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Abstract. Classical ways to denoise images contaminated with mul-
tiplicative noise (e.g. speckle noise) are filtering, statistical (Bayesian)
methods, variational methods and methods that convert the multiplica-
tive noise into additive noise (using a logarithmic function) in order to
apply a shrinkage estimation for the log-image data and transform back
the result using an exponential function.
We propose a new method that involves several stages: we apply a rea-
sonable under-optimal hard-thresholding on the curvelet transform of
the log-image; the latter is restored using a specialized hybrid variational
method combining an ℓ1 data-fitting to the thresholded coefficients and
a Total Variation regularization (TV) in the image domain; the restored
image is an exponential of the obtained minimizer, weighted so that
the mean of the original image is preserved. The minimization stage is
realized using a properly adapted fast Douglas-Rachford splitting. The
existence of a minimizer of our specialized criterion and the convergence
of the minimization scheme are proved. The obtained numerical results
outperform the main alternative methods.

1 Introduction

In many active imaging systems (e.g. synthetic aperture radar, laser or ultra-
sound imaging), the data for the unknown image S0 : Ω → IR+, Ω ⊂ IR2, are
severely corrupted with multiplicative noise. Then several independent measure-
ments for the same image are needed:

Sk = S0 ηk + nk, ∀k ∈ {1, · · · ,K}, (1)

where ηk : Ω → IR+, and nk represent the multiplicative and a typically zero-
mean additive noise, ∀k. Commonly (see e.g. [27]) ηk is modeled as a one-
sided exponential probability density function (pdf) (cf. Fig. 1(a)): pdf(ηk) =
µ e−µηk 1lIR+(ηk) for µ = 1. In practice, one takes an average of all measurements,

see e.g. Fig. 2(b). Since 1
K

∑K
k=1 nk ≈ 0, the data read (cf. e.g. [1, 27,30]):

S =
1

K

K∑

k=1

Sk = S0
1

K

K∑

k=1

ηk = S0 η . (2)



Usually all ηk are independent. Denoting by Γ the usual Gamma-function, the
mean of the noise η in (2) has a Gamma distribution (cf. Fig. 1(b)):

η =
1

K

K∑

k=1

ηk : pdf(η) =
KKηK−1 exp (−Kη)

Γ (K)
. (3)

Various adaptive filters have been proposed, see e.g. [17,31]: they work well when
the noise is moderate or weak, i.e. for K large. Bayesian, variational or diffusion-
based methods have been proposed as well; see e.g. [2, 18, 24, 28]. Numerous
methods convert the multiplicative noise into additive noise by

v = logS = logS0 + log η = u0 + n, (4)

see e.g. [1, 16,23,30]. Then the pdf of n reads (cf. Fig. 1(c)):

n = log η : pdf(n) = KK
(
Γ (K)

)−1
exp

(
−K(n− en)

)
. (5)

One can prove that E [n] = ψ0(K)− logK and Var [n] = ψ1(K), where ψk(z) =(
d
dz

)k+1
logΓ (z) is the polygamma function. A common strategy is to decompose

the log-data v into a multiscale frame for L2(IR2) (an over-complete basis), say
W ≡{wi : i ∈ I} where I is a set of indexes:

y = Wv = Wu0 +Wn. (6)

By the Central Limit Theorem, the noise Wn in y is nearly Gaussian —cf. Fig.
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Fig. 1. Noise distributions.

1(d). Then coefficients y are denoised using shrinkage estimators T : IR → IR:

yT [i] = T
(
(Wv)[i]

)
, ∀i ∈ I. (7)

Shrinkage functions designed for multiplicative noise were proposed e.g. in [1,30].

Let W̃ ≡ {w̃i : i ∈ I} be a left inverse of W . Then a denoised log-image vT reads

vT =
∑

i∈I

T ((Wv)[i]) w̃i =
∑

i∈I

T (y[i]) w̃i. (8)

Then the sought-after image is of the form ST = exp vT .

Our approach. We apply (4) and consider a tight-frame transform of the log-
data. The restored log-image (section 2) minimizes a criterion composed of an
ℓ1-fitting to the (suboptimally) hard-thresholded frame coefficients and a Total
Variation (TV) regularization in the image domain. The minimization (section
3) uses a specialized Douglas-Rachford splitting. The full algorithm, involving a
bias correction, is given in section 4. Experiments are presented in section 5.
Some notations. (.T ) means transposed, (.∗) means convex conjugate and (.⋆)
means adjoint.



2 Restoration of the log-image

Here we consider how to restore a good log-image given data v : Ω → IR obtained
using (4). We focus on methods which, for a given preprocessed data set, lead
to convex optimization problems. We comment only variational methods and
shrinkage estimators since they underly our specialized hybrid objective function.

2.1 Drawbacks of shrinkage restoration and variational methods

Shrinkage restoration. The main problems with these methods, sketched in (7)-
(8), is that shrinking large coefficients entails an erosion of the spiky features,
while shrinking small coefficients yields Gibbs-like oscillations in the vicinity of
edges and a loss of details in the textured area. On the other hand, if shrink-
age is insufficient, some coefficients bearing mainly noise can remain almost
unchanged—we call such coefficients outliers—and (8) shows that they yield
artifacts with the shape of the functions w̃i, see Fig. 2. Even though various im-
provements were brought, these artifacts remain visible—see the results on Fig.
3(d) and Fig. 4(c) in Section 5 using the very recent Stein-block thresholding [8].

(a) Noisy, K = 10 (b) T = 2
p

Var [n] (c) T = 4
p

Var [n] (d) T = 6
p

Var [n]

Fig. 2. (a) Noisy Lena obtained according to (1)-(2) for K = 10. (b)-(d) Restorations
exp vTH where data v are denoised by hard-thresholding of its curvelet coefficients, see
(12)-(13), for different choices of T .

Variational methods. In these methods, the restored function minimizes a crite-
rion Fv of the form

Fv(u) = ρ

∫

Ω

ψ
(
u(t), v(t)

)
dt+

∫

Ω

ϕ(|∇u(t)|) dt, (9)

where ψ : IR+→ IR+ measures closeness to data and ϕ(|∇u(·)|) introduces priors

via a trade-off parameter ρ>0. A classical choice is ψ =
(
u(·)−v(·)

)2
. It is usually

required that the potential function ϕ : IR+→ IR+ promotes images involving
edges. Analysing the minimizers of Fv as solutions of PDE’s on Ω, Rudin, Osher
and Fatemi [25] exhibited that ϕ(|∇u(t)|) = |∇u(t)|, leads to such images, where

for any z(t) = (z1(t), z2(t)) ∈ IR2, t ∈ Ω, one sets |z(t)| def
=

√
z1(t)2 + z2(t)2.

The resulting regularization term is known as Total Variation (TV) and will
be denoted by ‖ · ‖TV. However, whatever smooth data-fitting is chosen, this
regularization yields images containing numerous constant regions (called stair-
casing effect), hence textures and fine details are removed, see [22]. The method
in [2] is of this kind and operates in the image domain; the fitting term is derived



from (3) and the denoised image Ŝ, defined by

Ŝ = arg min
Σ

FS for FS(Σ) = ρ(K)

∫ (
logΣ(t)+S(t)/Σ(t)

)
dt+‖Σ‖TV, (10)

exhibits constant regions (see section 5). In [26], the regularization ‖Σ‖TV is
changed into ‖ logΣ‖TV so as to reformulate the model as a convex problem,
and not to over smooth the image parts with higher gray values. To recover the
denoised image, we applied Ŝ ∝ exp(û) for

û = arg min
u

where Fv(u) = ρ‖u− v‖2 + ‖u‖TV. (11)

Following [25], various edge-preserving convex functions ϕ have been proposed;
see [3] for a recent overview. Even though ϕ′(0) = 0 alleviates stair-casing, a
systematic drawback of the resulting restored images is that the amplitude of
edges is underestimated; thus neat edges or spiky areas are subjected to erosion.

2.2 Hybrid methods
Hybrid methods, see e.g. [5, 9, 14, 19], combine the information contained in the
large coefficients y[i] obtained according to (6) with priors directly on the image
u. They amount to define the restored function û by

minimize Φ(u) subject to û ∈ {u : |(W (u− v)) [i]| ≤ µi, ∀i ∈ I} .
Using an edge-preserving regularization, such as Φ = TV is a pertinent choice.
The selection of parameters {µi}i∈J is more tricky. This choice must take into
account the magnitude of the relevant data coefficient y[i]. However, choosing
µi based solely on y[i], as done in these papers, is too rigid since there are either
correct data coefficients that incur smoothing (µi > 0), or noisy coefficients that
are left unchanged (µi = 0). A good compromise that we adopt is to determine
(µi)i∈I based both on the data and on the prior term.

2.3 A specialized hybrid criterion
Given the log-data v obtained by (4), we apply a frame transform as in (6) to
get y = Wv = Wu0 +Wn. The noise contained in the i-th datum reads 〈n,wi〉.
The low frequency approximation coefficients carry important information on
the image. Therefore, a good choice is to keep them intact at this stage. Let
I∗ ⊂ I denote the subset of all such elements of the frame. Then we apply a
hard-thresholding operator TH [12] to all coefficients I \ I∗:

yTH
[i]

def
= TH

(
y[i]

)
, ∀i ∈ I \ I∗, where TH(t) =

{
0 if |t| ≤ T,
t otherwise,

(12)

where T is an underoptimal threshold in order to preserve the information rele-
vant to edges and to some fine details in textured areas, contained in the small
coefficients. Let us consider

vTH
=

∑

i∈I1

Wv[i] w̃i, where I1 = {i ∈ I : |y[i]| > T} ∪ I∗. (13)

The image vTH
contains a lot of artifacts with the shape of the w̃i for those

y[i] that are noisy but above the threshold T , as well as information on the fine



details in the original log-image u0. In all cases, whatever the choice of T , an
image of the form vTH

is unsatisfactory—see Fig. 2.
The denoised coefficients, denoted by x̂, are obtained based on the under-thre-
sholded data yTH

. We focus on hybrid methods of the form: x̂ = arg minx F (x) for

F (x) = Ψ(x, yTH
) + Φ(W̃x), where Ψ is a data-fitting term in the frame domain

and Φ is an edge-preserving regularization term in the log-image domain. Let us
denote

I0 = I \ I1 = {i ∈ I \ I∗ : |y[i]| ≤ T}. (14)

Coefficients y[i] for i ∈ I0 can be of the two types. 1. Coefficients y[i] bearing
mainly noise—then the best choice is x̂[i] = 0; 2. Coefficients y[i] relevant to
edges and other details in u0. Since y[i] is difficult to distinguish from the noise,
the relevant x̂[i] should be restored using the edge-preserving prior Φ. Note
that a careful restoration must find a nonzero x̂[i] in order to avoid Gibbs-like
oscillations in û.
Coefficients y[i] for i ∈ I1 are of the following two types. 1. Large coefficients
which carry the main features of the sought-after function. They verify y[i] ≈
〈wi, u0〉 and can be kept intact. 2. Coefficients highly contaminated by noise,
i.e. |y[i]| ≫ |〈wi, u0〉|. We call them outliers because if we had x̂[i] = y[i], then
û would contain an artifact with the shape of w̃i since by (13) we get vTH

=∑
j\i x̂[j]w̃j + y[i]w̃i. Instead, x̂[i] must be restored according to the prior Φ.

This analysis clearly defines the goals that the minimizer x̂ of F is expected to
achieve: restored coefficients x̂[i] have to fit yTH

[i] exactly if they are coherent
with the prior Φ, otherwise they have to be restored according to Φ. Since [21]
it is known that such requirements can be satisfied by criteria F where Ψ is
non-smooth at the origin (e.g. ℓ1), see also [13]. For these reasons, we focus on

F (x) = Ψ(x) + Φ(x), (15)

where, for Λ = diag(λi)i∈I ,

Ψ(x) =
∑

i∈I1∪I∗

λi |(x− y)[i]| +
∑

i∈I0

λi |x[i]| = ‖Λ(x− yTH
)‖1 , (16)

Φ(x) =

∫

Ω

|∇W̃x| ds = ‖W̃x‖TV. (17)

In the pre-processing step (12) we do not recommend the use of a shrinkage
function other than TH since it will alter all the data coefficients without restoring
them faithfully. Via TH, we base our restoration on data yTH

where all non-
thresholded coefficients keep the original information on the sought-after image.
The theorem stated next addresses the existence and the uniqueness of a mini-
mizer for F . Given y, let Gy be the (convex) set of all minimizers of F :

Gy
def
=

{
x̂ ∈ ℓ2(I) : F (x̂) = min

x∈ℓ2(I)
F (x)

}
. (18)

Theorem 1. [13] For y ∈ ℓ2(I) and T > 0 given, consider F as defined in
(15), where Ω ∈ IR2 is open, bounded and its boundary ∂Ω is Lipschitz. Suppose

that {wi}i∈I is a frame of L2(Ω) and the operator W̃ is the pseudo-inverse
of W . Assume also that λmin = min

i∈I
λi > 0. Then Gy is nonempty, and for all

x̂1, x̂2 ∈ Gy, ∇W̃ x̂1 ∝ ∇W̃ x̂2, a.e. on Ω.



In words, Ŝ1 = W̃ x̂1 and Ŝ2 = W̃ x̂2 have the same level lines, i.e. they differ by
a local change of contrast; the latter is usually invisible to the naked eye.
The choice of λi is investigated in [13]. Following this analysis, we use only two
values for λi, depending only on the set Iǫ the index i belongs to. We focus
on curvelets transforms of the log-data because (a) such a transform captures
efficiently the main features of the data and (b) it is a tight-frame which is
helpful for the subsequent numerical stage.

3 Minimization for the log-image

Let Γ0(H) denote the class of proper lower-semicontinuous convex functions on
a Hilbert space H. Now we focus on the minimization problem

find x̂ such that F (x̂) = min
x
F for F = Ψ + Φ, (19)

where Ψ and Φ are defined in (16)-(17). Clearly, Ψ,Φ ∈ Γ0(ℓ2(I)), hence F ∈
Γ0(ℓ2(I)). The set Gy in (18) is non-empty by Theorem 1 and can be rewrit-
ten as Gy = {x ∈ ℓ2(I)

∣∣x ∈ (∂F )−1(0)}, where ∂F stands for subdifferential.
Minimizing F amounts to finding a solution to the fixed point equation

x = (Id + γ∂F )−1(x) , (20)

where (Id + γ∂F )−1 is the resolvent operator associated to ∂F , γ > 0 is the
proximal stepsize and Id is the identity map on ℓ2(I). Since (Id+γ(∂Ψ +∂Φ))−1

cannot be calculated in closed-form, we focus on splitting methods that use
separately the resolvent operators (Id + γ∂Ψ)−1 and (Id + γ∂Φ))−1.

3.1 Specialized Douglas-Rachford (D-R) splitting algorithm

The D-R family is the most general class of monotone operator splitting methods.
Given a sequence µt ∈ (0, 2), D-R methods can be expressed via the recursion

x(t+1)=
[(

1−µt

2

)
Id+

µt

2
(2(Id+γ∂Ψ)−1− Id) ◦ (2(Id+γ∂Φ)−1− Id)

]
x(t). (21)

Since problem (19) has solutions, we have the following convergence result:

Theorem 2. Let γ > 0 and µt ∈ (0, 2) be such that
∑

t∈IN µt(2 − µt) = +∞.

Take x(0) ∈ ℓ2(I) and consider the sequence of iterates defined by (21). Then,
(x(t))t∈IN converges weakly to some point x̂ ∈ ℓ2(I) and (Id+γ∂Φ)−1(x̂) ∈ Gy.

The statement follows from [10, Corollary 5.2]. The sequence µt = 1,∀t ∈ IN fits.

3.2 Proximal calculus

Proximity operators, invented in [20], generalize convex projection.

Definition 1 (Moreau [20]). Let ϕ∈Γ0(H). Then ∀x ∈ H the function z 7→
ϕ(z)+‖x−z‖2

/2, for z ∈H, achieves its infimum at a unique point denoted by
proxϕx. The relevant operator proxϕ :H→H is the proximity operator of ϕ.



By the minimality condition for proxϕ, it is easy to see that ∀x, p∈H we have

p = proxϕx ⇐⇒ x − p ∈ ∂ϕ(p) ⇐⇒ (Id + ∂ϕ)−1 = proxϕ. By introducing

the reflection operator rproxϕ
def
= 2proxϕ − Id, the D-R iteration (21) reads

x(t+1) =
[(

1 − µt

2

)
Id +

µt

2
rproxγΨ ◦ rproxγΦ

]
x(t) . (22)

Proximity operator of Ψ

Lemma 1. Let x ∈ ℓ2(I). Then proxγΨ (x) =
(
yTH

[i] + TS
γλi (x[i] − yTH

[i])
)

i∈I
,

where TS
γλi(z[i]) = max

{
0, z[i] − γλisign(z[i])

}
.

The proof is quite standard and can be found in our Report [15]. Note that

rproxγΨ (x) = 2
(
yTH

[i] + TS
γλi (x[i] − yTH

[i])
)

i∈I
− x . (23)

Proximity operator of Φ. Clearly, Φ(x) = ‖ · ‖TV ◦ W̃ (x). Computing proxγΦ

for an arbitrary W̃ may be intractable. We assume that

(w1) W̃ : ℓ2(I) → L2(Ω) is surjective;

(w2) W̃W = Id and W̃ = c−1W ⋆ for 0 < c <∞; note that W ⋆W = c Id;

(w3) W̃ is bounded.

Let X = L2(Ω) × L2(Ω), 〈·, ·〉X be the inner product in X and
∣∣∣∣∣∣ ·

∣∣∣∣∣∣
p
, p ∈

[1,∞] the Lp-norm on X . Define B
γ

∞(X ) as the γ-radius closed L∞-ball in X ,

B
γ

∞
def
=

{
z ∈ X :

∣∣∣∣∣∣z
∣∣∣∣∣∣
∞

≤ γ
}

=
{
z = (z1, z2) ∈ X : |z(t)| ≤ γ,∀t ∈ Ω

}
, and

PB
γ

∞
(X ) : X → B

γ

∞(X ) the associated projector.

Lemma 2. Let x ∈ ℓ2(I) and B
γ

∞(X ) is as defined above. Then:

proxγΦ(x) =
(
Id −W ◦

(
Id − proxc−1γ‖·‖TV

)
◦ W̃

)
(x) ; (24)

proxc−1γ‖·‖TV
(u) = u− PC(u) , (25)

where C =
{

div(z) ∈ L2(Ω)
∣∣z ∈ C∞

c (Ω ×Ω), z ∈ B
γ/c

∞ (X )
}
. (26)

Sketch of the proof. By (w1), range(W̃ )=L2(Ω). Using that domain(‖·‖TV)=

L2(Ω), we find cone
(
dom‖ · ‖TV− range W̃

)
= {0}. Statement (i) follows from

applying [11, Proposition 11] whose requirements are satisfied.
If ϕ ∈ Γ0(L

2(Ω)) and ϕ∗ is its convex conjugate, the Moreau decomposition [20,
Proposition 4.a] asserts

proxϕ + proxϕ∗ = Id . (27)

Since the conjugate function of a norm is the indicator function of the ball of
its dual norm,

(
c−1γ‖ · ‖TV

)∗
(z) = 0 if z ∈ C, +∞ if z 6∈ C. where C is given



in (26). Using Definition 1, prox(
c−1γ‖.‖TV

)
∗ = PC . Identifying c−1γ‖.‖TV with

ϕ and
(
c−1γ‖.‖TV

)∗
with ϕ∗, equation (27) leads to (ii)4. ⋄

¿From (24)-(25) we easily find that

rproxγΦ(x) =
(
Id − 2W ◦ PC ◦ W̃

)
(x) . (28)

Calculation of the projection PC in (25) on a discrete grid. In this case,
W is an M×N tight frame with M=#I≫N =#Ω and assumption (w2) reads

W̃W = Id and W̃ = c−1WT , c ∈ (0,∞) hence WTW = c Id). The discrete
counterpart of X is X = ℓ2(Ω) × ℓ2(Ω). We denote the discrete gradient by

∇̈ (cf. [6] or [29]) and the discrete divergence Div : X → ℓ2(Ω) is defined as

Div = −∇̈⋆. Moreover, C in (26) admits a simpler expression:

C =
{

Div(z) ∈ ℓ2(Ω)
∣∣ z ∈ B

γ/c

∞ (X )
}
, (29)

where B
γ/c

∞ (X ) is defined using the new discrete notations. The projection PC

in (25) does not admit an explicit form so we provide an iterative scheme for its
calculation in the next lemma.

Lemma 3. We adapt all assumptions of Lemma 2 to the new discrete setting,
as explained above. Consider the forward-backward iteration

z(t+1) = P
B

1
∞

(X )

(
z(t) + βt∇̈

(
Div(z(t)) − cu/γ

))
(30)

for 0 < inf
t
βt ≤ sup

t
βt < 1/4 (31)

where ∀(i, j) ∈ Ω , P
B

1
∞

(X )
(z)[i, j] =

{
z[i, j] if |z[i, j]| ≤ 1;

z[i, j]/|z[i, j]| otherwise .
(32)

Then

(i) (z(t))t∈IN converges to a point ẑ ∈ B
1

∞(X );

(ii)
(
c−1γDiv(z(t))

)
t∈IN

converges to c−1γDiv(ẑ) = (Id − proxc−1γ‖·‖TV
)(u).

The proof of this lemma can be found in our Report [15].
The iteration proposed in (30) to compute the proximity operator of the TV-
norm is different from the projection algorithm of [6]. A similar iteration was
proposed in [7] and in some other articles. The proof we gave is however sim-
pler as it uses known properties of proximity operators. Note that computing
prox‖·‖TV

amounts to solving a discrete ROF-denoising. Our iteration to solve

this problem is one possibility among others, see e.g. a recent report [4].
A crucial property of the D-R scheme (22) is its robustness to numerical er-
rors that may occur when computing the proximity operators proxΨ and proxΦ,
see [10]. More precisely, let at ∈ ℓ2(I) be an error term that models the inex-
act computation of proxγΦ in (24), as the latter is obtained through (30). If
the sequence of error terms (at)t∈IN and stepsizes (µt)t∈IN in Theorem 2 obey∑

t∈IN µt ‖at‖ < +∞, then the D-R algorithm (22) converges [10, Corollary 6.2].
In our experiments, using 200 inner iterations in (30) is sufficient to satisfy this
requirement.

4 Note that our argument (27) to compute proxc−1γ‖·‖TV
(u) is not used in [6], which

instead uses conjugates and bi-conjugates of the objective function.



3.3 Bias correction to recover the sought-after image

Recall from (4) that u0 = logS0 and set û = W̃ x̂(NDR) as the estimator of u0,
where NDR is the number of D-R iterations in (22). Unfortunately, the estimator
û is prone to bias, i.e. E [û] = u0 − bû. A problem that classically arises in
statistical estimation is how to correct such a bias. More importantly is how
this bias affects the estimate after applying the inverse transformation, here the
exponential. Our goal is then to ensure that for the estimate Ŝ of the image, we

have E

[
Ŝ

]
= S0. Expanding Ŝ in the neighborhood of E [û], we have

E
[
eû

]
= exp (E [û])(1+Var [û] /2+R2) = S0 exp (−bû)(1+Var [û] /2+R2) , (33)

where R2 is expectation of the Lagrange remainder in the Taylor series. One can
observe that the posterior distribution of û is nearly symmetric, hence R2 ≈ 0.
Then bû≈ log(1v +Var [û] /2) ensures unbiasedness. Consequently, finite sample
(nearly) unbiased estimates of u0 and S0 are respectively û+ log(1+Var [û] /2),
and exp (û) (1 + Var [û] /2). Var [û] can be reasonably estimated by ψ1(K), the
variance of the noise n in (4) being given in (1). Thus, given the restored log-
image û, our denoised image read:

Ŝ = exp (û) (1 + ψ1(K)/2) . (34)

4 Full algorithm to suppress multiplicative noise

Piecing together Lemmas 1 and 2, and Theorem 2, we write down the full mul-
tiplicative noise removal algorithm:

Task: Denoise an image S corrupted with multiplicative noise according to (2).
Parameters: The observed noisy image S, number of iterations NDR (Douglas-
Rachford outer iterations) and NFB (Forward-Backward inner iterations), step-
sizes µt ∈ (0, 2), 0 < βt < 1/4 and γ > 0, tight-frame transform W and initial

threshold T (e.g. T = 2
√
ψ1(K)), regularization parameters λ0,1 associated to

the sets I0,1.
Specific operators:

(a) TS
γλi(z) =

(
max

{
0, z[i] − γλisign(z[i])

})
i∈I
, ∀z ∈ IR#I .

(b) ∀(i, j) ∈ Ω, P
B

1
∞

(X )
(z)[i, j]=

{
z[i, j] if |z[i, j]| ≤ 1
z[i, j]/|z[i, j]| else.

(c) ∇̈ and Div—the discrete versions of the continuous operators ∇ and div.
(d) ψ1(·) defined according to (1) (built-in Matlab function).

Initialization: Compute v = logS and transform coefficients y = Wv. Hard-
threshold y at T to get yTH

. Choose x(0).
Main iteration: For t = 1 to NDR,

(1) Inverse curvelet transform of x(t) according to u(t) = W̃x(t).
(2) Initialize z(0); For s = 0 to NFB − 1

z(s+1) = P
B

1
∞

(X )

(
z(s) + βt∇̈

(
Div(z(s)) − c

γu
(t)

))
.

(3) Set z(t) = z(NFB) and compute w(t) = c−1γ Div(z(t)).



(4) Forward curvelet transform: α(t) = Ww(t). (5) Compute r(t) = rproxγΦ(x(t)) =

x(t) − 2α(t).

(6) Find q(t)=
(
rproxγΨ ◦ rproxγΦ

)
x(t)=2

(
yTH

[i]+TS
γλi

(
r(t)[i]−yTH

[i]
))

i∈I
−r(t).

(7) Update x(t+1) : x(t+1) = (1 − µt/2)x(t) + (µt/2)q(t) .

Output: Denoised image Ŝ = exp
(
W̃x(NDR)

)
(1 + ψ1(K)/2).

5 Experiments

In all experiments, our algorithm was run using second-generation curvelet tight
frame along with the following set of parameters: ∀t, µt ≡ 1, βt = 0.24, γ = 10
and NDR = 50. The initial threshold T was set to 2

√
ψ1(K). For comparison

purposes, some very recent multiplicative noise removal algorithms from the
literature are considered: the AA algorithm [2] minimizing the criterion in (10),
and the Stein-block denoising method [8] in the curvelet domain, applied on the
log transformed image. The latter is a sophisticated shrinkage-based denoiser
that thresholds the coefficients by blocks rather than individually, and has been
shown to be nearly minimax over a large class of images in presence of various
additive bounded noises. We also tried the L2-TV method where the restored
log-image û minimizes (11) and the denoised image Ŝ involves the bias correction
(34). Thanks to the bias correction, it can be seen as an improved version of the
first method proposed in the recent Report [26, § 4.1]. For fair comparison, the
hyperparameters for all competitors were tweaked to reach their best level of
performance on each noisy realization.
The denoising algorithms were tested on two images: Lena and Boat, all of size
256×256 and gray-scale in the range [1, 256]. For each image, a noisy observation
is generated by multiplying the original image by a realization of noise according
to (2)-(3) for K = 10. The running time of our denoising method is 1 minute 3
seconds for 50 iterations on Intel 2.5 GHz Core Duo. The denoising performance
of any algorithm is measured in terms of peak signal-to-noise ratio (PSNR) and
mean absolute-deviation MAE, namely

PSNR = 20 log10

√
N‖S0‖∞/

∥∥∥Ŝ − S0

∥∥∥
2

dB and MAE =
∥∥∥Ŝ − S0

∥∥∥
1
/N .

The results are depicted in Figs. 3 and 4. Note that the AA algorithm tends to
over-regularize the solution. Our denoiser clearly outperforms its competitors.
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