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Presented in this work is a novel approach to implement an efficient abstract interpretation algorithm for logic programs by means of attributed grammar. Successful implementation of this algorithm yielded memory storage saving and run-time reduced. We first execute the algorithm presented in [2](slightly modified), which generates a tree with four types of nodes. We then store in computer memory only the pertinent subtrees. In other words, after each step, we prune some branches of tree and develop only the subtree which can improve the "oracle" (i.e. set of abstract tuple).

Introduction

The technique of abstract interpretation [START_REF] Cousot | Cousot Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction of Approximation of Fixpoints[END_REF][START_REF] Bruynooghe | A practical framework for the abstract interpretation of logic programs[END_REF][START_REF] Marriott | Notes for a Tutorial on Abstract Interpretation of Logic Programs[END_REF][START_REF] Kanamori | Analysing Success Patterns of Logic Programs by Abstract Hybrid Interpretation[END_REF] is a successful framework for constructing analysis of the run-time behavior of programs. For this, at each program point, we compute an abstract substitution that is a correct approximation of the concrete substitutions that occur at run-time.

Attribute grammars are a very interesting tool for computing abstract interpretation. In fact, the syntactical development of programs during their execution can be expressed by a derivation tree w.r.t. an universal grammar where the nodes of the tree are labeled by symbols representing call procedures, clauses, and goals. This grammar describes the replacement process of a call procedure by clauses and a clause by a sequence of goals. An abstract substitution is an attribute attached to each node of the derivation tree.

We introduce an efficient and accurate algorithm which, for a given logic program, computes an increasing sequence of finite attributed trees. At each step, the attributed tree is defined by a transformation of the attributed tree of the preceding step. This sequence converges to a fixed point of the transformation and that fixed point is the abstract semantics of the given logic program.

Presented in this work is a novel approach to implement an efficient abstract interpretation algorithm for logic programs by means of attributed grammar. Successful implementation of this algorithm yielded memory storage saving and run-time reduced. We first execute the algorithm presented in [2](slightly modified), which generates a tree with four types of nodes. We then store in computer memory only the pertinent subtrees. In other words, after each step, we prune some branches of tree and develop only the subtree which can improve the set of abstract tuple Eta.

We hope this approach to will be permit general purpose hardware and a straight forward algorithm to be used for all analysis that previously required special purpose. The paper is organized as follows. In section 2, we give the context free grammar of Prolog and the abstract domain. Section 3 describes the computing method. While the abstract interpretation algorithm is given in section 4. We give the details about our optimization strategy and optimized algorithm , based on the concept of useless sub-tree, in section 5. In section 6, we conclude.

Basic Abstract Semantics

Abstract Syntax

The abstract syntax of the language can be defined by the following grammar: 

P ∈ P rograms P r ∈ P rocedures C ∈ Clauses SB ∈ Goals B ∈ Atoms (or Subgoals) f ∈ F unctors p ∈ P rocedureN
= x i = x j | x i1 = f (x i2 , . . . , x in ) | p(x i1 , . . . , x in )

Attribute Grammar

Both the mechanism of replacements (of procedures by clauses and clauses by goals) and the process of propagation of abstract interpretation at each replacement can be described by an attribute grammar. The grammar gives the syntactic structure of an abstract tree describing the replacements and equations on attributes define how the abstract substitution is transmitted by the replacements from a node to its children. The attribute grammar is: G =< G, AT T, Q > where :

-G =< T, N, ROOT, P > is the grammar, -AT T = {β out , eta out , ich out , l var, β in , eta in , ich in , anc, phi in , phi out , type} is the set of attributes. The meaning of these attributes at each node u of the abstract tree is: type gives the type of productions; -Q is the set of semantics rules between attributes associated with the productions, only given the semantics rules of the set Q of productions which are different from the identity equation i.e different from a(x)=b(y), while the rules which consist of an identity equation are only represented by a simple edge between the two attributes (of the identity equation) on the graphs associated with productions cfr figure 9 The reader can find the definitions of the functions Ext p , Restr C , Restr b , Ext b , Abi 1 , Abi 2 and map in [START_REF] Barbar | Musumbu Expressing abstract interpretation of PROLOG by attribute grammars[END_REF]7].

β out and

Abstract Domain

For each finite set D of program variables, we assume the existence of a cpo AS D whose elements are called abstract substitutions on domain D and denoted by β. We denote by CS D the set of program substitutions having D as domain. The meaning of each abstract substitution is given through the concretization function: Cc : AS D → P (CS D ). The basic abstract semantics uses seven abstract primitive operations. Let D = {x 1 , ..., x n } be a set of variables and P a program using the elements of D. The abstract semantics of P is defined as abstract tuples (β in , p, β out ) where p ∈ P red(P ), the set of predicate symbols occurring in P , and β in , β out ∈ AS D . We denote by eta a total and monotonic function eta : AS D × P red(P ) -→ AS D satisfying:

1. ∀(β in , p), ∃! β out ∈ AS D s.t eta(β in , p) = β out ; 2. ∀(β 1 , p) and (β 2 , p), β 1 ≤ β 2 ⇒ eta(β 1 , p) ≤ eta(β 2 , p).
In the abstract interpretation of the program P, we are interested in studying the properties of the variables occurring in P. We consider a query p and information about the variables of p (like mode, type, sharing, etc) expressed in terms of an abstract substitution and denoted by β. Then, our purpose is to determine the behavior of the program P for the pair (β, p) i.e. to compute the "output" abstract substitution corresponding to β. We proceed in two steps for the computation of the "output" abstract substitution. First, we associate an abstract tree with the tree developed by the Prolog compiler in the model of the Prolog procedural semantics, and secondly, we propagate the abstract substitution through the abstract tree as an attribute. Also, we use a set of others attributes, for a technical purpose.

Computing Method

Given a program P , a predicate p and an input abstract substitution β for p, we have to compute the output abstract resulting from the execution of P for (β, p). The result is issued all possible execution of P for p with any concrete input θ described by β i.e. we have to consider trees representing all possibles executions of P . For this purpose we construct a sequence of increasing trees which represent all possible executions of P . To do this, we start in associating a development tree with each predicate of program P w.r.t an universal grammar. The development tree describes the replacements of a predicate by the corresponding clauses and of a clause by the corresponding goals.

In fact, we compute on the program P an abstract substitution for the given predicate and substitution (β,p). To avoid infinity tree we maintain an oracle ET A, in which we store all tuple (β in , p, β out ).

As an example,we consider the following example of concatenation of two lists:

p(x 1 , x 2 , x 3 ) ← x 1 = [ ], x 2 = x 3 . p(x 1 , x 2 , x 3 ) ← x 3 = [x 4 | x 6 ],
p(x 5 , x 2 , x 6 ),

x 1 = [x 4 | x 5 ].
The function development-tree τ p associated with the predicate p is showed in figure 1 To define θ i+1 from θ i we replace some sub-trees composed only by the production r 3 (then, the nonterminal at these nodes is φ) by the development trees of corresponding predicate (i.e predicate(φ) ). We make this replacement if the attributes of φ satisfy the condition that the pair (predicate(φ), β in (φ)) don't belong to the set eta in . We give now the procedure which calculates the sequence of increasing trees θ i :

B SB SC C C B SB B SB SB ǫ B SB B SB ϕ p(x5, x2, x6) SC SB x1 = [ ] x2 = x3 ǫ ǫ x3 = [x4|x6] x1 = [x4|x5] τ p =
Procedure developp tree(θ : in derivation tree, θ ′ : out derivation tree) /* This procedure goes all over the nodes needed to be developed */ { let u 1 , ..., u n be all the nodes of θ i from left to right and labeled by the production r 3 θ ′ = θ;

for u = u 1 to u n do { if (predicate(u), β in (u))∈ eta in (u) then develop node(θ ′ ,u) } }
Procedure develop node(θ : in out derivation tree, u : in node) /* This procedure substitutes the sub-tree at u in θ by the tree development τ p redicate(u), where predicate(u) is the value of the attribute predicate at u in theta */

{ θ = θ[u/τ p redicate(u)] }
where θ = θ[u/t] is the substitution of the sub-tree at u in θ by the tree t.

As example, we give a sequence without the computation of the attributes see figure 3. The procedure Eval of attribute evaluation, of the preceding section, shows a classical strategy of evaluation for attributes. It consists of visiting all nodes of the attributes tree (θ i ) and evaluating all attributes of each node. We observe that some sub-trees of the attributed tree θ i are also sub-trees of θ i+1 and have the same values for all their attributes. Such sub-trees will be called useless.

Characterization of Useless Sub-trees

A sub-tree of a tree θ i will be called terminal if it don't contain any occurrence of the production r 3 (φ → ǫ). The useless sub-tree is defined as follows. Let be the following tree θ i with the sub-tree t C generated by the non-terminal C : The sub-tree t k of θ i is useless (then it don't need to be reevaluated among the tree θ i+1 ) if all the sub-trees t 1 , ... , t k-1 on his left and inside the sub-tree t C are terminal. Then, to know if t k is useless or not, we have to propagate an information from t 1 , ... , t k-1 to the sub-tree t k which indicates if all these sub-trees are terminal or not. This information is the value of control attribute attached to each node in the tree. We can observe also that the propagation of the values of control attributes through a tree is from left to right. As an example, we take the following tree :

There, the sub-trees t 1 t 2 , and t 3 are useless, while the sub-trees t 4 and t 5 must be preserved.

Propagation of values of control attributes

Two control attributes are needed to transmit the information about the existence of not terminal sub-tree from left to right and into two directions:

-up-down, with an inherited attribute -bottom-up, with a synthesized attribute. We want to show by examples the propagation of the values of control attributes. For that, we distinguish two types of sub-trees:

-those rooted by the goal symbol B and called goaled sub-trees; -those rooted by the clause symbol C and called claused sub-trees. Now, we present three cases of control attribute propagation which give principal ways of propagation through different sub-trees:

case 1: propagation between goaled sub-trees:

The sub-tree t k is not terminal and this information (the true value) is transmitted to the sub-trees t k+1 ,

Z θ1 = B SC ϕ p(x 1 , ..., xn) x 3 = [x 4 |x 6 ] SB C B x 1 = [ ] SB B x 2 = x 3 SB ǫ B SB SB p(x 5 , x 2 , x 6 ) B SB ϕ ǫ ǫ C SB SC x 1 = [x 4 |x 5 ] t 1 t 2 t 3 t 4 t 5
Figure 5: Useless sub-tree t k+2 , ... . The sub-tree t k+1 depends on t k and t k+2 depends on t k and t k+1 and so on.

case 2: propagation from goaled sub-trees to claused sub-trees see figure 7 The sub-trees t ′ j and t ′ j+1 depend on t k .

case 3 : propagation between goaled and claused sub-trees

The dependencies between the sub-trees are : -t k+1 , t k+2 , t ′ j , t ′ j+1 , ... , t" m , t" m+1 depend on t k -t" m+1 depends on t k and t" m .

The control attribute dependencies

From the different cases given above, we deduce the dependencies between the control attributes on the production of the universal grammar. We recall that we consider one synthesised attribute l in and another inherited attribute l out . We note also that we will give the equality equations between attributes are only represented by edges on the graphs associated with the productions while the others equations are given explicitly and on the graphs see figure 9.

All the attributes equations between the control attributes (l in and l out ) can be added to those defining the attributes β, eta, ich, ancandpredicate of the universal attribute grammar of [ [2]], and integrated in the attribute evaluation algorithm Eval used in the abstract interpretation algorithm. Now, how to use this control attribute in order to avoid the reevaluation of useless sub-trees of θ i during evaluation process of attributes of θ i+1 ?.

Optimized Abstract Interpretation Algorithm

In this algorithm, we distinguish two sub-trees of attributes, the set of attributes for abstract interpretation B = {β in , β out , eta in , eta out , inch in , ich out , predicate} and the set of control attributes L = {l in , l out }. The strategy of combining tree development and attribute evaluation is the following: -evaluate the attributes B of the tree θ i -develop the tree θ i from left to right -for each "greffed" tree development (τ ), evaluate the attributes of L and propagate incrementally their values through the tree θ i+1 . 
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  β in represent abstract substitutions; eta out and eta in are sets of triples (β in , p, β out ) satisfying the requirements β out = eta(β in , p); ich out and ich in are two boolean that indicate the sets eta out and eta in have been modified;

	anc is a set of pairs (p, β in )
	corresponding to the calls procedure
	on the left of the node u;
	phi out and phi in are two boolean that indicate,
	for each production, if we have meet at
	its left a node labeled by the non terminal ϕ;

  .... ) */ initialize the inherited attributes of the root of θ 0 :β in (root(θ 0 )) = β; eta in (root(θ 0 )) =∅; Eval lr(θ 0 , root(θ 0 ), {l in }, {l out })

	Loop Evaluate & Develop();	
	}						
	Procedure Loop Evaluate & Develop()
	/* This procedure constructs the sequence of increasing trees θ i */
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i , root); if eta in (root(θ i )) = eta out (θ i )) then {/* θ i is the fixed point */ print(β out (root(θ i )); exit; } else { /* initialisation of the tree θ i+1 */ θ i+1 = θ i /* construction by steps of the tree θ i+1 */ let U = {u 1 , ... , u n / ∀ i, u i .production = r 3 and ∀ i ∈ [1..n -1]

, u i is on the lef t of u i+1 in θ i }; for u = u 1 to u n do { old value=l out (u); =true .

Abstract Interpretation Algorithm

The evaluation of attributes of each tree of the sequence starts by giving values to the inherited attributes of the root. After, we apply a classical attribute evaluation algorithm in order to compute all attributes of the tree and in particular the synthesized attributes of the root. The value of the input abstract substitution (β in ) is the same for all trees. While the input set of eta in of the tree θ i+1 takes the value of the output set of eta out of the tree θ i . Then the sequence of increasing trees converges to a fixed point when the attributes eta in and eta out of the root of some tree θ i are equal. Finally, the abstract interpretation algorithm alternates the two operations of tree development and attribute evaluation as follows.

Procedure Abstract Interpretation(p : predicate, β : abstract substitution) /* This procedure initialize the computation of the abstract substitution */ { i = 0; /* θ 0 is the initial tree (see ...... ) */ Initialize the inherited attributes of the root of θ 0 :

/* This procedure constructs the sequence of increasing trees θ i and call the procedure Eval lr to compute the attributes of each

then { /* θ i is the fixed point */ print(eta out (root(θ i )); exit; } else { /*the construction of the tree θ i+1 * / develop tree(θ i ,θ i+1 );

Procedure Eval lr(t : in tree, u : in node, I : out set of inherited attributes, S : out set of synthesized attributes, ) /* This procedure computes from left to right all the attributes of I and S of the sub-tree at u in t */ { let u 1 , ..., u n the sons of u in t from left to right */ for v = u 1 to u n do { calculate the inherited attributes I of v; Eval lr(t,v,I,S); calculate the synthesized attributes S of v; } calculate the synthesized attributes S of u; } This algorithm terminates since the sequence of values of the attribute eta out is growing and belongs to an inductive domain. But, the main problem of this algorithm is the reevaluation of some attributes common to a sub-sequence of trees. This point will be studied in the following section.

Procedure Optimized Eval lr(θ : in tree, u : in node) /* This procedure evaluates the attributes of B in the not useless sub-trees */ { let u 1 , u 2 , ..., u n be the sons of u in t from left to right; 

Conclusion

Our method to compute the abstract semantics of logic programs use attribute evaluators on a sequence of increasing trees. The principle consists of constructing a sequence of finite attributed trees that converges to a fixed point. Obviously, the fixed point is an attributed tree such that its successor is the same tree with the same attribute values. As some attributes of subtrees, cannot be changed, after their first evaluation, we use an incremental algorithm which prunes some branches of tree and develop only the subtree which can improve the "oracle" (i.e. set of abstract tuple) Eta. Successful implementation of this algorithm yielded memory storage saving and run-time reduced. We hope that our method can be applied for verifying more general concurrent systems such as circuits and network protocols in case of the constraint domain over infinite trees.