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Université Bordeaux I
351, cours de la Libération,

F-33405 Talence Cedex FRANCE
e-mail: musumbu@labri.fr

Abstract

Presented in this work is a novel approach to implement an efficient abstract interpretation algorithm
for logic programs by means of attributed grammar. Successful implementation of this algorithm yielded
memory storage saving and run-time reduced. We first execute the algorithm presented in [2](slightly
modified), which generates a tree with four types of nodes. We then store in computer memory only the
pertinent subtrees. In other words, after each step, we prune some branches of tree and develop only the
subtree which can improve the ”oracle” (i.e. set of abstract tuple).
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1 Introduction

The technique of abstract interpretation [5, 3, 10, 6] is a successful framework for constructing analysis of
the run-time behavior of programs. For this, at each program point, we compute an abstract substitution
that is a correct approximation of the concrete substitutions that occur at run-time.

Attribute grammars are a very interesting tool for computing abstract interpretation. In fact, the syn-
tactical development of programs during their execution can be expressed by a derivation tree w.r.t. an
universal grammar where the nodes of the tree are labeled by symbols representing call procedures, clauses,
and goals. This grammar describes the replacement process of a call procedure by clauses and a clause by a
sequence of goals. An abstract substitution is an attribute attached to each node of the derivation tree.

We introduce an efficient and accurate algorithm which, for a given logic program, computes an increasing
sequence of finite attributed trees. At each step, the attributed tree is defined by a transformation of the
attributed tree of the preceding step. This sequence converges to a fixed point of the transformation and
that fixed point is the abstract semantics of the given logic program.

Presented in this work is a novel approach to implement an efficient abstract interpretation algorithm
for logic programs by means of attributed grammar. Successful implementation of this algorithm yielded
memory storage saving and run-time reduced. We first execute the algorithm presented in [2](slightly modi-
fied), which generates a tree with four types of nodes. We then store in computer memory only the pertinent
subtrees. In other words, after each step, we prune some branches of tree and develop only the subtree which



can improve the set of abstract tuple Eta.

We hope this approach to will be permit general purpose hardware and a straight forward algorithm to
be used for all analysis that previously required special purpose.
The paper is organized as follows. In section 2, we give the context free grammar of Prolog and the abstract
domain. Section 3 describes the computing method. While the abstract interpretation algorithm is given
in section 4. We give the details about our optimization strategy and optimized algorithm , based on the
concept of useless sub-tree, in section 5. In section 6, we conclude.

2 Basic Abstract Semantics

2.1 Abstract Syntax

The abstract syntax of the language can be defined by the following grammar:

P ∈ Programs
Pr ∈ Procedures
C ∈ Clauses
SB ∈ Goals
B ∈ Atoms (or Subgoals)
f ∈ Functors
p ∈ ProcedureNames
xi ∈ ProgramV ariables

P ::= <> | Pr.P
Pr ::= <> | Pr.C
C ::= p(x1 , . . . , xn) ← SB
SB ::= <> | SB.B
B ::= xi = xj | xi1 = f(xi2 , . . . , xin) | p(xi1 , . . . , xin)

2.2 Attribute Grammar

Both the mechanism of replacements (of procedures by clauses and clauses by goals) and the process of
propagation of abstract interpretation at each replacement can be described by an attribute grammar.
The grammar gives the syntactic structure of an abstract tree describing the replacements and equations
on attributes define how the abstract substitution is transmitted by the replacements from a node to its
children. The attribute grammar is: G =< G,ATT,Q > where :

-G =< T,N,ROOT, P > is the grammar,
-ATT= {βout, etaout, ichout, l var, βin,

etain, ichin, anc, phiin, phiout, type}
is the set of attributes.
The meaning of these attributes at each node u
of the abstract tree is:
βout and βin represent abstract substitutions;
etaout and etain are sets of triples
(βin, p, βout) satisfying the
requirements βout = eta(βin, p);
ichout and ichin are two boolean that indicate
the sets etaout and etain have been modified;



anc is a set of pairs (p, βin)
corresponding to the calls procedure
on the left of the node u;
phiout and phiin are two boolean that indicate,
for each production, if we have meet at
its left a node labeled by the non terminal ϕ;
type gives the type of productions;

-Q is the set of semantics rules between attributes
associated with the productions,

only given the semantics rules of the set Q of productions which are different from the identity equation
i.e different from a(x)=b(y), while the rules which consist of an identity equation are only represented by a
simple edge between the two attributes (of the identity equation) on the graphs associated with productions
cfr figure 9 The reader can find the definitions of the functions Extp, RestrC , Restrb, Extb, Abi1, Abi2 and
map in [1, 7].

2.3 Abstract Domain

For each finite set D of program variables, we assume the existence of a cpo ASD whose elements are called
abstract substitutions on domain D and denoted by β. We denote by CSD the set of program substitutions
having D as domain. The meaning of each abstract substitution is given through the concretization function:
Cc : ASD → P (CSD). The basic abstract semantics uses seven abstract primitive operations.
Let D = {x1, ..., xn} be a set of variables and P a program using the elements of D. The abstract semantics
of P is defined as abstract tuples (βin, p, βout) where p ∈ Pred(P ), the set of predicate symbols occurring in
P , and βin, βout ∈ ASD. We denote by eta a total and monotonic function eta : ASD × Pred(P ) −→ ASD

satisfying:

1. ∀(βin, p), ∃! βout ∈ ASD s.t
eta(βin, p) = βout;

2. ∀(β1, p) and (β2, p),
β1 ≤ β2 ⇒ eta(β1, p) ≤ eta(β2, p).

In the abstract interpretation of the program P, we are interested in studying the properties of the
variables occurring in P. We consider a query p and information about the variables of p (like mode, type,
sharing, etc) expressed in terms of an abstract substitution and denoted by β. Then, our purpose is to
determine the behavior of the program P for the pair (β, p) i.e. to compute the “output” abstract substitution
corresponding to β. We proceed in two steps for the computation of the “output” abstract substitution.
First, we associate an abstract tree with the tree developed by the Prolog compiler in the model of the Prolog
procedural semantics, and secondly, we propagate the abstract substitution through the abstract tree as an
attribute. Also, we use a set of others attributes, for a technical purpose.

3 Computing Method

Given a program P , a predicate p and an input abstract substitution β for p, we have to compute the output
abstract resulting from the execution of P for (β, p). The result is issued all possible execution of P for p
with any concrete input θ described by β i.e. we have to consider trees representing all possibles executions
of P . For this purpose we construct a sequence of increasing trees which represent all possible executions
of P . To do this, we start in associating a development tree with each predicate of program P w.r.t an
universal grammar. The development tree describes the replacements of a predicate by the corresponding
clauses and of a clause by the corresponding goals.

In fact, we compute on the program P an abstract substitution for the given predicate and substitution
(β,p). To avoid infinity tree we maintain an oracle ETA, in which we store all tuple (βin, p, βout).



As an example,we consider the following example of concatenation of two lists:
p(x1, x2, x3) ← x1 = [ ],

x2 = x3.
p(x1, x2, x3) ← x3 = [x4 | x6],

p(x5, x2, x6),
x1 = [x4 | x5].

The function development-tree τp associated with the predicate p is showed in figure 1
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Figure 1: Function development tree

For the sequence of increasing trees, we start with the initial tree in figure 2 with θ0

Z

θ0 =
ϕ

ǫ

p(x1, ..., xn)

Figure 2: Initial development tree

To define θi+1 from θi we replace some sub-trees composed only by the production r3 (then, the non-
terminal at these nodes is φ) by the development trees of corresponding predicate (i.e predicate(φ) ). We
make this replacement if the attributes of φ satisfy the condition that the pair (predicate(φ), βin(φ)) don’t
belong to the set etain. We give now the procedure which calculates the sequence of increasing trees θi :

Procedure developp tree(θ : in derivation tree, θ′ : out derivation tree)
/* This procedure goes all over the nodes needed to be developed */

{ let u1, ..., un be all the nodes of θi from left to right



and labeled by the production r3
θ′ = θ;
for u = u1 to un do
{ if (predicate(u), βin(u))∈ etain(u) then

develop node(θ′,u)
}

}

Procedure develop node(θ : in out derivation tree, u : in node)
/* This procedure substitutes the sub-tree at u in θ by the tree development τpredicate(u),
where predicate(u) is the value of the attribute predicate at u in theta */

{ θ = θ[u/τpredicate(u)]
}

where θ = θ[u/t] is the substitution of the sub-tree at u in θ by the tree t.

As example, we give a sequence without the computation of the attributes see figure 3.
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4 Abstract Interpretation Algorithm

The evaluation of attributes of each tree of the sequence starts by giving values to the inherited attributes
of the root. After, we apply a classical attribute evaluation algorithm in order to compute all attributes of
the tree and in particular the synthesized attributes of the root. The value of the input abstract substitution
(βin) is the same for all trees. While the input set of etain of the tree θi+1 takes the value of the output set
of etaout of the tree θi. Then the sequence of increasing trees converges to a fixed point when the attributes
etain and etaout of the root of some tree θi are equal. Finally, the abstract interpretation algorithm alternates
the two operations of tree development and attribute evaluation as follows.

Procedure Abstract Interpretation(p : predicate, β : abstract substitution)
/* This procedure initialize the computation of the abstract substitution */

{ i = 0; /* θ0 is the initial tree (see ...... ) */
Initialize the inherited attributes of the root of θ0 :

βin(root(θ0)) = β;
etain(root(θ0)) = ∅;

Loop Evaluate & Develop();
}

Procedure Loop Evaluate & Develop()
/* This procedure constructs the sequence of increasing trees θi and call the procedure Eval lr to compute
the attributes of each θi*/

{ Eval lr(θi,root(θi),{βin, etain, ichin, anc, predicate},
{βout, etaout, ichout});

if etain(root(θi)) = etaout(θi))
then { /* θi is the fixed point */

print(etaout(root(θi));
exit;
}

else { /*the construction of the tree θi+1 ∗ /
develop tree(θi,θi+1);
etain(root(θi+1)) = etaout(root(θi))
i = i+1;
}

}

Procedure Eval lr(t : in tree, u : in node, I : out set of inherited attributes, S : out set of synthesized
attributes, )
/* This procedure computes from left to right all the attributes of I and S of the sub-tree at u in t */

{ let u1, ..., un the sons of u in t from left to right */
for v = u1 to un do

{ calculate the inherited attributes I of v;
Eval lr(t,v,I,S);
calculate the synthesized attributes S of v;

}
calculate the synthesized attributes S of u;
}

This algorithm terminates since the sequence of values of the attribute etaout is growing and belongs to
an inductive domain. But, the main problem of this algorithm is the reevaluation of some attributes common
to a sub-sequence of trees. This point will be studied in the following section.



5 Optimization Strategy

The procedure Eval of attribute evaluation, of the preceding section, shows a classical strategy of evaluation
for attributes. It consists of visiting all nodes of the attributes tree (θi) and evaluating all attributes of each
node. We observe that some sub-trees of the attributed tree θi are also sub-trees of θi+1 and have the same
values for all their attributes. Such sub-trees will be called useless.

5.1 Characterization of Useless Sub-trees

A sub-tree of a tree θi will be called terminal if it don’t contain any occurrence of the production r3 (φ → ǫ).
The useless sub-tree is defined as follows. Let be the following tree θi with the sub-tree tC generated by the
non-terminal C :

B

B

SB

B

SB

. . .

tk

.

.
.

Z

.

.

.

C

SB

t1

t2

p(x1, x2, ..., xn) φ

.
.

.

The sub-tree tC

θi =

Figure 4: Useless sub-tree

The sub-tree tk of θi is useless (then it don’t need to be reevaluated among the tree θi+1) if all the
sub-trees t1, ... , tk−1 on his left and inside the sub-tree tC are terminal.
Then, to know if tk is useless or not, we have to propagate an information from t1, ... , tk−1 to the sub-tree
tk which indicates if all these sub-trees are terminal or not. This information is the value of control attribute
attached to each node in the tree. We can observe also that the propagation of the values of control attributes
through a tree is from left to right. As an example, we take the following tree :

There, the sub-trees t1 t2, and t3 are useless, while the sub-trees t4 and t5 must be preserved.



5.2 Propagation of values of control attributes

Two control attributes are needed to transmit the information about the existence of not terminal sub-tree
from left to right and into two directions:
- up-down, with an inherited attribute
- bottom-up, with a synthesized attribute.
We want to show by examples the propagation of the values of control attributes. For that, we distinguish
two types of sub-trees:
- those rooted by the goal symbol B and called goaled sub-trees;
- those rooted by the clause symbol C and called claused sub-trees.
Now, we present three cases of control attribute propagation which give principal ways of propagation through
different sub-trees:

case 1: propagation between goaled sub-trees:

The sub-tree tk is not terminal and this information (the true value) is transmitted to the sub-trees tk+1,
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Figure 5: Useless sub-tree



tk+2, ... . The sub-tree tk+1 depends on tk and tk+2 depends on tk and tk+1 and so on.

case 2: propagation from goaled sub-trees to claused sub-trees see figure 7

The sub-trees t′j and t′j+1 depend on tk.

case 3 : propagation between goaled and claused sub-trees

The dependencies between the sub-trees are :
- tk+1, tk+2, t

′
j , t

′
j+1, ... , t”m, t”m+1 depend on tk

- t”m+1 depends on tk and t”m.

5.3 The control attribute dependencies

From the different cases given above, we deduce the dependencies between the control attributes on the
production of the universal grammar. We recall that we consider one synthesised attribute lin and another
inherited attribute lout. We note also that we will give the equality equations between attributes are only
represented by edges on the graphs associated with the productions while the others equations are given
explicitly and on the graphs see figure 9.

All the attributes equations between the control attributes (lin and lout) can be added to those defining
the attributes β, eta, ich, ancandpredicate of the universal attribute grammar of [[2]], and integrated in the
attribute evaluation algorithm Eval used in the abstract interpretation algorithm. Now, how to use this
control attribute in order to avoid the reevaluation of useless sub-trees of θi during evaluation process of
attributes of θi+1?.

5.4 Optimized Abstract Interpretation Algorithm

In this algorithm, we distinguish two sub-trees of attributes, the set of attributes for abstract interpretation
B = {βin, βout, etain, etaout, inchin, ichout, predicate} and the set of control attributes L = {lin, lout}. The
strategy of combining tree development and attribute evaluation is the following:
- evaluate the attributes B of the tree θi
- develop the tree θi from left to right
- for each ”greffed” tree development (τ), evaluate the attributes of L and propagate incrementally their
values through the tree θi+1.
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Figure 6: Propagation: goal sub-tree



We give the details of the algorithm.

Procedure Abstract Interpretation(p : predicate, β : abstract substitution)

{i = 0; /* θ0 is the initial tree (see ...... ) */
initialize the inherited attributes of the root of θ0 :

βin(root(θ0)) = β;
etain(root(θ0)) =∅;

Eval lr(θ0, root(θ0), {lin}, {lout})
Loop Evaluate & Develop();
}

Procedure Loop Evaluate & Develop()
/* This procedure constructs the sequence of increasing trees θi */

{loop
Optimized Eval lr(θi, root);
if etain(root(θi)) = etaout(θi))
then {/* θi is the fixed point */
print(βout(root(θi));
exit;
}

else { /* initialisation of the tree θi+1 */
θi+1 = θi
/* construction by steps of the tree θi+1 */
let U = {u1, ... , un / ∀ i, ui.production = r3

and ∀ i ∈ [1..n− 1], ui is on the left
of ui+1 in θi};
for u = u1 to un do
{ old value=lout(u);
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Figure 7: Propagation: goal sub-tree to clause sub-tree



develop node(u, θi+1);
/* evaluation of lin and lout in the tree
greffed at u in θi+1 */
if lin(u) = true then
feval lr(θi+1,u,{lin},{lout})
propagation of lin and lout outside the
tee greffed at u in θi+1 */
if lout(u) 6= old value then
Propagate Incremental lr(u);

}
etain(root(θi+1)) = etaout(root(θi))
i = i+1;

}
endloop;
}
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Procedure Optimized Eval lr(θ : in tree, u : in node)
/* This procedure evaluates the attributes of B in the not useless sub-trees */

{ let u1, u2, ..., un be the sons of u in t from left to right;
for v = u1 to un do
{ if lin(v)= true or lout(v) =true
then
{ calculate the inherited attributes
{βin, etain, ichin, anc, predicate}
at the node v;

Optimized Eval lr(θ,v);
calculate the synthesized attributes
{βout, etaout, ichout} at the node v;
}

}
}

Procedure Propagate Incremental lr(θ : tree , u : node)
/* This procedure evaluates the attributes of lin and lout while It is needed */

{ if (u 6= nil) then
{ Eval lr(u,{lin},{lout});
/* evaluation of the sub-tree at u */

while (u 6= root) & (brother(u) = nil) do
{ calculate (lout(father(u)));
u = father(u);
}
if u 6= root then
{ old value = lin(brother(u));
calculate(lin(brother(u)));
if lin(brother(u)) 6= old value then
Propagate Incremental lr(θ,brother(u));
}
}
}

6 Conclusion

Our method to compute the abstract semantics of logic programs use attribute evaluators on a sequence of
increasing trees. The principle consists of constructing a sequence of finite attributed trees that converges
to a fixed point. Obviously, the fixed point is an attributed tree such that its successor is the same tree with
the same attribute values. As some attributes of subtrees, cannot be changed, after their first evaluation, we
use an incremental algorithm which prunes some branches of tree and develop only the subtree which can
improve the ”oracle” (i.e. set of abstract tuple) Eta. Successful implementation of this algorithm yielded
memory storage saving and run-time reduced. We hope that our method can be applied for verifying more
general concurrent systems such as circuits and network protocols in case of the constraint domain over
infinite trees.
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