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Partial Differential Equation-Based Approach for

Empirical Mode Decomposition: Application on

Image Analysis
Oumar Niang, Abdoulaye Thioune, Mouhamed Cheikh El Gueirea, Eric Deléchelle and Jacques Lemoine

Abstract—The major problem with Empirical Mode Decom-
position (EMD) algorithm is its lack of a theoretical framework.
So, it is difficult to characterize and evaluate this approach. In
this paper, we propose in the two dimensional case, the use of
an alternative implementation to the algorithmic definition of the
so-called ’sifting process’ used in the original Huang’s Empirical
Mode Decomposition method. This approach, especially based
on Partial Differential Equations (PDE) was presented by O.
Niang and al. in previous works, in 2005 and 2007 and lays on
a nonlinear diffusion-based filtering process to solve the mean-
envelope estimation problem. In 1D case, the efficiency of the
PDE-based method, compared to the original EMD algorithmic
version, is also illustrated in recent paper [1]. Recently, several bi-
dimensional extensions for EMD method were proposed. Despite
some efforts, 2D versions for EMD appear poorly performing
and are very time consuming. So in this work, an extension to
2D space of the PDE-based approach is extensively described.
This approach has been applied in case of both signal and image
decomposition. Obtained results confirm the usefulness of the
new PDE-based sifting process for decomposition of various kinds
of data. Some results have been provided in the case of image
decomposition. The effectiveness of the approach encourages its
usage in a number of signal and image applications such as
denoising, detrending, or texture analysis.

Index Terms—Empirical Mode Decomposition (EMD), Mean-
Envelope, Partial Differential Equation, Restoration, Signal, Im-
age, Inpainting.

I. INTRODUCTION

IN complement of a previously published letter [1]–[3], this

paper addresses an alternative to the problem of mean-

envelope estimation of a signal that is a crucial step in the

Empirical Mode Decomposition (EMD) method originally

proposed by N.E. Huang et al. [4]. Although EMD is often

remarkably effective in some applications [5]–[8], this method

Copyright c©2012 IEEE.
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et Systèmes Intelligents (LiSSi-E.A.3956)-Université Paris Est Créteil Val-
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is faced with the difficulty of being essentially based on an al-

gorithm, and therefore not admitting an analytical formulation

which would permit a theoretical analysis and performance

evaluation.

The purpose of this paper is therefore to contribute analyti-

cally to a better understanding of the EMD method with an 2D

extension of the approach presented in [3]. There are various

applications of nonlinear diffusion filtering in signal and image

processing. Such filters are used for denoising, enhancement,

gap completion, and are expected to play an increasing role in

future applications. Nonlinear diffusion filtering is a continu-

ous filter, formulated as a partial differential equation (PDE).

The filter operation is practically performed by solving the

nonlinear PDE numerically. In [2] a fully mathematical study

of PDE model proposed in this paper was done. The paper is

organized as follows: we recall the classical EMD and present

the PDE model in sections II and III. Section IV recalls some

models of diffusion equation used in image processing. Then

the 2D extension of the PDE model for EMD is presented

in Section V. We finish with numerical simulations and a

conclusion.

II. EMPIRICAL MODE DECOMPOSITION BASICS

We summarized in this section the EMD method. The liter-

ature on the EMD and its use in applied science is abundant,

a permanent updating of some recent and not exhaustive

developments may be obtained by consulting the following

references. Details on the implementation of EMD algorithm

and Matlab codes for some applications are fully available in

[9]–[11].

A. EMD principle

EMD [4] method decomposes iteratively a complex

signal (i.e. with several characteristic time scales coexisting)

into elementary AM-FM type components called Intrinsic

Mode Functions (IMF). The underlying principle of this

decomposition is to locally identify in the signal, the most

rapid oscillations defined as the waveform interpolating

interwoven local maxima and minima. To do so, local

maxima points (resp. local minima points) are interpolated

with a cubic spline, to yield the upper (resp. lower) envelope.

The mean envelope (half sum of upper and lower envelopes)

is then subtracted from the initial signal, and the same

interpolation scheme is re-iterated on the remainder. The

so called sifting process stops when the mean envelope is
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reasonably zero everywhere, and the resulting signal is called

the first IMF. The higher order IMFs are iteratively extracted

applying the same procedure to the initial signal after the

previous IMFs have been removed.

To be an IMF, a signal must satisfy two criteria, the first

one being that the number of local maxima and the number of

local minima differ by at most one, and the second, the mean

of its upper and lower envelopes equals zero. So, for any 1D

discrete signal, EMD ends up with the following representation

s [n] = rK [n] +

K
∑

k=1

imfk [n] ,

where imfk is the k-th mode (or IMF) of the signal, and rK

stands for residual trend (a low order polynomial component).

Sifting procedure generate a finite (and limited) number of

IMFs that seems nearly orthogonal to each other [4]. By nature

of the decomposition procedure, the technique decomposes

data into K fundamental components, each with distinct time

scale: the first component has the smallest time scale. As the

decomposition proceeds, the time scale increases, and hence,

the mean frequency of the mode decreases.

B. EMD related works

Numerous efforts on EMD method were essentially done for

algorithm improvement [12], experimental characterization

on fractional Gaussian noise decomposition showing

spontaneous emergence of a filter bank structure, almost

dyadic and self-similar and resulting on a possible Hurst’s

exponent estimation [13]–[16].To decompose noised data or

signal with intermittencies, two EMD improvements have

been proposed in [17] by Ensemble EMD (EEMD) method

with an multi-dimensionnal version in [18] , and in [1]

with an Tykhonov regularization. After the introduction

of complex signal EMD and the rotation invariant EMD

proposed respectively in [19] and in [20], the Bivariate EMD

in [21], the decomposition of multivariate signals using the

Active Angle Averaging is presented in [22]. Several works

have proposed different approaches for 2D extension of

EMD, including a row-wise/column-wise decomposition, in

the spirit of the so-called non-standard wavelet transform,

or a truly bidimensional version of EMD [23]–[28]. A fully

multivariate EMD method is presented in [29]. In [30], a

multi-dimensional ensemble empirical mode decomposition

(MEEMD) for multi-dimensional data (such as images or

solid with variable density) is proposed. A first conclusion

from these works is that, EMD method appears as a simple,

local and fully data-driven approach, adapted to nonlinear

oscillations. More, the combination of the EMD method and

the associated Hilbert spectral analysis can offer a powerful

method for nonlinear and non-stationary data analysis [4],

[9], [10].

During sifting process, cubic splines interpolation is a

crucial step to create the upper and lower envelopes of the

data set. Fitting of the splines at the extrema can produce

several inconveniences: (i) problems can occur near the

ends; (ii) end swings can eventually propagate inward; (iii)

overshoots and undershoots could occur, (iv) influence of the

sampling [32]. Some solutions were proposed in [33], [34]. In

2D versions, the main drawbacks of EMD are the definition

of extrema of an image (or a surface), and the choice of

the interpolation method acting on a set of scattering points.

More, such decomposition in 2D is extremely time-consuming.

Some contributions for theoretical understanding of the

EMD should be noted. Daubaucies and al. [35] proposed

an combination of wavelet analysis and reallocation method

and introduce a precise mathematical denition for a class of

functions that can be viewed as a superposition of a reason-

ably small number of approximately harmonic components.

Globally EMD method suffers from the drawback of a lack

of mathematical framework beyond numerical simulations.

Despite some works [1]–[3], [36], [37], a complet EMD

formalism remains a challenge. In the following section, we

recall the analytical contribution of O. Niang and al. in [1]–[3]

based on PDE approach to compute the mean enveloppe.

III. PDE-BASED FORMULATION IN 1-D

The mathematical modeling leads to a PDE parabolic sys-

tem which gives a family of solutions that interpolate the

charcacteristic points of a signal. This family of functions

converge to the envelope of the signal which was calculated by

cubic spline interpolation in classical EMD. It is proven that

this solution is in H2(Ω) whereas the input signal representing

the initial solution of the PDE is in H1(Ω), with Ω is an closed

and bounded set signal which is the domain of the signal. A

possible form for fourth order diffusion equation introduced

in [3] and in [2] is:

∂s (x, t)

∂t
= −

∂

∂x

(

g(x, t)
∂3s (x, t)

∂x3

)

, (1)

where g(x, t) is the diffusivity function possibly depending

on both position and time, and where the time variable is

artificial, and measures the degree of processing (e.g. smooth-

ing) of the signal. Equation (1) can be viewed as a Long-

Range Diffusion (LRD) equation (see for example reference

[38, p.244]), with thresholding function g(x) depending only

on position (constant in time) and more precisely on some

characteristic fix points of the signal to decompose. After

derivation equation (1) read:

st (x, t) = −∂1
xg(x)∂3

xs (x, t) , (2)

where the subscript t denotes partial differentiation with

respect to the variable t and ∂q
x denotes partial differentiation

of order q with respect to the variable x. In the following we

use the notation s0(x) = s(x, t = 0) for initial condition and

s∞(x) = s(x, t = ∞) for asymptotic solution of equation (1).

In order to implement sifting procedure in a PDE-based

framework, the following processes are based on the definition

of characteristic fix points of a function: (i) turning-points;

(ii) curvature-points. Here, we are interested in turning points
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that are minima, maxima and inflexion points, defining by the

values of their first and/or second derivatives. With this model,

to estimate lower and upper envelopes, a couple of PDE is

given instead of a cubic spline inerpolation in sifting process.

A. A coupled PDEs system

A simple method to estimate mean-envelope is to formulate

a coupled PDEs system to mimic Huang’s sifting process

based on upper and lower envelopes estimation. Turning points

are here respectively maxima and minima of the signal to

be decomposed. This coupled PDEs system, based on equa-

tion (1) leads to (see also [2], [3] for a more less general PDE

formulation):

{

s+
t (x, t) = −δ1

x

[

g+
(

δ1
xs0 (x), δ2

xs0 (x)
)

δ3
xs+ (x, t)

]

s−t (x, t) = −δ1
x

[

g−
(

δ1
xs0 (x), δ2

xs0 (x)
)

δ3
xs− (x, t)

]

(3)

After convergence of system (3) [2],asymptotic solutions

s+
∞(x) and s−∞(x) stand respectively for upper and lower

envelops of signal s0. Hence, mean-envelope of s0 is obtained

by:

s∞ (x) = 1
2

[

s+
∞ (x) + s−∞ (x)

]

.

In equation (3), stopping functions, g±, depend on both

first and second order signal derivatives, with 0 ≤ g± ≤ 1.

For example, a good choice for stopping functions seems

(according to our tests) to be

g± (x) = 1
9

[∣

∣sgn
(

δ1
xs0 (x)

)∣

∣ ± sgn
(

δ2
xs0 (x)

)

+ 1
]2

. (4)

In such a way, g+ = 0 and δ1
xg+ = 0 at maxima of

s0, in the same way g− = 0 and δ1
xg− = 0 at minima

of s0. So, LRD acts only between two consecutive maxima

(resp. minima) points until fourth-order derivative of s(x, t)
is canceled. Since, stopping functions are piecewise constant,

after convergence the resulting signal s+
∞(x) (resp. s−∞(x)) is a

piecewise cubic polynomial curve interpolating the successive

maxima (resp. minima) of signal. In equation (4) sign function,

sgn(z), is replaced by a regularized version. A possible

expression is given by sgnα(z) = 2/π arctan(πz/α).
Physically the PDE solution diffuse everywhere except on the

extrema of the signal. Its smoothing effect works like in the

selective diffusion equation case.

B. Interpolation with tension

A more general form for equation (2) is

st(x, t) = δ1
x

[

g(x)
(

αδ1
xs(x, t) − (1 − α)δ3

xs(x, t)
)]

, (5)

so, in this form, α is the tension parameter, and ranges

from 0 to 1. Zero tension, α = 0, leads to the biharmonic

equation form (2) and corresponds to the minimum curvature

construction for upper and lower envelopes. The case α = 1
corresponds to infinite tension (piecewise linear envelopes).

C. Numerical resolution

Numerical resolution for coupled PDEs system based on

equation (5) with Neumann boundaries conditions, is imple-

mented with a Crank-Nicolson scheme (semi or fully implicit)

or Du Fort and Frankel scheme. Noting that a particular

attention is made for derivatives of s0 in the defintion of g(x):

g(x) = g (D1s0(x), D2s0(x)) ,

where g = g±, and D1z = minmod(D+z, D−z), D2z =
D+D−, where D+ and D− are forward and backward

first difference operators on the x-dimension, and where

minmod(a, b) stands for the minmod limiter minmod(a, b) =
1
2 [sgn(a) + sgn(b)] · min(|a|, |b|).
In the next paragraph, before presenting a 2D version of PDE-

based approach for EMD, we recall some models of diffusion

equations in image processing.

IV. DIFFUSION EQUATIONS FOR IMAGE PROCESSING

This part consists on a brief and non exhaustive presentation

of classical nonlinear diffusion filters for image processing.

A. Perona-Malik equation

Let us first provide a model for nonlinear diffusion in image

filtering. We briefly describe the filter proposed by Catté,

Lions, Morel and Coll [39]. This filter is a modified version

of the well know Perona and Malik model [40]. The basic

equation that governs nonlinear diffusion filtering is:

ut (x, t) = div
(

g
(

|∇u (x, t)|
2
)

∇u (x, t)
)

, (6)

with x = (x1, x2), and where u(x, t) is a filtered version of

the original image u(x, t) = u0(x) as the initial condition,

and with reflecting boundary. In equation (6) g(·) is the

conductivity (or diffusivity) function, which dependent (in

space and time) on the image gradient magnitude. Several

forms of diffusivity were introduced in the original paper of

Perona and Malik [40]. All forms of diffusivity are chosen to

be a monotonically decreasing function of the signal gradient.

This behavior implies that the diffusion process maintains

homogenous regions since little smoothing flow is generated

for low image gradients, and in the same way, edges are

preserved by a small flow in regions where the image gradients

are high. Possible expressions for conductivity functions are:

g1 (x, t) =
1

1 +
(

|∇u(x,t)|
β

)2 ,

g2 (x, t) = exp

(

−

(

|∇u (x, t)|

β

)2
)

.

(7)

Parameter β is a threshold parameter, which influences the

anisotropic smoothing process. The nonlinear equation (6)

acts as a forward parabolic equation smoothing regions while

preserving edges. In the Backward diffusion filters, a different

approach is taken. Its goal is to emphasize large gradients and

can be viewed as a reversing diffusion process. The moving

back in time can be obtained mathematically by changing the

sign of the conductivity function.
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Other methods based on high order PDE are provided for im-

age restoration like in [41]–[43]. With these methods, different

functionals can be used to measure the oscillations in an image

and a general formulation of the noise removal problem is

solved by optimisation with constraint on noise level. Most nu-

merical schemes for diffusion process implementation produce

instability, oscillations, or noise amplification, or converge to

a trivial solution like the average value of the whole gray

level image values. So, in order to implement an appropri-

ate stopping mechanism and to overcome stability problems,

various modifications of the original diffusion scheme were

attempted. Efficient numerical schemes were introduced in

[44] based on Additive Operator Splitting (AOS) schemes, or

based on Alternating Direction Implicit (ADI) scheme. See

[44]–[47] for a review and extensions of these methods. Unlike

these methods of high order PDE that are specially developed

for denoising, our model was constructed to interpolate the

characteristic points of a signal. The PDE interpolator is not

based on any a priori knowledge constraint on the noise level

as opposed to Total Variation method in [43].

B. Selective image smoothing problem

Contrary to linear diffusion filters - signal convoluted with

Gaussian of varying widths - nonlinear diffusion filters are

possible solution to solve the selective image-smoothing

problem. The major problem of nonlinear diffusion-based

process is that it is generally difficult to correctly separate

the high frequency components from the low frequency

ones. A possible way is to adopt a dyadic wavelet-based

approximation scheme [48]. Under this framework, a signal

is decomposed into high frequency components and low

frequency ones by using wavelet approximated high-pass

and low-pass filters. In case of denoising applications, the

objective of this process is to use the diffusivity function as

a guide to retain useful data and suppress noise.

In the past few years, a number of authors have proposed

fourth order PDEs for image smoothing and denoising with

the hope that these methods would perform better than their

second order analogues [49]–[54]. Indeed there are good

reasons to consider fourth order equations. First, fourth order

linear diffusion damps oscillations at high frequencies (i.e.

noise) much faster than second order diffusion. Second, there

is the possibility of having schemes that include effects of

curvature (i.e. the second derivatives of the image) in the

dynamics, thus creating a richer set of functional behaviors.

On the other hand, the theory of fourth order nonlinear PDEs

is far less developed than the second order analogues. Also

such equations often do not satisfy a maximum principle or

comparison principle, and implementation of the equations

could thus introduce artificial singularities or other undesirable

behavior. In recent studies, Tumblin [55], Tumblin and Turk

[52] and Wei [53] proposed equations of the form:

ut (x, t) = −div (g (m (u))∇∆u (x, t)) , (8)

where g(·) = g1(·) as in equation (7), and m is some

measurement of u(x, t). In [52], equation (8) is called a ’Low

Curvature Image Simplifier’ (LCIS), and a good choice for m
is defined as m = ∆u to enforce isotropic diffusion [55].

C. Super diffusion model

In fact, equation (6) is a more general form of the diffusion

equation derived from Fick’s law for mass flux, j1,

ut(x, t) = −div (j1 (x, t)) ,

with j1 (x, t) = −G1∇u (x, t), where G1 being a constant.

From a point of view of kinetic theory, this is an approximation

of a quasi homogeneous system which is near equilibrium. A

better approximation can be expressed as a super flux of order

Q

jQ (x, t) =

Q
∑

q=1

(−1)
q
Gq (x, t)∇∇2q−2u (x, t),

with Q = 1, 2, . . ., and where Gq (q > 1, Gq ≥ 0) describe

super diffusivity functions. A truncation at the second order

super flux, j2, leads to the expression

ut(x, t) = −div (−G1∇u (x, t) + G2∇∆u (x, t)) . (9)

A more simple expression for ut(x, t) is:

ut (x, t) = −

Q
∑

q=1

(−1)
q
Gq (x, t)∇2qu (x, t).

For Q = 2, we have:

ut (x, t) = G1 (x, t) ∆u(x, t) − G2 (x, t) ∆2u(x, t). (10)

These PDE tools for digital image processing make more

reachable the 2D extension of the 1D PDE-based method for

EMD.

V. PDE-BASED BIDIMENSIONAL EMPIRICAL MODE

DECOMPOSITION

In this part, we develop an extension in 2D space of the

proposed 1D PDE-based sifting process in order to perform

Bidimensional Empirical Mode Decomposition (BEMD).

A. Proposed super diffusion model in 2D-space

We consider here equation (5), with diffusion matrix func-

tions, Gq, as

Gq(x) =

(

gq,1(x) 0
0 gq,2(x)

)

,

where gq,i is the stopping function for qth-order term in the

direction i.
The proposed super diffusion equation then leads to, for Q = 2
and with tension parameter:

ut(x, t) = div (α G1∇u (x, t) − (1 − α) G2∇∆u (x, t)) .
(11)

In order to estimate upper and lower envelopes, functions

gq,i in Gq must to be specified. Obviously, there are many

ways to construct anisotropic diffusion functionals in 2D. For

simplicity, we test the following choice, with G1 = G2, which

is based on definition (4), for all q = 1, 2:

g±q,i (x) = 1
9

[∣

∣sgn
(

δ1
xi

u0

)∣

∣ ± sgn
(

δ2
xi

u0

)

+ 1
]2

. (12)

In equation (12) signs ± stand respectively for stopping

functions for upper and lower envelopes estimation.
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B. Relation with PDEs defined on implicit surfaces

We can make the relationship of this simple LRD equation

with a 2qth-order heat equation on a curve or surface S in

R
N (N = 2 for a curve and N = 3 for a surface), which is

given by

ut (x, t) = −(−1)q∇2q
S u (x, t) , (13)

with initial condition u(y, 0) = f for y on S. Here, ∇2q
S u

is the 2q-order differential operator applied on u intrinsic to

the surface S. If S is defined as an implicit surface from a

level set function φ, i.e. S is defined as the zero level set of

φ, S =
{

x ∈ R
N : φ(x) = 0)

}

. So, it is easy to show that for

all point on S, Laplacian operator ∆Su intrinsic to S can be

compute using extrinsic derivatives as

∆Su(x) =
1

|∇φ(x)|
∇ · (P(x)∇u(x) |∇φ(x)|), (14)

where P is a projection operator. If φ is a signed distance

function, then |∇φ(x)| = 1, then equation (14) reduce to

∆Su(x) = ∇ · (P(x)∇u(x)).

In the same manner, we can define biharmonic operator, ∆2
S

on u intrinsic to S as

∆2
Su(x) = ∇ · (P(x)∇(∇ · (P(x)∇u(x)))) .

As an example, letting S be the line making angle θ with

the x1-axis in the image plane x = (x1, x2). The projection

matrix is then define by

P =

(

a c
c b

)

=

(

cos2θ cosθsinθ
cosθsinθ sin2θ

)

.

Noting that P not depends on x for this example, the second

and fourth order heat equations on S, q = 1, 2 in equation

(13), are given by

ut = −(−1)q
(

aq ∂2q
x1

u + 2cq ∂q
x1

∂q
x2

u + bq ∂2q
x2

u
)

.

C. Numerical resolutions

Many schemes are proposed for performing nonlinear

diffusion filtering in 2-dimensional space. See [47] for an

extended review. For purpose of simplicity, we consider here

numerical resolution schemes for fourth-order PDE with no

tension (α = 0) in equation (11).

Explicit scheme. To approximate PDE-based sifting process

numerically, we replace the derivatives by finite differences.

Since continuous fourth-order PDE has the structure

ut = −

2
∑

i,j=1

∂1
xi

(

gi∂
1
xi

∂2
xj

u
)

, (15)

its simplest discretization, between iterations k and k + 1, is

given by the difference scheme

Uk+1 − Uk

∆t
= −

2
∑

i,j=1

LijU
k,

so,

Uk+1 =



I − ∆t

2
∑

i,j=1

Lij



 Uk, (16)

where U is the vector formed with the values at each pixel

of u(x), and where Lij is a difference approximation matrix

to the operator ∂1
xi

(

gi∂
1
xi

∂2
xj

)

. Unfortunately, this explicit

scheme require very small time steps ∆t in order to be stable.

A possible amelioration consists on the use of a Du Fort and

Frankel (FFD) scheme which is unconditionally stable but is

no longer consistent for to large time steps ∆t.

Additive Operator Splitting scheme. We can use an

Additive Operator Splitting (AOS) scheme of the form

Uk+1 =
1

2

2
∑

n=1

(I + 2∆tLnn)
−1



I − ∆t

2
∑

i=1

∑

j $=i

Lij



 Uk.

(17)

This method presents better stability properties, but requires

matrix inversions which come down to solving diagonally

dominant pentadiagonal systems (for term with Lnn) of linear

equations and can be performed with a modified Thomas

algorithm [56]. We can note that in equation (17) matrices

Lnn not depend on iteration k, so matrix inversions are then

performed only one time at the beginning (k = 0) of the

iterative scheme.

Alternate Direction Implicit scheme. In order to reduce

complexity, a simplification can be performed on equation (15)

which can be rewritten as

ut = −
2

∑

i,j=1

aij∂
2
xi

∂2
xj

u −

2
∑

i,j=1

bii∂
1
xi

∂2
xj

u,

where aij = 1
2 (gi + gj) and bii = ∂1

xi
gi. As gi is piece-

wise constant, terms in second summation can be neglected,

approximated continuous formulation is then given by

ut ≈ −

2
∑

i,j=1

aij∂
2
xi

∂2
xj

u. (18)

We therefore propose the use of Alternating Direction Implicit

(ADI) type schemes (accurate to second order in time) which is

extensively used for second-order diffusion equation. Fourth-

order PDEs are more difficult to implement with ADI, as

equation (18) includes a cross-term. Witelski and Bowen [57]

suggest an ADI scheme in which the mixed derivative term

is computed explicitly. Then equation (18) is numerically

resolved as

Uk+1 =

(

2
∏

n=1

(I − ∆tAnn)

)−1


I + ∆t

2
∑

i=1

∑

j $=i

Aij



 Uk,

(19)

where Aij is a central difference approximation matrix to the

operator aij∂
2
xi

∂2
xj

.
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VI. RESULTS

In this section, we firstly prove in subsection VI-A, the

efficiency of the PDE interpolator by comparison with some

existing methods. Secondly, in subsection VI-B, some experi-

ments illustrate obtained results on various applications of the

PDE-based BEMD.

A. PDE interpolator performance

The notion of (digital) image inpainting was first intro-

duced in the paper of Bertalmio-Sapiro-Caselles-Ballester

[63]. Smart digital inpainting models, techniques, and algo-

rithms have broad applications in image interpolation, photo

restoration, zooming and super-resolution, primal-sketch based

perceptual image compression and coding, and the error

concealment of (wireless) image transmission, etc.. Another

approach uses ideas from classical fluid dynamics to propagate

isophote lines continuously from the exterior into the region to

be inpainted [68]. This method is directly based on the Navier-

Stokes equations which was well-developed with theoretical

and numerical results. Inspired by the work of Bertalmio et

al., Chan and al. have proposed a general mathematical models

for local inpainting of nontexture images. In the following,

we made some experiments, only to show how the PDE

interpolator works. Figure 5 shows an example of image

inpainting and noise removal results on a degraded LENA

image. Figures 5(c) and (f) show the original image, and

Figures 5(d) and (g) are the occluded (degraded) image. The

PDE-based Inpainting method consists to calculate the mean-

envelope of degraded image. Here the diffusivity functions

g±(x) are set to 1 on occlusion domain (triangular areas on

Figures 5(d) and (g)) where lost data must be restored. Figures

5(e) and (h) illustrates the resulting restored image. Figure

5(a) illustrate Lena picture with 17,76 dB noise level and

its restored version by PDE-interpolator with obtained Signal-

to-Noise Ratio (SNR) equal to 21, 88 dB. On Figure 5(b),
Lena picture with 13, 83 dB noise level is restored by PDE-

interpolator with final SNR equal to 21, 88 dB.

This is not an easy task, if we know just little informations

on an original image as some part of the features such as

edges, and that we want to restore this incomplet image. In the

example in Figure 1, degraded masks of 10%, 23% and 35%

of the image are applied on. To restore these degraded images,

we perform an inpainting operation through three different

interpolation methods: Laplace, k - Neighbors (kNN) (with

k = 4 or 6) and our PDE-interpolator. By comparing the

Signal-to-Noise Ratio (SNR), the obtained results show that

the PDE-interpolator works better than the others two methods.

To complete the demonstration with the SNR, a zoom on the

results in figure1(d) is performed for more visual appreciation.

In Figure 2, only 50%, 23%, 35% and 5% of the image

is alternately available. From these informations, we perform

an restoration of the incomplet images by different methods:

Laplace, k-Nearest neighbor and our PDE-interpolator. By

comparing the Signal-to-Noise Ratio, the obtained results

show that the PDE-interpolation works better than the others.

In the case of 5% for example, PDE-interpolator is far better

considering the SNR and the visual quality of the image result.

(a) Inpainting on Brodatz with 10% of pixels masked

(b) Inpainting on Brodatz with 23% of pixels masked

(c) Inpainting on Brodatz with 35% of pixels masked

(d) Zoom on Brodatz at 23%

Fig. 1. Illustration of image inpainting using PDE-interpolator: Visual
comparaison of PDE-interplator, kNN and Laplace methods.

B. Some applications of PDE-based BEMD

In these experiments, several synthetic and real images

are used to test effectiveness of our approach. We recall that

in PDE-based EMD, the same stopping criteria as in the

classical BEMD algorithm [23] are used.

In this section we are interesting on various possible

applications of BEMD, such as texture extraction, image

denoising or image inpainting. Particulary, in image

segmentation problems, texture extraction is a crucial step

and is one of the most important techniques for image

analysis and understanding. One of the crucial aspects of

texture analysis is the extraction of textural features and

properties. The use of filter operators has been applied

successfully to a variety of computer vision problems. A set

of linear or non-linear operators is generally applied to the
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(a) Image restauration of Boat with 50% of the
total information

(b) Image restauration of Boat with 25% of the
total information%

(c) Image restauration of Boat with 35% of the
total information

(d) Image restauration of Boat with 5% of the
total information

Fig. 2. Illustration of image restauration using PPV, Laplace and PDE-
interpolator: in case of 5%, even if their SNR are similar, the visual quality
of PDE-interpolator is obvious with respect to Laplace result which is work
more than kNN method.

Fig. 3. Comparaison of Signal-to-Noise Ratio in brodatz image test. A qual-
itative comparaison beetwen PDE-interpolator, kNN and Laplace Methods.
PDE-interpolator yield better results in image restoration.

Fig. 4. Comparaison of Signal-to-Noise Ratio in bottle image test. A qual-
itative comparaison beetwen PDE-interpolator, kNN and Laplace Methods.
PDE-interpolator yield better results in image reconstruction.

(a)

(b)

(c) (d) (e)

(f) (g) (h)

Fig. 5. Image inpainting and Restoration examples on ’LENA’ image. (a)
Noised Lena with 17,76 dB and the restored version with PDE-interpolator
(21,88 dB). (b) Noised Lena with 13,83 dB and the restored version with PDE-
interpolator (19,75 dB).(c) Original image. (d) Degraded image. (e) Inpainting
result image. (f)-(g) Zoom on for images (c)-(e).
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input image, that creates a multimodal data space. There

is a lot of related work on the optimal filter selection for

texture segmentation. Most of approaches adopt predefined

filter bank that is composed of isotropic or anisotropic filters

such as the Gaussian operator, the Laplacian-of-Gaussian

operator [58], or the 2D Gabor operators with different scale

and orientation [59]–[61]. An alternative selection is the

wavelet transform, which provides a unifying framework for

the analysis and characterization of an image into different

scales (see for example [62]).

First example (oriented decomposition). To compare the

effect of the selective directional diffusion, we implement

equation (11) by splitting directions, (X, Y ) = (x1, x2).
Figure 6 illustrates the decomposition of a synthetic image

composed of FM components, figure 6(a). Figures 6(b)− (c)
show respectively first IMF and residual obtained in X-

direction. Figures 6(d) − (e) show respectively first IMF and

residual obtained in Y -direction. Figures 6(f) − (g) show

respectively first IMF and residual obtained in both X- and

Y -direction. Finally, figures 6(h)− (i) show respectively first

IMF and residual obtained in Y -direction after diffusion in X-

direction, resulting on extraction of IMF in diagonal direction.

Second example (adaptive decomposition). Figure 8, is a

comparison between BEMD and Laplacian pyramid [58] for

hight frequencies components extraction. The original image,

figure 8(a), is decomposed in a hight frequencies component

image, figure8(b), and a residual image, figure 8(d) with

BEMD approach. The decomposition obtained with Laplacian

pyramid no permits catching of all strips of zebra, see figure

8(c) for hight frequencies component (Laplacian) image and

figure 8(e) for residual (Gaussian) image.

Third example (extracting features, structure and

texture). Figure 9 show how BEMD can extract multi-

oriented texture without introducing smoothing effect. Figure

9(b) and figure 9(c) show respectively the first IMF (texture

image) and the residual (structure image) of BARBARA

original image, figure 9(a).

Fourth example (image denoising). Figure 7 shows how

BEMD can acts as a denoising filter. An initial image, figure

7(a), is corrupted with Gaussian noise, Figure 7(b). The fifth

IMF corresponds to the denoised image, figure 7(c).

Fifth example (texture analysis). Figure 10 shows PDE-

BEMD for a direct texture analysis. An initial image, figure

10(a), is decomposed into IMFs, Figure 10(b− c− d) and an

residual component in 10(e). For color images decomposition,

the PDE-based BEMD method is applied for each color plane.

In the principle, it can be compared to multidimensional EMD

implementation as presented in [69], where a set of common

frequency scales can be determined by simultaneously decom-

posing sources using the bivariate EMD.

(a) original

(b) imf: X (c) res: X

(d) imf: Y (e) res: Y

(f) imf: X+Y (g) res: X+Y

(h) imf: X·Y (i) res: X·Y

Fig. 6. Illustration of the directional and local adaptative frequency decompo-
sition for PDE-based BEMD. (a) Original multicomponent FM image. (b)-(c)
First IMF and residual for decomposition in column direction (X). (d)-(e) First
IMF and residual for decomposition in row direction (Y). (f)-(g) First IMF
and residual for decomposition in both directions (X+Y). (h)-(i) First IMF
and residual for decomposition in row direction following by decomposition
in column direction (X·Y).
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(a) (b) (c)

Fig. 7. Illustration of image denoising using PDE-based EMD. (a) Free-noise
image, 2D (up) and surface (down) representations. (b) Same as in (a) with
additive Gaussian noise. (c) The denoised image is given by the fifth IMF.

(a)

(b) (c)

(d) (e)

Fig. 8. Comparison between PDE-based BEMD and Laplacian Pyramid
approach. (a) Original image. (b) and (d) first IMF and residual of BEMD.
(c) and (e) First level of Laplacian and Gaussian pyramids. Whereas BEMD is
able to extract a broad band FM component, Laplacian decomposition failed.
All strips of zebra are identified in first IMF (b), but only high frequency
strips are catching in (c).

VII. CONCLUSION

In this paper, we have proposed an 2D PDE-based version

to the purely algorithmic implemented sifting process used in

the original Huang’s EMD method. The approach to solve

the selective signal smoothing is based on a fourth-order

nonlinear diffusion equation. In the spirit of the original

sifting process, this nonlinear filtering algorithm is equivalent

to an iterated sequence of regularization and reconstruction

processes. Experimental results show that our approach can

be used to achieve signal decomposition with a valuable

(a) (b) (c)

(d) (e) (f)

Fig. 9. Illustration of BEMD-based image filtering on ’BARBARA’ image.
(a) Original image. (b) and (c) approximation (residual) image and details
(first IMF) image. (d)-(f) Closed-up on images (a)-(c).

(a) (b) (c)

(d) (e)

Fig. 10. Illustration of PDE-Based BEMD texture on ’Brodatz’ image. (a)
Original image. (b - c and d) details with succesive IMFs from PDE-BEMD.
(e) the residu of the EMD.

performance. Especially in the case of images, the method

is very efficient and time consuming competitive compared to

existing 2D version of EMD in the literature like RBF-tools

that we used in previous works for BEMD implementation.

The main contribution of this paper was the use of 2D

PDE-interpolator that works like a selective image smoothing

method. In accordance with the analytical approach for sifting

process depicted in previous works, this method can be used

for extracting transient signal and for intermittencies removal

problems. Finally the 2D version of this approach could boost

applications of EMD in image analysis and compression which

is the subject of ongoing work.
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[64] P. Mrázek, J. Weickert, G. Steidl, and M. Welk. ”On Iterations and Scales
of Nonlinear Filters,” Proc. of the Computer Vision Winter Workshop,
ed.:O. Drbohlav, Valtice, Czech Republic, pp. 61-66, Feb. 3-6, 2003.

[65] M. Unser, A. Aldroubi, and M. Eden, ”The L2 Polynomial Spline
Pyramid,” IEEE Trans. On Pattern Analysis and Machine Intelligence,
vol. 15(4), pp. 364-379, April 1993.

[66] T. F. Chan and J. Shen, ”Mathematical models of local non-texture
inpaintings”, SIAM J. Appl. Math, 62(3):10191043, 2002.

[67] L. Rudin, S. Osher, and E. Fatemi, ”Nonlinear total variation based noise
removal algorithms” Phys. D, 60 (1992), pp. 259268.

[68] M. Bertalmio, A. L. Bertozzi, and G. Sapiro, ”Navier-Stokes, Fluid
Dynamics, and Image and Video Inpainting”, Proceedings of the In-
ternational Conference on Computer Vision and Pattern Recognition,
IEEE, Dec. 2001, Kauai, HI, volume I, pp. I-355-I362.

[69] Looney, D. and Mandic, D. P, ”Multiscale image fusion using complex
extensions of EMD”. IEEE Trans. Signal Process, 2009. 57, 16261630.

Oumar Niang received the Ph.D. degree in com-
puter sciences - actual biomedical engineering -
from the Laboratoire Images, Signaux et Systèmes
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Créteil, France, in 2007. He is a Rechearch Professor
at the Ecole Polytechnique de Thies Sénégal. He
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Val–de–Marne, Créteil, France.
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