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IMAGE DEBLURRING, SPECTRUM INTERPOLATION AND APPLICATION
TO SATELLITE IMAGING
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Abstract. This paper deals with two complementary methods in noisy image deblurring: a nonlinear
shrinkage of wavelet-packets coefficients called FCNR and Rudin-Osher-Fatemi’s variational method.
The FCNR has for objective to obtain a restored image with a white noise. It will prove to be very
efficient to restore an image after an invertible blur but limited in the opposite situation. Whereas
the Total Variation based method, with its ability to reconstruct the lost frequencies by interpolation,
is very well adapted to non-invertible blur, but that it tends to erase low contrast textures. This
complementarity is highlighted when the methods are applied to the restoration of satellite SPOT
images.
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1. Introduction

This paper deals with two complementary methods in image deblurring: a nonlinear shrinkage of wavelet-
packets coefficients that we will call Fixed Chosen Noise Restoration (FCNR) and a variational method (known
as Rudin-Osher-Fatemi’s method). The aim of these methods is to recover an original image u∞ describing a real
scene from a blurred and noisy satellite image u0 (the methods can however be adapted to other kinds of images
and to signal deblurring). Generally, the degradation of the image occurs during the image acquisition and is
modeled by a linear and translation invariant blur and an additive noise. In satellite imaging, the deterioration
is due to the motion of the satellite and the imperfection of the optics for the blur and the electronics of the
captors for the noise. We obtain the measured image from the “ideal” one from the following linear model:

u0 = H(u∞) + n, (1)

where H denotes the operator of convolution by an impulse response h: H(u) = h∗u and n is an additive white
noise of standard deviation σ (“white” is used in the sense that pixels are independent, identically distributed,
random variables). In practice, the noise can be considered as Gaussian.
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Even when the blurring operator is invertible, such a problem is known to be ill-posed. Assume that there
exists an inverse operator H−1 defined by

H−1(u) =
(

1

ĥ
û

)∨
,

where û denotes the Fourier transform of u and u∨ its inverse Fourier transform. Applying H−1 to (1), we
obtain

H−1(u0) = u∞ +
(
n̂

ĥ

)∨
· (2)

Looking at this equation, it appears clearly that the noise might blow up at the frequencies for which ĥ vanishes,
or becomes very small.

Several approaches have been used to recover u∞. The reader is referred to [2] for most of the linear ones
and to [12, 18] for overviews on the subject. In a few words, the first approach consists in enhancing images
without regard to the convolution kernel [23]. The other methods are based on regularization approaches of
the problem: using statistical properties (Wiener and Kalman filters) or regularity measurements of the images
such as the entropy ([12] and its references), the Total Variation [31] or the characterization of Besov spaces by
wavelets coefficients [13,14].

We present here two approaches of the problem. Looking back to (2), note that the difficulty in image
deblurring is directly related to the issue of denoising an image with highly colored noise. Our first objective
will be therefore to control the noise in order to obtain a restored image with a white noise (the human eye is
less sensitive to white noise than to colored noise) with a reasonable standard deviation. This will lead us to
the two versions of the FCNR which are described in the next section.

Although it is very efficient to restore an image after an invertible blur, this technic will prove to be limited
in the case when H is no longer invertible. If ĥ vanishes on some part of the Fourier domain, the informations
supported by these frequencies will be lost during the degradation. Replacing them by zero creates Gibbs effects
(see Fig. 20).

The second method described in this paper has the ability to reconstruct the lost frequencies by interpolation
and therefore avoids the Gibbs effects. It involves a regularization functional that makes the interpolation
realisable. This functional is the Total Variation that is used in Rudin-Osher-Fatemi’s method described in
Section 3.1. The counterpart of this power to interpolate is the creation of homogeneous zones on the image
and the erasure of low contrast textures that are well restored with the first method.

The complementarity of these two methods is highlighted in Section 4 where they are applied to the restoration
of satellites SPOT 1 and SPOT 5 images.

Very recent papers deal with the equivalence between wavelet shrinkage methods and variational methods
(see [4,6]). The superiority of the wavelet based methods is therefore on a numerical point of view. Our purpose
here is, among other things, to show that, in some situations, a variational method might remain more adapted.

2. Fixed Chosen Noise Restoration (FCNR)

The Fixed Chosen Noise Restoration which was introduced for the first time by one of the authors in [29,30]
is a version of Donoho and Johnstone’s wavelet shrinkage method which consists in thresholding the coefficients
of a noisy image in a wavelet basis [13, 14]. From the decomposition of the image in the orthonormal basis
(ψj,k)j∈J ,k∈K

u0 =
∑
j∈J

∑
k∈K
〈u0, ψj,k〉ψj,k,
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we obtain a denoised image by applying the following formula

u1 =
∑
j∈J

∑
k∈K

τλ(〈u0, ψj,k〉)ψj,k,

where the soft-thresholding function τλ is given by

τλ(x) =

{
x− sgn(x)λ if |x| ≥ λ

0 if |x| < λ
(3)

and the threshold λ depends on the characteristics of the noise. In the case of a Gaussian noise, Donoho and
Johnstone [13] chose a threshold which is proportional to the standard deviation σ of the noise,

λ = σ
√

2log N,

where N is the number of samples of the image. For N large, the L∞-norm of the noise is known to have a
high probability of being close to λ [3].

Looking at (2), it seems opportune, in the case of a deblurring, to adapt the thresholding to frequencies.
The deconvolution will indeed emphasize the noise at the frequencies for which ĥ is small (in general, high
frequencies). But fine scale wavelets (which are located in high frequencies) are badly concentrated in the
Fourier domain. Thus it makes the adapted thresholding impossible when 1/ĥ varies rapidly on high frequencies.
Wavelets are not appropriate for the deblurring which needs a high resolution in frequency.

On the other hand, they are very well adapted to denoising since they concentrate the energy of the image
over few coefficients (this is not the case for Fourier coefficients which offer an optimal resolution in frequency).

Wavelet-packets are a good alternative to wavelets since they offer a good resolution in frequency and a
decomposition in “wavelets style” coefficients which ensures an efficient denoising.

2.1. The wavelet-packets

Let us start this section with a short introduction to wavelet-packets theory. For more details the reader is
referred to [11]. We consider a pair of quadrature mirror filters (m0,m1) with

m0(ξ) =
1√
2

∑
k∈Z

cke
−ikξ ,

and

m1(ξ) =
1√
2

∑
k∈Z

dke
−ikξ ,

(for instance, dk = (−1)kc1−k) which is connected with a multi-resolution analysis [26].
The basic wavelet-packets wn(x) are defined by recursion. We start with w0(x) which is the unique L1 ∩L2-

solution of the equation

w0(x) =
√

2
∑
k∈Z

ckw0(2x− k), (4)

under the normalization constraint ∫
R
w0(x) dx = 1.
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This function w0 is actually the scaling function or father wavelet, usually denoted ϕ, associated with the
connected multi-resolution analysis. The other wn’s are then defined as follows

w2m(x) =
√

2
∑
k∈Z

ckwm(2x− k), (5)

w2m+1(x) =
√

2
∑
k∈Z

dkwm(2x− k). (6)

The properties of the quadrature mirror filters ensure that, for all j ∈ N, the family {2−j/2wm(2−jx−k), k ∈ Z}
is an orthonormal basis of

Ejm := span{2−j/2wm(2−jx− k), k ∈ Z}
L2(R)

with the scalar product 〈u, v〉 =
∫
R u(x) v̄(x) dx. Moreover, we have

∀j ∈ N,∀m ∈ N, Ejm = Ej+1
2m ⊕E

j+1
2m+1, (7)

and thus

∀j ∈ N, E0
0 = ⊕2j−1

m=0E
j
m

which means that, for all j ∈ N {2−j/2wm(2−jx − k), k ∈ Z,m = 0, 1, · · · , 2j − 1} is an orthonormal basis of
E0

0 . Hence, the wavelet-packets theory provides us with a collection of orthonormal bases of a Hilbert space E0
0

that we can identify with l2(Z). Looking at (7), let us observe that there are many other bases than the ones
just mentioned, which involve several values of j. But we will here restrict ourselves to the bases associated
with a unique level of decomposition j.

All this can also be expressed in the Fourier domain. Equations (5) and (6) become

ŵ2m(2ξ) = m0(ξ) ŵm(ξ),

ŵ2m+1(2ξ) = m1(ξ) ŵm(ξ),

which implies

ŵm(2jξ) = M j
m(ξ) ŵ0(ξ),

with m =
∑2j−1

l=0 εl2l (εl ∈ {0, 1}) and M j
m(ξ) =

∏2j−1

l=0 mεl(2
lξ). The identification of E0

0 with l2(Z) is translated
by the identification of û the Fourier transform of a function u ∈ E0

0 , with m ∈ L2(T) such that

û(ξ) = m(ξ) ŵ0(ξ).

The same way, the Fourier transform of the functions u ∈ Ejm will be of the form m(ξ) 2j/2ŵm(2jξ) where
m ∈ L2(T). Therefore, using the notable property of the quadrature mirror filters, |m0(ξ)|2 + |m1(ξ)|2 = 1, we
obtain, for any u ∈ E0

0

û(ξ) =
∑2j−1
m=0 |M j

m(ξ)|2m(ξ) ŵ0(ξ) =
∑2j−1
m=0 m(ξ)M j

m(ξ) ŵm(2jξ) (8)
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which expresses u as the linear combination of its projections onto the spaces Ejm. Let us observe that when
|m0|2 is well localized around [−π/2, π/2] (mod 2π) (and therefore |m1|2 around [π/2, 3π/2] (mod 2π)), |M j

m|2
will be localized around an interval of length 2−jπ. Therefore, equation (8) provides us with a horizontal slicing
of the time-frequency plane by the spaces Ejm, imitating in some sense the Fourier transform.

The optimal slicing would be obtained with the filter

m0(ξ) =
∑
l∈Z

χ[−π/2,π/2](ξ + 2lπ)

(χA denotes the characteristic function of a set A) that we will call, in the sequel, Shannon filter. But it does
not generate wavelet-packets in the sense they have been defined above since there is no L1-solution of the
associated scaling equation (4). A Shannon basis is however defined by starting with ŵ0 = χ[−π,π].

Going back to the time domain, note that we get from the decomposition of a signal into the wavelet basis
of Ejm to its projection onto Ej+1

2m and Ej+1
2m+1, with the benefit of the operators T0 and T1 defined as follows

∀u ∈ l2(Z),
T0(u)(k) =

∑
l∈Z c2k−lu(l)

T1(u)(k) =
∑
l∈Z d2k−lu(l)

(9)

and which satisfy the following property∑
k∈Z

u(k)wjm,k =
∑
k∈Z

T0(u)(k)wj+1
2m,k +

∑
k∈Z

T1(u)(k)wj+1
2m+1,k,

with wjm,k(x) = wm(2jx− k). The reconstruction is done with the dual operators T ?0 and T ?1 ,

T ?0 (T0(u)) + T ?1 (T1(u)) = u.

The 2D-wavelet-packets are obtained by tensor product but that, for convenience, we will think out in 1D in
the sequel.

2.2. Study framework and approximation

We choose here another approach than Donoho and Johnstone’s [13] and consequently our restoration is not
optimal in Donoho’s sense. There does not exist any method that is able to remove all the noise from an image
without loosing a lot of data, because it is not possible to completely separate it from the structures of the
image. Therefore, our goal should not be to remove the noise but to control it.

Using a “traditional” wavelet shrinkage method will lead to a restored image with a light but colored noise
which is very bad visually. When the shrinkage is done before deblurring, we obtain a deconvolved-noise
H−1(n0) = (n̂0/ĥ)∨ where the thresholded noise n0 is white in the homogeneous zones. When the shrinkage is
done afterward, the noise is even more colored.

Our aim should be here to obtain a restored image with a white noise, and to make this possible, it is
necessary to find a method of denoising that leaves a noise of the form H(n0) where n0 is white so that further
deconvolution leaves a white noise. The other possibility is to transform a colored noise H−1(n) into a white
noise when the deblurring is done before the denoising.

To apply a wavelet-packet shrinkage method as it will be introduced below, we need to make the following
assumption. We assume that the deconvolved-noise H−1(n) is “almost” white on the support of the packets
Ejm which means that the wavelet-packets we use are very well localized in frequency variable. But as the
wavelet-packets do not give rise to a partition of the Fourier domain with arbitrary precision, even for a large
j, the restoration would be all the more successful that 1/ĥ does not oscillate too much.

We must however use wavelet-packets that are very well localized in the Fourier domain. The optimal choice
is the Shannon basis associated with Shannon filter (see Sect. 2.1). But it is not applicable for numerical reasons
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(the coefficients of the filter are not decreasing fast enough) and because the Shannon basis is not denoising
very efficiently due to its bad localization in the space domain. Consequently, we will use cubic spline wavelets
which have exponential decay and are well localized in frequency. They will therefore offer a good compromise.

Remark now that when the localization assumption is satisfied, we can as well approximate H by an operator
which is diagonal in the wavelet-packets basis. And since wavelets associated with the same packet are deduced
one from another by translation, the eigen values of H are approximately constant on this packet. Note therefore
that deblurring by multiplying the projection of the image over every packet by a constant, ensures that the
deconvolved-noise is white on the packets. In other terms, the coefficients of the noise on the wavelets of the
packet are i.i.d variables.

Let us focus on the error made in this approximation. We start from a signal U =
∑
k∈Z u(k)w0(.−k) ∈ E0

0 .
For any j ∈ N and m ∈ N, the projection of U on Ejm is given by

P jmU =
∑
k∈Z

T jm(u)(k)wjm(.− k),

where T jm = Tεj−1 ◦ · · · ◦ Tε0 with (ε0, · · · , εj−1) ∈ {0, 1}j and m =
∑j−1
l=0 εl2

l. The error made in the direction
of each wavelet-packet is therefore given by

T jm(H−1(u))− CjmT jm(u).

And its L2-norm is minimized by

Cjm =
〈T jm(H−1(u)), T jm(u)〉

‖T jm(u)‖22
·

This formula is usable for users who have a statistical estimation of the images they deal with. But as the
deblurring is relatively stable with regard to the variations of Cε, it is more convenient to approximate them by
values which are independent of u (see Sect. 2.6).

A second step in our restoration issue comes down to say that if we are able to find a method that returns
images with white noise, cannot we obtain a noise which has the same law as n? An answer to this will be given
in Section 2.4.

2.3. FCNR

As it was mentioned above, we are going to adapt the thresholding to every wavelet-packet. From a noisy
image u0 whose wavelet-packets decomposition is

u0 =
∑
m∈N
k∈Z

〈u0, w
j
m,k〉w

j
m,k,

with wjm,k(x) = wm(2jx− k), we obtain a denoised image

u1 =
∑
m∈N
k∈Z

τλ(m,j)(〈u0, w
j
m,k〉)w

j
m,k,

where the soft-thresholding operator τλ in defined in (3). The threshold λ(m, j) depends naturally on the
standard deviation σ of the noise but it must depend also on the wavelet-packet wjm,k and the filter ĥ. Note
that, since we get from wjm,k to wjm,0 by translation and since the noise is white, there is no reason for λ to
depend on the parameter k.
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Figure 1. The function λ(C) with σ0 = σ = 1.

Let us choose to make the deblurring after denoising. When it is done by multiplying the projection of
the image on each packet by a constant as it was mentioned in Section 2.2, the obtained result does actually
not depend on that chosen order. Remark however that when the deconvolution is made properly, doing it
afterwards might emphasize the artifacts generated by the denoising. In such a situation, it is therefore better
to do the deblurring before denoising. Consequently, in the sequel, we will assume that H is approximated by a
diagonal operation in the wavelet-packet basis but that the method can easily be generalized to the case when
H is not approximated.

The standard deviation σλjm of the noise on each packet Ejm, after thresholding and before deblurring,
becomes, after restoration, Cjm σλjm . To obtain an image with a “white” noise of standard deviation σ0 on
homogeneous zones (“white” should be understood in the sense that on each packet, the standard deviation
is σ0), we must therefore resolve,

σ0 = Cjm σλjm ,

or, in the case of a Gaussian noise,

σ0 = Cjm
2√

2πσ2

∫ ∞
λjm

(x− λjm)2e−
x2

2σ2 dx.

We cannot give an explicit expression of λjm = λ(Cjm) but a numerical estimation is represented in Figure 1.
Remark that when H is not invertible, Cjm and therefore λjm can be infinite. Thus, to generalize the method

to non-invertible H’s, we must let τ∞(x) = 0 for any real value of x. The packets associated with the infinite
threshold vanish during the restoration.

2.4. Invertible FCNR

This version of the FCNR comes from the remark that it might be worthwhile to find a method of restoration
that returns an image whose noise has the same law as the noise of the blurred image (which is not the case
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with the preceding version – see Figs. 2 and 3). For instance, in the case we are interested in here, we would
like to obtain an image with a Gaussian noise.

Moreover, a low contrast texture drowned in a strong noise might still be detected by the eye of an observant,
even when the standard deviation of the noise is much larger than the intensity of the contrast of the texture.
Using a method which consists in thresholding the coordinates of the image in a given basis might erase this
texture since its coordinates might be under the threshold. The thresholding is therefore not appropriate to
recover an image with a lot of textures.

Hence, it seems advisable to replace the soft-thresholding by an invertible function that does not erase any
data.

One way to match this constraint, together with the objective of recovering an image with a Gaussian noise,
is to replace the soft-thresholding function τ by the following

τ̃λ1,λ2(x) =

{
(λ2/λ1)x if |x| ≤ λ1

x+ sgn(x) (λ2 − λ1) if |x| > λ1.
(10)

This function applied on the coordinates of a noisy image, will replace, in homogeneous zones, the noise of
standard deviation σ by a noise with the same law but of standard deviation (λ2/λ1)σ (modulo a negligible
part of the noise – see Fig. 4), and it will not change the main structures of the image (if λ1 is not too large).
The choice of the parameter λ2/λ1 is therefore very clear. The role of λ1 is more subjective. If the noise is
bounded, it is natural to take λ1 equal to this bound. In the case of a Gaussian noise, we can take λ1 = σ

√
logN

where N is the number of samples of the image (or the packet when it is applied on Ejm).
But that (12) was not satisfied by the hard-thresholding function (τλ(x) = 0 if |x| ≤ λ, x otherwise), note

that (13) is also satisfied by

τ̃λ1,λ2(x) =

{
(λ2/λ1)x if |x| ≤ λ1

x if |x| > λ1.
(11)

This second possible choice gives rise to better statistics when the restored image is compared to a reference but
it might be a priori less satisfactory on a visual criterion since this function is not continuous. A transformation
associated with a discontinuous function is unstable with regard to the perturbations on the initial image. The
following would be a good compromise

τ̃λ1,λ2(x) =


(λ2/λ1)x if |x| ≤ λ1

((C λ1 − λ2)x+ sgn(x)C λ1(λ2 − λ1))/(C λ1 − λ1) if λ1 < |x| ≤ C λ1

x if |x| > C λ1.

Remark also that the method is very close to the one introduced in Section 2.5 since, when τ̃ is defined by (10),
we have for |x| ≥ λ1,

τ̃λ1,λ2(x) = τλ1−λ2(x).

Remark finally that if we keep in memory the parameters λjm (or Cjm), this method is invertible in the sense
that we can recover the blurred and noisy image from the restored image. There is therefore no lost of data.

2.5. Multi-level shrinkage

Yet, the model we are presenting here is not fully satisfactory because the basis we use does not de-correlate
the noise from the significant signal very well. The support of the wavelets in a fine frequency decomposition is
indeed too large. On the other hand, if the wavelet packet decomposition is stopped at a higher level, the noise
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−λ1−λ λ λ1

Figure 2. Noise histogram before restoration.

Figure 3. Noise histogram in homogeneous zones after a soft-thresholding (with τλ).

−λ2 λ2

Figure 4. Noise histogram in homogeneous zones after a shrinkage with the function τ̃λ1.λ2 .

will be more de-correlated, but the basis will not be adapted to the deconvolution since it will not have a fine
frequency decomposition and thus F(H−1(n)) will not be “uniform” enough on the support of the ŵjk’s. We
are meeting here Heisenberg uncertainty principle.

One way to get round this difficulty is to shrink wavelet coefficients at different levels of the decomposition.
We get indeed from one decomposition level to the next one by a simple change of orthonormal basis. Thus,
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λ1 → λj,2m2 λ1 → λj,2m+1
2

Id

Id λj,2m2 → λj,2m+1
2

λ1 → λj,2m2

⇐⇒

Figure 5. Two ways of shrinking the packet Ej−1
m = Ej2m ⊕ Ej2m+1 (it is a case where

λj,2m+1
2 ≥ λj,2m2 ).

whatever the level at which the shrinkage is made, if the parameters are constant, the same amount of noise
will have been removed in the homogeneous zones (a white noise remains fully de-correlated in any orthonormal
basis). The sole difference is that we might have not removed the same amount of information. Moreover, using

∀λ0, λ1 ∈ R+, τλ0 ◦ τλ1 = τλ0+λ1 , (12)

or

∀λ1, λ2, λ3 ∈ R, τ̃λ2,λ3 ◦ τ̃λ1,λ2 = τ̃λ1,λ3 (13)

we see that it is possible to make a shrinkage at every level of the decomposition in such a way that the
composition of all the shrinkages is equal to the shrinkage computed in the preceding sections for the last level
of decomposition.

Let us explain this more clearly in the case of a 1D-signal and for the invertible FCNR. Assume we want to
apply a shrinkage at the level j of the decomposition. Every packet Ejm, for m = 0, ..., 2j−1, is associated with
two parameters λj,m1 and λj,m2 . As the noise is white (we have chosen to consider the case when the deblurring
is done after the denoising) and as λj,m1 corresponds, in some sense, to a bound of the noise, it does not depend,
actually, on m. Let us denote it therefore λ1. Let us denote also, for m = 0, ..., 2j−1 − 1,

λj−1,m
2 = min{λj,2m2 , λj,2m+1

2 }·

Since the function τ̃ satisfies (13), we have

τ̃λj−1,m
2 ,λj,2m2

◦ τ̃λ1,λ
j−1,m
2

= τ̃λ1,λ
j,2m
2

.

We can therefore shrink first the packet Ej2m (respectively Ej2m+1) from λ1 to λj−1,m
2 , and then from λj−1,m

2 to
λj2m (respectively λj2m+1). Hence, in the first time, the packets Ej2m and Ej2m+1 undergo the same shrinkage.
Moreover, since the noise is white, this can, as well, be made in the wavelet basis {wm(2j−1x − k), k ∈ Z}
associated with the packet Ej−1

m = Ej2m ⊕ E
j
2m+1 (see the remark above). So the problem has been moved

to the issue of shrinking every packet Ej−1
m from λ1 to λj−1

m (and afterwards, every packet Ej2m and Ej2m+1

from λj−1
m to, respectively, λj2m and λj2m+1) (see Fig. 5). We can now make the same reasoning to show that

the shrinkage could, as well, have been started at the level j − 2, every packet Ej−2
m being shrunk from λ1 to

min{λj−1
2m , λj−1

2m+1}. Making again the reasoning for each j′ < j − 2, we finally show that we can apply the
function τ̃ at every step of the decomposition. Notice that we use here the fact that the noise remains “almost”
Gaussian after shrinkage in such a way that its law does not change under orthonormal change of basis and
that it remains white.

We can, the same way, apply a multi-level shrinkage in the non-invertible FCNR. But the thresholds must
be computed more carefully as the noise is no longer Gaussian after thresholding. It remains however white (in
the sense that the pixels are i.i.d random variables) after a change of level of decomposition.
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Remark that, since the shrinkage is made at every level, we do not need to compute the best basis that is
the wavelet-packets basis the most adapted to the operator H (the basis in which H is the most diagonal), but
that it might have been interesting from a numerical point of view [19,25].

In addition to the reason explained above, this technic of shrinking at different levels will also give a better
preservation of the structures of the signal because the shrinkage is made in different bases.

In the same spirit, in order to fight against the lack of independence in translation of the wavelet-packets
decomposition, one can apply the same treatment on several translated versions of the image and, afterward,
make the mean of all the restored images [10].

Let us remark, finally, that in the case of a non-white noise which depends on the luminosity of the image,
the FCNR can be generalized by computing, on every packet, shrinking parameters that depend on the mean
luminosity of the image on the packet.

2.6. Numerical implementation

Let (m0,m1) denote the 1D-QMF associated with the cubic spline wavelets [25]. The 2D-QMF (respectively,
wavelet-packets) are obtained by tensorial product mε1,ε2 = mε1 ×mε2 with εi ∈ {0, 1} (respectively, wjm,n =
wjm × wjn). From then on, we present the algorithm in the 2D point of view.

We get from Z2 to a finite grid (the support of the image) by periodization.
Let us consider the case when H is approximated by a diagonal operator in the wavelet-packets basis. For

numerical reasons, we will not use the basis associated with the finest frequency level. Indeed, Wavelet-packets
wn for n large, are in general badly localized in the Fourier domain. Hence, there is no point of getting too
far in the decomposition since we will not gain any precision in frequency. It will be stopped, at the fifth
level. Therefore, the enhancement C5

m,n that is applied to the packet indexed by (m,n) on that level, has to be
estimated.

To facilitate the measurement, the 1D QMF (m0,m1) is approximated by Shannon filters (
∑
k∈Z χ[−π/2,π/2]

(.+ 2kπ),
∑
k∈Z χ[π/2,3π/2](.+ 2kπ)). The iterated filters M5

m,n are also characteristic functions, and we denote
S5
m,n their supports. As it was said in Section 2.2, the optimum C5

m,n depends on the image u. But for
convenience, the C5

m,n’s are estimated independently of the image by1

C5
m,n = card(S5

m,n)

 ∑
(k,l)∈S5

m,n

|ĥ(k, l)|

−1

,

where card(S5
m,n) denotes the cardinal of S5

m,n.
This enhancement is well defined unless ĥ is identically null on S5

m,n. But when it is very large (or when it is
not defined), we make the associated packet vanish since it should contain essentially noise without information.

1Remark that when the deblurring is done without approximation, the standard deviation of the noise on each packet is enhanced
by

‖M5
m,n/ĥ‖2.

Therefore the enhancement C5
m,n can be approximated by

C5
m,n = card(S5

m,n)−1

0
B@ X

(k,l)∈S5
m,n

1

|ĥ(k, l)|2

1
CA

1
2

·

Such C5
m,n’s are less “stable” than the proposed one (they are not finite when ĥ vanishes on S5

m,n). If ĥ vanishes on S5
m,n, the

coefficients on the packet are replaced by zero.
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For the non-invertible FCNR, the threshold λ5
m,n is obtained from C5

m,n with a numerical estimation such as
the one yielding Figure 1.

λ5
m,n = λ(C5

m,n).

But the packets E5
0,0 does not need to be thresholded because it corresponds to very low frequencies. We let

therefore

λ5
0,0 = 0.

In the case of the invertible FCNR, we let

λ5,m,n
2 =

λ1σ0

C5
m,nσ

,

where λ1 is a parameter which plays the role of a bound for the noise2, σ is the standard deviation of the noise
before restoration and σ0 is the standard deviation we want to reach. As for the first method, we let

λ5,0,0
2 = 0.

In order to apply the shrinkage at the higher levels, we let also

λj,m,n2 = min
ε1,ε2∈{0,1}

(λj+1,2m+ε1,2n+ε2
2 ),

for j = 4, 3, 2, 1, 0 (note that λj,0,02 = 0). Then every packet Ej+1
2m+ε1,2n+ε2

is associated with the parameters
(λj,m,n2 , λj+1,2m+ε1,2n+ε2

2 ), for j = 0, 1, 2, 3, 4.
The wavelet-packets coefficients (u1

m,n)k,l of the image at the 1st level are then computed and they are shrunk
with respect to the rule exposed above. The operation is next repeated at the next levels until the fifth one.

uj+1
2m+ε1,2n+ε2

= Tε1 × Tε2(ũjm,n),

with

(ũjm,n)k,l = τ̃
λ
j−1,[m/2],[n/2]
2 ,λj,m,n2

((ujm,n)k,l),

where [x] denotes the integer part of x.
Then, after deblurring, the reconstruction is done directly from level 5 to 0 with the help of the dual operators

T 5
m
? × T 5

n
?.

u =
∑
m,n

T 5
m
? × T 5

n
?
(C5

m,nũ
5
m,n).

2In fact,

(C5
m,n)2

Z ∞
λ1

(x− λ1)2e
− x2

2σ2 dx� (σ0)2

is sufficient.
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3. Restoration by Rudin-Osher-Fatemi’s method

3.1. Rudin-Osher-Fatemi’s variational method

The second approach we are proposing was introduced for the first time by Rudin et al. in [31]. This method
consists in solving the following constrained minimization problem.

Minimize

J(u) =
∫

Ω

|∇u|,

with ∫
Ω

|Hu− u0|2 = σ2, (14)

that is to say (if σ 6= 0), minimize

E(u) = J(u) + λ

∫
Ω

|Hu− u0|2 (15)

for some Lagrange multiplier λ.
The existence of the minimum has been proved, under very general conditions, in [8]. When H is invertible,

the uniqueness is guaranteed since E is strictly convex.
The functional J is the “regularization functional” that measures the irregularity of u. Among all the

candidates in the set defined by (14), we choose the most regular one in the sense of J . In practice, we will not
evaluate the Lagrangian λ; it will be left as a parameter. It is clear that a large λ will lead to a noisy image
with sharp edges. Conversely, for a weak λ, the image will be strongly denoised but blurred.

The term
∫

Ω
|∇u| denotes the Total Variation of the function u supported on an open subset Ω of Rn (in

practice, n = 2), ∫
Ω

|∇u| = sup
ϕ∈B

∫
Ω

u(x) div.ϕ(x) dx,

where B = {ϕ ∈ C1(Ω,R2)/ϕ is compactly supported and ‖ϕ‖∞ ≤ 1}. In many papers, the notation |Du|(Ω)
is also used. It reminds us that the derivative of u is not a function but a measure.

One of the most notable property of the method, when it is applied to a 1D-signal, is that it does not smooth,
in general, the discontinuities or strong variations of the signal. We can easily see that for any monotone function
u increasing from a to b,

∫
Ω |∇u| = |b− a|. In other terms:

Proposition 3.1. If Ω ⊂ R, and for any signal u ∈ BV (Ω) = {u ∈ L1(Ω)/
∫

Ω |∇u| <∞}, and any homeomor-
phism f from Ω to Ω, ∫

Ω

|∇(u ◦ f)| =
∫

Ω

|∇u| .

Proof. We have ∫
Ω |∇(u ◦ f)|dx = supϕ∈B

∫
Ω u ◦ f(x)ϕ′(x) dx

= supϕ∈B
∫

Ω
u(y)ϕ′ ◦ f−1(y) (f−1)′(y) dy

= supϕ∈B
∫

Ω
u(y) (ϕ ◦ f−1)′(y) dy

= supφ∈B
∫

Ω u(y)φ′(y) dy
�
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u(x)

x

Figure 6. The continuous and dashed signals are deduced one from another by a change of
variable, while the dot one corresponds to a limit case. The three signals have the same Total
Variation.

This means that the minimization of the Total Variation does no discrimination between two signals deduced
one from another by a change of variable (it is done by the data fidelity term (14)). Note that the smoothing
of discontinuities leaves the framework of this proposition since a continuous and a discontinuous functions are
not deduced one from another by a change of variable. However, by making the homeomorphism f tends to a
function which is constant on some intervals, we observe that a discontinuous signal might have the same Total
Variation as a smooth version (see Fig. 6).

This property is unfortunately false in 2-D. However, in spite of the global behavior of the Total Variation,
we can consider that on the neighborhood of edges with small curvature, the 1-D behavior will dominate.

In 2-D, the Total Variation cannot only be seen as the measurement of the oscillations of an image, but also
as the sum of its level lines length.

Theorem 1 (Coaera formula). For any u ∈ BV (Ω),∫
Ω

|∇u| =
∫ ∞

0

P (Xlu)dl

where Xlu denotes the level set associated to the gray level l, and P (Xlu) =
∫

Ω
|∇Xlu| its perimeter.

The proof of the theorem is in [15]. For almost every level line, P (Xlu) corresponds to the one dimensional
Hausdorff measure H1 of ∂Xlu. By minimizing the Total Variation, we tend to cancel the oscillations of the
gray level (which is represented by the domain of integration), and to smooth the level lines (by minimizing
their length).

With regard to the fidelity term, remark that, as it was also mentioned for the first method, we can adapt
Rudin-Osher-Fatemi’s method to the case when the noise depends on the luminosity of the image by incorpo-
rating in (14) the noise model.

3.2. Non-invertible blur and spectrum interpolation

This section is devoted to the case when H is not invertible. Let us express (14) in terms of frequency,∫
supp(ĥ)

|ĥ(ξ)|2|û(ξ)− û0(ξ)/ĥ(ξ)|ξ = σ2 −
∫

Ω̂\supp(ĥ)

|n(ξ)|2, (16)

where Ω̂ denote the support of the Fourier domain. We observe in (16) that the smaller ĥ(ξ) is, the less û(ξ)
is constrained to be close to û0(ξ)/ĥ(ξ). In the limit case, when ĥ(ξ) = 0, we do not have any constraint on
û(ξ). Thus its value is interpolated by making

∫
Ω |∇u| decrease. Such an idea has been explored by Guichard
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11

1 + α

1− α

Figure 7. The functions x 7→ |cos(x)| (solid line) and x 7→ |cos(x)| + α cos(x) (with α ∈
[−1, 1]) have the same Total Variation.

and one of the authors in [16] to get a better resolution of an image by reconstructing its high frequencies. The
same way, we can study the reconstruction of intermediate frequencies.

For simplicity, let us restrict ourselves to the case when σ = 0 (or n ≡ 0) and ĥ = χΩ̂ − χK where K is a
compact3 set of Ω̂. In other words,

Minimize J(u) =
∫

Ω

|∇u|, with û(ξ) = û∞(ξ) for all ξ ∈ Ω̂ \K, (17)

where u∞ is defined in (1).
A drawback of the model, is the non-uniqueness of the minimum, due to the fact that the Total Variation

and the constraint are not strictly convex. For instance, let u∞ := x 7→ |cos kx| ∈ BV (T) for an integer k,
and minimize

∫
T |∇u| under the constraint that û(l) = û∞(l) for all l 6∈ {−k, k}. We can easily check that

x 7→ |cos kx|+ α cos kx is a minimizer for every α ∈ [−1, 1] (see Fig. 7).
Therefore, we have to make a choice among all the minimizers. In the more general framework of Rudin-

Osher-Fatemi’s model, this choice can actually be arbitrary since the next proposition shows that minimizers
are very “close” one from each other.

Proposition 2. Let u1 and u2 be two C1 minimizers of J under a convex constraint, and x ∈ Ω̃ := {x ∈
Ω/∇u1(x) 6= 0 and ∇u2(x) 6= 0}. Then there exists an open neighborhood Vx of x such that ∂Xu1(x)(u1)∩Vx =
∂Xu2(x)(u2) ∩ Vx.

In other words, the sets of connected components in Ω̃ of level lines of u1 and u2 are identical. Heuristically,
this proposition means that we can get locally from one minimum to another by a “local change of contrast”
(we can refer to [5] for an example of definition of “local change of contrast” related to level sets). Since the
eye is not very sensitive to changes of contrast, we will not see much difference between every minimizer of E.

Proof. Let us consider two C1 minimizers u1 and u2. Since J and the constraint are both convex, the image
(u1 + u2)/2 is also a minimizer and we have∫

Ω

|∇(u1 + u2)| =
∫

Ω

|∇u1|+
∫

Ω

|∇u2|.

And since for all x ∈ Ω,

|∇(u1 + u2)(x)| ≤ |∇u1(x)|+ |∇u2(x)|,

3The fact that K is compact may appear unrealistic, but provides us with interesting examples and a good intuition of the way
intermediate frequencies are reconstructed. Indeed, it is generally reasonable to assume that very large frequencies are null.
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we must have, for all x ∈ Ω (the minimizers are C1),

|∇(u1 + u2)(x)| = |∇u1(x)|+ |∇u2(x)|,

which implies that ∇u1(x) and ∇u2(x) are parallel. The conclusion of the proof comes from the fact that
∇ui(x) is orthogonal to the level line of ui passing by x. �

Note finally that ∇u1(x) and ∇u2(x) have the same direction so that the change of contrast is monotone.
Let us go back to the interpolation problem (17). The objective is, of course, to recover the whole spectrum of

u∞. First of all, remark that the method cannot obviously restore textures whose Fourier transform is located
on K. Secondly, the interpolation by the Total Variation does not consist in filling a hole in the spectrum
of the image by interpolating the neighboring frequencies. If û∞ vanishes in the vicinity of K, the minimum
might be reached by a function whose restriction of the Fourier transform to K is not trivial. For instance,
if u∞ := x 7→ cosx ∈ BV (T) and K = {−k, k} where k is an odd integer larger than 1, the minimizer is
x 7→ cosx − α cos kx where α ≥ 1/k2 (compare the extrema). The reconstruction depends therefore on the
whole spectrum of the image.

This remark shows however that the method is, in general, not very efficient in the restoration of textures.
Whereas the following proposition proves that it is more powerful to restore edges.

Proposition 3. If u∞ ∈ BV (Ω) is piecewise constant and 0 6∈ K, then u∞ is the unique solution of (17).

Proof. This property comes from the fact that if v ∈ BV (Ω) has bounded frequencies (and is therefore C1), we
have ∫

Ω

|∇(u∞ + v)| =
∫

Ω

|∇u∞|+
∫

Ω

|∇v| >
∫

Ω

|∇u∞|,

if
∫

Ω |∇v| 6= 0. Moreover, 0 6∈ K ensures that if v is constant, v ≡ 0. �

Unfortunately, this proposition cannot be generalized to piecewise affine functions. For instance, if u∞ :=
x 7→ |x − x0|χ[−π,0](x) + xχ[0,π](x) (mod 2π) and K = {−k, k} where k is an odd integer, the minimizer is
x 7→ u∞(x) + α cos kx with α > 1/k (see Figs. 8 and 9).

We see therefore that if u∞ can be decomposed in the sum of a piecewise constant function v∞ and a contin-
uous “texture” w∞, we will restore v∞ perfectly (we will not touch the discontinuities) while the reconstruction
of w∞ is uncertain.

We must however moderate this remark because the textures are, in general, very different from one zone
of the image to another one. And we can expect therefore that they will somehow make up for one another in
order to reconstruct w∞. This opinion can be supported by the following example.

Let us go back to the example given above: u∞ = cos ∈ BV (T) and K = {−k, k}. For N ∈ N?, we
can inject u∞ in BV (NT), the compact K becoming {−Nk,Nk}. Let us now change u∞ in u∞ := x 7→∑N−1
l=0 χ[2πl,2π(l+1)](x) cos(x+2πl/N), in order to study the compensation of the different phases of the textures.

In such a situation, we can show that the associated minimizer is u∞. Indeed, let us say it is x 7→ u∞(x) +
α cos(kx+ϕ) with α,ϕ ∈ R. We can easily check that x 7→ u∞(x) +α cos(kx+ϕ+ 2πkl/N) is also a minimizer
for any l ∈ Z. Since the set of minimizer is convex, we see that u∞(x) = (1/N)

∑N
l=1(u∞(x) + α cos(kx+ ϕ+

2πkl/N)) is a minimizer. Then, using the proof of Proposition 2 (the derivatives of the minimizers have the
same sign at almost every point of T), we show that u∞ is the only one.

The case k = 1 is the most interesting. Remark that u∞ − cos vanishes on (0, 2π) but the “parasitic” cosine
makes the Total Variation increase on the complementary interval in such a way that the minimizer is u∞.
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0 π

π

2π 3π 4π

Figure 8. The piecewise affine function u∞(x).

0 π

π

2π 3π 4π

Figure 9. The function u∞(x) + αcos(x) with α minimizing the Total Variation.

More generally, we can expect that, if the phases of the textures are well distributed, the reconstruction will
be successful. Similar arguments can also be applied to the case when the frequencies are well-distributed.

The reasoning above does not apply to the case of images supported on a finite grid. We can however see in
Figure 10 that the spectrum interpolation by minimization of the Total Variation permits to cancel the ringing
without touching edges.

3.3. Staircase effects, soft-thresholding and approximation of the functional

The Achilles’heel of Rudin-Osher-Fatemi’s method is the well-known “stair-case” effect which, in dimension
2, is generalized by the creation of large homogeneous zones on the image. One of the consequences of this is
the lost of low contrast textures.

Nikolova showed in [28] that this effect was due to a lack of regularity at the origin of the function x 7→ |x|
used in

∫
Ω
|∇u|. More precisely, this phenomenon can be explained, in the case of 1D discrete signal by the

presence of a hidden soft-thresholding on the derivative of the signal. We minimize indeed the functional

E(u) =
∑
k∈K
|uk+1 − uk|+ λ

∑
k∈K
|(Hu)k − (u0)k|2,

or, letting d = Du with dk = (Du)k = uk+1 − uk,

Ẽ(d) =
∑
k∈K
|dk|+ λ

∑
k∈K
|(HD−1d)k − (u0)k|2.
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Figure 10. Right-left: an airplane image and its spectrum. Up-down: u∞, u0 and the
restored image.
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Deriving Ẽ, we can observe that the minimum d will satisfy

dk = 0 when |2(HD−1)Tk .(HD
−1d− u0)| < 1

λ
,

and we will have, otherwise

2(HD−1)Tk .(HD
−1d− u0) = − sign(dk)

λ
,

where (HD−1)Tk is the kth column of HD−1. In the particular case when H = D, the soft-thresholding appears
very clearly {

dk = 0 when |(u0)k| < 1
2λ

dk = (u0)k − 1
2λ(sign((u0)k) otherwise.

In the same spirit, Chambolle et al. showed, in [6], that when H = I (the identity), Ω = T2 and the Total
Variation is replaced by the Besov semi-norm B1,1

1 (Ω) (which is also a smoothness space of order 1 in L1(Ω)),
the minimization of E comes down to a soft thresholding of the wavelets coefficients of the image. Moreover,
when

∫
Ω
|∇u| is no longer approximated (but H = I), Cohen et al. proved, in [4], that one can obtain, by a

wavelet shrinkage in the Harr basis, an image u1 such that E(u1) is less than C minu∈BV (Ω)E(u), with C a
constant not depending on u0 and λ. All this makes, in some sense, the link between the two methods described
in this paper.

Nikolova’s remark suggests us to regularize the functional. Several variations have been made on the model.
One of the most standard is the following.

Minimize

Eβ(u) =
∫
ϕβ(|∇u|) + λ

∫
|Hu− u0|2,

where ϕβ is a regular approximation of the absolute value function as, for example, ϕβ(t) =
√
β + t2. This

method will provide us with a better restitution of the low contrast textures and an image with less pixelization
but it has the drawback to diffuse the gray levels on the surface of the image when the gradient is small.
Nevertheless it is a good approximation of the original model for β small. Moreover, it is known to speed the
convergence rate up, and therefore can be used to minimize the Rudin-Osher-Fatemi functional, by making β
tend to 0 [1].

Going back to the example given by Nikolova (H = D), when ϕβ(t) − ϕβ(0) is equivalent to t2 in the
neighborhood of 0 (that is the case for ϕβ(t) =

√
β + t2), we can observe that d will satisfy

dk ∼
1

1 + λ
(u0)k,

when (u0)k is close to 0 (and dk ∼ (u0)k when it is large enough).
At this point, we cannot avoid to draw a parallel with the method (and the function τ̃λ+1,1) introduced in

Section 2.4 in order to preserve the textures of the image by getting round the thresholding.
The reader can also refer to [7] for another technic to avoid the pixelization.

3.4. Numerical implementation

One of the main difficulty in the computation of Eβ on a discrete grid, is the lack of isotropy of the gradient.
The total variation will be therefore approximated by the sum of four terms corresponding to four different
directions of the gradient.
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We use the usual notations:
1. xi = ih, yj = jh, pour i, j = 1, 2, · · · , N and h > 0;
2. uij = u(xi, yj);
3. ∆x

+uij = ui+1,j − uij and ∆x
−uij = uij − ui−1,j ;

4. ∆y
+uij = ui,j+1 − uij and ∆y

−uij = uij − ui,j−1.
The function Eβ is calculated as follows.

Eβ(u) =
N∑

i,j=0

ϕβ

(√
(∆x

+uij)2 + (∆y
+uij)2

)
+

N∑
i,j=0

ϕβ

(√
(∆x
−uij)2 + (∆y

+uij)2

)

+
N∑

i,j=0

ϕβ

(√
(∆x

+uij)2 + (∆y
−uij)2

)
+

N∑
i,j=0

ϕβ

(√
(∆x
−uij)2 + (∆y

−uij)2

)

+4λ
N∑

i,j=0

|ĥij ûij − (û0)ij |2,

taking ∆x
+uij , ∆x

−uij , ∆y
+uij , ∆y

−uij equal to 0 on the edge of the image, when this is necessary, and the term
û denotes the Discrete Fourier Transform of u.

This functional is minimized with a conjugate gradient descent algorithm. We start from the blurred image
u0. To get un+1 from un, the gradient of the function Eβ at un, ∇Eβ(un), is calculated at each step of the
algorithm. Then the optimal amplitude of the variation of the image in the direction −∇Eβ(un) is estimated
by the resolution of

min
s>0

Eβ(un − s ∇Eβ(un))

using a trichotomy method. Once the optimal amplitude s0 is calculated, we let

un+1 = un − s0 ∇Eβ(un) ,

and the process is iterated.
Note that in order to speed the convergence up, we can start from a deblurred version of u0 instead of u0.

Moreover, it is better to start with a large β and let it decrease to 0.
The reader can refer to Chan ([9] and other articles) for a general study on the minimization of Rudin-Osher-

Fatemi’s functional.

4. Numerical results and comparison

4.1. Description of the data (physical model)

In order to compare the two methods described above they have been put in competition in a very practical
situation that is the restoration of satellite SPOT images.

Earth observation satellites in the SPOT family are based on the PUSH-BROOM acquisition principle.
A CCD linear array placed at the focal plane of a telescope image at a given moment, yields a scan-line
perpendicular to the satellite track, while the satellite’s motion on its orbit ensures acquisition of successive
lines. The sampling time interval is adjusted so that the sampling grid thus generated is square. Its interval is
then equal to the size of an elementary detector in the linear array as projected on the ground.

In order to analyze the problem from a “signal processing” point of view, the digital image is modeled as
follows: the signal which is directly proportional to the luminance entering the instrument is convoluted by
the impulse response h of the instrument, then sampled according to a given sampling grid which has a square
mesh.
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0
-1/2 1/2

σ1

Figure 11. Profile of the “invertible” convolution kernel spectrum (for convenience, σ1 is not
at the real scale).

1

0

-1/2
1/2

σ2

−σ2

Figure 12. Profile of the non-invertible convolution kernel spectrum (σ2 is not at the real scale).

The Fourier transform ĥ of the impulse response h, is called the Modulation Transfer Function (MTF). It is
the product of three MTF’s corresponding to the imperfection of the optical, the imperfection and the size of
the CCD detectors and the motion of the satellite.

At this point, let us consider two models of degradations which correspond to two different satellites: SPOT 5
and a specific mode of SPOT 1. In both cases, the Fourier transform of the impulse response h is supported
on [−1/2, 1/2]× [−1/2, 1/2]. Even if the real noise is the sum of three noises having different structures, it is
approximated by a Gaussian noise. The standard deviation of this Gaussian noise is, in both cases, realistic
and gives rise to the same difficulty as the real noise.
• The convolution kernel of the first model is given by

ĥ(ξ, η) = e−2γξ|ξ|−2γη|η|
(

sin(2πξ)
2πξ

)(
sin(2πη)

2πη

)(
sin(πη)
πη

)
, ξ, η ∈ [−1/2, 1/2],

where γξ = 1.505, γη = 1.412 and the standard deviation of the noise σ1 = 2.4 (see Fig. 11).

• The convolution kernel of the second model is given by

ĥ(ξ, η) = e−2γξ|ξ|−2γη|η|
(

sin(4πξ)
4πξ

)(
sin(4πη)

4πη

)
, ξ, η ∈ [−1/2, 1/2],

for the same values for γξ and γη. The standard deviation of the noise is σ2 = 0.5 (see Fig. 12).
These two models correspond to non-invertible operatorsH. However the first one can be considered as invertible
since ĥ vanishes only at the frontier of the Fourier domain. The zones where the noise might blow up are therefore
located in the neighborhood of the cut-off frequencies (see the hatching in Fig. 11). Thus, The noise in these
zones can be abruptly erased with a controlled risk of ringing.

Whereas the second FTM vanishes at intermediate frequencies. Putting at zero the bared zones in Figure 12
will generate ringing in the vicinity of edges. We can therefore expect to obtain better result with the variational
method that will interpolate the spectrum of the image on these zones.
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Figure 13. Reference Image with zones on which statistics are computed.

4.2. Method of comparison

In order to compare the restored images quantitatively and objectively, we have to measure them in front of
a reference. For that reason, the blurred images have been re-created artificially from an airplane image. But in
order to take into account the whole degradation suffered by the images (including aliasing), the airplane image
must be over-sampled. Consequently, the restored images cannot be compared directly with the sharp image
since they have not the same scale of sampling. The reference image has therefore been constructed from the
over-sampled image by convolving it with a prolate function (see [22]) and afterwards making a sub-sampling.
The obtained reference has an optimal resolution without aliasing. This is the best image we can hope to obtain
from the degraded ones. The “artificial” images corresponding to the two models of degradation above are
respectively called Blurred Image 1 and Blurred Image 2.

The difference between the restored images and the reference is measured with the l1 and l2 norms. Moreover,
in order to evaluate the ability of each method to restore every kind of structure, we focus also the comparison
on four zones which correspond to very different families of structures (see Fig. 13).
• The first zone represents an oscillatory texture. This structure is well localized in high frequency. It gives

information about the quality of the high frequency recovery. Moreover, this shows the ability of the
algorithm to recover highly correlated textures.

• The second zone is nearly homogeneous. It permits to measure the ability of the method to remove noise.

• The third zone contains a strong edge which may produce Gibbs effect after the restoration.

• The fourth zone contains lots of sharp structures and thus does represent the quality of the sharpening.
In order to illustrate the difficulty to restore blurred and noisy images, a Wiener filter has also been applied on
the images (see [2]). We have tried to fix the parameter of the filter (more properly, the assumed variance of
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Table 1. Statistics for Blurred Image 1.

Wiener filter Non-invertible Invertible Variational
FCNR FCNR method

Image l1 4.44 4.21 4 3.66
l2 6.54 5.97 5.56 5.57

Zone 1 l1 5.92 5.14 4.29 5.56
l2 7.3 6.38 5.39 6.86

Zone 2 l1 2.82 1.79 1.82 1.87
l2 3.46 2.31 2.34 2.4

Zone 3 l1 3.53 3.33 3.10 2.77
l2 4.51 4.25 3.89 3.81

Zone 4 l1 5.15 5.30 4.99 4.47
l2 6.66 7.23 6.67 6.01

Table 2. Statistics for Blurred Image 2.

Wiener filter Non-invertible Invertible Variational
FCNR FCNR method

Image l1 5.08 6.69 6.72 4.14
l2 7.38 9.27 9.31 5.8

Zone 1 l1 5.79 6.05 6.08 4.64
l2 7.04 7.42 7.47 5.87

Zone 2 l1 2 2.43 2.42 2
l2 2.56 3.17 3.16 2.62

Zone 3 l1 4.27 6.98 7.01 2.92
l2 5.6 8.24 8.24 4.21

Zone 4 l1 7.51 7.78 7.83 5.65
l2 10.21 10.42 10.48 7.59

the noise) such that the restored images have about the same quantity of noise in the homogeneous regions as
the ones obtained by the other methods. Unfortunately, for the restoration of Blurred Image 1, we could not
reach that goal without loosing all the details of the image. So we have chosen a parameter yielding acceptable
result (in spite of the remaining noise).

4.3. Results

The statistics are split into two tables. The first one sums-up the results obtained by the four methods, for
Blurred Image 1 (see Tab. 1), and the second one, for Blurred Image 2 (see Tab. 2). However, we have to keep
in mind that neither the FCNR nor the variational methods aim to minimize these errors (the FCNR controls
the structure of the noise, and the variational method controls the regularity of the image). Let us indicate also
that the parameters of these methods has not been fixed with regard to these statistics but on visual criterion.
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Figure 14. Degraded images. Up-down: Blurred Image 1 and Blurred Image 2.
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Figure 15. Restoration with a Wiener filter (up-down: of Blurred Image 1 and Blurred Image 2).
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Figure 16. Restoration with the non-invertible FCNR (up-down: of Blurred Image 1 up
Blurred Image 2).



IMAGE DEBLURRING SPECTRUM INTERPOLATION 471

Figure 17. Restoration with the invertible FCNR (up-down: of Blurred Image 1 and Blurred
Image 2).
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Figure 18. Restoration with the variational method (up-down: of Blurred Image 1 and
Blurred Image 2).
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Figure 19. Top: Reference Image. Left-right: restoration of respectively Blurred Images 1
and 2. Up-down: with a Wiener filter, with the non-invertible FCNR, with the invertible
FCNR, with the variational method.

In regard to Table 1, note that the invertible FCNR and the variational method yield, on the whole, compa-
rable statistics while the results are a little worth for the non-invertible FCNR, and much worth, on any region,
for the wiener filter. Looking at the different zones in detail, we observe that the FCNR’s are more efficient
than the variational method on Zones 1 and 2 and less on Zones 3 and 4, which confirms the fact that the Total
Variation penalizes textures but preserves strong edges (it does not generate ringing in there vicinity).

If we turn now to Table 2, both wavelet-packets based algorithms yield poor results. The convolution operator
of Blurred Image 2 is actually not invertible so that we left the framework in which these methods are valid.

These comments are confirmed when we look at the images. The “ideal” one is represented in Figure 13.
This is the image we would like to reach while starting from the blurred images of Figure 14. Looking at this, we
can figure out the complexity of this issue since lots of details seems to be definitely lost, especially for Blurred
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Figure 20. Top: Reference Image. Left-right: restoration of respectively Blurred Images 1
and 2. Up-down: with a Wiener filter, with the non-invertible FCNR, with the invertible
FCNR, with the variational method.

Image 2. But, thanks to the low noise level, some of these details will be recovered, without creating artifact or
noise enhancement.

The restored images are represented in Figures 15–18. The Wiener restoration yields noise that we cannot
remove without loosing a lot of information, but the results are reasonably sharp. Wavelet-packets based
methods are very successful with Blurred Image 1, the restored images looking like being free of any noise and
with a good sharpness. The invertible FCNR is even better in the sense that it yields more informations (see
the cars on the bridge and the texture of Zone 1). On the other hand, in the case of the Blurred Image 2, the
results are still very blurred and present Gibbs effects. At last, the Total Variation based method yields good
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result in both cases. But it tends to remove the texture of Zone 1, and to create homogeneous zones. It is
the sole of the four methods which does not create any ringing when deblurring the second image. All these
remarks are confirmed on the blow-ups of Figures 19 and 20.
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[21] J. Kalifa, S. Mallat and B. Rougé, Image Deconvolution in Mirror Wavelet Bases. IEEE, ICIP’98.
[22] H.J. Landau and H.O. Pollak, Prolate Speroidal Wave Functions, Fourier Analysis and Uncertainty -III: The Dimension of

the Space of Essentially Time and Band-Limited Signals. The Bell systeme technical Journal (1962).
[23] M. Lindenbaum, M. Fischer and A. Bruckstein, On Gabor’s contribution to image enhancement. PR. 27 (1994) 1-8.
[24] S. Mallat, A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Patern Analysis and

Machine Intelligence II (1989).
[25] S. Mallat, A Wavelet Tour of Signal Processing. Academic Press (1998).
[26] Y. Meyer, Ondelettes et opérateurs. Hermann (1990) Tome 1.
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