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Leonardo's rule, self-similarity and wind-induced stresses in trees

Leonardo da Vinci observed in his notebooks that "all the branches of a tree at every stage of its height when put together are equal in thickness to the trunk " [START_REF] Richter | The notebooks of Leonardo da Vinci[END_REF], which means that when a mother branch of diameter d splits into N daughter branches of diameters d i , the following relation holds on average

d ∆ = N i=1 d ∆ i , (1) 
where the Leonardo exponent is ∆ = 2. Surprisingly, there have been very few assessments of this rule, but the available data indicate that the Leonardo exponent is in the interval 1.8 < ∆ < 2.3 for a large number of species [START_REF] Mandelbrot | The fractal geometry of nature[END_REF][START_REF] Aratsu | [END_REF][4]. As a matter of fact, Leonardo's rule is so natural to the eye that it is routinely used in computer-generated trees [START_REF] Prusinkiewicz | The algorithmic beauty of plants[END_REF]. Yet, alternative analyses of the branching geometry have been proposed based on analogies with river networks, bronchial trees, and arterial trees [START_REF] Zhi | [END_REF]. Two different models have been proposed to explain Leonardo's rule: the pipe model [7], which assumes that trees are a collection of identical vascular vessels connecting the leaves to the roots, and the principle of elastic similarity [8,[START_REF] Enquist | Scaling in biology[END_REF], which postulates that the deflection of branches under their weight is proportional to their length. However, none of these explanations are convincing. The first because the portion of a branch crosssection devoted to vascular transport (i.e. the sapwood) may be as low as 5% in mature trees and it seems thus dubious that the whole tree architecture is governed by hydraulic constraints. The second because the postulate behind elastic similarity is artificial, hard to relate to any adaptive advantage, and, furthermore, it seems unlikely that trees can respond to branch deflections.

In this Letter, an alternative explanation is offered: Leonardo's rule is a consequence of trees being designed to resist wind-induced stresses. Plants are known to respond to dynamic loading for a long time, a phenomenon called thigmomorphogenesis [START_REF] Niklas | Plant biomechanics: an engineering approach to plant form and function[END_REF][START_REF] Moulia | [END_REF]. In that line of thinking, Metzger [12] proposed in the 19th century the constant-stress model. This model states that the trunk diameter varies such that the bending stress due to wind remains constant along the trunk length. The constantstress model has been shown to agree with observations [13], however, its implications on the whole branching architecture has not yet been addressed (except in the recent study of Lopez et al. [14]). The other important point is that constant-stress might not be the best design since it implies that breakage is more likely to occur in the trunk or in large branches where the presence of defects is more probable.

To address this problem, two equivalent analytical models are considered: one discrete, the fractal model, and one continuous, the beam model, inspired from McMahon & Kronauer [8] with the difference that wind loads are considered instead of the weight.

The fractal model (Fig. 1a) is constructed such that

l k l k+1 = N 1 D , d k d k+1 = N 1 ∆ , (2) 
where l k and d k are the length and diameter of a branch at rank k (with 1 ≤ k ≤ K), N is the number of daughter branches at each branching node, ∆ is Leonardo exponent, and D is the fractal (Hausdorff) dimension of the tree skeleton [START_REF] Mandelbrot | The fractal geometry of nature[END_REF]. Here, the tree skeleton is supposed to be self-similar such that D is uniform within the structure, but ∆ can depend on k.

The fractal dimension D has never been measured directly on real trees. However, the fractal dimension of the foliage surface has been measured to lie in the interval 2.2 < D fol. < 2.8 [15] and, except for very particular architectures, it can be shown that D = D fol. . As already suggested by Mandelbrot [START_REF] Mandelbrot | The fractal geometry of nature[END_REF], it can thus be safely assumed that 2 < D < 3 [START_REF]3 and would maximize light interception. But trees tend to avoid having branches arbitrarily close to each other as it favor breakage when the tree sways[END_REF].

The beam model (Fig. 1b) consists of a cantilevered beam whose width b and thickness h taper with the curvi- 1. Two analytical models: (a) the fractal tree model; (b) the continuous tapered beam model [8]. arXiv:1105.2591v2 [physics.bio-ph] 15 Nov 2011 linear coordinate s (with s 0 ≤ s ≤ 1). These two models can be linked using the principle sketched in Fig. 1b. It consists in cutting the beam to form branches of approximately square cross-sections. The beam thickness is then equivalent to the branch diameters, the ratio of width to thickness gives the number of branches, and s corresponds to the branch lengths (because the distance between a branch and the tips is proportional to the branch length for infinite branching)
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d k ∼ h, N k ∼ b/h ∼ s -D , l k ∼ s. (3) 
Consider now two different types of wind loads: either a continuous loading due to the wind on the branches with a force per unit length q(s) ∼ b or an end loading due to the wind in the leaves with a force Q applied in s 0 equivalent to q(s) = Qδ(ss 0 ). Neglecting the wind incident angle and using the Euler-Bernoulli beam equation, the curvatures k(s) resulting from the continuous load and the end load are found to scale respectively as

k ∼ q(s 0 )s 0 s EI , k ∼ Q(s -s 0 ) EI , (4) 
with E the Young's modulus and I ∼ bh 3 the moment of inertia. The expression for continuous loading is only valid for s s 0 [START_REF]0, i.e. if b ∼ s α near s0, it requires -2 < α < -1[END_REF]. Since the above scalings are equivalent at leading order, the analysis will be restricted to the case of end loading for simplicity. The maximum bending stress occurs at the beam surface and is

σ = Ekh/2 such that σ ∼ Q(s -s 0 ) bh 2 . ( 5 
)
The probability of fracture at a given rank k can be modeled by a Weibull distribution [START_REF] Bažant | Fracture and size effect in concrete and other quasibrittle materials[END_REF] to take into account size effects

P k = 1 -exp - V k V 0 σ k σ 0 m , (6) 
where

V k = N k l k πd 2 k /4
is the volume of all branches of rank k, σ 0 is the strength of the material, V 0 is an arbitrary volume taken to be V 0 = πl 3 1 /4 and m is the Weibull's modulus (typically 5 < m < 20 for wood [START_REF]Timber engineering[END_REF]). It can be shown that, for a given probability of fracture, the lightest design corresponds to the constantstress model. However, since V k is decreasing with k, this implies that the trunk and bottom branches are more likely to fail. As discussed in [14], a better design is obtained when the probability of fracture P k is constant or increasing with k such that the tree can regrow after a big storm. The equiprobability of fracture is expressed as

σ -m ∼ V k ∼ hbs. (7) 
and it corresponds to σ decreasing with s as observed in trees [14,[START_REF] Niklas | [END_REF]. When P k is increasing algebraically with k, the relation ( 7) still holds minor logarithmic correction. Now, using (3), ( 5) and ( 7), the Leonardo exponent and the diameter are found to depend on the fractal dimension D and the Weibull's modulus m

∆ = (3m -2)D(s -s 0 ) [(m -1)D + 1](s -s 0 ) + ms , (8a) 
h 3m-2 ∼ s (m-1)D+1 (s -s 0 ) m . (8b)
In the case of infinite branching (i.e. K = ∞ or s 0 = 0), it gives 1.93 < ∆ < 2.21 when 2 < D < 3, for m = 10. In other words, Leonardo's rule is recovered by assuming that the probability of fracture due to wind-induced stresses is constant. Note that, in (8a,b), constant-stress corresponds to the limit m → ∞. Note also that the number N of daughter branches at each node does not affect the result.

To assess the robustness of these predictions when the asymmetry and stochasticity of branching, as well as the wind incident angle are taken into account, a threedimensional numerical model has been developed. Following Niklas & Kerchner [21], a tree skeleton is recursively constructed as sketched in Fig. 2a.

Starting with a vertical trunk of length l = l trunk = 1, parallel to the unit vector t and normal to the unit vector b, two daughter branches of lengths l 1 = r 1 l and l 2 = r 2 l are constructed in the plane normal to b such that their tangential unit vectors t 1 and t 2 are obtained by rotating t with the angles θ 1 and θ 2 around b. The new normal vectors b 1 and b 2 defining the successive planes of branching are then obtain by rotating b with an angle γ around t 1 and t 2 respectively. This branching rule is recursively applied for K ranks, with a probability of branching p, yielding a tree skeleton as examplified in Fig. 2b. The architecture of this skeleton is parametrized by the six dimensionless quantities: θ 1 , θ 2 , γ, r 1 , r 2 and p. This skeleton is self-similar with a fractal dimension

D = - ln 2 ln r , with r = r 1 + r 2 2 p. (9) 
Once this tree skeleton is constructed, the diameters of each branch can be calculated. Assuming that the wind velocity U u (where u is a unit vector) is parallel to the x z plane y z p ground and uniform, the wind load on the leaves located at the tip of the terminal branch is

F leaf = 1 2 ρU 2 C 1 S 0 u, ( 10 
)
where ρ is the air density, C 1 is a drag coefficient which will be taken to be 1 without loss of generality and S 0 is the surface of the leaves assumed to be the square of the expected terminal branch length (i.e. S 0 = r 2(K-1) l 2 trunk ). In addition, the wind exerts also a force on each branch such that, if n is the unit vector normal to both the wind and the branch (i.e. n = t×u/ t×u ), the force exerted on each branch is

F branch = 1 2 ρU 2 C 2 dl t × u 2 (n × t), (11) 
where C 2 is another drag coefficient taken to be 1, d and l are the diameter and the length of the branch, and t × u 2 is the square of the incident angle cosine. This force is applied on the branch center of mass such that its moment at the base of the branch is simply

M branch = 1 2 l t × F branch .
Now each branch transmits the forces and moments applied at its extremity (either originating from upper branches or by leaves) such that, if F top and M top are the sum of forces and moments at a branch end, the force and moment at the branch base are

F base = F branch + F top , (12a) 
M base = M branch + M top + l t × F top . ( 12b 
)
The moment at the base M base has two components: a bending moment of intensity M bend = M base × t and a torsional moment of intensity M twist = M base • t . The corresponding maximal bending (tensile and compressive) and shear stresses are σ bend = 32 π M bend /d 3 and σ shear = 32 π M twist /d 3 . Assuming that there is a uniform probability of fracture (1e -1 ) for every rank as given by ( 6), the diameter of each branch can be calculated recursively, starting from the tips and ending with the trunk. In doing so, resistance to bending and twisting has been considered and the wind direction has been assumed to vary with increments of 45 • . In this calculation, the Cauchy number, C Y = ρU 2 /σ 0,bend , appears as the dimensionless parameter which sets the scaling of branch diameters (but not their relative values) such that d ∼ C m/(3m-2) Y l trunk . It has been taken to be C Y = 10 -4 which corresponds roughly to U = 40 m s -1 and σ 0,bend = 20 MPa [START_REF]Timber engineering[END_REF]. The other important dimensionless numbers are the relative surface of leaves S 0 (which sets the total height of the tree assuming that leaves have always the same dimension whatever the size of the tree), and the ratio of bending to shear strength σ 0,bend /σ 0,shear taken to be equal to 5 as it is generally observed for wood [START_REF]Timber engineering[END_REF].

The result of such a calculation is shown in Fig. 3 for the deterministic skeleton pictured in Fig. 2b. To compare these results with the theoretical predictions, the ratio L /L max is used [8], where L is the average distance from the branch tips considering all possible paths and L max = 1/(1-r) is the mean ground-to-tips distance for an infinitely branching tree. The ratio L /L max is equivalent to (ss 0 ) for the beam model.

As seen in Fig. 3, the beam model accurately predicts the branch diameters and the Leonardo exponent. It means that the wind incident angle and the geometric details of branching do not affect these scalings. Note that, because of the finite number of recursions, the slope in Fig. 3b is not constant as already observed in [8].

In Fig. 4, the same simulation is run except that, at each branching node, the angles θ 1 , θ 2 , γ are randomly chosen with a normal distribution of means θ1 , θ2 , γ and standard deviation of 10 • . Same is done for r 1 and r 2 of means r1 and r2 and standard deviation of 0.1. It results that the Leonardo exponent is more scattered but the beam model still predicts it correctly (Fig. 4b).

Figure 4c shows directly the prediction of Leonardo's rule by comparing the total cross-sectional areas at every rank. Depending on the particular angles defining the 

• < θ1 < 0, 0 < θ2 < 60 • , -180 • < γ < 180 • .
branching rules, this surface can vary with a standard deviation of about 20% but its mean remains roughly constant for all ranks except the last three [22]. Remarkably, the variation of this mean is accurately predicted by the continuous beam model.

In summary, it has been shown that the best design to resist wind-induced fracture in self-similar trees naturally yields Leonardo's rule. The only requirement is that trees adapt their local growth to wind loads, a well-known phenomenon called thigmomorphogenesis whose mechanism at the cell level is still largely unknown. Here, the relevant property of wind loads is their divergence towards the branch tips, either because of the leaves or because the surface exposed to wind diverges. Thus the static loads due to the weight of fruits, snow, or ice would give similar results.

The validity of the present model could be assessed experimentally by examining how the branch diameters depend on the wind peak velocity. It is predicted here that the following relation holds: d ∼ C m/(3m-2) Y l trunk , where C Y is proportional to U 2 . Another assessment would be calculate, from a real tree skeleton, the expected branch diameters and compare them to the measured ones. In this Letter, aeroelastic reconfiguration [23], branch weight [24], and non-uniform wind profiles [START_REF] Niklas | [END_REF], have been neglected for the sake of simplicity. It has also been assumed that the tree skeleton is fractal, with a fractal dimension 2 < D < 3. Yet, the way D and other features of the tree skeleton depend on the wind, and on the environment in general, remains to be explored. I warmly thank Emmanuel de Langre for having inspired this work and Eric Lauga for stimulating discussions. This study was supported by the European Union through the fellowship PIOF-GA-2009-252542.
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 2 FIG. 2. Numerical tree model: (a) Sketch of the angles and unit vectors at a branching node; (b) Example of tree skeleton for θ1 = -15 • , θ2 = 30 • , γ = 120 • , r1 = r2 = 0.75, p = 1, K = 10, D = 2.41 [as given by (9)].
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 03 FIG. 3. Deterministic tree: (a) Calculated branch diameters for the skeleton shown in Fig. 2b; (b) Normalized average distance from the tips as a function of the diameter; (c) Calculated Leonardo exponent for each branching node (the horizontal bars show the mean value of ∆ at each rank). In (a) and (b), the beam model corresponds to the relations (8a,b).
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 4 FIG. 4. Stochastic tree: (a) Silhouette a tree with parameters: θ1 = -20 • , θ2 = 40 • , γ = 100 • , r1 = 0.75, r2 = 0.85, p = 0.98, K = 10, D = 2.85; (b) Corresponding Leonardo exponent (same legend as in Fig. 3c); (c) Total cross-sectional area at every rank k normalized by its maximum. The bars correspond to the tree depicted in (a), the curve is the prediction from the beam model and the symbols with the error bars correspond to the average and standard deviation on 1000 realizations where the mean branching angles are randomly taken in the intervals -60 • < θ1 < 0, 0 < θ2 < 60 • , -180 • < γ < 180 • .