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We study the existence of generalized transition fronts for a bistable reaction diffusion equation, u t -∆u = f (u), in a heterogeneous medium, Ω = R N \K where K is a compact set of R N , with Neumann boundary condition and t ∈ R. In the paper, Bistable traveling waves around an obstacle (2009), H. Berestycki, F. Hamel and H. Matano prove the existence of a generalized transition front when K is smooth enough and satisfies some geometric properties. We are interested in an extension of this result when Ω ε = R N \K ε and K ε is a small perturbation of K. We prove that as soon as K ε is close to K in the C 2,α topology generalized transition front still exist while it does not if the perturbation is not smooth enough.

1 Introduction and main results

Problem and motivations

This work is concerned with the following parabolic semilinear problem:

   ∂u ∂t = ∆u + f (u) in Ω ε = R N \K ε , ν • ∇u = 0 on ∂Ω ε = ∂K ε , (1.1) 
considering a family of obstacles (K ε ) 0<ε≤1 which are C 2,α -compact sets in R N , for 0 < α < 1, such that for all 0 < ε ≤ 1, K ε ⊂ B R 0 , for some given R 0 > 0, and K ε → K for the C 2,α topology, where K is a C 2,α -compact subset of R N and is either star-shaped or directionally convex (see the definitions at the end of this section).

Remark 1.1 When we write K ε → K for the C 2,α topology we mean that for each x 0 in ∂K, and for some r > 0 such that ∂K ε ∩ B r (x 0 ) = ∅ there exists a couple of parametrization of K ε and K, ψ ε and ψ, C 2,α (B r (x 0 )) functions such that ψ εψ C 2,α (Br(x 0 )) → 0 as ε → 0.

For more details about the C 2,α topology one can look at [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF], chapter 6.

We assume that f is of bistable type, meaning that it is a C 1,1 ([0, 1]) function such that, ∃ θ ∈ (0, 1)| f (0) = f (θ) = f (1) = 0, f ′ (0) < 0, f ′ (1) < 0, (1.2) f (s) < 0 ∀ s ∈ (0, θ), f (s) > 0 ∀ s ∈ (θ, 1), with positive mass:

∀ 0 ≤ s < 1, 1 s f (τ )dτ > 0.
(1.3)

Our goal is to study how does the shape of K influence the behavior of the solutions of (1.1) and as a consequence how a propagating planar traveling front interacts with our obstacles (K ε ) ε .

Existence of traveling fronts for the homogeneous equation u t = ∆u + f (u) in R N has been studied since the article of Kolmogorov, Petrovsky and Piskunov, [START_REF] Kolmogorov | Etude de l'équation de la diffusion avec croissance de la quantité de la matière et son application à un problème biologique[END_REF] in 1937. Recently more and more interest has been observed in the study of traveling front solutions in spatially dependent media because of its importance in several scientific fields. For more descriptions and references about those fronts one can look at the introduction of [START_REF] Berestycki | Bistable traveling waves around an obstacle[END_REF], and references therein. As in H. Berestycki, F. Hamel and H. Matano's paper we study here the existence of a particular type of generalized transition wave, a notion introduced by H. Berestycki and F. Hamel in [START_REF] Berestycki | Fronts and invasions in general domains[END_REF][START_REF] Berestycki | Generalized travelling waves for reaction-diffusion equations[END_REF][START_REF] Berestycki | Generalized transition waves and their properties[END_REF]] (see at the end of Section 1.2, Remark 1.7 for a precise definition).

Coming back to our framework, it follows from (1.2) and (1.3) that there exists a unique solution (up to translation) (c, φ) of

     φ ′′ (z) -cφ ′ (z) + f (φ(z)) = 0, z ∈ R, φ(-∞) = 0, φ(+∞) = 1, 0 < φ(z) < 1, z ∈ R, (1.4) 
with c > 0. For further details see [START_REF] Paul | The approach of solutions of nonlinear diffusion equations to travelling front solutions[END_REF] for example. As stated in [START_REF] Berestycki | Bistable traveling waves around an obstacle[END_REF] (section 2 and 3), as soon as K ε ⊂ {x, x 1 ≤ L}, L ∈ R, there exists a unique time global solution u ε of (1.1) such that 0 < u ε < 1, (u ε ) t > 0 in R × Ω ε and that behaves like a planar traveling front for very small times, i.e

u ε (t, x) -φ(x 1 + ct) → 0 as t → -∞ uniformly in x ∈ Ω ε . (1.5)
To prove these results the authors constructed some sub and super solutions ω + and ω - depending only on x 1 and t. Then using (1.5) and some extension of the comparison principle they proved the uniqueness of the entire (time-global) solution u ε . Moreover, they proved that the behavior of u ε for large time is determined by the solution of the associated stationary problem. We will then start with the study of the following elliptic problem:

           ∆u ε,∞ + f (u ε,∞ ) = 0 in Ω ε = R N \K ε , ν • ∇u ε,∞ = 0 on ∂Ω ε = ∂K ε , 0 < u ε,∞ ≤ 1 in Ω ε , lim |x|→+∞ u ε,∞ (x) = 1. (1.6) Remark 1.2 We add the extra consition lim |x|→+∞ u ε,∞ (x) = 1, because from [3], section 5, as soon as K ε is a compact set, f ∈ C 1 ([0, 1]) satisfies (1.
2) and (1.3), (φ, c) solution of (1.4) with c > 0 and under some asymptotic and monotonicity conditions on u ε , which are satisfied in our framework, our entire solution u ε converges toward u ε,∞ as t → +∞ locally uniformly in x ∈ Ω ε , and u ε,∞ is a classical solution of

     ∆u + f (u) = 0 in Ω ε , ν • ∇u = 0 on ∂Ω ε , 0 < u eq1 in Ω ε , (1.7 
)

such that u ε,∞ (x) → 1 as |x| → +∞.
Before stating the main results, let explain what we mean by star-shaped or directionally convex obstacles.

Definition 1.3 K is called star-shaped, if either K = ∅, or there is x ∈

• K such that, for all y ∈ ∂K and t ∈ [0, 1), the point x + t(yx) lies in • K and ν K (y) • (yx) ≥ 0, where ν K (y) denotes the outward unit normal to K at y. Definition 1.4 K is called directionally convex with respect to a hyperplane P if there exists a hyperplane P = {x ∈ R N , x • e = a} where e is a unit vector and a is some real number, such that • for every line Σ parallel to e the set K ∩ Σ is either a single line or empty,

• K ∩ P = π(K) where π(K) is the orthogonal projection of K onto P .

Main results

Our main result is the following theorem

Theorem 1.5 Assume f ∈ C 1,1 ([0, 1]) satisfies (1.2) and (1.3). Consider (K ε ) 0<ε≤1 a family of C 2,α -compact sets of R N (i.e for all ε ∈ (0, 1], K ε ⊂ B R 0 for some R 0 > 0) and let Ω ε = R N \K ε a smooth, open, connected subset of R N (with N ≥ 2). Assume that K ε → K
for the C 2,α topology as ε → 0, where K is a C 2,α -compact subset of R N that is either starshaped or directionally convex with respect to some hyperplane P. Then there exists ε 0 > 0 such that for all 0 < ε < ε 0 , the unique solution of (1.6) is u ε,∞ ≡ 1

This means that for obstacles that are compact sets in R N and close enough (in the C 2,α sense) to some star-shaped or directionally convex domains then the unique solution of (1.6) is the constant 1. This Theorem yields some properties about the solution u ε of the parabolic problem (1.1).

Corollary 1.6 Assume that f satisfies (1.2) and that there exists a solution φ to (1.4) with c > 0 (if f satisfies (1.2) and (1.3), φ exists and c > 0). Let (K ε ) 0<ε≤1 be a family of compact domains in R N such that for all 0 < ε ≤ 1, K ε ⊂ B R 0 , for some given R 0 > 0, and K ε → K for the C 2,α topology, with 0 < α < 1 and where K ⊂ R N is either star-shaped or directionally convex with respect to some hyperplane P. Then for all 0 < ε ≤ 1, there exists an entire solution u ε (t, x) of (1.1) such that 0 < u ε < 1 and ∂ t u ε > 0 over R × Ω ε and there exists ε 0 > 0 such that for all 0 < ε < ε 0 ,

u ε (t, x) -φ(x 1 + ct) → 0
as t → ±∞ uniformly in x ∈ Ω ε , and as |x| → +∞ uniformly in t ∈ R.

We will prove Theorem 1.5 in section 2 below, and Corollary 1.6 in section 3.

Remark 1.7 For all 0 < ε < ε 0 the solution u ε (t, x) given in Corollary 1.6 is a generalized, almost planar, invasion front between 0 and 1 with global mean speed c, in the sense that

sup (t,x)∈R×Ωε,x 1 +ct≥A |u ε (t, x) -1| ----→ A→+∞ 0 sup (t,x)∈R×Ωε,x 1 +ct≤-A |u ε (t, x)| ----→ A→+∞ 0
Before proving the previous statements, let give some examples of domains (K ε ) ε and K to illustrate our results.

Examples

We assume that N = 2 and we construct two families of obstacles; one which converges to a star shaped domain and the other which converges to a directionally convex domain. The black plain line represents the limit K and the dashed parts represent the small perturbations (of order ε).

Star-shaped domain: The long-dashed line is used during the construction of K and it is on this line that we could find the center(s) of the domain (i.e the point x in Definition 1.3). We can clearly see that for all ε > 0, K ε is not star-shaped, because the points just behind the dashed area cannot be linked to the center x by a straight line.

Directionally convex domain: In this second figure, the hyperplanes P , for which the plain black domain could be directionally convex are necessarily horizontal (i.e {(x, y) ∈ R 2 |(x, y) • (0, 1) = a}) and a has to be 0 (assuming the center of the ellipses are on the x-axis), else the second property in Definition 1.4 is not satisfied. Indeed the first property of Definition 1.4 eliminates every vertical hyperplanes P and the second property eliminates the diagonal ones. Adding small perturbations (of order ε) on each side of each ellipse, one gets that for all ε > 0 K ε does not satisfy the second property of Definition 1.4.

One need to be careful on the shape of the perturbations. Indeed considering an ellipse, which is star-shaped and directionally convex and adding on each side of the vertical axis some well chosen perturbations (keeping the domain smooth), the obstacle is not star-shaped, neither directionally convex anymore (see figure below), Figure 3: Obstacles converging only in C 0 and K ε → K, an ellipse, as ε → 0, but the convergence of K ε cannot be C 2,α (see section 4 for more details) but only C 0 which is not enough to get Theorem 1.5, as we will see in section 4.

Proof of the main Theorem

In this section, to simplify the notation we will write u ε in stead of u ε,∞ . As we are only working on the stationary problem, there is no confusion with the solution of the parabolic system. To prove Theorem 1.5, we will use the following Proposition:

Proposition 2.1 For all 0 < δ < 1, if u ε is a solution of (1.6), then there exists R = R(δ) > R 0 , such that u ε (x) ≥ 1 -δ for all |x| ≥ R and for all 0 < ε < 1.
This proposition means that u ε converges toward 1 as |x| → +∞ uniformly in ε.

Let first admit this result and prove Theorem 1.5.

Proof of Theorem 1.5

Using Schauder Estimates (see [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF], chapter 6.7), we obtain that

u ε C 2,α (Ω) ≤ C.
As K ε → K for the C 2,α topology when ε → 0, C is independent of ε. So there exists a sequence (ε n ) n in ]0, η ∧ 1[ such that ε n → 0 and u εn → u in C 2 loc as n → +∞ and u satisfies:

∆u + f (u) = 0 in Ω = R N \K, ν • ∇u = 0 on ∂Ω = ∂K, (2.1) 
because of the compact injection C 2,α loc ֒→ C 2 loc . Using Proposition 2.1 we get lim

|x|→+∞ u(x) = 1.
And K is either star-shaped or directionally convex. We now recall the following results from [START_REF] Berestycki | Bistable traveling waves around an obstacle[END_REF]:

Theorem 2.2 Let f be a Lipschitz-continuous function in [0, 1] such that f (0) = f (1) = 0 and f is nonincreasing in [1 -δ, 1] for some δ > 0. Assume that ∀ 0 ≤ s < 1, 1 s f (τ )dτ > 0. (2.2)
Let Ω be a smooth, open, connected subset of R N (with N ≥ 2) with outward unit normal ν, and assume that

K = R N \Ω is compact. Let 0 ≤ u ≤ 1 be a classical solution of      ∆u = f (u) in Ω, ν • ∇u = 0 on ∂Ω, u(x) → 1 as |x| → +∞. (2.3)
If K is star shaped or directionally convex, then u ≡ 1 in Ω.

(2.4)

Remark 2.3 The main difficulty here was that, for every ε ∈ (0, 1), K ε is not necessarily star-shaped nor directionally convex and thus we could not use directly Theorem 2.2. The purpose of the article is to find an equivalent to Theorem 2.2 but in the case of a family of obstacles (K ε ) ε that converges toward a star-shaped or directionally convex domain.

It follows from Theorem 2.2 that u ≡ 1. It also proves that the limit u is unique and thus u ε → u as ε → 0 in C 2 (and not only along a subsequence).

Now we need to prove that there exists ε 0 > 0 such that u ε ≡ 1 for all 0 < ε < ε 0 . Let assume that for all ε > 0, u ε ≡ 1. Then there exists

x 0 ∈ Ω ε such that u ε (x 0 ) = min x∈Ωε u ε (x) < 1.
As u ε is a solution of (1.6), the Hopf lemma yields that,

if x 0 ∈ ∂K ε then δu ε δν (x 0 ) < 0,
which is impossible due to Neuman boundary conditions. Hence

x 0 ∈ Ω ε . If u ε (x 0 ) > θ, -∆u ε (x 0 ) = f (u ε (x 0 )) > 0,
which is impossible since x 0 is a minimizer. So, for all 0 < ε < 1,

0 ≤ min x∈Ωε u ε (x) ≤ θ,
which contradicts u ε → u ≡ 1. Thus there exists ε 0 such that for all ε < ε 0 , u ε ≡ 1.

Proof of Proposition 2.1

We will now prove Proposition 2.1, starting with the following lemma:

Lemma 2.4 There exists ω = ω(r) with r ∈ R + such that

           -ω ′′ (r) = f (ω(r)), ∀r ∈ R + * , ω(0) = 0, ω ′ (0) > 0, ω ′ > 0, 0 < ω < 1 in R * + , lim r→+∞ ω(r) = 1. (2.5)
We can prove this lemma using some results about traveling fronts in the multistable case (a) or using an ODE approach (b).

Proof of Lemma 2.4

• (a) Proof using traveling waves We know from [START_REF] Paul | The approach of solutions of nonlinear diffusion equations to travelling front solutions[END_REF] that there exists a unique solution (ω

1 , c 1 ) ∈ C 2 (R) × R of          -ω ′′ 1 (x) + c 1 ω ′ 1 (x) = f (ω 1 (x)) in R, ω 1 (-∞) = 0, ω 1 (+∞) = 1, ω ′ 1 > 0, in R, 0 < ω 1 < 1, in R.
(2.6)

Because of (1.3), c 1 > 0. One can prove the existence and uniqueness of v

∈ C 2 (R + )          v ′′ (z) -cv ′ (z) + f (v(z)) = 0, ∀z ∈ (0, +∞), v(0) = 0, v(+∞) = 1, v ′ (z) > 0, ∀z ∈ (0, +∞), 0 < v(z) < 1, ∀z ∈ (0, +∞), (2.7) 
for c ≤ c 1 (see [START_REF] Paul | The approach of solutions of nonlinear diffusion equations to travelling front solutions[END_REF][START_REF] Hamel | Existence of multidimensional travelling fronts with a multistable nonlinearity[END_REF]). Then taking c = 0 ≤ c 1 there exists ω ∈ C 2 (R + ) such that

         ω ′′ (z) + f (ω(z)) = 0, ∀z ∈ (0, +∞), ω(0) = 0, ω(+∞) = 1, ω ′ (z) > 0, ∀z ∈ (0, +∞), 0 < ω(z) < 1, ∀z ∈ (0, +∞).
The Hopf Lemma yields that ω ′ (0) > 0.

• (b) Proof using an ODE approach.

We want to prove the global existence and uniqueness of the following ODE:

     -ω ′′ = f (ω) in (0, +∞), (1) ω(0) = 0, ω ′ (0) = 2F (1), (2.8)
where

F (z) = z 0 f (s)ds. Using (1.3), F (1) > 0.
From Cauchy-Lipschitz theorem we know that there exists a unique maximal solution ω of (2.8) in I ⊂ (0, +∞). To prove the global existence, i.e I = (0, +∞), let prove that ω ′ > 0 in I and 0 < ω < 1 in I.

We start by proving that ω ′ > 0. We know that ω ′ (0) > 0. Suppose that there exists r 0 ∈ I such that ω ′ (r 0 ) = 0. Then multiplying (2.8) (1) by ω ′ and integrating between 0 and r 0 , one gets:

-F (1) + F (w(r 0 )) = 0 = ω(r 0 ) 1 f (z)dz.
(2.9)

Without loss of generality, we extend f linearly (as a C 1 function) outside [0, 1]. Note that by the Maximum Principle any solution with such a f will take values in [0, 1], hence is a solution of the original problem. The last equation (2.9) is impossible, which implies that ω > 0 in I.

Next assume by contradiction that there exists r 1 ∈ I such that ω(r 1 ) = 1. Using the same method as above (multiplying by ω ′ and integrating between 0 and r 1 ) one gets:

(ω ′ (r 1 )) 2 2 -F (1) + F (1) = 0,
which is impossible. Hence 0 < w < 1 in I.

If we assume that I (0, +∞), i.e there exists r ∞ ∈ (0, +∞) such that I = (0, r ∞ ), it means that lim ω(r) = +∞ as r → r ∞ . This is impossible because 0 < ω < 1 in I. Thus I = (0, +∞).

We have proved that there exists a unique global solution ω of (2.8) and that ω ′ (r) > 0 and 0 < ω(r) < 1 for all r ∈ (0, +∞). As ω is increasing and bounded from above, it has a limit when r → +∞ such that 0 < ω(+∞) ≤ 1. Moreover ω(+∞) > θ. Indeed if we assume that ω ≤ θ in R + then one gets that ω is convex (since ω ′′ = -f (ω) ≥ 0) and increasing, it then goes to +∞ when r → +∞, which is impossible. It immediately follows from elliptic regularity estimates that f (ω(+∞)) = 0. Hence ω(+∞) = 1. One has proved Lemma 2.4.

Proof of Proposition 2.1. Now we introduce a function f δ with the same hypothesis as f but such that

f δ ≤ f , f δ = f in [0, 1 -δ] and f δ (1 -δ 2 ) = 0 (see figure below). Notice that 1-δ 2 0 f δ (z)dz > 0 for δ small. 1 1 -δ 2 1 -δ x f f δ Figure 4: f δ (x)
For the same reason than in Lemma 2.4 there exists ω = ω δ such that

         -ω ′′ δ (x) = f δ (ω δ (x)) in (0, +∞), ω δ (0) = 0, ω δ (+∞) = 1 -δ 2 , 0 < ω δ < 1 -δ 2 in (0, +∞), ω ′ δ > 0 in (0, +∞).
(2.10)

Next, for any R > R 0 consider ω δ (|x| -R) for every |x| ≥ R and let z(x) = ω δ (|x| -R), one gets:

∆z + f (z) = ω ′′ δ + N -1 |x| ω ′ δ + f (ω δ ) = N -1 |x| ω ′ δ + f (ω δ ) -f δ (ω δ ) > 0 in {|x| > R}. So -∆z < f (z) in {|x| > R}.
(2.11)

We want to prove that

ω δ (|x| -R 0 ) < u ε (x), ∀x ∈ R N , |x| ≥ R 0 .
We know from (1.6) that u ε (x) → 1 as |x| → +∞. Hence there exists

A = A(ε) > 0 such that u ε (x) ≥ 1 -δ 3 , for all |x| ≥ A. One gets u ε (x) ≥ ω(|x| -A), for all |x| ≥ A. A 1 1 -δ 2 1 -δ 3 u ω δ (|x| -A) Figure 5: u ε and ω δ (|•| -A) Consider R = inf R ≥ R 0 ; u ε (x) > ω δ (|x| -R), for all {|x| ≥ R} . (2.12) As R ≥ R 0 and K ε ⊂ B R 0 , u ε is always defined on {|x| > R}. One will prove that R = R 0 .
As ω δ is increasing, we know that

∀R ≥ A u ε (x) ≥ ω(|x| -R), ∀|x| ≥ R. Hence R ≤ A.
Assume that R > R 0 . Then there are two cases to study:

• either inf u ε (x) -ω δ (|x| -R), ∀|x| > R > 0, ( 1 
)
• or inf u ε (x) -ω δ (|x| -R), ∀|x| > R = 0. ( 2 
)
In the first case (1), one gets u ε (x) > ω δ (|x| -R) for all |x| > R. As ∇u ε and ω ′ δ are bounded one can translate ω δ to the left such that both graphs touch at one point, i.e there exists R * < R such that u ε (x) ≥ ω δ (|x| -R * ) for all |x| > R * , and u ε (x 0 ) = ω δ (|x 0 | -R * ) for some |x 0 | > R * . This contradicts the optimality of R.

In the second case (2), there necessarily exists

x 0 with |x 0 | > R such that u ε (x 0 ) = ω δ (|x 0 | - R). Let v(x) = u ε (x) -ω δ (|x| -R), for all |x| > R.
As u ε is a solution of (1.6) and using (2.11), v satisfies:

-∆v > f (v) in {|x| > R}, v > 0 on {|x| = R}. (2.13) 
From the maximum principle v(x) ≥ 0, for all |x| ≥ R. But there exists x 0 such that |x 0 | > R (x 0 is an interior point) and v(x 0 ) = 0, i.e v(•) reaches its minimum 0 inside the domain. This implies that v(•) ≡ 0, which is impossible because v(•) > 0, for all |x| = R.

Then R = R 0 which does not depend on ε and

∀|x| ≥ R 0 u ε (x) ≥ ω(|x| -R 0 ). But ω δ (x) → 1 -δ 2 as |x| → +∞ implies that there exists R, independent of ε, such that for all |x| > R + R 0 , u ε (x) > ω δ (|x| -R 0 ) ≥ 1 -δ. One has proved Proposition 2.1.

The associated parabolic problem and its properties

In this section we will use Theorem 1.5, to apply some results of [START_REF] Berestycki | Bistable traveling waves around an obstacle[END_REF] and derive Corollary 1.6. We investigate the following semilinear parabolic problem:

   ∂u ε ∂t = ∆u ε + f (u ε ) in Ω ε = R N \K ε , ν • ∇u ε = 0 on ∂Ω ε = ∂K ε , (3.1) 
where K ε is a compact set in R N . Notice that in this section, u ε is the solution of the parabolic problem. Proof of Corollary 1.6 We know from H. Berestycki, F. Hamel and H. Matano's paper [START_REF] Berestycki | Bistable traveling waves around an obstacle[END_REF] that their exists an entire solution

u ε of (3.1) in Ω ε such that 0 < u ε (t, x) < 1, ∂ t u ε (t, x) > 0 for all (t, x) ∈ R × Ω ε and u ε (t, x) -φ(x 1 + ct) → 0 as t → -∞ uniformly in x ∈ Ω ε ,
and as |x| → +∞ uniformly in t ∈ R. Furthermore, there exists a classical solution u ε,∞ of

           ∆u ε,∞ + f (u ε,∞ ) = 0 in Ω ε = R N \K ε , ν • ∇u ε,∞ = 0 on ∂Ω ε = ∂K ε , 0 < u ε,∞ ≤ 1 in Ω ε , lim |x|→+∞ u ε,∞ (x) = 1, (3.2) such that u ε (t, x) -φ(x 1 + ct)u ε,∞ (x) → 0 as t → +∞ uniformly in x ∈ Ω ε .
Then using Theorem 1.5, there exists ε 0 < 1 such that for all 0 < ε < ε 0 , the only solution u ε,∞ of (3.2) is identically equal to 1. We have proved Corollary 1.6.

4 Discussion about the convergence of (K ε ) 0<ε<1

In this section we discuss the hypothesis of convergence of (K ε ) 0<ε<1 . Until now we assumed that K ε → K in C 2,α , with 0 < α < 1 in order to use the Schauder estimates and ensure the convergence of u ε as ε → 0 . One can wonder if we can weaken this hypothesis: would the C 0 or C 1 convergence be enough?

We will prove that the C 0 convergence is not enough.

Example of a family of obstacles that converges only in C 0

In this subsection we construct a family of obstacles that are neither star-shaped nor directionally convex but converges uniformly to K which is convex. We want to prove that for all ε ∈]0, 1] there exists a solution of (3.2) which is not identically equal to 1. To do so we will use the counterexample of section 6.3 in [START_REF] Berestycki | Bistable traveling waves around an obstacle[END_REF]. 

K η ε K = B R0 R 0
C ε B R0 R 1 R 2 A β ε x 0 2η 4η
x Figure 7: Zoom on the perturbation V ε

We consider an obstacle K ε = K η ε (see figure 6 and7), for ε > 0, such that:

       A ∩ {x; x 1 ≤ x 0 1 } ∪ B R 0 ∪ C ε ⊂ K η ε , A ∩ x; x 1 > x 0 1 , |x ′ | > 2η ⊂ K η ε , K η ε ⊂ A ∩ x; x 1 > x 0 1 , |x ′ | > η ∪ B R 0 ∪ A ∩ x; x 1 ≤ x 0 1 ∪ C ε . (4.1) 
where x ′ = (x 2 , ..., x N ) and

A = {x : R 1 ≤ |x -x 0 | ≤ R 2 }, R 0 , R 1 < R 2
, are three positive constants, x 0 = (x 0 1 , 0, 0, ..., 0) is the center of the annular region A with x 0 1 = R 0 + R 2 + β ε , C ε is some corridor that links smoothly A and B R 0 which length is β ε and η > 0, small enough. Now let explain why the convergence of K ε is only true for the C 0 topology. We want that for all ε > 0, the annular region A stays an annular region (see arguments in the next section, Corollary 4.1 and 4.2). To do so we need to reduce vertically and horizontally the perturbation in order to stay with an annular region. To simplify the proof, assume that N = 2. Let g be the parametrization of K = B R 0 , i.e

K = (x, y) ∈ R 2 |(x, y) = g(t) = R 0 cos(t), R 0 sin(t) ∀t ∈ [0, 2π[ . (4.2) 
Let f ε be the parametrization of K ε for all 0 < ε ≤ 1. To define f ε , we start with the case when ε = 1:

K 1 = (x, y) ∈ R 2 |(x, y) = f 1 (t) = g(t) ∀t ∈]θ, 2π -θ[, h(t) ∀t ∈ [0, θ] ∪ [2π -θ, 2π[ , (4.3) 
where θ is some small positive number and h is such that f 1 is a C 2,α function. Now one can define f ε and K ε :

K ε = (x, y) ∈ R 2 |(x, y) = f ε (t) = g(t) ∀t ∈]εθ, 2π -εθ[, h ε (t) ∀t ∈ [0, εθ] ∪ [2π -εθ, 2π[ , (4.4) 
where h ε is such that f ε is a C 2,α function and such that for every (x, y) ∈ A ∩ K ε , (x, y) = h ε (t) = εh(t). This last condition ensures that A stays an annular region.

Then one can easily see that K ε → K as ε → 0 for the C 0 topology, i.e ff ε C 0 ([0,2π[) → 0 as ε → 0 Now assume that K ε → K as ε → 0 for the C 1 topology. One can notice (see figure 8 below) that for ε = 1 there exists a t m ∈ [0, θ] such that f ′ 1 (t m ) = e 1 = (1, 0) or ν(x m , y m ) = e 2 = (0, 1), where ν is the outward unit normal and (x m , y

m ) = f 1 (t m ) ∈ A ∩ K ε . K = B R0 ν(xm , ym) (xm, ym) (R0, 0) ν(R0, 0) x y θ (R0, 0) Figure 8: Outward unit normal Let consider t ε ∈ [0, εθ] such that ν(x ε , y ε ) = e 2
, where (x ε , y ε ) = f ε (t ε ) the point at the top of the big sphere in A. This point always exists because we parametrize K ε such that A stays an annular region. As the convergence is C 1 one should have that ν(x ε , y ε ) → ν(R 0 , 0) as ε → 0, because (x ε , y ε ) → (R 0 , 0) as ε → 0. But ν(x ε , y ε ) = e 2 for every ε ∈ (0, 1] and ν(R 0 , 0) = e 1 , which is impossible. The convergence can not be C 1 .

Existence of a non constant solution u ε of (1.6)

We want to prove that for all 0 < ε < 1 their exists a solution 0

< u ε < 1 of      -∆u ε = f (u ε ) in R N \K η ε = Ω η ε , ν • ∇u ε = 0 on ∂K η ε = ∂Ω η ε , u ε (x) → 1 as |x| → +∞. (4.5)
Here as in section 2, u ε denotes the solution of the elliptic problem. We will follow the same steps as in [START_REF] Berestycki | Bistable traveling waves around an obstacle[END_REF], section 6. First, let notice that it is enough to find ω ≡ 1 solution of

     -∆ω = f (ω) in B R \K η ε , ν • ∇ω = 0 on ∂K η ε , ω = 1 on ∂B R , (4.6) 
And then using Proposition 6.8 of [START_REF] Berestycki | Bistable traveling waves around an obstacle[END_REF] and Corollary 4.1 one gets the following Corollary Corollary 4.2 There exist γ > 0 and η 0 > 0 (which depend on ε) such that for all 0 < η < η 0 and v ∈ H 1 0 such that vv 0 2 = δ, then

J B R \K η ε (v 0 ) < J B R \K η ε (v) -γ. The functional J B R \K η
ε admits a local minimum in the ball of radius δ around v 0 in H 1 (B R \K η ε ) ∩ {v = 0 on ∂B R }. This yields a (stable) solution v of (4.8) for small enough η > 0. Furthermore, provided that δ is chosen small enough, this solution does not coincide either with 1 or with 0 in B R \K η ε . We have proved that for all ε ∈]0, 1], u ε ≡ 1.

One has proved that C 0 convergence of the domain is not sufficient. One can now wonder whether this C 1 convergence would be sufficient. The main difficulties here would be the following • We cannot apply Theorem 1.5 directly to prove the sufficiency of the C 1 convergence.

In deed without the C 2,α convergence of the obstacles we cannot use Schauder theory.

One can try to relax some assumptions on the regularity of the domain in the Schauder theory, as it has already been done in the literature (L ∞ assumption for coefficient in an elliptic or parabolic equation is enough to get the maximum principle). This remark refers to some technical arguments that will not be further explored in this article.

• One can try to construct a counterexample, as for the C 0 convergence. The problem here would be that we could not use the energy arguments anymore because if we want the convergence to be C 1 , the perturbations cannot draw any holes (most important argument in the construction of v 0 ).

Thus the optimal space of convergence for the obstacles K ε is still an open problem.

Figure 1 :

 1 Figure 1: Obstacles converging toward a star-shaped domain

Figure 2 :

 2 Figure 2: Obstacles converging toward a directionally convex domain

Figure 6 :

 6 Figure 6: Liouville counterexample Zooming on the dashed part:
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for some R > 0 large enough such that K η ε ⊂ B R . Indeed then ω extended by 1 outside B R is a supersolution of (4.5) and one can define:

where U : R + → (0, 1) satisfies

is a subsolution, ψ is a subsolution of (4.5). Hence there exists a solution ψ < u ε < ω of (4.5). If we prove that ω ≡ 1 then 0 < u ε < 1 (with the maximum principle). Now let consider our problem (4.6) and replace ω by v = 1ω. The problem becomes

Using exactly the same arguments as in [START_REF] Berestycki | Bistable traveling waves around an obstacle[END_REF] one proves that, if we considere:

, (4.9) then there exists v ∈ H 1 (B R \K η ε ) ∩ {v = 0 on ∂B R } = H 1 0 such that vv 0 H 1 0 < δ for some δ > 0 small enough, that is a local minimizer of the associated energy functional in H 1 0 when the width η of the channel is small enough. For more clarity we will give the main step of the proof but for details see [START_REF] Berestycki | Bistable traveling waves around an obstacle[END_REF], section 6.3.

We introduce the energy functional in a domain D: 

More precisely, their exist α > 0 and δ > 0 for which

for all v ∈ H 1 (B R 1 (x 0 )) such that vv 0 2 ≤ δ.