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We investigate the coherent optical response of individual localized exciton–biexciton (X–XX) systems formed at
interface fluctuations of a growth-interrupted GaAs/AlAs quantum well. We apply heterodyne spectral interfero-
metry to perform two-dimensional four-wave mixing (FWM) spectroscopy. We retrieve the binding energy of
bound and unbound XXs, as well as characterize the system in terms of biexciton–exciton dipole moment ratio
andmutual FWMphase. Polarization selection rules of the FWMare determined. FWMhyperspectral imaging and
autocorrelation analysis reveal the expected spatial colocalization of XXs with respect to their Xs. A value for the
biexciton renormalization in a coherently coupled pair of Xs is retrieved. Our study gives insight into the coherent
optical properties of an exciton–biexciton system with a confinement energy comparable to the biexciton binding
energy. © 2012 Optical Society of America

OCIS codes: 190.4380, 190.4720, 190.7110, 270.1670, 300.6290, 300.6310.

1. INTRODUCTION
Various excitonic complexes [1] arise as a result of Coulomb
correlations between electrons and holes in semiconductors.
In particular, two excitons (Xs) form a bound biexciton [2]
(XX) with a binding energy of 10%–50% of the exciton binding
energy, typically in the milli electron volt (meV) range.
The formation of excitonic complexes is particularly evident
in structures with a large exciton binding energy com-
pared to the transition linewidth induced by disorder or pho-
non scattering. This is typically the case in wide bandgap bulk
semiconductors, like CuCl [3], and in semiconductor nanos-
tructures, where due to the reduced dimensionality, Coulomb
interaction is enhanced [4]. Application of nonlinear techni-
ques, namely four-wave mixing (FWM), revealed insight into
coherent response, scattering processes, and dephasing
mechanisms in large ensembles of Xs and XXs in disordered
GaAs quantum wells (QWs) [5–11]. The intriguing physics
displayed by the coherent response of this model system
is being explored [12–17], with continuously improving
sophistication.

Measuring the response of individual exciton states in such
ensembles gives additional insight, specifically in systems
with significant disorder. Such measurements are enabled
by heterodyne spectral interferometry (HSI) [18,19], which
allows retrieval of the complex FWM response R−1;2�ω3� of in-
dividual quantum systems in solids, like localized Xs in GaAs
QWs. Growth interruption on both interfaces of such QWs
leads to formation of monolayer islands or terraces [20,21].
The lateral size of arising natural potential fluctuations is
in the 100 nm range, whereas the lateral confinement energy
is only around 10 meV. Individual X states in such a natural
quantum dot (QD) can exhibit a large transition dipole mo-
ment μ compared to self-assembled QDs, due to their large
spatial extension [22,23]. Because the FWM amplitude scales

as R−1;2�ω3� ∝ μ4, these Xs are well suited to explore their
coherent response via HSI and were investigated intensively
in the past [24–28]. Most recently [23], combining two-
dimensional (2D) FWM spectroscopy with hyperspectral
FWM imaging, we measured coherent coupling between indi-
vidual, distant Xs, and determined the mechanism to be biex-
citonic renormalization.

In this paper we explore the coherent response of indivi-
dual exciton–biexciton systems [29–31], weakly confined in
natural QDs of a 5 nm GaAs QW. We use the same sample,
experimental setup, and notation as in [23]. Further details
concerning our methodology can be found in [32,33]. With
HSI wemeasure the spectrally resolved interference JD�ω� be-
tween the reference field and the reflection from the sample
detected at the frequency of the heterodyne beat ΩD of the
selected optical signal. Specifically, the degenerate FWM
signal, R−1;2

∝ E�
1E

2
2, is detected at ΩFWM � 2Ω2 − Ω1, where

Ω1∕�2π� � 79 MHz and Ω2∕�2π� � 80 MHz are the rf upshifts
of the driving fields E1 and E2, with a mutual time delay τ ran-
ging typically up to 100 ps, positive for E1 leading. The ampli-
tude and phase of the FWM field are obtained via spectral
interferometry [34], with a reference pulse arriving prior to
the FWM. The experiments were carried out at T � 10 K in
the third-order regime, as determined by the FWM intensity
dependence [28]. We use a diffraction-limited spot of around
600 nm FWHM and confocal detection. Due to the third-order
nonlinearity in the FWM experiment, a subdiffraction spatial
resolution of down to 300 nm is achieved. The spectral resolu-
tion allows us to isolate the different localized exciton states
present in the focal area.

Using 2D FWM spectroscopy we identify bound and un-
bound biexciton resonances, analyze their binding energy
and dipole moment ratio μXX∕μX, and compare them with pre-
vious measurements performed on ensembles. Adjusting the
polarization of the driving fields, we investigate polarization
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selection rules. We use hyperspectral FWM imaging and spec-
tral correlation analysis to confirm the spatial colocalization
of the bound XX with respect to the related X. Finally, we de-
rive a value of the biexcitonic renormalization of a pair of
spatially separated, coherently coupled Xs.

2. RESULTS
A. Two-Dimensional Four-Wave Mixing
2D FWM spectroscopy is performed by measuring R−1;2�ω3; τ�
and Fourier transforming the τ > 0 sequence along the delay
coordinate. In Fig. 1(a) we show an example of a resulting
2D FWM diagram displaying jR−1;2�ω3;ω1�j2, measured in
horizontal linear polarization configuration, denoted as
�→;→;→�, on a sample region of a low X density. This
two-frequency representation of the FWM is suited to inves-
tigate coherent coupling between individual resonances, as
it evidences which first-order frequency ω1 drives which cor-
responding third-order (FWM) frequencies ω3. The data are
dominated by four uncoupled Xs, aligned along the diagonal
ω1 � ω3. Each of these Xs is accompanied by a weaker, spec-
trally narrow resonance at the same ω1, but at ω3 some 5 meV
below. These different resonances are related to transitions
from the Xs to bound biexcitons, forming a second approxi-
mate diagonal that is redshifted by a biexciton binding energy,
which is similar for the different Xs. Additionally, features as-
sociated with transitions from X to unbound biexcitons (XX�)
are also identified in the 2D FWM data. An example is given

in Fig. 1(b), where an off-diagonal peak at ω3 � 1699.2 meV
is blueshifted by several meV from X at ω1 � ω3 �
1695.8 meV. Unlike the well-defined XX resonances, such
XX� signals exhibit complex line shapes, which are often
distributed over ∼0.5 meV, consisting of a set of underlying
resonances. A confirmation of the biexcitonic origin of these
peaks is provided by the observation of a π-shift between the
phase of 0–X and X–XX (or X–XX�) transitions [23], as shown
by the yellow traces in Fig. 1. In Figs. 1(c) and 1(d) we present
a statistical analysis of the deduced binding energies for XXs
and XX�s. The XX states show a binding energy of
�4.9� 0.2� meV. The standard deviation is only 4%, which
is even less than the 5%–7% observed in large ensembles
for non-growth-interrupted QWs [11]. Instead, the repulsion
energy of unbound states shows a substantial dispersion
and exhibits a standard deviation of approximately 2 meV.
In previous measurements on ensembles [11], the XX�s
created spectral tails over several meV on the high energy
side of Xs (see Fig. 2, lower right frame, in [11] for
τ12 � 0). The large broadening of the unbound biexciton
transitions also results in their fast dephasing versus τ12 in
ensemble measurements [35].

Via the strength of the signal measured in 2D FWM, we
have inferred the oscillator strength of the X–XX transitions
with respect to 0–X. In the third-order regime, the time-
integrated FWM amplitude of an X is proportional to
AX ∝ 2μ4XP3

X∕γX, while the FWM amplitude of an XX reads
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Fig. 1. (Color online) (a), (b) Two-dimensional FWM jR−1;2
→→→�ω3;ω1�j2 showing individual Xs along with their corresponding (a) bound (XX) and

(b) unbound (XX�) biexcitons. FWM phase shifts of π between X and XX are observed (yellow traces). In (a), logarithmic color scale over five
and three orders of magnitude for ω3 > 1.691 eV and ω3 < 1.691 eV (see vertical, dashed line), respectively. Magnification by a factor of 100 for
ω3 < 1.691 eV was applied to visualize XXs. In (b), logarithmic color scale over three orders of magnitude. c) Statistics of XXs’ binding energy
(black dots) and dipole moment ratio μXX∕μX (green circles), d) statistics of XX�s’ binding energy (black triangles). Its negative value should be
understood as a repulsion energy of a two-particle state.
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AXX ∝ μ2Xμ2XXP2
XPXX∕γXX, where PXX�PX� is the excitation field

(square root of the measured excitation intensity) at the X–XX
(0–X) energy. Taking into consideration the spectrometer re-
solution of approximately 15 μeV, we experimentally retrieve
transition linewidths for X and XX transitions γX and γXX,
respectively. We generally find γXX > γX. We deduce the ratio
between XX and X transition dipole moments using the ex-
pression

μXX
μX

�
�������������������������
2PXAXXγXX
PXXAXγX

s
; (1)

where AXX (AX) is the FWM peak amplitude of XX (X)
assessed from jR−1;2�ω3;ω1�j. The resulting distribution of
μXX∕μX is given in Fig. 1(c).

The dipole moment of the X–XX transitions is measured to
always be weaker than the one of the corresponding (0–X)
transition, evidence that the XXs in these samples are in a
weak confinement regime [36]. In this regime the XX wave
function is a mixture of different X wave functions, with only
the part of the same X contributing to the X–XX dipole mo-
ment. The reported dipole moment ratios actually give a mea-
sure of the ground-state X wave function content within the
corresponding XX. The same analysis for the unbound biex-
citons reveals a large spread of μXX�∕μX. The analysis is, how-
ever, less reliable, due to broad, non-Lorentzian line shapes of
the X–XX� transition that may contain several unresolved
resonances.

B. Polarization Dependence
We now turn to the dependence of the FWM on the
polarization of the driving fields E1 and E2. Ensemble studies
on this system [11] showed polarization selection rules
consistent with a four-level system of 0–X–XX considering
the two optically active spin states of X and the pertinent
polarization selection rules of the transitions. We consider
here detection of the horizontal (→) linear polarization
along the �1�10� crystal direction and first discuss the data
obtained for positive delay τ � �1 ps (E1 arriving first),
shown in Fig. 2. For cocircular �σ�; σ�;→� excitation, the
FWM is induced by E2 on the 0–X transition only (visible
at ω3 � 1691.8 meV) via the density grating created upon
the consecutive arrival of E1 and E2. FWM on the X–XX tran-
sition is not observed. This indicates that the bound biexci-
ton state is a product state of excitons of opposite circular
polarization, which cannot be excited in the cocircular
excitation configuration. When instead a colinear configura-
tion �→;→;→� is applied, FWM on both 0–X and X–XX tran-
sitions (XX detected at ω3 � 1686.9 meV) can be created
via the density grating in 0 and X. Conversely, upon cross-
linear excitation �→;↑;→�, the FWM is driven by E2 on the
X–XX transition only by the Raman coherence [37,38]
between both →- and ↑-polarized Xs, driven by E1 and E2,
respectively.

For negative time delay τ � −1 ps (E2 arriving first), no
FWM can be observed under �σ�; σ�;→� excitation. In such
a case, no two-photon coherence (TPC) can be excited,
as the 0–X and X–XX transitions have opposite circular
polarization. Instead, in the linear polarization basis, 0–X
and X–XX transitions are collinearly polarized. Therefore,
for �→;→;→� excitation, E2 can drive a TPC between the

ground state and XX, which upon the consecutive arrival of
E1 is converted into FWM on both 0–X and X–XX transitions.

C. Spatial Correlation
It is instructive to perform real space mapping of individual
0–X and X–XX transitions. Such mapping has been reported
on similar samples with a scanning near field optical micro-
scope giving a high spatial resolution of 30 nm [39,40] obser-
ving non-resonantly excited photoluminescence. Here we
explore the nonlinear coherent response of a 0–X–XX system
in real space. It is realized by combining 2D FWM with FWM
hyperspectral imaging [23]. In Fig. 3(a) we show the FWM
spectrum of the X4 resonance shown in Fig. 2 of [23]. Hyper-
spectral imaging was performed, and the resulting FWM spa-
tial maps at ω3 frequencies corresponding to 0–X (X–XX)
FWM transitions are presented in Fig. 3(b) [3(c)]. A colocali-
zation of XX with respect to its X is evident. Note that the
X–XX intensity shown in Fig. 3(c) corresponds to the product
of the XX and X wave function. Another example is shown in
Figs. 3(e)–3(g), where a doublet of bound XXs arise from the
same X. Because of the weak XX signal, the colocalization is
not as evident, but restricting the XX–X signal to the range of
the X signal it is still observable.

With the aim to analyze the statistical properties of X
and XX spatial colocalization, we performed spectral correla-
tion analysis. We used hyperspectral images of the FWM am-
plitude, jR−1;2�x; y;ω3�j, within a data cube of 3.5 μm, 4.5 μm,
and 10 meV size in the dimensions x, y, and ω3, respectively.
Typical averaged FWM spectra within such ensembles are
presented in Fig. A in “Supplementary Information” of [23].
We evaluate the autocorrelation

C�Δx;Δy;Δω3�

� hjR−1;2�x�Δx; y�Δy;ω3 �Δω3�jjR−1;2�x; y;ω3�jix;y;ω3

hjR−1;2�x; y;ω3�ji2x;y;ω3

.

(2)

Fig. 2. (Color online) Polarization dependence and selection rules
in the FWM of an individual 0–X–XX system weakly localized on a
monolayer fluctuation of a 5 nm GaAs/AlGaAs QW. (a) �σ�; σ�;→�
polarization configuration, τ � �1 ps. For negative delays no FWM
is observed within the noise. The spectral amplitude of the excitation
fields is given by the green dashed curve. (b) �→;→;→� polarization
configuration producing FWM on both 0–X and X–XX transitions, for
τ � �1 ps and τ � −1 ps. (c) �→;↑;→� configuration. For τ � �1 ps,
FWM is observed at the X–XX transition. The amplitude range in (a),
(b) is three times bigger than in (c).
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To investigate the distance dependence, we use polar coor-
dinates C�Δr cos ϕ;Δr sin ϕ;Δω3� and average over the
azimuthal angle ϕ � 0…2π, yielding �C�Δr;Δω3�. Subtracting
the spectral autocorrelation at large distances (4 μm), we
plot the background-corrected spectral autocorrelation
Δ�C�Δω3� � �C�0;Δω3� − �C�4 μm;Δω3� in Fig. 4. We observe
that Δ�C�Δω3� shows a peak at Δω3, corresponding to the
XX binding energy. However, due to the rather weak XX
FWM signal, it is not very pronounced. Furthermore,
Δ�C�Δω3� shows features related to the correlation of X reso-
nances, indicating a typical spectral separation of colocalized
excitons of 4 meV in the 5 nm QW and 3 meV in the 7 nm QW
(as also directly inferred via FWM hyperspectral imaging).

D. Biexcitonic Renormalization
In [23] we have shown that a biexcitonic renormalization en-
ergy (δ) enables coherent coupling between a pair of Xs. Here
we detail the related analysis to retrieve δ. In Fig. 5(a) we

show an example of 2D FWM data, jR−1;2�ω3;ω1�j2, measured
on a sample region of a higher X density than the one probed
in Fig. 1. Coherent coupling between X resonances at 1688.37
and 1691.16 meV is detected [23]; off-diagonal peaks show
that the first-order frequencies mutually drive the third-order
frequencies of both Xs. To retrieve the value of δ, we first
plot spectral cuts of the real and imaginary part of
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Fig. 3. (Color online) (a) FWM intensity jR−1;2�ω3�j2 (black) and phase arg�R−1;2�ω3�� (green) of an individual 0–X–XX system. FWM imaging at
τ � 0.1 ps (b) at the 0–X transition energy, jR−1;2�x; y; 1695.2 meV�j, and (c) at the X–XX transition energy, jR−1;2�x; y; 1690.17 meV�j. The white
cross indicates the X position at �x; y� � �2.5; 1.5� μm. (d) FWM intensity jR−1;2�ω3�j2 (black) and phase arg�R−1;2�ω3�� (green) showing an X–XX
doublet arising from the same X. (e) Same as (b) at 0–X transition energy ω3 � 1694.3 meV; (f), (g) same as (c) at X–XX transition energies
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(red traces) with a double complex Lorentzian of the 0–X and
X–XX transitions (see text), yielding δ � �31 − 4i� μeV.
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R−1;2�ω3; 1691.16 meV� and fit the diagonal resonance at ω3 �
1691.16 meV with a single complex Lorentzian

LX�ω� �
AX exp�iφ�

iγX � �ω − ωX�
; (3)

as shown in Fig. 5b. Even though not resolved in the 2D FWM
intensity spectra [Fig. 5(a)], off-diagonal signals consist of two
out-of-phase resonances for the biexcitonic coupling. This has
been shown by inspecting the FWM phase profiles, revealing
2π shifts across off-diagonals [23], and is also observed here.
One component of this doublet is due to the 0–X transition
described by Eq. (3), whereas the second component is
due to the X–XX transition, which has a complex energy shift
of δ compared to the 0–X transition. We therefore fit a double
complex Lorentzian

Loff�ω� �
AX exp�iφ�

iγX � �ω − ωX�
−

AXX exp�iφ�
iγXX � �ω − ωXX�

; (4)

containing the off-diagonal peak at ω1 � 1688.37 meV
[see Fig. 5(c)]. The latter is performed while keeping fixed
previously extracted excitonic parameters AX, γX, and ωX.
Finally, δ is calculated as δ � ωXX − ωX − i�γXX − γX� �
�31 − 4i� μeV within an error of a few μeV. The interexciton
coupling is therefore due to a real biexcitonic repulsion,
whereas the dissipative coupling (exciton-exciton scattering)
is negligible. This example demonstrates the sensitivity of the
HSI technique to quantitatively characterize weak coherent
coupling within a small ensemble of Xs.

3. SUMMARY
In summary, we investigated the coherent response of
individual 0–X–XX systems weakly confined in monolayer
fluctuations of a disordered narrow GaAs QW. Bound and un-
bound XX transitions were detected in 2D FWM spectroscopy
and characterized in terms of their binding energy and oscil-
lator strength ratio μXX∕μX. This analysis provides a measure
of the projection of the XX wave function onto the X product
state. The measured small values of μXX∕μX show that XX
contains significant admixtures of other X states. We have pre-
sented examples of FWM polarization control within such
0–X–XX systems. Furthermore, employing hyperspectral
FWM imaging, we have demonstrated spatial colocalization
of X and XX states. Finally, we have retrieved the value of
biexcitonic renormalization, enabling coherent coupling
within a pair of individual Xs.
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