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Abstract

A coupled quantum-classical model describing the transport of electrons confined

in nanoscale semiconductor devices is considered. Using the subband decomposition

approach allows to separate the transport directions from the confinement direction.

The motion of the gas in the transport direction is assumed to be classical. Then a

hierarchy of adiabatic quantum-classical model is obtained, leading to subband SHE

and energy-transport models, with explicit expression of the diffusion coefficients. The

energy-transport-Schrödinger-Poisson model is then used for the numerical simulation

of the transport of the electron gas in an ultra-scaled Double-Gate-MOSFET.

Keywords : Schrödinger equation, energy-transport system, subband model, nanotransis-
tor, Gummel iterations, mixed finite elements.
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1 Introduction

In nanoscale semiconductor devices, electrons might be extremely confined in one or several
directions refered to as the confining direction. This leads to a partial quantization of the
energy which can be modelled by the subband decomposition method [32]. This subband
decomposition approach allows to separate the confinement direction from the transport
direction. Thanks to the reduction of the dimension of the transport problem, the compu-
tational gain is significant. In the confined direction electrons behave like waves; the system
is at thermodynamical equilibrium and it is described by a statistical mixture of eigenstates
of a Schrödinger-Poisson system. In the transport direction the transport can be of classical
[8, 7] or quantum nature [32].

Here, we are interested in deriving adiabatic quantum–classical models accounting for
thermal effects, aiming at accurate and efficient numerical simulation of confined devices.
In [9] several spherical harmonic expension (SHE) models incorporating quantum effects
are proposed. However, with their strategy the obtained models have a complicated non-
local structure which is not suitable for numerical purposes. Quantum energy–transport

1Corresponding author.
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and quantum drift-diffusion models have been derived in [16] using the strategy of quantum
moments, as well as in [25]. These models involve a quantum chemical potential that depends
on the density in a non–local way. In this work we follow the complementary strategy
proposed in [7] where the subband model is derived first, then a diffusive approximation
of the adiabatic Boltzmann equation is performed to obain coupled quantum–fluid models
(spherical harmonic expansion and energy–transport). The subband energy–transport (ET)
model in [7], directly derived from the Boltzmann equations (as in e.g. [6] for the classical
case), is, however, not immediately suited for numerical simulations, since the diffusion
coefficients are not given in explicit form and, moreover, the energy relaxation term is
not obtained. Therefore, we propose in this work a suitable description of the dominant
collision mechanisms which allows to extend the formal derivation of the spherical harmonic
expansion (SHE) model given in [7]. Then a new energy–transport (ET) model is formally
derived as diffusive limit from this SHE model [3].

Numerical discretization of classical ET equations has already been studied in many
papers : by using mixed finite elements schemes e.g. in [15, 19, 20, 22, 27, 29], ENO
schemes in [23], finite difference methods [18, 34] and finite volume schemes in [13]. In
[15, 22], the authors propose a drift-diffusion reformulation which allows to use an accurate
Sharfetter-Gummel scheme with exponential fitting [11] and, moreover, to decouple the ET
model. However, in this quantum case, the involved form of the diffusion coefficients does
not allow for a decoupled drift-diffusion reformulation. Then we will use a more traditional
approach with mixed finite elements which can be directly applied since the obtained ET
model turns out to be in symmetric form. Then, a Gummel type algorithm is used as outer
iterations of the solution of the coupled energy-transport-Schrödinger-Poisson model, and
the (non-linear) ET discrete system is solved by means of a Newton scheme. Moreover,
passing to the limit in the energy relaxation term, a subband drift-diffusion equation is
recovered in the form of [8] with a more accurate description of the diffusion coefficients
taking into account the collisional mechanisms (see also [31] for numerical simulations).
This work is then an extension of [31] to a more general collisional framework.

The outline of the paper is the following. In Section 2 we set the assumptions on the
collision mechanisms and we briefly present the formal derivation of the SHE model. Then,
we derive from this latter model the novel subband ET model. Finally, a subband drift-
diffusion equation is obtained, as limit when the relaxation time goes to infinity. Section 3 is
devoted to the numerical issues. Subsection 3.1 presents the complete stationary model, the
mixed finite elements scheme is described in Subsection 3.2, and the iterative approach is
outlined in Subsection 3.3. Numerical simulations of an ultra-scaled Double-Gate MOSFET
are presented in Subsection 3.4.

2 Formal derivation of adiabatic fluid-quantum models

2.1 The quantum-kinetic framework

We will assume in this work that the confinement direction is one dimensional whereas
the transport takes place in a two dimensional domain. The domain is denoted Ω = ω ×
[0, ℓ] with ω ⊂ R

2. The first two directions, called x ∈ ω, correspond to the classical
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description of the gas, whereas in the third direction z ∈ [0, ℓ] quantum effects occur. The
quantum confinement of the electron gas is described thanks to the eigen-elements of the
1D Schrödinger operator. They are denoted (ǫn, χn)n∈N∗ and solve the eigenvalue problem :





−
~
2

2

d

dz

(
1

m∗(z)

d

dz
χn

)
+ Uχn = ǫnχn,

χn(x, ·) ∈ H1
0 (0, ℓ),

∫ ℓ

0

χn χn′ dz = δnn′ .

(2.1)

In this equation ~ is the reduced Planck constant, m∗ the effective mass. It is known that
the eigenvalues ǫn in (2.1) form an increasing sequence tending to +∞. These functions
depend on the potential energy defined by U = −eV , where e is the elementary charge and
V denotes the self-consistent electrostatic potential, solution of the Poisson equation

div x,z(εR(x, z)∇x,zV ) =
e

ε0
(Ne −ND). (2.2)

Here εR(x, z) denotes the relative permittivity, ε0 the permittivity constant in vacuum,
ND(x, z) is the prescribed doping density and Ne(t, x, z) is the electron density. This density
is described by a sequence of distribution functions (fn)n∈N∗ describing the repartition on
each subband for the classical direction x ∈ ω and the corresponding momentum variable
k ∈ R

2. It is written as

Ne(t, x, z) =
+∞∑

n=1

(∫

R2

fn(t, x, k) dk

)
|χn|

2(t, x, z).

The evolution of distribution functions is governed by classical transport model in the x
direction parallel to the gas. The total energy of the nth subband is defined by

εn(t, x, k) =
|k|2~2

2m∗
+ ǫn(t, x). (2.3)

Therefore the energy-band diagram of the semiconductor crystal is spherically symmetric
and strictly monotone with respect to |k|. Then the Brillouin zone (which represents the
elementary cell of the dual lattice L∗) is equal to R

2. Moreover, we point out that, in
contrast with the classical counterpart, the energy-band depends on space and time. In a
kinetic collisional framework, the distribution function fn of the nth subband satisfies the
rescaled Boltzmann transport equation [4, 31] :

α2∂tf
α
n + α(∇kεn · ∇xf

α
n −∇xεn · ∇kf

α
n ) = Qld(f

α)n +
α2

β
Qe(f

α)n, (2.4)

where Qld is the collision operator for the lattice defect collisions and Qe is the collision
operator for the elastic, non linear electron-electron collisions, accounting for intra–band
scattering as well as for transitions between subbands. α and β are dimensionless parameters
that satisfy α≪ β ≪ 1.

The main classes of lattice-defects that we shall consider are impurities and phonons [1] :

Qld(f) = Qimp(f) +Qph(f).
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The elastic character of the impurity scattering leads to

Qimp(f)n(k) :=
∑

n′∈N∗

∫

R2

Φimp
n,n′(k, k

′)δ(εn(k)− εn′(k′))(fn′(t, x, k′)− fn(t, x, k)) dk
′,

where δ is the Dirac measure and the dependence on t, x of ε and Φimp has been omitted.
The cross-section is assumed to be symmetric: Φimp

n,n′(k, k′) = Φimp
n′,n(k

′, k).
The electron-phonon collision operator is considered as

Qph(f)n(k) =
∑

n′∈N∗

∫

R2

Φph
n,n′(k, k

′)

([(Nph + 1)δ(εn(k)− εn′(k′) + α2εph) +Nphδ(εn(k)− εn′(k′)− α2εph)]fn′(k′)(1− ηfn(k))−

[(Nph + 1)δ(εn′(k′)− εn(k) + α2εph) +Nphδ(εn′(k′)− εn(k)− α2εph)]fn(k)(1− ηfn′(k′)))dk′,

where again, Φph
n,n′(k, k′) = Φph

n′,n(k
′, k), εph is the phonon energy, η ≥ 0 is a dimensionless

distribution function scaling factor and the terms 0 ≤ 1−ηfn ≤ 1 express the Pauli exclusion
principle. Nph is the phonon occupation number, given by the Bose-Einstein statistics

Nph =
(
eα

2εph/(kBTL) − 1
)−1

, (2.5)

with TL the lattice temperature and kB the Boltzmann constant. Formally expanding the
phonon collision operator in power of α2, we get

Qα
ph(f) = Qph,0(f) + α2Qα

ph,1(f)

where Qα
ph,1 is of order 1 when α goes to 0.

The electron-electron collision operator is given by [33]

Qe(f)n(k) =∑

n′,r,s

∫

(R2)3
Φe

n,n′,r,s(k, k
′, k1, k

′
1)δ(εn + εn′,1 − ε′r − ε′s,1)δ(k + k1 − k′ − k′1)

[f ′
rf

′
s,1(1− ηfn)(1− ηfn′,1)− fnfn′,1(1− ηf ′

r)(1− ηf ′
s,1)] dk

′dk1dk
′
1.

(2.6)

The notation fn′,1, f
′
r and f ′

s,1 stands for fn′(k1), fr(k
′) and fs(k

′
1), respectively.

We define then the elastic collision operator

Q0(f)n = Qimp(f)n +Qph,0(f)n

=
∑

n′∈N∗

∫

R2

Φ0
n,n′(k, k′)δ(εn(k)− εn′(k′))(fn′(k′)− fn(k)) dk

′,
(2.7)

where Φ0
n,n′ = Φimp

n,n′ + (2Nph + 1)Φph
n,n′. We set

Qα
1 (f) = Qα

ph,1(f) +
1

β
Qe(f). (2.8)

Then, the kinetic equation, starting point for the diffusive limits, is written in the fol-
lowing form

α2∂tf
α
n + α(∇kεn · ∇xf

α
n −∇xεn · ∇kf

α
n ) = Q0(f

α)n + α2Qα
1 (f

α)n. (2.9)
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2.2 Definitions and notations

We first recall the coarea formula : for any C1 function g : B 7→ R, and any test function
ψ ∈ C0(B), we have :

∫

B

ψ(k) dk =

∫

R

(∫

g−1(ε)

ψ(k)
dSε(k)

|∇g(k)|

)
dε,

where dSε(k) denotes the Euclidian surface element on the manifold g−1(ε). We denote
dNε(k) = dSε(k)/|∇g(k)|. Taking g(k) = |k|2~2/(2m∗), the set of possible wave vectors of
electrons belonging to the n − th subband and having total energy ε is given by Sε−ǫn =
{k ∈ R

2 s. t. |k|2 = 2m∗
~
−2(ε − ǫn)} and dNε−ǫn = dSε−ǫn

|k|~2/m∗
where dSε−ǫn is the surface

measure of the ball Sε−ǫn. The coarea formula leads to :

∑

n∈N∗

∫

R2

ψn(k) dk =
∑

n∈N∗

∫ +∞

ǫn

(∫

Sε−ǫn

ψn(k)dNε−ǫn(k)

)
dε, (2.10)

and ∑

n∈N∗

∫

R2

ψn(k)δ(ǫn +
|k|2~2

2m∗
− ε) dk =

∑

n∈N∗

∫

Sε−ǫn

ψn(k)dNε−ǫn(k).

Definition 2.1 We will use the following notations :

• The density of states is defined by :

N(t, x, ε) :=
∑

n∈N∗

∫

Sε−ǫn

dNε−ǫn(k) = 2π
m∗

~2
N (t, x, ε),

where N (t, x, ε) = max{n ∈ N
∗ / ǫn(t, x) ≤ ε}, with the convention of N (t, x, ε) = 0

if ε < ǫ1(t, x).

• The Fermi-Dirac function is given by

Fµ,T (t, x, ε) =

(
η + exp

(
ε− µ

kBT

))−1

.

• We introduce the two Hilbert spaces

L
2 := {f = (fn)n∈N∗ ,

+∞∑

n=1

∫

R2

|fn(k)|
2 dk < +∞},

endowed with the natural scalar product

〈f, g〉 =
∑

n∈N∗

∫

R2

fn(k)gn(k) dk,

and

L
2
F = {f ∈ L2(R) s. t.

∫

R

f 2(ε)
dε

F(ε)(1− ηF(ε))
< +∞},

endowed with the weighted scalar product defined by

〈f, g〉F =

∫

R

f(ε)g(ε)
dε

F(ε)(1− ηF(ε))
.
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We will make the following assumption on the cross-section :

Assumption 2.2 The coefficient Φ0
n,n′ satisfies, for λ0 and λ1 two positive constants,‘

0 < λ0 < Φ0
n,n′N(t, x, εn) < λ1, Φ0

n,n′(k, k′) = Φ0
n′,n(k

′, k),

where N is the density of state defined above.

2.3 First macroscopic scaling : the spherical harmonic expansion

model

For the sake of completness of this work, we present in this section the limit α → 0 of the
kinetic equation (2.9). All calculations will be done formally and we refer the reader to [7]
where the rigorous derivation is studied. We consider the Hilbert expansion

fα = f 0 + αf 1 + α2f 2 + · · ·

By linearity of the operator Q0 and by identifying the term of equal powers of α in (2.9),
we obtain

Q0(f
0) = 0, (2.11)

Q0(f
1)n =

~
2k

m∗
· ∇xf

0
n −∇xǫn · ∇kf

0
n, (2.12)

Q0(f
2)n = ∂tf

0
n +

~
2k

m∗
· ∇xf

1
n −∇xǫn · ∇kf

1
n −Q0

1(f
0)n, (2.13)

where Q0
1 is obtained by taking α = 0 in the expression (2.8).

We will then make use of the following properties of the collision operator (see [7]).

Proposition 2.3 Under Assumption 2.2, the elastic collision operator Q0 defined in (2.7)
satisfies the following properties :

1. The linear operator Q0 : L2 7→ L
2 is a bounded, symmetric, non-positive operator.

2. For any bounded function ψ : R 7→ R, we denote ψ(ε)n(k) = ψ( |k|
2~2

2m∗
+ ǫn). Then,

∀ f ∈ L
2, Q0(ψ(ε)f) = ψ(ε)Q0(f).

3. The Kernel of Q0 is the set

Ker Q0 = {f ∈ L
2, s.t. ∃ψ : R → R, f = ψ(ε)}.

4. The range R(Q0) is closed and coincide with the orthogonal of the kernel of Q0 given
by :

(Ker Q0)
⊥ = {f ∈ L

2, s.t.
∑

n∈N∗

∫

Sε−ǫn

fn(k) dNε−ǫn(k) = 0, for a.e. ε ≥ ǫ1}.
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From Proposition 2.3 and (2.11), we deduce that f 0 is an energy dependent function :

f 0
n(t, x, k) = F (t, x, εn).

Choosing ψ : R → R such that kψ(ε) ∈ L
2, we deduce from Proposition 2.3 that there exists

a unique solution ξ in (Ker Q0)
⊥ such that

−Q0(ξ) =
~
2k

m∗
ψ(ε).

We can write ξ = Θ · ψ(ε) and from the second item of Proposition 2.3, Θ is independent
of the choice of the function ψ. Then, equation (2.12) leads to

f 1
n(t, x, k) = −Θn(t, x, k) · ∇xF (t, x, εn). (2.14)

Finally, the solvability condition of equation (2.13) is that the right hand side belongs to
(Ker Q0)

⊥. This leads to

∑

n∈N∗

∫

Sε−ǫn

(∂tf
0
n +∇kεn · ∇xf

1
n −∇xǫn · ∇kf

1
n −Q0

1(f
0)n) dNε−ǫn(k) = 0, for a.e. ε ≥ ǫ1.

(2.15)
Let us denote

Se(F ) =
∑

n∈N∗

∫

Sε−ǫn

Qe(F )n dNε−ǫn(k), and S1(F ) =
∑

n∈N∗

∫

Sε−ǫn

Q0
ph,1(F )n dNε−ǫn(k).

(2.16)
Multiplying (2.15) by an energy-dependent test function φ(ε) and integrating with respect
to the variable ε, we obtain for the first term :
∫ ∞

ǫ1

∑

n∈N∗

∫

Sε−ǫn

∂tf
0
n dNε−ǫn(k)φ(ε) dε =

∫ ∞

ǫ1

∑

n∈N∗

∫

Sε−ǫn

(∂tF + ∂εF∂tǫn) dNε−ǫn(k)φ(ε) dε

=

∫ ∞

ǫ1

N∂tFφ(ε) dε+

∫ ∞

ǫ1

∂εF

(
∑

n∈N∗

∂tǫn
∫

Sε−ǫn

dNε−ǫn(k)

)
φ(ε) dε.

Using the coarea formula (2.10), we deduce that

∫ ∞

ǫ1

(
∑

n∈N∗

∫

Sε−ǫn

(∇kεn · ∇xf
1
n −∇xǫn · ∇kf

1
n) dNε−ǫn(k)

)
φ(ε) dε =

=
∑

n∈N∗

∫

R2

(∇x · (
~
2k

m∗
f 1
n)−∇k · (f

1
n∇xǫn))φ(εn) dk = ∇x ·

(
∑

n∈N∗

∫

R2

~
2k

m∗
f 1
nφ(εn) dk

)
=

= −

∫ ∞

ǫ1

∇x ·

(
∑

n∈N∗

∫

Sε−ǫn

~
2k

m∗
⊗Θn dNε−ǫn(k) · ∇xF

)
φ(ε) dε,

where the last identity is a consequence of (2.14). We define the diffusion matrix by

D(t, x, ε) :=
∑

n∈N∗

∫

Sε−ǫn

~
2k

m∗
⊗Θn dNε−ǫn(k), (2.17)
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and the current density by

J(t, x, ε) = −D(t, x, ε) · ∇xF (t, x, ε). (2.18)

With these notations, we get that in the distributional sense, equation (2.15) is equivalent
to the spherical harmonic expansion (SHE) model

N∂tF +∇x · J − κ∂εF =
1

β
Se(F ) + S1(F ), (2.19)

where κ is given by

κ(t, x, ε) = −2π
m∗

~2
∂t

(
∑

n∈N∗

(ε− ǫn)+
)
. (2.20)

The notation u+ = max{0, u} denotes the positive part of u. We recall moreover a property
of the diffusion matrix D stated in Lemma 2.8 of [7]. We point out that the effect of the
confinement is reflected in the special form of the coefficients of (2.19), which involve the
subband energies.

Lemma 2.4 The diffusion matrix D(t, x, ε) define in (2.17) is a symmetric and nonnegative
2× 2 matrix.

Remark 2.5 We end this section with a particular choice of the cross–section Φ0
n,n′, which

allows to compute explicitly the diffusion matrix. If the cross-section is an energy-dependent
function of the form

Φ0
n,n′(t, x, k, k′) = Φ0(t, x, εn),

then, after a straightforward computation, we have that

Θn(t, x, k) =
1

Φ0(t, x, εn)N(t, x, εn)
∇kεn.

Therefore, the diffusion matrix defined in (2.17) has the expression

D(t, x, ε) =
π~2/m∗

Φ0(t, x, ε)N(t, x, ε)

∑

n∈N∗

(ε− ǫn)+ Id. (2.21)

2.4 Second macroscopic scaling : the energy-transport model

We start from the SHE model (2.19) and we assume that the electron-electron collision
operator is dominant with respect to the second order correction of the phonon collision
operator and therefore β ≪ 1, in order to obtain an ET model. Passing through the
SHE model, instead of starting directly from the Boltzmann equation allows to get an
explicit expression of the coefficients, which is needed for numerical purpose. Moreover,
the considered dominant scattering mechanisms provide an energy relaxation term in the
macroscopic limiting model.

The formal limit β → 0 in (2.19) is again performed by means of a Hilbert expansion

F = F 0 + βF 1 + · · ·

8



Identifying equal powers of β implies

Se(F0) = 0, (2.22)

N∂tF
0 +∇xJ

0 − κ∂εF
0 − S1(F

0) = DF 0Se(F
1), (2.23)

where DF 0Se denotes the Fréchet derivative of Se at F 0.
We summarize below some useful properties of the collision operator Se defined in (2.16)

and of its Fréchet derivative.

Proposition 2.6 Under micro-reversibility assumptions on the cross-section Φe, the oper-
ator Se satisfies the following properties :

(i) For all f, g ∈ L2(R), we have :

∫

R

Se(f)(ε)g(ε)dε =

= −
1

4

∑

n,n′,r,s

∫

(R2)4
Φe

n,n′,r,sδεδk[f(εr(k
′))f(εs(k

′
1))(1− ηf(εn(k)))(1− ηf(εn′(k1)))

− f(εn(k))f(εn′(k1))(1− ηf(εr(k
′)))(1− ηf(εs(k

′
1)))[g

′
r + g′s,1 − gn − gn′,1] dkdk1dk

′dk′1.

(ii) kernel :

Ker Se = {f ∈ L2(R); ∃µ(t, x), T (t, x) s. t. f(t, x, ε) = Fµ,T (t, x, ε)},

where Fµ,T is the so-called Fermi-Dirac distribution function (see Definition 2.1).

Proposition 2.7 The linear operator DFSe satisfies
(i) DFSe is bounded, symmetric, non-positive on L

2
F .

(ii) The kernel of DFSe is given by

Ker (DFSe) = Span{F(1− ηF),F(1− ηF)ε}

(iii) The range of DFSe is closed and we have

R(DFSe) = Ker (DFSe)
⊥ =

{
f ∈ L

2
F /

∫

R

f(ε)

(
1
ε

)
dε = 0

}
.

These properties are an easy consequence of Proposition 3.16, Proposition 3.17 and
Proposition 3.19 of [7], using the fact that :

∫

R

Se(f)(ε)g(ε) dε =

∫ +∞

ǫ1

∑

n∈N∗

∫

Sε−ǫn

Qe(f)n(ε)g(ε) dNε−ǫn(k)dε

=
∑

n∈N∗

∫ +∞

ǫn

∫

Sε−ǫn

Qe(f)n(ε)g(ε) dNε−ǫn(k)dε

=
∑

n∈N∗

∫

R2

Qe(f)n(εn)g(εn) dk,

9



where we use the coarea formula (2.10) for the last identity.

Formal derivation of energy-transport model. Let us come back to the formal limit
β → 0 in (2.19). Thanks to Proposition 2.6, equation (2.22) implies that there exist µ(t, x)
and T (t, x) such that

F 0(t, x, ε) = Fµ,T (t, x, ε) (2.24)

From Proposition 2.7 we deduce that equation (2.23) admits a solution iff

∫

R

(N∂tF
0 +∇x · J

0 − κ∂εF
0 − S1(F

0))

(
1
ε

)
dε = 0. (2.25)

For the first term, the definition of the density of states N (see Definition 2.1) implies that
N(t, x, ε) = 2πm∗

~2
n if ε ∈ [ǫn, ǫn+1) and vanishes for ε < ǫ1. Then

∫

R

N∂tF
0

(
1
ε

)
dε =

∑

n∈N∗

∫ ǫn+1

ǫn

2π
m∗

~2
n∂tF0

(
1
ε

)
dε

= ∂t

(∫

R

NF 0

(
1
ε

)
dε

)
− 2π

m∗

~2

∑

n∈N∗

∂tǫnF 0(ǫn)
(

1
ǫn

)
.

Using the expression of the current (2.18), we can rewrite the second term of (2.25) :

∫

R

∇x · J
0

(
1
ε

)
dε = −∇x ·

[∫

R

D(t, x, ε) · ∇xF
0(t, x, ε)

(
1
ε

)
dε

]
.

From (2.20), we deduce

∫

R

κ∂εF
0

(
1
ε

)
dε =

∑

n∈N∗

∫ ∞

ǫn

2π
m∗

~2
∂tǫn ∂εF 0

(
1
ε

)
dε

= −
∑

n∈N∗

2π
m∗

~2
∂tǫn F 0(ǫn)

(
1
ǫn

)
−
∑

n∈N∗

2π
m∗

~2
∂tǫn

∫ ∞

ǫn

F 0(ε)

(
0
1

)
dε,

where we use an integration by part for the last identity. Finally, the solvability condition
(2.25) writes in the following form :

∂t

(∫

R

NF 0

(
1
ε

)
dε

)
+
∑

n∈N∗

2π
m∗

~2
∂tǫn

∫ ∞

ǫn

F 0(ε)

(
0
1

)
dε

−∇x ·

[∫

R

D(t, x, ε) · ∇xF
0(t, x, ε)

(
1
ε

)
dε

]
=

∫

R

S1(F
0)

(
1
ε

)
dε.

(2.26)

Let us denote by ρ and ρE the charge density and the energy density, respectively,
associated to the Fermi-Dirac distribution function Fµ,T :

ρµ,T (t, x) :=

∫

R

NFµ,T (t, x, ε) dε =
∑

n∈N∗

∫

R2

Fµ,T (t, x, εn) dk, (2.27)

ρEµ,T (t, x) :=

∫

R

NFµ,T (t, x, ε)ε dε =
∑

n∈N∗

∫

R2

εnFµ,T (t, x, εn) dk. (2.28)
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We can state easily that for a Fermi-Dirac function, we have

∇xFµ,T (t, x, ε) = −Fµ,T (1− ηFµ,T )

(
ε∇x(

1

kBT
)−∇x(

µ

kBT
)

)
.

Then, equation (2.26) reads, using
∫
R
S1(F) dε = 0,

∂tρµ,T −∇x · J1 = 0, (2.29)

∂t(ρEµ,T ) +
∑

n∈N∗

2π
m∗

~2
∂tǫn

∫ ∞

ǫn

Fµ,T (t, x, ε) dε−∇x · J2 =W, (2.30)

where we denote

J1 :=

∫

R

D(t, x, ε) · ∇xFµ,T (t, x, ε) dε = D00∇x(
µ

kBT
)− D01∇x(

1

kBT
), (2.31)

J2 :=

∫

R

εD(t, x, ε) · ∇xFµ,T (t, x, ε) dε = D10∇x(
µ

kBT
)− D11∇x(

1

kBT
), (2.32)

and where the diffusion coefficients are defined by

Dij(t, x) =

∫

R

D(t, x, ε)εi+jFµ,T (1− ηFµ,T ) dε, for i, j = 0, 1, (2.33)

with D being defined in (2.17). The system (2.29)–(2.33) forms the energy-transport model
in the transport direction for a partially confined electron gas. We recover the general form
for energy-transport models for semiconductors (see [3, 4, 24] and references therein). The
right hand side of the energy equation (2.30) is the so-called relaxation term W and it is
defined by

W :=

∫

R

εS1(Fµ,T ) dε =
∑

n∈N∗

∫ +∞

ǫn

(∫

Sε−ǫn

Q0
ph,1(f)ndNε−ǫn(k)

)
ε dε. (2.34)

As for the SHE model (2.19), the presence of the subband energies in the diffusion matrix
and in the relaxation term reflects the effect of the confinement in the transport equation.

Then we have the following important property for the diffusion matrix which is an easy
consequence of expression (2.33) and Lemma 2.4.

Lemma 2.8 The diffusion matrix

D :=

(
D00 D01

D10 D11

)

is a symmetric and positive definite matrix.

Remark 2.9 After straightforward calculations, we can have an explicit expression of ρ and
ρE . In fact,

ρµ,T (t, x) =
∑

n∈N∗

∫ ǫn+1

ǫn

2π
m∗

~2
nFµ,T (t, x, ε) dε =

2πm∗kBT

η~2

∑

n∈N∗

log(1 + η exp(
µ− ǫn
kBT

)),
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ρEµ,T (t, x) =
∑

n∈N∗

2π
m∗

~2
n

∫ ǫn+1

ǫn

εFµ,T (t, x, ε) dε

if η > 0. For Boltzmann statistics η = 0, we have

ρµ,T (t, x) =
∑

n∈N∗

2π
m∗

~2
kBT (t, x) exp(

µ(t, x)− ǫn(t, x)
kBT (t, x)

), (2.35)

ρEµ,T (t, x) =
∑

n∈N∗

2π
m∗

~2
kBT (t, x)(ǫn(t, x) + T (t, x)) exp(

µ(t, x)− ǫn(t, x)
kBT (t, x)

). (2.36)

2.5 Relaxation term W

The relaxation term defined in (2.34) measures the influence of the interaction of phonons
with the charge carriers. In [31] we have formally established that a diffusion limit of the
kinetic Boltzmann transport equation coupled to subband model in the scaling of domi-
nant phonon-electron interaction leads to a drift-diffusion system in the transport direction
coupled to the subband model. Using the coarea formula we can rewrite (2.34) as

W =
∑

n∈N∗

∫

R2

εnQ
0
ph,1(Fµ,T ) dk.

Moreover, we have

∑

n∈N∗

∫

R2

εnQ
α
ph(Fµ,T )n dk =

∑

n,n′

∫

R4

Φph
n,n′(k, k

′)

([(Nph + 1)δ(εn − ε′n′ + α2εph) +Nphδ(εn − ε′n′ − α2εph)]εnF
′
n′(1− ηFn)−

[(Nph + 1)δ(ε′n′ − εn + α2εph) +Nphδ(ε
′
n′ − εn − α2εph)]εnFn(1− ηF ′

n′)) dkdk′,

where the notation ε′n′, Fn and F ′
n′ stands, respectively, for εn′(k′), Fµ,T (εn) and Fµ,T (ε

′
n′).

Since the Fermi-Dirac distribution function is energy-dependent, we have

∑

n∈N∗

∫

R2

εnQ
α
ph(Fµ,T )n dk =

∑

n,n′

∫

R4

Φph
n,n′(k, k

′)(1− ηF ′
n′)(1− ηFn)

([(Nph + 1)δ(εn − ε′n′ + α2εph) +Nphδ(εn − ε′n′ − α2εph)]εnM
′
n′−

[(Nph + 1)δ(ε′n′ − εn + α2εph) +Nphδ(ε
′
n′ − εn − α2εph)]εnMn) dkdk

′,

where Mn = e(µ−εn)/(kBT ) is the Maxwellian and it satisfies Fn =Mn(1− ηFn). Moreover,

∑

n∈N∗

∫

R2

εnQ
α
ph(Fµ,T )n dk =

∑

n,n′

∫

R4

Φph
n,n′(k, k

′)(1− ηF ′
n′)(1− ηFn)

(δ(εn − ε′n′ + α2εph)[(Nph + 1)M ′
n′ −NphMn]εn−

δ(ε′n′ − εn + α2εph)[(Nph + 1)Mn −NphM
′
n′](ε′n′ + α2εph)) dkdk

′.
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By changing the variable εn with ε′n′ in the first term of the sum, we notice that only the
α2-factor term does not vanish in this last identity, which can be rewritten as

∑

n,n′

∫

R4

Φph
n,n′(1− ηF ′

n′)(1− ηFn)εphδ(εn − ε′n′ − α2εph)[NphM
′
n′ − (Nph + 1)Mn] dkdk

′ =

∑

n,n′

∫

R4

Φph
n,n′(1− ηF ′

n′)(1− ηFn)εphδ(εn − ε′n′ − α2εph)NphMn(e
α2εph

kBT − e
α2εph

kBTL ) dkdk′,

where the phonon occupation number Nph is defined in (2.5). Letting α→ 0, we have that
Nph(e

α2εph/kBT − eα
2εph/kBTL) → TL(

1
T
− 1

TL
). Thus

W = TL(
1

T
−

1

TL
)
∑

n,m

∫

R4

Φph
n,n′(k, k

′)Fn(1− ηFn)εphδ(εn − ε′n′) dkdk′. (2.37)

The following lemma proves that W is a temperature relaxation term which relaxes T
to the lattice temperature TL.

Lemma 2.10 Let W be defined in (2.34). Then, we have

W · (T − TL) ≤ 0.

Proof. The proof of this result is an immediate consequence of (2.37).

2.6 Formal derivation of drift-diffusion equation.

In the case where the electron-phonon scattering is dominant, after a rescaling we have
W = 1

γ
W̃ with a parameter γ ≪ 1. Then equation (2.30) with expression (2.37) implies

that formally in the limit γ → 0, we have T = TL. Then (2.29) leads to the well-known
drift-diffusion model

∂tρµ −∇x

(
D00

kBTL
∇xµ

)
= 0. (2.38)

Moreover, assuming η = 0, the equilibrium is then given by a Boltzmann statistics. We
deduce therefore from (2.35) that for T = TL

ρµ = 2π
m∗

~2
kBTLe

µ/kBTL

∑

n∈N∗

e−ǫn/kBTL. (2.39)

Then

∇xρµ =
1

kBTL
ρµ∇xµ+ ρµ

∇x(
∑

n e
−ǫn/kBTL)∑

n e
−ǫn/kBTL

.

We can introduce as in [8] the effective potential energy defined by

Vs = −kBTL log
( ∑

n∈N∗

e−ǫn/kBTL
)
. (2.40)
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Then, we have
ρµ∇xµ = (kBTL∇xρµ + ρµ∇xVs) ,

such that, denoting D = D00/ρµ, we recover from (2.38) the standard formulation of the
drift-diffusion system [8] :

∂tρµ −∇x · (D(kBTL∇xρµ + ρµ∇xVs)) = 0. (2.41)

Remark 2.11 We conclude the section noticing the similarities and the differences between
the classical and the partially confined energy-transport model. Due to partial confinement
in the z direction, the electron density in the transport direction contains T as factor rather
than T 3/2. Moreover, we point out that the system (2.29)-(2.33) in the variables µ/kbT ,
−1/kbT is in symmetric form, with the electric forces appearing in the diffusion coeffi-
cients through the eigenenergies ǫn (which in turns depend on the electrostatic potential).
In the partially confined framework, the diffusive limiting process brought directly to a set
of variables which can be interpreted as dual entropy variables (using the denomination of
nonequilibrium thermodynamics [17, 26]). In this framework, T can be interpreted as elec-
tron temperature, and the variable µ as quasi-Fermi potential energy. This fact is clear
considering the drift-diffusion model (2.41). Indeed, using the effective potential energy Vs
defined in (2.40), we can write the electron density (2.39) as

ρµ = 2π
m∗

~2
kBTLe

(µ−Vs)/kBTL,

which gives the classical relation between electron density and quasi-Fermi energy. A chem-
ical potential can then be defined as µchem = µ− Vs.

3 Numerical simulation

The device we are modelling in this work is a nanoscale Double-Gate MOSFET (Metal
Oxide Semiconductor Field Effect Transistor) such as in [31]. This device consists of a
silicon film, characterized by two highly doped regions near the Ohmic contacts (denoted
by source and drain) and an active region, called channel, with lower doping. The silicon
film is sandwiched between two thin layers of silicon dioxide SiO2, each of them with a gate
contact.

We assume invariance in the x2 direction (infinite boundary conditions), so that the
problem is studied in a (x1, z)-domain. The device occupies a region of a 2D domain
denoted by Ω=[0, L]× [0, ℓ]. A schematic representation of the device is shown in Figure 1.

3.1 Energy-transport–Schrödinger–Poisson system

In the following, we describe the collisional transport in the Double-Gate MOSFET, schema-
tized in Figure 1, by means of the energy-transport model (2.29)–(2.33). The confinement
is described by the subband decomposition approach, which involves the resolution of the
eigenvalue problem (2.1), taking also into account the presence of the oxide. Moreover, in
order to provide explicitly computable diffusion and relaxation terms, the following physical
assumptions will be used.
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Figure 1: Schematic representation of the modeled device.

Assumption 3.1 • (H1) The cross-sections Φ0 and Φph are assumed to be energy de-
pendent functions and to have the following expression (see [3, 5, 15])

Φ0
n,n′(t, x, k, k′) = φ0(t, x)εsn, Φph

n,n′(t, x, k, k
′) = φph(t, x)εsn, (3.1)

with −2 < s < 2. In the physical literature, the values s = 0 and s = 1/2 have been
used [14, 24, 28].

• (H2) The electron density and the energy are assumed to be given by non-degenerate
Boltzmann statistics, i.e. η = 0, as in (2.35), (2.36).

Using Assumption (H1), we deduce that the diffusion matrix (2.21) has the following
expression

D(t, x, ε) =
1

φ0(t, x)εsN (ε)

∑

n∈N∗

(ε− ǫn)+ Id, (3.2)

where N (ε) = max{n ∈ N
∗ / ǫn ≤ ε} is the number of non-zero terms in the sum (see

Definition 2.1). Moreover, thanks to the coarea formula in (2.37), we have

W = −4π2εph(1−
TL
T

)

∫ +∞

ǫ1

φph εsN 2(ε)F(ε)(1− ηF(ε)) dε,

which under Assumption (H2), reads

W = −4π2εph(1−
TL
T

)eµ/(kBT )

∫ +∞

ǫ1

φph εsN 2(ε)e−ε/(kBT ) dε.

By defining

W0 = 4π2εph

∫ +∞

ǫ1

φph εsN 2(ε)e−ε/(kBT ) dε, (3.3)

we have the compact expression

W = −W0

(
1−

TL
T

)
eµ/(kBT ). (3.4)
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Assumption (H2) implies also that the density of charge carriers Ne(t, x, z) is given by

Ne =
∑

n∈N∗

∫

R2

Fµ,T (t, x,
|k|2~2

2m∗
+ ǫn) dk|χn|

2 =
2πm∗kBT

~2

∑

n∈N∗

e(µ−ǫn)/kBT |χn|
2.

Finally, the coupled subband energy-transport model under Assumption 3.1 is given by :
Find µ(t, x), T (t, x), (ǫn(t, x), χn(t, x)) for n ≥ 1, and V (t, x, z) such that

∂tρµ,T −∇x · J1 = 0, in (0, L) (3.5)

∂t(ρEµ,T ) +
∑

n∈N∗

2π
m∗

~2
∂tǫnkBT (t, x)e(µ−ǫn)/kBT −∇x · J2 =W, in (0, L) (3.6)





−
~
2

2

d

dz

(
1

m∗(z)

d

dz
χn

)
− e(V + Vc)χn = ǫnχn, in (0, ℓ)

χn(t, x, ·) ∈ H1
0 (0, ℓ),

∫ ℓ

0

χn χn′ dz = δnn′ ,

(3.7)

divx,z(εR∇x,zV ) =
e

ε0

(
2πm∗kBT

~2

∑

n∈N∗

e(µ−ǫn)/kBT |χn|
2 −ND

)
, in Ω, (3.8)

where the expressions of ρµ,T and Eµ,T with respect to the unknows are given in (2.35)–
(2.36). In (3.7) the effective mass m∗ takes different values in the Si and in the SiO2

domain. Moreover, Vc represents a given potential barrier between the silicon and the
oxide. The currents J1 and J2 are given by the expressions

J1 = D00∇x

( µ

kBT

)
− D01∇x

( 1

kBT

)
, (3.9)

J2 = D10∇x

( µ

kBT

)
− D11∇x

( 1

kBT

)
, (3.10)

where, under Assumption 3.1, the diffusion coefficients are given by

Dij =
1

φ0

∑

n∈N∗

∫ +∞

ǫn

εi+j−s(ε− ǫn)
N (ε)

e(µ−ε)/kBT dε.

The relaxation term W is given by (3.4).
This system is complemented with initial and boundary conditions. In particular, at the

ohmic contacts and at the gate (see Figure 1), we will impose Dirichlet boundary conditions
for the potential, otherwise we fix homogeneous Neumann boundary conditions, which model
isolating conditions.

V (x, z) = VGate, for z ∈ {0, ℓ}, x ∈ Gate ; (3.11)

V (x, z) = VD, for x ∈ {0, L}, z ∈ (0, ℓ); (3.12)

∂V

∂ν
= 0, elsewhere, (3.13)
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where ν is the outward unit normal. Since the transport occurs only in the longitudinal
direction, we just have to impose boundary conditions in x = 0 and x = L for µ and T .
The temperature is assumed to be at the lattice temperature TL, thus

T (x) = TL, for x ∈ {0, L}. (3.14)

Then, we consider that the surface density of the charge carriers is almost constant near
the frontiers x = 0 and x = L and given by N b

s . The surface density being the integral over
z of the total density (N b

s = N+ × ℓSi), we deduce

µ(x) = µb := kBTL log

(
N b

s~
2

2πmkBTL
∑

n e
−ǫn/kBTL

)
, for x ∈ {0, L}. (3.15)

3.2 Stationary system

Let us introduce the notations

u =
µ

kBT
, v = −

1

kBT
. (3.16)

Then we can rewrite the expressions of the current (3.9)–(3.10) as

J1 = D00(u, v)∇xu+ D01(u, v)∇xv, (3.17)

J2 = D10(u, v)∇xu+ D11(u, v)∇xv, (3.18)

where the diffusion coefficients are given by

Dij(u, v) =
1

φ0

∑

n∈N∗

∫ +∞

ǫn

εi+j−s(ε− ǫn)
N (ε)

eu+εv dε. (3.19)

We define the relaxation coefficient in the same way :

W0(u, v) = 4π2εph

∫ +∞

ǫ1

φph εsN 2(ε)e(ε−µ)v dε. (3.20)

Then, the stationary version of the energy-transport subband system (3.5)–(3.6) in vari-
able u and v writes

−∇x(D00(u, v)∇xu+ D01(u, v)∇xv) = 0, (3.21)

−∇x(D10(u, v)∇xu+ D11(u, v)∇xv) = −W0(u, v) (1 + kBTLv) , (3.22)

Boundary conditions (3.14)–(3.15) become

v(x) = vb := −
1

kBTL
, for x ∈ {0, L},

and

u(x) = ub := log

(
N b

s~
2

2πmkBTL
∑

n e
−ǫn/kBTL

)
, for x ∈ {0, L}.
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3.3 Numerical approach for the energy-transport system

We introduce a partition of [0, L] with nodes xi, i = 0, · · · , Nx, and a partition of [0, ℓ]
with nodes zj, j = 0, · · · , Nz. We assume that the partitions are uniform and denote
h = xi − xi−1. Then, we mesh the domain [0, L]× [0, ℓ] with rectangular triangles using the
nodes (xi, zj) previously defined. The Schrödinger equations and the Poisson equation are
discretized with conforming P 1 finite elements.

We consider here in details the discretization scheme for the equations governing u and
v, assuming first that the eigenenergies ǫn are known. Using the following notations

U = (u, v)⊤, J = (J1, J2)
⊤, W (U) = (0,W0(u, v)(1 + kBTLv))

⊤

equations (3.17)-(3.18) and (3.21)-(3.22) can be written in compact form as

J = D(U)∇xU, ∇x · J =W (U). (3.23)

Denoting by Ui an approximation of U(xi), we take the piecewise constant approximation
of U given, in the interval Ii := (xi−1, xi), by

U i =
Ui−1 + Ui

2
.

and define the piecewise constant diffusion coefficients and relaxation terms as

Dkl = Dkl(U), for k, l = 0, 1; W = W (U). (3.24)

We are going to use a mixed finite element discretization of lowest order in hybridized
form [10] (see also [19, 20] for applications to ET). Let us introduce the following finite
dimensional spaces :

Xh = {σ ∈ L2(Ω) : σ(x) = ai + bi(x− xBi
) in Ii, i = 1, . . . , Nx},

Yh = {ξ ∈ L2(Ω) : ξ is constant in Ii, i = 1, . . . , Nx},

Zh,χ = {q is defined at the nodes x0, . . . , xNx
, q(x0) = χ(0), q(xNx

) = χ(1)},

where xBi
denotes the central point of the interval Ii, and χ is prescribed.

Then, the mixed-hybrid formulation of (3.23) reads as follows: Find Jh ∈ X2
h, Ph ∈ Y 2

h ,
and Uh ∈ Zh,ub

× Zh,vb such that

Nx∑

i=1

(∫

Ii

φh · D(U i)
−1
Jhdx+

∫

Ii

Ph · ∇xφhdx− [φh · Uh]
xi

xi−1

)
= 0, (3.25)

Nx∑

i=1

(∫

Ii

Ψh · ∇xJhdx−

∫

Ii

W (U i) ·Ψhdx

)
= 0, (3.26)

−
Nx∑

i=1

[µh · Jh]
xi

xi−1
= 0 (3.27)
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for all φh ∈ X2
h, Ψh ∈ Y 2

h , and µh ∈ Z2
h,0. Equation (3.25) is derived from the weak

formulation of the first equations in (3.23); (3.26) comes from the weak form of the second
equations in (3.23); and finally, (3.27) imposes the continuity of the currents at the nodes.

Thanks to the discontinuity of the spaces Xh and Yh, we can apply static condensation
in order to reduce the size of the discrete system and obtain an algebraic system for the
variable Uh only. More precisely, choosing first the local basis

φh =

{
(1, 0)⊤ in Ii
(0, 0)⊤ elsewhere

, φh =

{
(0, 1)⊤ in Ii
(0, 0)⊤ elsewhere

in (3.25) and then, analogously choosing Ψh in (3.26), we obtain the piecewise linear (dis-
crete) current

Jh|Ii = D(U i)
Ui − Ui−1

h
+W (U i)(x− xBi

). (3.28)

Imposing continuity at the nodes (through (3.27)) we obtain the final system

−D(U i)Ui−1 + (D(U i) + D(U i+1))Ui − D(U i+1)Ui+1 = −
h2

2
(W (U i) +W (U i+1)), (3.29)

for i = 1, . . . , Nx − 1. We point out explicitly that, since the first component of W (U) is
null, the approximation of the current J1 is piecewise constant (see (3.28)) and that, thanks
to (3.27), it is indeed globally constant.

System (3.29) forms a non-linear system in the unknown (u, v) that can be solved using a
Newton algorithm. We point out that the Jacobian corresponding to this non-linear system
can be easily computed noticing that, from the expressions (3.24) and (3.19), we have

∂D
i

kℓ

∂ui
=

∂D
i

kℓ

∂ui−1
=

1

2
D

i

kℓ,
∂D

i

kℓ

∂vi
=
∂D

i

kℓ

∂vi−1
=

1

2
D

i

kℓ+1,

and that similar relations hold for the partial derivatives of W
i
.

Remark 3.2 The expression (3.19) is not practical for numerical purpose. However, with
the definition N (ε) = max{n ∈ N

∗ : ǫn ≤ ε} , we have

Dij(u, v) =
1

φ0

+∞∑

n=1

+∞∑

m=n

∫ ǫm+1

ǫm

(ε− ǫn)εi+j−s

m
eu+εv dε

=
1

φ0

+∞∑

m=1

∫ ǫm+1

ǫm

(ε−

∑m
n=1 ǫn
m

)εi+j−seu+εv dε,

by interchanging the sums over m and n. We can rewrite

Dij(u, v) =
1

φ0

∫ +∞

ǫ1

εi+j+1−seu+εv dε

+
1

φ0

+∞∑

m=1

(∑m−1
n=1 ǫn
m− 1

−

∑m
n=1 ǫn
m

)∫ +∞

ǫm

εi+j−seu+εv dε,

with the convention that
∑m−1

n=1 ǫn/(m − 1) = 0 for m = 1. Then, in the actual numerical
computation, we can get an accurate approximation of Dij by truncating the infinite sum to
a finite number of eigenmodes. In fact, (ǫn)n forms an increasing sequence going to +∞,
thus, since v < 0, we have that (eǫnv)n fast decreases to 0.
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3.4 Algorithm

We are now ready to describe the algorithm used for the numerical resolution of the station-
ary subband energy-transport model. The first step of the algorithm is the computation of
the thermal equilibrium solution, with no applied drain-source bias. In this case the tem-
perature and the Fermi level are constant along the device, therefore the problem reduces to
solving the Poisson equation (3.8) for a given temperature and Fermi level computed thanks
to the boundary conditions. The computed potential at thermal equilibrium is used as a
starting data for the following Gummel [21] iteration process :

1. Lets Vold be a given potential.

2. We solve the eigenvalue problem (3.7) on each vertical slice of the domain by diago-
nalization of the Hamiltonian. Therefore we obtain the set {χn(xi, zj)} and {ǫn(xi)}.

3. We implement the Newton procedure which has been described above for the compu-
tation of (u, v).

4. We compute the density of charge carriers corresponding to the right hand side of
(3.8)

Ne =
∑

n∈N∗

2π
m∗

~2

eu

v
eǫnv|χn|

2.

We are then able to solve the Poisson equation (3.8) with boundary condition (3.11).
Indeed, due to the strong coupling of the entire system, the simple resolution of equa-
tion (3.8) does not provide a converging algorithm. Following [12] a Gummel iteration
algorithm is used, amounting to compute the new potential Vnew by solving the fol-
lowing modified Poisson equation

div(εR∇Vnew) +
e

ε0
Ne
Vnew
Vref

=
e

ε0

(
Ne(1−

Vold
Vref

)−ND

)
, in Ω, (3.30)

with Vref = kBTL/e.

5. We repeat the last three steps until the quantity ‖Vold − Vnew‖L∞ becomes sufficiently
small. Once the convergence is reached, we increment the applied drain-source bias
VDS of 0.02 V and start a new iteration.

3.5 Numerical results

In this section we present and comment the performed numerical results. The modeled
device is schematized in Figure 1 and the physical values are chosen as the ones in [31]
which are recalled in Table 1. We take Nx = 50 points in the transport direction and
Nz = 50 in the confined direction for all the tests. The results are presented for s = 1

2
in

(3.1), which corresponds to the so-called Chen model [14].
Some other physical coefficients should be determined. The effective mass is m∗ =

0.19me with me the electron mass, the lattice temperature is TL = 300K and the scattering
coefficient for the elastic collisions is the one used in [31] φ0 = 1

µ0ni
, where the low field
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Table 1: Table of the main physical values

Parameter Value Length Value

N+ 1026m−3 LS 10nm
N− 1021m−3 LC 30nm
Uc 3 eV LD 10nm

εR[Si] 11.7 ℓox 3nm
εR[SiO2] 3.9 ℓSi 5nm

mobility is taken as µ0 = 0.12m2V −1s−1 and the intrinsic density is given by ni = 1010m−2.
We have to fix the value of the scattering coefficient φph for the electron-phonon interaction.
As noticed in subsection 2.6, when φph → +∞, the model converges formally to the subband
drift-diffusion system presented in [8, 31]. It is then interesting to compare the numerical
results for large and small values of φph. Figure 2 displays the I − VDS characteristics
for φph = 10−4/φ0 and φph = 105/φ0. As expected and as noticed in [2], the energy-
transport model gives higher currents compared with the drift-diffusion model, due to the
electron velocity overshoot within the channel. Figure 2 (right) shows the temperature for
φph = 105/φ0, confirming that we are in the drift-diffusion regime, where the temperature
is constant. Indeed we check numerically that maxT −min T = 2.6584 10−7 K.
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Figure 2: Left : I − VDS characteristics for VG = 0V and VG = 0.2V . The dashed line
corresponds to φph = 10−4/φ0, the solid line corresponds to φph = 105/φ0 which is a good
approximation to the drift-diffusion model. Right : Temperature in the device for φph =
105/φ0. We see that the temperature is almost constant.
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In the rest of the section, we present the results only for φph = 10−4/φ0 which corre-
sponds to the energy-transport regime. Figure 3 displays the computed current vs drain-
source applied bias characteristics with this chosen value. We present in Figure 3 (left) the
characteristics for different numerical values of the Gate voltage VG and with ℓSi = 5 nm.
In Figure 3 (right), we display the characteristics for VG = 0 V and for different geometry of
the devices : ℓSi = 4, 5 or 7 nm. These characteristics are comparable to the one obtained
in [2, 30, 31]. We present in Figure 4 the evolution of the temperature in the device with
respect to the drain-source voltage for two different values of the Gate voltage. Figure 5
displays the evolution of the mean velocity, defined by J1/(qρµ,T ), where the one dimensional
density is given in (2.35) and the current in (3.17). As expected, we notice an overshoot of
the velocity at the frontier between the channel and the drain for high value of VDS.
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Figure 3: I − VDS characteristics for different Gate voltages VG with ℓSi = 5nm (left) and
for different width of the Silicon in the DG-MOSFET with VG = 0 V (right).

0 10 20 30 40 50
200

300

400

500

600

700

800

900

1000

1100

x (nm)

T
em

pe
ra

tu
re

 (
K

)

 

 

V
DS

=0 V

V
DS

=0.1 V

V
DS

=0.2 V

V
DS

=0.3 V

V
DS

=0.5 V

0 10 20 30 40 50
200

300

400

500

600

700

800

900

x (nm)

T
em

pe
ra

tu
re

 (
K

)

 

 
V

DS
=0 V

V
DS

=0.1 V

V
DS

=0.2 V

V
DS

=0.3 V

V
DS

=0.5 V

Figure 4: Evolution of the temperature in the device for a Gate voltage VG = 0V (left) and
VG = 0.2V (right).
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Figure 5: Mean velocity for different drain-source potentials VDS and for VG = 0V (left)
and VG = 0.2V (right).

We plot in Figures 6 the shape of the density in the device for two differents drain-source
voltage. For VDS = 0V , we are at equilibrium and the density is symmetric in the device.
For VDS = 0.5V , we notice transport of the charge carriers in the device.

Figure 6: Density of electrons in the device for VDS = 0V (left) and VDS = 0.5V (right); in
this simulation we take VG = 0.2V .
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4 Conclusion

A coupled quantum–classical model has been obtained for describing the transport of a
partially confined electron gas. In a subband decomposition framework, the transport model
is obtained by means of diffusive approximation from adiabatic quantum-kinetic models.
The final system in the transport direction is obtained through two steps. First, under the
assumption of dominant elastic scattering, a SHE system is derived (referring to [7]). Then,
under dominant electron–electron collisions, an energy transport model is given, obtaining
diffusion coefficients well suited for numerical purposes and with a relaxation term taking
into account the electron-phonon interactions. In particular, with energy dependent cross–
section of the collision operator explicit expression of the diffusion coefficients and of the
relaxation term is derived and used for the numerical simulation of transport in a Double-
Gate MOSFET. In the limit of large electrons-phonons collisions, we recover the model of
[31]. We point out that a saturation of the current is observed without need of resorting at
mobility modeling as done in [31].
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