two states, none of

them being a solution to the problem.

Examples of such oscillations in quantum chemistry have been exhibited by Cancès and

Le Bris [12, 13]. In this case the potential W is repulsive and there is no pairing. In order

to cure this problem of oscillations, Cancès and Le Bris proposed in [13] a relaxed algorithm

called the Optimal Damping Algorithm (ODA). This method makes use of the important fact

that one can minimize over mixed states and get the same ground state as when minimizing

over pure states only (Theorem 2.1).

The same oscillations can a priori happen in HFB with an attractive potential W .

They are frequently seen with the Roothaan algorithm and we will give several numerical

examples later in Section 5. Even when the sequence Υn eventually converges towards a single

state Υ, these oscillations can slow down the convergence considerably. This phenomenon

is well known in nuclear physics. Dechargé and Gogny already advocate in [16] the use of a

damping parameter between two successive iterations, in order to “slow down the convergence

on the density matrix. In this way the average field varies slowly and we can insure the

convergence on the pairing tensor step by step” (see [16] page 1574). Even in the modern

computations, this damping parameter is fixed all along the algorithm (Nathalie Pillet,

private communication).

We suggest to transpose the method of Cancès and Le Bris to the HFB setting by using

an optimal damping parameter, chosen such as to minimize the energy. This means resorting

to mixed states even if the final ground state is always a pure HFB state. This is theoretically

justified when the assumptions of the Bach-Fröhlich-Jonsson Theorem 2.2 are fulfilled.

The ODA involves two density matrices Υn and Υ̃n. The HFB state Υn is always pure

but Υ̃n can (and will usually) be a mixed HFB state. The starting point Υ0 = Υ̃0 being

chosen, the sequence is then constructed by induction as follows:

(1) One finds (Υn+1, µn+1) solving

Υn+1 = 1(−∞,0)

(

FΥ̃n
− µn+1N

)

and Tr(Gn+1) = N/2.

This is always possible, by Lemma 4.1 and we can take as before

µn+1 :=
∂−IΥ̃n

(N/2) + ∂+IΥ̃n
(N/2)

2
,

in case 0 is in the spectrum of FΥn − µn+1N.

(2) One lets

Υ̃n+1 = tn+1Υ̃n + (1 − tn+1)Υn+1
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where the damping parameter tn+1 ∈ [0, 1] is chosen such as to minimize the (quadratic)

function

t 7→ E
(

tΥ̃n + (1 − t)Υn+1

)

.

(3) The algorithm is stopped when ||[Υn,FΥn ]|| and/or ||Υn+1 − Υn|| are smaller than a

prescribed ε.

Υ0 = Υ̃0

Υ1 = 1(−∞,0)(FΥ̃0
− µ1N)

Υ̃1

mixed HFB states

pure HFB states

Υ2 = 1(−∞,0)(FΥ̃1
− µ2N)

Fig. 1. The Optimal Damping Algorithm of Cancès & Le Bris in the HFB case.

The general strategy of the ODA is displayed in Figure 1. By construction we see that

E(Υ̃n) is a non-increasing sequence. This guarantees the convergence of the ODA. The result

is the following

Theorem 4.2 (Convergence of the ODA). Assume that 0 < N/2 < Nb. Let Υ0 = Υ̃0

be an initial HFB state such that the sequence (Υn) generated by the ODA is uniformly well

posed, that is

∀n,
∣

∣FΥ̃n
− µn+1N

∣

∣ > η > 0. (4.19)

Then

• The sequence E(Υ̃n) decreases towards a critical value of E;
• The sequence Υn numerically converges towards a critical point Υ of E, in the sense

that Υn+1 − Υn → 0, Υn+1 − Υ̃n → 0 and that all the limit points Υ of subsequences of

(Υn) solve Υ = 1(−∞,0)(FΥ − µN).

Proof. The proof is exactly the same as in the Hartree-Fock case [10, 14] and we only

sketch it. First we have by definition E(Υ̃n+1) 6 E(Υ̃n), so E(Υ̃n) must converge to a limit

ℓ. Now we have

E(Υ̃n+1) = E
(

(1 − tn+1)Υ̃n + tn+1Υn+1

)

= E(Υ̃n) − tn+1an+1 + t2n+1bn+1

where

tn+1 = argmint∈[0,1]

(

− tan+1 + t2bn+1

)
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and with

an+1 := TrFΥ̃n

(

Υ̃n − Υn+1

)

= Tr |FΥ̃n
− µN|

(

Υ̃n − Υn+1

)2
> η

∣

∣

∣

∣

∣

∣
Υ̃n − Υn+1

∣

∣

∣

∣

∣

∣

2

,

bn+1 = 2 Tr(G̃n+1 −Gn)J(G̃n+1 −Gn) − Tr(G̃n+1 −Gn)K(G̃n+1 −Gn)

+ Tr(Ãn+1 −An)K(Ãn+1 −An).

In finite dimension we have |bn+1| 6 C
∣

∣

∣

∣

∣

∣
Υ̃n+1 − Υn

∣

∣

∣

∣

∣

∣

2

6 (C/η)an+1. This can be used to

prove that

−tn+1an+1 + t2n+1bn+1 6 −ǫ an+1 6 −ǫ η
∣

∣

∣

∣

∣

∣
Υ̃n − Υn+1

∣

∣

∣

∣

∣

∣

2

for some ǫ > 0 independent of n. This now proves that

∑

n

∣

∣

∣

∣

∣

∣
Υ̃n − Υn+1

∣

∣

∣

∣

∣

∣

2

<∞,

hence that Υ̃n − Υn+1 → 0. In order to conclude the proof, we notice that

Υn+1 − Υn = Υn+1 − Υ̃n + (1 − tn)
(

Υ̃n−1 − Υn

)

which finally implies

∑

n

||Υn − Υn+1||2 <∞ and
∑

n

∣

∣

∣

∣

∣

∣
Υ̃n − Υ̃n+1

∣

∣

∣

∣

∣

∣

2

<∞.

Since Υn+1 = 1(−∞,0)(FΥ̃n
− µn+1N) by definition, the proof that any limit Υ of a subse-

quence of (Υn) satisfies the self-consistent equation is elementary.

4.3. Handling constraints

Both the Roothaan algorithm and the ODA are based on Lemma 4.1 which says that for

any given FΥ, there exist µ′, δ′ and Υ′ such that
{

Υ′ = 1(−∞,0)

(

FΥ − µ′N
)

+ δ′,

TrNΥ′ = N −Nb.
(4.20)

The purpose of this section is to explain how to solve this problem numerically. To simplify

our notation, we consider in this section a generic matrix

F =

(

h p

p −h

)

, with p = p = pT and h = h = hT (4.21)

and we study the problem consisting in finding Υ, µ and δ such that
{

Υ = 1(−∞,0)

(

F− µN
)

+ δ,

TrNΥ = N −Nb.
(4.22)

Assume first that p ≡ 0 (Hartree-Fock case). Then we have

F =

(

h 0

0 −h

)
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which commutes with N. The solution of (4.22) is then given by the aufbau principle,

Υ =

(

G 0

0 1 −G

)

, G = 1(−∞,µ)(h) + δ

where µ is the (N/2)th eigenvalue of h, counted with multiplicity and δ lives in the corre-

sponding eigenspace. Equivalently,

G =
K
∑

i=1

viv
T
i +

K′

∑

i=K+1

ni viv
T
i

where the vi’s solve the eigenvalue equation

h vi = ǫi vi,

K = Tr1(−∞,ǫN/2)(h) is the dimension of the direct sum of all the eigenspaces corresponding

to the eigenvalues < ǫN/2 and K ′ = Tr1(−∞,ǫN/2](h) is the dimension of the direct sum of

all the eigenspaces corresponding to the eigenvalues 6 ǫN/2. The ni’s are chosen such that

0 6 ni 6 1, K +

K′

∑

i=K+1

ni =
N

2
.

Therefore, finding Υ, µ and δ in the Hartree-Fock case only requires to diagonalize h once.

In the Hartree-Fock-Bogoliubov case (p 6= 0), the situation is more complicated since N

does not commute with F. Let us consider the real function

νF : µ 7→ ν(µ) =
TrN1(−∞,0)

(

F− µN
)

+Nb

2
. (4.23)

We are interested in solving the equation

νF(µ) = N/2.

In the Hartree-Fock case, νF is a non-decreasing piecewise constant function. There is a

solution µ to νF(µ′) = N/2 when N/2 belong to the range of νF. Otherwise, one has to

partially fill a shell using the matrix δ.

In the Hartree-Fock-Bogoliubov case, νF is also non-decreasing and in general it is much

smoother when p 6= 0. The following lemma summarizes some important properties of νF in

both the HF and HFB cases.

Lemma 4.3 (Elementary properties of ν). Let F be as in (4.21). Then the function

νF defined in (4.23) is increasing with respect to µ. It can only have finitely many jumps. It

satisfies for some constant C depending only on Nb

• ν(µ) 6 C/µ for µ 6 −C;
• νF(µ) > Nb − C/µ for µ > C.

If 0 /∈ σ
(

F− µN
)

, then

dνF
dµ

(µ) = 2
∑

ǫi<0
ǫj>0

|〈vj ,Nvi〉|2
ǫj − ǫi

> 0 (4.24)

where (F− µN)vi = ǫi vi.

Proof. The behavior of νF for |µ| ≫ 1 was already studied in Lemma 4.2.
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The matrix F − µN is a linear function of µ ∈ R, hence by [28], we know that its

eigenvalues form a set of real analytic functions. They cannot be constant because the

matrix N does not vanish. The eigenvalues of F − µN all behave like ±µ for large µ, by

perturbation theory. We conclude that 0 can be an eigenvalue of F−µN for a finite number

of µ’s, say µ1 < · · · < µK . On the other hand, the map µ 7→ 1(−∞,0)

(

F−µN
)

is real-analytic

outside of the µk’s (see [28]). So νF is itself real-analytic outside of this set and it can have

at most a finite number of jumps.

Outside of the µk’s, it is possible to compute the derivative of νF by usual perturbation

methods [28]. The answer is (4.24) and the fact that dνF/dµ > 0 proves that νF is increasing

with respect to µ, in between these points. That the jumps are all positive can be easily

seen by an approximation argument using Lemma 4.4 below. We skip the details.

The shape of the function νF is very different in the HF and HFB cases. For a Hartree-

Fock state, the function νF is piecewise constant and it has jumps at the eigenvalues ǫ1 <

· · · < ǫNb
of hG. The size of the jumps is equal to the multiplicity of the associated eigenvalue.

An HFB state will most always have a very smooth νF. Of course, the smaller p in the

Hamiltonian F, the more νF looks like a step function.

In Figure 2 below, we show the function νF for different values of the pairing term. More

precisely, we have randomly chosen two symmetric real matrices h and p of size Nb = 5, and

we display the function νF when the pairing is replaced by tp for t = 0 (Hartree-Fock case),

t = 0.1 and t = 1. Figure 3 is a plot of the eigenvalues of F − µN for t = 0.1, as functions

of µ. Note that there are some crossings of eigenvalues above and below the real line (recall

that the spectrum is symmetric with respect to 0). But, around 0 the crossings are avoided

and there is a gap.

If we repeat the numerical experiment with several random matrices h and p, we never

see any jump for νF. The purpose of the next result is to clarify this observation.

Lemma 4.4 (Generic behavior of νF). The Fock matrix F−µN is invertible if and only

if h± ip− µ are invertible. More precisely,

min σ
(

|F− µN|
)

= min
(

∣

∣

∣

∣(h+ ip− µ)−1
∣

∣

∣

∣

−1
,
∣

∣

∣

∣(h− ip− µ)−1
∣

∣

∣

∣

−1
)

. (4.25)

The set of real symmetric matrices h and p such that

σ
(

F− µN
)

∩ {0} = ∅ for all µ ∈ R

is open and dense in {(h, p) : h = hT = h, p = pT = p}. For h and p in this set, νF is

real-analytic on R.

It is obvious that there are matrices h and p for which F − µN has 0 as eigenvalue for

some µ ∈ R. The simplest examples are HF Hamiltonians for which p ≡ 0 and F−µN is not

invertible each time µ equals an eigenvalue of h. If p does not vanish but commutes with h,

then we have |h+ ip− µ|2 = |h− ip− µ|2 = (h− µ)2 + p2 and we see that 0 is never in the

spectrum of F − µN when the kernel of p does not contain the eigenvectors of h. However

there are counterexamples with p invertible not commuting with h. For instance, F + N is

not invertible for

h =

(−1 0

0 2

)

, p =

(

0 2

2 0

)

.

We now turn to the proof of Lemma 4.4.
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Fig. 2. The function νF(µ) which gives the average number of particles in the state 1(−∞,0)(F − µN), in
terms of the chemical potential µ. The pairing term in F is equal to tp with t = 0 (Hartree-Fock case, red
curve), t = 0.1 (blue curve) and t = 1 (green curve).

Fig. 3. The eigenvalues of F− µN in terms of µ for t = 0.1.

Proof. The operator F− µN is unitarily equivalent to

(

1√
2

i√
2

i√
2

1√
2

)

(

F− µN
)

(

1√
2

− i√
2

− i√
2

1√
2

)

= −i
(

0 h+ ip− µ

−(h− ip− µ) 0

)

.

From this we deduce that F− µN is invertible if and only if h+ ip− µ and h− ip− µ are
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invertible. Then we have

(

F− µN
)−1

= i

(

1√
2

− i√
2

− i√
2

1√
2

)

(

0 −(h− ip− µ)−1

(h+ ip− µ)−1 0

)

(

1√
2

i√
2

i√
2

1√
2

)

and
∣

∣

∣

∣

∣

∣

(

F− µN
)−1
∣

∣

∣

∣

∣

∣
= max

(

∣

∣

∣

∣(h+ ip− µ)−1
∣

∣

∣

∣ ,
∣

∣

∣

∣(h− ip− µ)−1
∣

∣

∣

∣

)

.

The statement now follows from the fact that, on a dense open set, the spectra of h± ip do

not intersect the real axis.

Lemma 4.4 is interesting when we apply the Roothaan or the ODA, because it means

that, as soon as p 6= 0, most often we will have no choice for µn+1 and we will take δn+1 = 0.

Saying differently, it is really reasonable to assume that the sequence generated by the

Roothaan and the ODA are uniformly well posed (of course when the final state is believed

to have a non vanishing pairing), as we did in Theorem 4.1 and 4.2.

Even if it is in general smooth, the function ν can still vary quickly and this will be

the case when the pairing term p is small. The appropriate method to find the solution of

νF(µ) = N/2 then depends on the properties of νF. If the Hamiltonian F has a large enough

pairing matrix p, then νF is smooth and we can use a Newton-like method to solve the

equation νF(µ) = N/2. A trial chemical potential µ0 being given, we compute the derivative

∂νF/∂µ(µ0) using Formula (4.24) and then let

µ1 := µ0 +
(

N/2 − νF(µ0)
)

(

∂νF
∂µ

(µ0)

)−1

.

The method can be iterated until convergence of µn towards the desired µ. The convergence

is very fast, as soon as νF is smooth.

If the Hamiltonian F has a small pairing matrix p, the function νF will be smooth but

close to a step function. Its derivative varies very quickly and the previous Newton method

is not appropriate. In this case we can use a simple bisection method. The bounds on νF(µ)

for large |µ| can be used to find a good starting interval [µl, µr] such that νF(µl) < N/2 and

νF(µr) > N/2.

We have to find a new µn+1 at each step of the Roothaan or ODA. It is of course not

efficient to find µn+1 with a very high precision all along the algorithm. Dechargé and Gogny

advice in Section II.E of [16] to apply the Newton scheme only once at each step. This means

that

µn+1 = µn +
(

N/2 − νn(µn)
)

(

∂νn
∂µ

(µn)

)−1

where νn is the function ν corresponding to FΥ = FΥn . This is then the same as doing

perturbation theory on first order. We use a slightly different strategy which we explain in

the next section.

5. Numerical results

In this section, we present some numerical results for two very simple interactions W . We

start by considering in Section 5.2 a purely 3-dimensional gravitational model in which

W (x) = − g

|x| , g > 0.
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Then we consider in Section 5.3 a (repulsive) Coulomb potential which is perturbed at

intermediate distances by an attractive effective potential, as is usually employed in nuclear

physics:

W (x) =
κ

|x| − a1 exp
(

−b1|x|2
)

+ a2 exp
(

−b2|x|2
)

, κ > 0.

In the next section we quickly explain our numerical technique to treat these two simple

systems.

5.1. Method

To simulate our physical systems, we have used the open source software Scilab [43]. Our

potential W is always real, radial and spin-independent. To reduce the numerical cost we

have therefore always imposed the spin, time-reversal and spherical symmetry. This means

that we have to cope with ℓmax + 1 real and symmetric Nb × Nb matrices Gℓ and Aℓ (the

one-particle density matrix and the pairing density matrix in the ℓth angular momentum

sector). The total energy of the system is given by Equation (3.29) and we have to impose

the constraints (3.27) and (3.28) which we recall here for convenience:

0 6 ΥℓSΥℓ
6 Υℓ, with Υℓ :=

(

Gℓ Aℓ

Aℓ S−1 −Gℓ

)

and S =

(

S 0

0 S

)

, (5.1)

ℓmax
∑

ℓ=0

(2ℓ+ 1) Tr(SGℓ) = N/2. (5.2)

We choose a simple basis set (χ1, ..., χNb
) of L2([0,∞), r2dr), made of “hat functions”

associated with a chosen grid

0 = r0 < r1 < · · · < rNb
< rNb+1 := rmax.

We impose Dirichlet boundary conditions at rmax. We have tested different types of grids

and there was no important difference between them. The results presented here are all with

regular grids. As we will explain later, for a given basis size Nb, the results usually depend

a lot on the value of the radius rmax of the ball in which the system is placed.

Our main goal is to investigate the existence of pairing. We therefore always start by

doing a precise Hartree-Fock calculation, for which we use the Optimal Damping Algorithm

described in Section 4.2. We take as initial state a simple uniform state

Ginit =
N

2 Tr(S)
IdNb

(5.3)

and we run HF until convergence. We have observed a global stability of the results with

respect to initial states, hence the previous simple choice is appropriate (but more clever

choices might decrease the total number of iterations). Then, we use the converged HF state

Gopt as initial datum for the HFB algorithm. Of course we have to perturb it a little bit

since any HF solution is also an HFB solution. We proceed as follows. Assuming that the

overlap matrix S = IdNb
and that ℓmax = 0 for simplicity, the optimal HF state Gopt can

be written in the form

Gopt =

N/2
∑

k=1

vkv
T
k ,
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where vk are the N/2 first eigenvectors of the mean-field matrix h,

hvk = ǫk vk.

We then choose a number nv of valence orbitals and a mixing parameter θ, and we perturb

Gopt as follows

G′
init =

N/2−nv
∑

k=1

vkv
T
k + θ

N/2
∑

k=N/2−nv+1

vkv
T
k + (1 − θ)

N/2+nv
∑

k=N/2+1

vkv
T
k ,

A′
init =

√

θ(1 − θ)

N/2+nv
∑

k=N/2−nv+1

vkv
T
k .

In most cases, we have observed that nv = 1 and θ = 0.95 works perfectly well, that is, the

algorithm escapes from the HF solution Gopt and converges towards an optimal HFB state.

But other values of nv and θ seem to work fine also.

When the maximum angular momentum ℓmax is larger than 0, we often first run the

algorithm with ℓmax = 0 for a few iterations before switching to the actual value of ℓmax. We

stop the algorithm when the commutators [F ℓ
n,Υ

ℓ
n] are smaller than a prescribed error. We

know from (3.30) and (3.31) that these commutators must all vanish for an exact solution

of the discretized HFB minimization problem. In terms of the matrix S, the right quantity

to look at is

ℓmax
∑

ℓ=0

∣

∣

∣

∣

∣

∣
S− 1

2

(

Fℓ
nΥℓ

nS− SΥℓ
nF

ℓ
n

)

S− 1
2

∣

∣

∣

∣

∣

∣

where ||·|| is the usual operator norm for (2Nb) × (2Nb) matrices. There is a similar formula

in the HF case [11].

As we have explained, in the HFB case, ensuring the constraint (5.2) is not as easy as

in the HF case. In the beginning of the algorithm, our state Υ is rather close to an HF

state by construction. Therefore, the function νF(µ) defined in Section 4.3 is close to a step

function. We choose an error ε and look for the next states Υℓ
n+1 having a total number of

particles
∑ℓmax

ℓ=0 (2ℓ+ 1) Tr(SGℓ
n+1) close to N/2, within the error ε, using a simple bisection

method. We use the bisection for a fixed number of global iterations. Then, when the pairing

term is large enough, we switch to a Newton method in order to find the state Υn+1. We

have observed that even if in the beginning several Newton iterations can be employed

at each step, usually only one Newton iteration is necessary after a while. To guarantee

a good value of the average number of particles in the end, we decrease the error ε on

|∑ℓmax

ℓ=0 (2ℓ+ 1) Tr(SGℓ
n+1) −N/2| along the algorithm.

5.2. Pure Newtonian interaction

5.2.1. Model

Here we consider a system of N spin-1/2 neutral particles, only interacting through the

Newtonian interaction

W (x) = − g

|x| , g > 0. (5.4)
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This potential is strongly attractive at short distances. Since 1/|x| does not decay too fast

at infinity, it is also quite attractive at large distances. The kinetic energy does not scale the

same as the potential energy. By a simple scaling argument, we can therefore always assume

that

g ≡ 1.

This model can be used to describe neutron stars and white dwarfs when N ≫ 1. It

has been particularly studied from a theoretical point of view in the pseudo-relativistic case

where the kinetic energy is given by T =
√
c4m2 − c2∆ − mc2, see [36, 37, 30]. In our

simulations we restrict ourselves to the non-relativistic case of the Laplacian T = −∆/(2m)

(in units such that m = 1/2). It would be interesting to take N large but this is of course

much too difficult from a numerical point of view.

As mentioned before, we always impose the spin and time-reversal symmetries, which is

perfectly justified for the ground state since the interaction (5.4) satisfies the assumption of

the Bach-Fröhlich-Jonsson Theorem 2.2. We also impose spherical symmetry which, on the

contrary, is not known to hold for the true ground state.

One advantage of the Newtonian interaction (5.4) is that the operators J and Kℓℓ′ can

be explicitely computed in the basis of hat functions. We have shown in Section 3.3.2 that

the energy can be expressed in terms of

(ij|mn)ℓ,ℓ′ =

∫ ∞

0

r2 dr

∫ ∞

0

s2 ds χi(r)χj(r)χm(s)χn(s)wℓ,ℓ′(r, s)

where

wℓ,ℓ′(r, s) =
1

2

∫ 1

−1

W
(

√

r2 + s2 − 2rst
)

Pℓ(t)Pℓ′(t) dt = −1

2

∫ 1

−1

Pℓ(t)Pℓ′(t)√
r2 + s2 − 2rst

dt.

Using the well-known formula

1√
r2 + s2 − 2rst

=

∞
∑

n=0

min(r, s)n

max(r, s)n+1
Pn(t)

we deduce that

wℓ,ℓ′ = −1

2

∞
∑

n=0

(
∫ 1

−1

PnPℓPℓ′

)

min(r, s)n

max(r, s)n+1
.

The integral over the Legendre polynomials is related to the usual Clebsch-Gordan coeffi-

cients as follows

1

2

∫ 1

−1

Pn(t)Pℓ(t)Pℓ′(t) dt =

(

ℓ ℓ′ n

0 0 0

)2

and only a finite number of terms are non zero in the sum over n. The final result can be

expressed as

(ij|mn)ℓ,ℓ′

= −
∞
∑

n=0

(

ℓ ℓ′ n

0 0 0

)2 ∫ ∞

0

r2 dr

∫ ∞

0

s2 ds
min(r, s)n

max(r, s)n+1
χi(r)χj(r)χm(s)χn(s). (5.5)

These integrals can be explicitely computed for hat functions and 0 6 ℓ, ℓ′ 6 ℓmax with ℓmax

not too large. In our numerical experiments we have put the explicit formulas in Scilab for

ℓmax = 1. The integrals were stored in memory during the whole calculation.
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5.2.2. Roothaan vs ODA

In the HF case, we have observed that the Roothaan algorithm very often oscillates between

two states, none of them being the solution of the problem (as described in Theorem 4.1 and

in [13]). The Roothaan algorithm seems more well behaved in the HFB case. With the model

presented in this section, we never got real oscillations for HFB. Sometimes the convergence

is improved by using the ODA, but in most cases the Roothaan algorithm always converges

towards the same state as the ODA in the end. As we will see later, the situation is very

different for the model studied in Section 5.3, which is inspired of nuclear physics.

We start by comparing Roothaan and ODA in the HF case. There, oscillations seem

to be related to the size of the gap between the largest filled eigenvalue and the smallest

unfilled one. Indeed, oscillations in HF seem to only occur when there is pairing in HFB,

an effect which is also well-known to be related to the size of the gap (see, e.g., Theorem 5

in [2]). When there is no pairing, the HF Roothaan algorithm always behaves like the ODA.

However, the situation is complex and there is no exact rule. Sometimes the Roothaan

algorithm does not oscillate even when the gap is rather small and there is pairing.

In Figure 4 we display the value of the energy obtained along the algorithm for the

Roothaan and the ODA, for the following choice of parameters: N = 6, Nb = 200, ℓmax = 0

and rmax = 30. The ODA converges in about 17 iterations, whereas the Roothaan algorithm

oscillates. We also show the value of the norms ||Gn −Gn−1|| and ||Gn −Gn−2|| along the

Roothaan algorithm. The oscillation between two points is clearly demonstrated.

When we decrease the parameter rmax but keep Nb = 200 constant, the gap is seen to

increase slightly and the Roothaan algorithm behaves better. In Table 1, we give the numer-

ical value of the last filled eigenvalue and the corresponding gap. The Roothaan algorithm

slowly converges for rmax = 25 and it coincides with the ODA when rmax = 20. The gap for

rmax = 20 is 2.5 times the one for rmax = 30. We will discuss the occurence of pairing in

terms of the parameter rmax in the next section.

rmax ǫN/2 ǫN/2+1 − ǫN/2 behavior of HF Roothaan

20 -0.532430 0.159430 fast convergence

25 -0.536706 0.081016 slow convergence

30 -0.529200 0.061928 oscillations

-0.548554 0.067422

Table 1. Value of the last filled eigenvalue ǫN/2 and the corresponding gap ǫN/2+1 − ǫN/2 in HF, for N = 6,
Nb = 200 and ℓmax = 0. For rmax = 30 the Roothaan algorithm oscillates and we display the last filled

eigenvalue and the gap for the two states.

As we have mentioned the Roothaan algorithm is usually much more well behaved in the

HFB case. However, sometimes the convergence can be improved dramatically by using the

ODA. In Figure 5 we display the energy along the iterations of the algorithm in both the

Roothaan and ODA cases, for Nb = 500, N = 16, ℓmax = 1 and rmax = 10. In this case the

Roothaan algorithm is very badly behaved. It passes very close to the HF ground state and

it takes it a very long time to escape from it. On the other hand, the ODA does not suffer

from this problem and it converges much more rapidly.
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Fig. 4. Left: HF energy along the iterations for the Roothaan Algorithm (blue) and the ODA (red). Right:
Values of ||Gn −Gn−1|| (red) and ||Gn −Gn−2|| (blue) along the Roothaan algorithm, showing the oscillations
between two states. Here N = 6, Nb = 200, ℓmax = 0 and rmax = 30.

Fig. 5. HFB energy along the iterations of the Roothaan (blue) and the ODA (red) for Nb = 500, N = 16,
ℓmax = 1 and rmax = 10. The optimal HF energy is also displayed (green).
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5.2.3. Numerical evidence of pairing

Pairing effects in a finite discretization basis might depend on the properties of the basis.

As we have explained, the occurence of pairing is related to the size of the gap in HF theory

and this gap varies with the radius rmax in which the system is confined. If rmax is decreased

the system is more condensed and the HF gap increases.

In Figure 6 we display the HF and HFB ground state energies computed for N = 16 in

a basis set of size Nb = 200, in terms of rmax. The HF and HFB curves are distinct for rmax

large enough and they merge at rmax = 6 approximately. This observation is confirmed by

the value of the norm of A plotted on the right of the same figure. The minima of the HF and

HFB ground state energies are attained at about rmax ≃ 10 in the HF case and rmax ≃ 10.5

in the HFB case, which is sufficiently far from the merging point. The minima of these curves

correspond to the best possible approximation for a given basis size Nb (here Nb = 200) and

a given type of grid (here regular). The difference between the corresponding HF and HFB

energies is significant. The HF ground state energy at rmax = 10 is −19.232176 (in our units

in which m = 1/2 and e = 1), whereas the HFB ground state energy at rmax = 10.5 is

−19.240176. The norm of the pairing matrix A is rather large at this point:

||A|| =
√

Tr(SA0SA0) + 3 Tr(SA1SA1) ≃ 0.462129.

This goes in favour of the conclusion that pairing really occurs for N = 16 in this model.

This intuition is confirmed by a more precise calculations with Nb = 500 which we discuss

below.

The observation of pairing requires to have an appropriate rmax but it does not require

to have a very large basis set. Even for Nb = 30 and rmax = 10.5, we already find that the

HFB energy is approximately −19.078416 whereas the HF energy is about −19.072954. The

corresponding norm of the pairing matrix A is ||A|| ≃ 0.424124.

Pairing is a subtle effect which decreases the energy by a small amount (much less than

one percent here). Catching this effect requires to be very careful when choosing the radius

rmax. Taking rmax too small might lead to the conclusion that there is no pairing. In our

simulations we have always observed the occurence of pairing, but provided we choose rmax

appropriately. The values of rmax at which the HF and HFB energies attain their minimum

were always found on the right of the merging point of the two curves. In Table 2 below we

give our results for Nb = 200 and N = 6, 10, 16 and 20. The HFB ground state energy is

always smaller than the HF energy.

In the paper [30], Lenzmann and Lewin have rigorously studied the gravitational model

of this section. They showed the existence of a ground state in both the HF and HFB cases.

But, so far, no proof that pairing occurs has been provided. The numerical results of this

section tend to show that there is actually always pairing, at least for N not too large.

5.2.4. Properties of the HFB ground state

In Table 2 below we give our results for Nb = 200 and N = 6, 10, 16 and 20, for the optimal

values of rmax. With ℓmax = 1 we have observed that the shells are filled alternatively. In

HF theory, the cases N = 10 and N = 16 correspond to closed shells, whereas for N = 6

and N = 20 the last shell is only partially filled. This is a simple explanation for the fact

that the pairing matrix is much bigger in these cases.

In Table 3 we display the occupation numbers for the optimal HFB ground state in the
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Fig. 6. Value of the ground state HF and HFB energies (top) and of the norm of the pairing matrix A
(bottom), as functions of the radius rmax in which the system is confined, for N = 16, Nb = 200 and
ℓmax = 1.
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closed shell case N = 16 and in the open shell case N = 20. Because of the spin, these are

the eigenvalues of G0 multiplied by 2 and that of G1 multiplied by 6. Even in the closed shell

case N = 16, a rather important pairing effect is observed between the last filled orbital

(the second ℓ = 1 eigenvalue) and the first unfilled one (the third ℓ = 0 eigenvalue). This

results in a decrease of the last occupation number of the HF one-particle density matrix by

approximately 0.228.

N rmax HF gap HF energy HFB energy ||A||
6 15 0 -1.7327688 -1.9934252 1.0242134

10 11 1.023642 -6.7911634 -6.8148576 0.5871951

16 10 1.404396 -19.232177 -19.2403096 0.4623593

20 9 0 -30.010574 -30.174576 0.8235512

Table 2. Results for Nb = 200 and ℓmax = 1.

N = 16

ℓ = 0 ℓ = 1

1.9999318 5.9997504

1.9980654 5.7710970

0.2281366 0.0026448

0.0002694 0.0002720

0.0000120 0.0000084

0.0000014 0.0000012

0.0000002 3.316D-07

6.896D-08 1.005D-07
...

...

N = 20

ℓ = 0 ℓ = 1

1.9999832 5.9999490

1.9997458 5.9983572

1.9875134 2.0084946

0.0045222 0.0012960

0.0000690 0.0000552

0.0000058 0.0000066

0.0000010 0.0000002

0.0000002 3.072D-07
...

...

Table 3. Occupation numbers of the HFB minimizer, for Nb = 200 and ℓmax = 1.

5.2.5. Quality of the approximation in terms of the number Nb of points

In Table 4 we display the HF and HFB ground state energies for N = 16, ℓmax = 1 for the

the optimal value of rmax, in terms of the number of discretization points Nb of the regular

grid. The convergence is not very fast, but we see that the difference between the HF and

the HFB energy, as well as the norm of the pairing matrix are of the same order for small

Nb as they are for larger Nb’s. From this observation we can conclude that it is probably

not necessary to take Nb very large in order to decide whether pairing occurs or not.

5.3. A simplified model for protons and neutrons

In this section we report on our numerical results concerning a simple model inspired of

nuclear physics. The interaction between protons and neutrons is not a fundamental law

of nature because these are composite particles made of quarks, which interact through

weak, strong and electrostatic forces. A common procedure used in nuclear physics is to

use empirical forces [41] which involve a small number of parameters which are fitted to
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Nb rmax HF energy HFB energy difference ||A||
30 9 -19.112314 -19.117948 0.005634 0.425604

50 9 -19.189066 -19.196012 0.006946 0.445728

100 9 -19.222300 -19.229872 0.007572 0.454173

150 10 -19.229494 -19.237574 0.008080 0.461725

200 10 -19.232176 -19.240308 0.008132 0.462363

250 10 -19.233420 -19.241576 0.008156 0.462659

300 10 -19.234094 -19.242264 0.008170 0.462821

400 11 -19.234826 -19.243068 0.008242 0.463905

500 11 -19.235206 -19.243456 0.008250 0.463985

Table 4. Value of the HF and HFB energies for N = 16 and ℓmax = 1 and the (approximate) optimal rmax.

experiment or to the known behavior of the model in some limits. The most common forces

used in practice are the so-called Skyrme [45] and Gogny [20, 21, 16] forces and they depend

nonlinearly on the state itself. Here we consider an effective force which is fixed and does not

depend on the quantum state. We also take it spin-independent and isospin-independent.

Our goal is to test some simple ideas and not to do a real nuclear physics calculation.

5.3.1. Model

The nucleon-nucleon potential has been observed to be repulsive at short distances and only

attractive at medium distances. It decays very fast at infinity. A simple choice to describe

this is to take

W (x) =
κ

|x| − a1 e
−b1|x|2 + a2 e

−b2|x|2 , (5.6)

with a2, a1 > 0, b1 < b2. The constant κ is 1 for the proton-proton interaction and 0

for the proton-neutron and the neutron-neutron interaction. The other constants usually

also depend on the isospin (the quantum variable which determines whether a nucleon is a

neutron or a proton). For simplicity we work here with particles having a definite isospin.

This means that we assume to have either only protons or only neutrons. In particular we

want to ask for which strength of the effective force it becomes possible for the protons to

overcome their Coulomb repulsion and form a bound state. In reality a nucleus is made of

a certain number of protons and neutrons and one has to use a different HFB state for each

species.

In our applications we have chosen for simplicity b1 = 1, b2 = 4, a1 = a = 2 a2/3. This

means that the effective force takes the form

W (x) =
κ

|x| + a

(

3

2
e−4|x|2 − e−|x|2

)

. (5.7)

When κ = 1, this force is purely repulsive for a 6 2.87 and it becomes attractive at inter-

mediate distances for larger a’s. The corresponding force is displayed in Figure 7 for a = 1

and κ = 0.

One can ask several questions concerning the model considered in this section:

(1) For which value of a does a system of N identical nucleons bind in Hartree-Fock theory?
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Fig. 7. The effective force − e−|x|2 + 3 e−4|x|2/2 used in our calculation of Section 5.3. The (repulsive)
Coulomb potential must be added for protons.

(2) Is there always pairing when there is binding?

(3) Can pairing effects allow for binding with a smaller a than in HF theory?

These questions are mostly of academic nature for the very simplified model considered in

this section. But investigating the same problems with more realistic forces is very important

from a physical point of view. From a mathematical point of view, nothing seems to be known

for simple models of the same form as in this section. It is not even known that binding

always occurs for a large enough with the previous interaction. We hope that our calculations

will stimulate some further mathematical studies.

5.3.2. Some computational details

We always minimize over states having the spin, time-reversal and rotation symmetries. The

Bach-Fröhlich-Jonsson Theorem 2.2 does not apply to the model of this section, hence we

are making a further approximation here.

For such symmetric states we have shown in Section 3.3.2 that the energy can be ex-

pressed in terms of

(ij|mn)ℓ,ℓ′ =

∫ ∞

0

r2 dr

∫ ∞

0

s2 ds χi(r)χj(r)χm(s)χn(s)wℓ,ℓ′(r, s)

where, for the model considered in this section,

wℓ,ℓ′(r, s) =
1

2

∫ 1

−1

W
(

√

r2 + s2 − 2rst
)

Pℓ(t)Pℓ′(t) dt

=
1

2

∫ 1

−1

Pℓ(t)Pℓ′ (t)

(

κ√
r2 + s2 − 2rst

− a1 e
−b1(r

2+s2−2rst) + a2 e
−b2(r

2+s2−2rst)

)

dt.

For 0 6 ℓ, ℓ′ 6 ℓmax with ℓmax not too large, the Gaussian integrals can be computed exactly

and it is possible to find the exact expression of wℓ,ℓ′(r, s).
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The computation of the integral (ij|mn)ℓ,ℓ′ against hat functions is much more tedious,

however. It is easy to find an exact expression for the Coulomb part, but not so simple for

the Gaussian part. So we have performed a numerical calculation of these integrals. Since

we have of the order of (Nb)
4 integrals, we could not take Nb too large. The results of the

previous section indicated that the existence of pairing effects does not depend very much

on the size of the basis.

5.3.3. Slow convergence and oscillations of Roothaan

We have observed that the Roothaan algorithm almost always oscillates, even in the HFB

case (see some examples in Figures 8, 9 and 10). This is in stark contrast with the results

of the previous section where the Roothaan algorithm was almost always converging. Some-

times it very slowly converges in the HF case (see, e.g., Figure 9). However we have always

obtained convergence for the HF Roothaan algorithm when a is small enough, that is, when

it is expected that there is actually no binding. For the case displayed in Figure 9 we have

a = 20 but the critical a is about ≃ 24 (see the next section).

We conclude that using the ODA is very important for such attractive potentials. The

same might be true with the more involved forces used in nuclear physics.

5.3.4. The critical strength

In finite dimension there is always a minimizer. Saying differently, since the particles are

trapped in a ball, they always bind. Furthermore we work with rotation-invariant states.

So, for the true model in infinite dimension, the particles escaping to infinity cannot form a

bound state of the same kind because they are too far from the (fixed) center of symmetry.

In this special case they will spread out and have a vanishing energy.

In Hartree-Fock theory, we conclude that we can detect the loss of binding by looking

at the last filled HF eigenvalue. When it crosses 0, this corresponds to the last particle

becoming a scattering state. We can therefore choose as definition for the critical strength a,

the value at which this eigenvalue is 0. In finite dimensional Hartree-Fock-Bogoliubov theory

things are less clear and we will not discuss the problem of binding. In our simulations we

have observed that the HFB ground state density was always rather close to the HF ground

state density, which suggests that there is binding in HFB as well.

We have made some calculations for Nb = 50 and N = 4. We found that the critical

strength is about ac ≃ 23.5 in the proton-proton case and ac ≃ 17.5 in the neutron-neutron

case. In Figure 11 we display the HF and HFB energies as functions of the parameter a,

for N = 4 and κ = 1 (proton-proton case). Figure 12 is the equivalent result for κ = 0

(neutron-neutron case). For these calculations we have chosen rmax = 3 which is the optimal

choice for a in a neighborhood of the critical value. Like in the previous section the results

depend on the radius of the ball in which the system is confined. We see that there is always

pairing, in the sense that the HFB curve is below the HF curve. This is even more manifest

in the neutron-neutron case for which the potential is much more attractive than for protons,

which repel with the Coulomb potential. Also, the norm of the pairing matrix A does not

vary too much with a, it stays between 0.80 and 0.95 for a in the range 15 6 a 6 30, for

both κ = 0 and κ = 1.

From these numerical results we can conclude that pairing seems to happen in this model,

for any strength a for which there is binding in Hartree-Fock theory. It is an interesting
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Fig. 8. Energy along the iterations in the HF (left) and HFB (right) cases, for the Roothaan (blue) and the
ODA (red), with N = 4, Nb = 20, ℓmax = 1, rmax = 3, a = 35 and κ = 1 (proton-proton case).

Fig. 9. Same calculation with a = 20 and κ = 1 (proton-proton case). The Roothaan algorithm slowly
converges in the HF case and it oscillates in the HFB case but the two values are very close.

Fig. 10. Same calculation with a = 20 and κ = 0 (neutron-neutron case). The Roothaan algorithm oscillates
in the HFB case, but the two values are very close.
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problem to actually prove that pairing always occurs, for instance for a large enough. We

are not aware of any result of this kind.

Fig. 11. Left: Values of the HF (blue) and HFB (red) ground state energies as functions of a, with N = 4,
Nb = 50, ℓmax = 1, rmax = 3 and κ = 1 (proton-proton case). The vertical line is the value of a for which
the last filled eigenvalue vanishes. Right: Values of the two filled HF eigenvalues for the same a.

Fig. 12. Same calculations for κ = 0 (neutron-neutron case).
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10. É. Cancès, SCF algorithms for HF electronic calculations, in Mathematical models and meth-

ods for ab initio quantum chemistry, vol. 74 of Lecture Notes in Chem., Springer, Berlin, 2000,
ch. 2, pp. 17–43.
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