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Examining botanical trees, Leonardo da Vinci noted that the total cross-section of branches is
conserved across branching nodes. In this Letter, it is proposed that this rule is a consequence of
the tree skeleton having a self-similar structure and the branch diameters being adjusted to resist
wind-induced loads.

PACS numbers: 87.10.Pq, 89.75.Da, 89.75.Hc

Leonardo da Vinci observed in his notebooks that “all
the branches of a tree at every stage of its height when
put together are equal in thickness to the trunk” [1], which
means that when a mother branch of diameter d splits
into N daughter branches of diameters di, the following
relation holds on average

d∆ =

N∑
i=1

d∆
i , (1)

where the Leonardo exponent is ∆ = 2. Surprisingly,
there have been very few assessments of this rule, but the
available data indicate that the Leonardo exponent is in
the interval 1.8 < ∆ < 2.3 for a large number of species
[2–4]. As a matter of fact, Leonardo’s rule is so natural
to the eye that it is routinely used in computer-generated
trees [5]. Yet, alternative analyses of the branching ge-
ometry have been proposed based on analogies with river
networks, bronchial trees, and arterial trees [6].

Two different models have been proposed to explain
Leonardo’s rule: the pipe model [7], which assumes that
trees are a collection of identical vascular vessels con-
necting the leaves to the roots, and the principle of elas-
tic similarity [8, 9], which postulates that the deflection
of branches under their weight is proportional to their
length. However, none of these explanations are con-
vincing. The first because the portion of a branch cross-
section devoted to vascular transport (i.e. the sapwood)
may be as low as 5% in mature trees and it seems thus
dubious that the whole tree architecture is governed by
hydraulic constraints. The second because the postulate
behind elastic similarity is artificial, hard to relate to any
adaptive advantage, and, furthermore, it seems unlikely
that trees can respond to branch deflections.

In this Letter, an alternative explanation is offered:
Leonardo’s rule is a consequence of trees being designed
to resist wind-induced stresses. Plants are known to re-
spond to dynamic loading for a long time, a phenomenon
called thigmomorphogenesis [10, 11]. In that line of
thinking, Metzger [12] proposed in the 19th century the
constant-stress model. This model states that the trunk
diameter varies such that the bending stress due to wind
remains constant along the trunk length. The constant-
stress model has been shown to agree with observations

[13], however, its implications on the whole branching
architecture has not yet been addressed (except in the
recent study of Lopez et al. [14]). The other important
point is that constant-stress might not be the best de-
sign since it implies that breakage is more likely to occur
in the trunk or in large branches where the presence of
defects is more probable.

To address this problem, two equivalent analytical
models are considered: one discrete, the fractal model,
and one continuous, the beam model, inspired from
McMahon & Kronauer [8] with the difference that wind
loads are considered instead of the weight.

The fractal model (Fig. 1a) is constructed such that

lk
lk+1

= N
1
D ,

dk
dk+1

= N
1
∆ , (2)

where lk and dk are the length and diameter of a branch
at rank k (with 1 ≤ k ≤ K), N is the number of daughter
branches at each branching node, ∆ is Leonardo expo-
nent, and D is the fractal (Hausdorff) dimension of the
tree skeleton [2]. Here, the tree skeleton is supposed to be
self-similar such that D is uniform within the structure,
but ∆ can depend on k.

The fractal dimension D has never been measured di-
rectly on real trees. However, the fractal dimension of
the foliage surface has been measured to lie in the inter-
val 2.2 < Dfol. < 2.8 [15] and, except for very particular
architectures, it can be shown that D = Dfol.. As al-
ready suggested by Mandelbrot [2], it can thus be safely
assumed that 2 < D < 3 [16].

The beam model (Fig. 1b) consists of a cantilevered
beam whose width b and thickness h taper with the curvi-
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FIG. 1. Two analytical models: (a) the fractal tree model;
(b) the continuous tapered beam model [8].
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linear coordinate s (with s0 ≤ s ≤ 1). These two models
can be linked using the principle sketched in Fig. 1b.
It consists in cutting the beam to form branches of ap-
proximately square cross-sections. The beam thickness
is then equivalent to the branch diameters, the ratio of
width to thickness gives the number of branches, and
s corresponds to the branch lengths (because the dis-
tance between a branch and the tips is proportional to
the branch length for infinite branching)

dk ∼ h, Nk ∼ b/h ∼ s−D, lk ∼ s. (3)

Consider now two different types of wind loads: either
a continuous loading due to the wind on the branches
with a force per unit length q(s) ∼ b or an end loading
due to the wind in the leaves with a force Q applied in
s0 equivalent to q(s) = Qδ(s− s0). Neglecting the wind
incident angle and using the Euler-Bernoulli beam equa-
tion, the curvatures k(s) resulting from the continuous
load and the end load are found to scale respectively as

k ∼ q(s0)s0s

EI
, k ∼ Q(s− s0)

EI
, (4)

with E the Young’s modulus and I ∼ bh3 the moment
of inertia. The expression for continuous loading is only
valid for s� s0 [17]. Since the above scalings are equiva-
lent at leading order, the analysis will be restricted to the
case of end loading for simplicity. The maximum bend-
ing stress occurs at the beam surface and is σ = Ekh/2
such that

σ ∼ Q(s− s0)

bh2
. (5)

The probability of fracture at a given rank k can be
modeled by a Weibull distribution [18] to take into ac-
count size effects

Pk = 1− exp

[
−Vk
V0

(
σk
σ0

)m]
, (6)

where Vk = Nklkπd
2
k/4 is the volume of all branches of

rank k, σ0 is the strength of the material, V0 is an ar-
bitrary volume taken to be V0 = πl31/4 and m is the
Weibull’s modulus (typically 5 < m < 20 for wood [19]).
It can be shown that, for a given probability of frac-
ture, the lightest design corresponds to the constant-
stress model. However, since Vk is decreasing with k,
this implies that the trunk and bottom branches are more
likely to fail. As discussed in [14], a better design is ob-
tained when the probability of fracture Pk is constant or
increasing with k such that the tree can regrow after a
big storm. The equiprobability of fracture is expressed
as

σ−m ∼ Vk ∼ hbs. (7)

and it corresponds to σ decreasing with s as observed in
trees [14, 20]. When Pk is increasing algebraically with k,
the relation (7) still holds minor logarithmic correction.

Now, using (3), (5) and (7), the Leonardo exponent
and the diameter are found to depend on the fractal di-
mension D and the Weibull’s modulus m

∆ =
(3m− 2)D(s− s0)

[(m− 1)D + 1](s− s0) +ms
, (8a)

h3m−2 ∼ s(m−1)D+1(s− s0)m. (8b)

In the case of infinite branching (i.e. K =∞ or s0 = 0),
it gives 1.93 < ∆ < 2.21 when 2 < D < 3, for m = 10.
In other words, Leonardo’s rule is recovered by assum-
ing that the probability of fracture due to wind-induced
stresses is constant. Note that, in (8a,b), constant-stress
corresponds to the limit m → ∞. Note also that the
number N of daughter branches at each node does not
affect the result.

To assess the robustness of these predictions when the
asymmetry and stochasticity of branching, as well as
the wind incident angle are taken into account, a three-
dimensional numerical model has been developed. Fol-
lowing Niklas & Kerchner [21], a tree skeleton is recur-
sively constructed as sketched in Fig. 2a.

Starting with a vertical trunk of length l = ltrunk =
1, parallel to the unit vector t and normal to the unit
vector b, two daughter branches of lengths l1 = r1l and
l2 = r2l are constructed in the plane normal to b such
that their tangential unit vectors t1 and t2 are obtained
by rotating t with the angles θ1 and θ2 around b. The
new normal vectors b1 and b2 defining the successive
planes of branching are then obtain by rotating b with
an angle γ around t1 and t2 respectively. This branching
rule is recursively applied for K ranks, with a probability
of branching p, yielding a tree skeleton as examplified in
Fig. 2b. The architecture of this skeleton is parametrized
by the six dimensionless quantities: θ1, θ2, γ, r1, r2 and
p. This skeleton is self-similar with a fractal dimension

D = − ln 2

ln r
, with r =

r1 + r2

2
p. (9)

Once this tree skeleton is constructed, the diameters of
each branch can be calculated. Assuming that the wind
velocity Uu (where u is a unit vector) is parallel to the

x z plane y z plane

(a) (b)θ1 θ2

b

t

t1 t2

b2

b1

γ

γ

bb

FIG. 2. Numerical tree model: (a) Sketch of the angles and
unit vectors at a branching node; (b) Example of tree skeleton
for θ1 = −15◦, θ2 = 30◦, γ = 120◦, r1 = r2 = 0.75, p = 1,
K = 10, D = 2.41 [as given by (9)].
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%% Geometric parameters
theta1      = -15*pi/180;
theta2      = +30*pi/180;
gamma       = 120*pi/180;
R1          = .75; 
R2          = .75;
N           = 10;
 
%% Randomness parameters
prob        = 1.;
sigma_theta = +0*pi/180;
sigma_gamma = +0*pi/180;
sigma_R     = 0.;
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FIG. 3. Deterministic tree: (a) Calculated branch diameters for the skeleton shown in Fig. 2b; (b) Normalized average distance
from the tips as a function of the diameter; (c) Calculated Leonardo exponent for each branching node (the horizontal bars
show the mean value of ∆ at each rank). In (a) and (b), the beam model corresponds to the relations (8a,b).

ground and uniform, the wind load on the leaves located
at the tip of the terminal branch is

Fleaf = 1
2ρU

2C1S0u, (10)

where ρ is the air density, C1 is a drag coefficient
which will be taken to be 1 without loss of general-
ity and S0 is the surface of the leaves assumed to be
the square of the expected terminal branch length (i.e.
S0 = r2(K−1)l2trunk).

In addition, the wind exerts also a force on each branch
such that, if n is the unit vector normal to both the wind
and the branch (i.e. n = t×u/‖t×u‖), the force exerted
on each branch is

Fbranch = 1
2ρU

2C2dl‖t× u‖2(n× t), (11)

where C2 is another drag coefficient taken to be 1, d and
l are the diameter and the length of the branch, and
‖t× u‖2 is the square of the incident angle cosine. This
force is applied on the branch center of mass such that its
moment at the base of the branch is simply Mbranch =
1
2 l t× Fbranch.

Now each branch transmits the forces and moments
applied at its extremity (either originating from upper
branches or by leaves) such that, if Ftop and Mtop are
the sum of forces and moments at a branch end, the force
and moment at the branch base are

Fbase = Fbranch + Ftop, (12a)

Mbase = Mbranch + Mtop + l t× Ftop. (12b)

The moment at the base Mbase has two components: a
bending moment of intensity Mbend = ‖Mbase × t‖ and
a torsional moment of intensity Mtwist = ‖Mbase · t‖.
The corresponding maximal bending (tensile and com-
pressive) and shear stresses are σbend = 32

π Mbend/d
3 and

σshear = 32
π Mtwist/d

3.
Assuming that there is a uniform probability of frac-

ture (1− e−1) for every rank as given by (6), the diame-
ter of each branch can be calculated recursively, starting

from the tips and ending with the trunk. In doing so,
resistance to bending and twisting has been considered
and the wind direction has been assumed to vary with
increments of 45◦. In this calculation, the Cauchy num-
ber, CY = ρU2/σ0,bend, appears as the dimensionless pa-
rameter which sets the scaling of branch diameters (but

not their relative values) such that d ∼ Cm/(3m−2)
Y ltrunk.

It has been taken to be CY = 10−4 which corresponds
roughly to U = 40 m s−1 and σ0,bend = 20 MPa [19]. The
other important dimensionless numbers are the relative
surface of leaves S0 (which sets the total height of the
tree assuming that leaves have always the same dimen-
sion whatever the size of the tree), and the ratio of bend-
ing to shear strength σ0,bend/σ0,shear taken to be equal
to 5 as it is generally observed for wood [19].

The result of such a calculation is shown in Fig. 3 for
the deterministic skeleton pictured in Fig. 2b. To com-
pare these results with the theoretical predictions, the
ratio 〈L〉/Lmax is used [8], where 〈L〉 is the average dis-
tance from the branch tips considering all possible paths
and Lmax = 1/(1−r) is the mean ground-to-tips distance
for an infinitely branching tree. The ratio 〈L〉/Lmax is
equivalent to (s− s0) for the beam model.

As seen in Fig. 3, the beam model accurately predicts
the branch diameters and the Leonardo exponent. It
means that the wind incident angle and the geometric
details of branching do not affect these scalings. Note
that, because of the finite number of recursions, the slope
in Fig. 3b is not constant as already observed in [8].

In Fig. 4, the same simulation is run except that, at
each branching node, the angles θ1, θ2, γ are randomly
chosen with a normal distribution of means θ̄1, θ̄2, γ̄ and
standard deviation of 10◦. Same is done for r1 and r2 of
means r̄1 and r̄2 and standard deviation of 0.1. It results
that the Leonardo exponent is more scattered but the
beam model still predicts it correctly (Fig. 4b).

Figure 4c shows directly the prediction of Leonardo’s
rule by comparing the total cross-sectional areas at every
rank. Depending on the particular angles defining the
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%% Geometric parameters
theta1      = -20*pi/180;
theta2      = +40*pi/180;
gamma       = 100*pi/180;
R1          = .75; 
R2          = .85;
N           = 10;
 
%% Randomness parameters
prob        = .98;
sigma_theta = +10*pi/180;
sigma_gamma = +10*pi/180;
sigma_R     = 0.1;

(a) (b)

theta1      = random('unif',-pi/3,0)
theta2      = random('unif',0,pi/3)
gamma       = random('unif',-pi,pi)

k

∆ S
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FIG. 4. Stochastic tree: (a) Silhouette of a tree with parameters: θ̄1 = −20◦, θ̄2 = 40◦, γ̄ = 100◦, r̄1 = 0.75, r̄2 = 0.85,
p = 0.98, K = 10, D = 2.85; (b) Corresponding Leonardo exponent (same legend as in Fig. 3c); (c) Total cross-sectional area
at every rank k normalized by its maximum. The bars correspond to the tree depicted in (a), the curve is the prediction from
the beam model and the symbols with the error bars correspond to the average and standard deviation on 1000 realizations
where the mean branching angles are randomly taken in the intervals −60◦ < θ̄1 < 0, 0 < θ̄2 < 60◦, −180◦ < γ̄ < 180◦.

branching rules, this surface can vary with a standard
deviation of about 20% but its mean remains roughly
constant for all ranks except the last three [22]. Remark-
ably, the variation of this mean is accurately predicted
by the continuous beam model.

In summary, it has been shown that the best design to
resist wind-induced fracture in self-similar trees naturally
yields Leonardo’s rule. The only requirement is that trees
adapt their local growth to wind loads, a well-known phe-
nomenon called thigmomorphogenesis whose mechanism
at the cell level is still largely unknown. Here, the rele-
vant property of wind loads is their divergence towards
the branch tips, either because of the leaves or because
the surface exposed to wind diverges. Thus the static
loads due to the weight of fruits, snow, or ice would give
similar results.

The validity of the present model could be assessed
experimentally by examining how the branch diameters
depend on the wind peak velocity. It is predicted here

that the following relation holds: d ∼ C
m/(3m−2)
Y ltrunk,

where CY is proportional to U2. Another assessment
would be calculate, from a real tree skeleton, the ex-
pected branch diameters and compare them to the mea-
sured ones. In this Letter, aeroelastic reconfiguration
[23], branch weight [24], and non-uniform wind profiles
[20], have been neglected for the sake of simplicity. It has
also been assumed that the tree skeleton is fractal, with a
fractal dimension 2 < D < 3. Yet, the way D and other
features of the tree skeleton depend on the wind, and on
the environment in general, remains to be explored.
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sions. This study was supported by the European Union
through the fellowship PIOF-GA-2009-252542.
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