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Equivalence of the Poincaré inequality with a transport-chi-square inequality in dimension one

In this paper, we prove that, in dimension one, the Poincaré inequality is equivalent to a new transport-chi-square inequality linking the square of the quadratic Wasserstein distance with the chi-square pseudo-distance. We also check tensorization of this transport-chi-square inequality.

For q ≥ 1, the Wasserstein distance with index q between two probability measures µ and ν on R d is denoted by

W q q (µ, ν) = inf γ< µ ν R d ×R d |x -y| q dγ(x, y) (0.1)
where the infimum is taken over all probability measures γ on R d × R d with respective marginals µ and ν. We also introduce the relative entropy and the chi-square pseudo distance According to [START_REF] Otto | Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality[END_REF], the log-Sobolev inequality is stronger than the transport-entropy inequality which is itself stronger than the Poincaré inequality and more precisely LS(C) ⇒ T H (C) ⇒ P(C/2). The transport-entropy inequality is strictly weaker than the log-Sobolev inequality (see [START_REF] Cattiaux | On quadratic transportation cost inequalities[END_REF][START_REF] Gozlan | Transport entropy inequalities on the line[END_REF] for examples of one-dimensional probability measures µ satisfying the transportentropy inequality but not the log-Sobolev inequality) and is strictly stronger than the Poincaré inequality (see for example [START_REF] Gozlan | Transport entropy inequalities on the line[END_REF] Theorem 1.7).

H(ν|µ) = R d
On the other hand, the inequality x ln(x) ≤ (x -1) + (x -1) 2 implies H(ν|µ) ≤ χ 2 2 (ν|µ) and therefore T H (C) ⇒ T χ (C). The transport-entropy inequality implies both the transport-chisquare and Poincaré inequalities. The relation between the two latter is therefore a natural question. It turns out that, by an easy adaptation of the linearization argument in [START_REF] Otto | Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality[END_REF], the transport-chi-square inequality implies the Poincaré inequality. Moreover, in dimension d = 1, we are able to prove the converse implication so that both inequalities are equivalent. Last, we prove tensorization of the transport-chi-square inequality.

When µ (resp. ν) admits a density w.r.t. the Lebesgue measure, this density is denoted by f (resp. g). Moreover, the optimal coupling in (0.1) is given by γ = du • (F -1 , G -1 ) -1 where du denotes the Lebesgue measure on (0, 1) so that W q q (µ, ν) = 1 0 (F -1 (u) -G -1 (u)) q du (see [START_REF] Rachev | Mass transportation problems volume I :Theory[END_REF] p107-109). We take advantage of this optimal coupling to work with the cumulative distribution functions and check the following proposition. In higher dimensions, far less is known on the optimal coupling and this is the main reason why we have not been able to check whether the Poincaré inequality implies the transport-chi-square inequality.

Proposition 1.4 If a probability measure µ on the real line admits a positive probability density f , then, for any probability measure ν on R,

W 2 2 (µ, ν) ≤ 4 R (F -G) 2 f (x)dx. (1.2) Remark 1.5 • One deduces that W 2 1 (µ, ν) ≤ 4 R (F -G) 2 f (x)dx.
Notice that since, by (1.1) and Fubini's theorem,

W 1 (µ, ν) = 1 0 R 1 {F -1 (u)≤x<G -1 (u)} + 1 {G -1 (u)≤x<F -1 (u)} dxdu = R 1 0 1 {G(x)<u≤F (x)} + 1 {F (x)<u≤G(x)} dudx = R |F (x) -G(x)|dx,
the stronger bound

W 2 1 (µ, ν) = R |F -G| √ f × f (x)dx 2 ≤ R (F -G) 2 f (x)dx
is a consequence of the Cauchy-Schwarz inequality.

• It is not possible to control R (F -G) 2 f (x)dx in terms of W 2 2 (µ, ν). Indeed for f (x) = 1 2 e -|x| and dν(x) = 1 2 e -|x-m| dx, one has W 2 2 (µ, ν) = m 2 , G(x) = e x-m 2 1 {x≤m} + (1 -e m-x
2 )1 {x>m} and for m > 0,

R (F -G) 2 f (x)dx ≥ +∞ m (F -G) 2 f (x)dx = e -m 2 (e m -1) 2 .
Next, when the probability measure µ on the real line admits a positive probability density satisfying a tail assumption known to be equivalent to the Poincaré inequality (see Theorem 6.2.2 [START_REF] Ané | Sur les inégalités de Sobolev logarithmiques[END_REF]), we are able to control the right-hand-side of (1.2) in terms of χ 2 2 (ν|µ). Then for any probability density g on the real line with cumulative distribution function

G(x) = x -∞ g(y)dy, R (F -G) 2 f (x)dx ≤ 4b R (f -g) 2 f (x)dx. (1.4)
Remark 1.7

• The combination of these two propositions implies that any probability measure µ on the real line admitting a positive density f such that b < +∞ satifies T χ (16b).

• Proposition 1.6 is a generalization of the last assertion in Lemma 2.3 [START_REF] Jourdain | Propagation of chaos and Poincaré inequalities for a system of particles interaction through their cdf[END_REF] where f is restricted to the class of probability densities f ∞ solving f ∞ (x) = -A(F ∞ (x)) on the real line with

A : [0, 1] → R -C 1 , negative on (0, 1) and s.t. A(0) = A(1) = 0, A ′ (0) < 0, A ′ (1) > 0.
The constant b associated with any such density is finite by the proof of Lemma 2.1 [START_REF] Jourdain | Propagation of chaos and Poincaré inequalities for a system of particles interaction through their cdf[END_REF]. Moreover, in order to investigate the long-time behaviour of the solution f t of the Fokker-Planck equation

∂ t f t (x) = ∂ xx f t (x) + ∂ x (A ′ (F t (x))f t (x)), (t, x) ∈ [0, +∞) × R to the density f ∞ such that R xf ∞ (x)dx = R xf 0 (x)dx, [6] first investigates the ex- ponential convergence to 0 of R (Ft-F∞) 2 f∞ (x)dx (Lemma 2.8) before dealing with that of R (ft-f∞) 2 f∞ (x)dx (Theorem 2.4). • Even when b < +∞, it is not possible to control R (f -g) 2 f (x)dx in terms of R (F -G) 2 f (x)dx. Indeed let f (x) = 1 2 e -|x| and for n ∈ N, g n (x) = k≤n f (x)1 [k-1,k) (|x|) + k≥n e -|x| 2 2 1 [x k ,k+1) (|x|)
where

x k = k + 1-2 ln 1 + e-1 2 e -k+1 2 
belongs to (k, k + 1) and is such that

k+1 x k e -x 2 dx = k+1 k
e -x dx. One has, using ∀y ≥ 0, ln(1 + y) ≥ y 1+y by concavity of the logarithm and

1 + e-1 2 e -k+1 2 ≤ √ e for the inequality, R (f -g n ) 2 f (x)dx = 2 +∞ n g 2 n f (x)dx -e -n = 2 k≥n ln 1 + e -1 2 e -k+1 2 -e -n ≥ (e -1) √ e k≥n e -k+1 2 -e -n = ( √ e + 1)e -n+1 2 -e -n .
On the other hand, since for k

≥ n and x ∈ [k, k + 1], 1 -e -k 2 ≤ G n (x) ≤ F (x) = 1 -e -x 2 , R (F -G n ) 2 f (x)dx ≤ k≥n k+1 k (e -k -e -x ) 2 e -x dx = e 2 -2e -1 e -1 e -n .
Proof of Theorem 1.1 : The implication T χ (C) ⇒ P(C) is obtained by linearization of the transport-chi-square inequality T χ (C). For ν ε = (1 + εφ)µ with φ : R d → R a C 2 function compactly supported and such that R d φ(x)dµ(x) = 0, according to [START_REF] Otto | Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality[END_REF] p394, there is a finite constant K not depending on ε such that

R d φ 2 (x)dµ(x) ≤ R d |∇φ(x)| 2 dµ(x) × W 2 (µ, ν ε ) ε + KW 2 2 (µ, ν ε ) ε . When T χ (C) holds, then W 2 (µ, ν ε ) ≤ ε C R d φ 2 (
x)dµ(x) and taking the limit ε → 0, one deduces that

R d φ 2 (x)dµ(x) ≤ R d |∇φ(x)| 2 dµ(x) × C R d φ 2 (x)dµ(x). This implies R d φ 2 (x)dµ(x) ≤ C R d |∇φ(x)| 2 dµ(x)
. Let now ϕ, φ n : R d → R be C 2 functions compactly supported with φ n taking its values in [0, 1], equal to 1 on the ball centered at the origin with radius n and ∇φ n bounded by 1. Taking the limit n → ∞ in the inequality written with φ replaced by

ϕ n = ϕ -φ n R d ϕ(x)dµ(x) R d φn(x)dµ(x)
, one deduces that the Poincaré inequality P(C) holds for ϕ. The extension to C 1 functions ϕ with a bounded gradient is obtained by density.

To prove the converse implication, we now suppose that d = 1, µ satisfies the Poincaré inequality P(C) and that χ 2 (ν|µ) < +∞. We set µ n = ρ n ⋆ µ and ν n = ρ n ⋆ ν for n ≥ 1 where

ρ n (x) = n 2π e -nx 2 2 (1.5)
denotes the density of the centered Gaussian law with variance 1/n. For ϕ a C 1 function on R with a bounded derivative such that 0

= R ϕ(x)dµ n (x) = R ρ n ⋆ ϕ(x)dµ(x), one has R ϕ 2 (x)dµ n (x) = R (ρ n ⋆ ϕ 2 )(x) -(ρ n ⋆ ϕ) 2 (x)dµ(x) + R (ρ n ⋆ ϕ) 2 (x)dµ(x) ≤ R 1 n (ρ n ⋆ (ϕ ′ ) 2 )(x)dµ(x) + C R (ρ n ⋆ ϕ ′ ) 2 (x)dµ(x) ≤ 1 + nC n R (ρ n ⋆ (ϕ ′ ) 2 )(x)dµ(x) = 1 + nC n R (ϕ ′ ) 2 (x)dµ n (x)
where we used the Poincaré inequalities for the Gaussian density ρ n ([1] Théorème 1.5.1 p10) applied to ϕ and for µ applied to ρ n ⋆ ϕ for the second inequality then Jensen's inequality. The probability measure µ n admits a positive density w.r.t. the Lebesgue measure and satisfies P( 1+nC n ). According to Theorem 6.2.2 [START_REF] Ané | Sur les inégalités de Sobolev logarithmiques[END_REF], this property is equivalent to the fact that the constant associated with

µ n through (1.3) is b n ≤ 2 1+nC
n . Combining Propositions 1.4 and 1.6, one deduces that

W 2 2 (µ n , ν n ) ≤ 32 1 + nC n χ 2 2 (ν n |µ n ).
To conclude, let us check that

W 2 2 (µ, ν) ≤ lim inf n→∞ W 2 2 (µ n , ν n ) and that χ 2 2 (ν n |µ n ) ≤ χ 2 2 (ν|µ). First, the probability measures µ n with c.d.f. F n (x) = µ n ((-∞, x]) (resp ν n with c.d.f. G n (x) = ν n ((-∞, x]
)) converge weakly to µ (resp. ν) which ensures that du a.e. on (0, 1), (

F -1 n (u), G -1 n (u)) tends to (F -1 (u), G -1 (u)) as n → ∞. With Fatou lemma, one deduces that W 2 2 (µ, ν) = 1 0 (F -1 (u) -G -1 (u)) 2 du ≤ lim inf n→∞ 1 0 (F -1 n (u) -G -1 n (u)) 2 du = lim inf n→∞ W 2 2 (µ n , ν n ).
On the other hand, by Jensen's inequality,

χ 2 2 (ν n |µ n ) = R R ( dν dµ (y) -1)ρ n (x -y)dµ(y) R ρ n (x -y)dµ(y) 2 R ρ n (x -z)dµ(z)dx ≤ R R dν dµ (y) -1 2 ρ n (x -y)dµ(y)dx = χ 2 2 (ν|µ). Remark 1.8 Since W 2 2 (µ n , ν n ) ≤ inf γ< µ ν R 3 ((x + z) -(y + z)) 2 dγ(x, y)ρ n (z)dz = W 2 2 (µ, ν), one has lim n→∞ W 2 (µ n , ν n ) = W 2 (µ, ν).
Moreover, when χ 2 2 (ν|µ) < +∞, then interpreting µ n and (resp ν n ) as the distribution at time 1 n of a Brownian motion initially distributed according to µ (resp. ν) and using Theorem 1.7 [START_REF] Fontbona | A trajectorial interpretation of the dissipations of entropy and Fisher information for stochastic differential equations[END_REF], one obtains

lim n→∞ χ 2 2 (ν n |µ n ) = χ 2 2 (ν|µ).
2 Proof of Proposition 1.4

To prove the proposition, one first needs to express the Wasserstein distance in terms of the cumulative distribution functions F and G instead of their pseudo-inverses : 

Lemma 2.1 W 2 2 (µ, ν) = R 2 (F (x ∧ y) -G(x ∨ y)) + + (G(x ∧ y) -F (x ∨ y)) + dydx. ( 2 
< F (G -1 (u)) ⇔ F -1 (w) < G -1 (u) ⇔ G(F -1 (w)) < u deduced from (1.1), one obtains W 2 2 (µ, ν) = 1 0 (G -1 (u) -F -1 (u)) 2 du = 2 [0,1] R 2 1 {F -1 (u)≤x≤y<F -1 (F (G -1 (u)))} + 1 {F -1 (F (G -1 (u)))≤x≤y≤F -1 (u)} dxdydu = 2 [0,1] 3 1 {u≤v≤w<F (G -1 (u))} + 1 {F (G -1 (u))≤v≤w≤u} dvdw f (F -1 (v))f (F -1 (w)) du = 2 1 0 1 v 1 0 1 {G(F -1 (w))<u≤v} + 1 {w≤u≤G(F -1 (v))} du dwdv f (F -1 (w))f (F -1 (v)) = 2 1 0 1 v (v -G(F -1 (w))) + + (G(F -1 (v)) -w) + dwdv f (F -1 (w))f (F -1 (v)) = 2 R +∞ x (F (x) -G(y)) + + (G(x) -F (y)) + dydx. (2.2)
By symmetry, one deduces that (2.1) holds.

In the general case, one approximates µ and ν by the probability measure µ n = ρ n ⋆ µ and ν n = ρ n ⋆ ν (see (1.5) for the definition of ρ n ) which admit smooth positive densities w.r.t. the Lebesgue measure. Let F n (x) = µ n ((-∞, x]) and G n (x) = ν n ((-∞, x]) denote the associated c.d.f.. One has lim n→∞ W 2 (µ n , ν n ) = W 2 (µ, ν) according to Remark 1.8. Moreover, by the weak convergence of µ n to µ and ν n to ν, dx a.e. on R, (F n (x), G n (x)) tends to (F (x), G(x)). Since, by Jensen's inequality,

(F n (x) -G n (y)) + = (F (x -z) -G(y -z))ρ n (z)dz + ≤ (F (x -z) -G(y -z)) + ρ n (z)dz,
the right-hand-side of (2.2) gets smaller when replacing (F, G) by (F n , G n ) and tends to the expression with (F, G) as n → ∞ by Fatou lemma. Hence (2.2) still holds.

Proof of Proposition 1.4 : One has

+∞ x (F (x) -G(y)) + dy = 1 {F (x)>G(x)} G -1 (F (x)) x (F (x) -G(y))dy ≤ (F (x) -G(x)) + (G -1 (F (x)) -x).
(2.3) By Fubini's theorem and a similar argument,

R +∞ x (G(x) -F (y)) + dydx = R x -∞ (G(y) -F (x)) + dydx ≤ R (G(x) -F (x)) + (x -G -1 (F (x)))dx
With (2.2) and (2.3), then using Cauchy-Schwarz inequality and the change of variables u = F (x), one deduces that when µ admits a positive density f w.r.t. the Lebesgue measure, then

W 2 2 (µ, ν) ≤ 2 R |G(x) -F (x)||x -G -1 (F (x))|dx ≤ 2 R (G(x) -F (x)) 2 f (x) dx 1/2 × R (x -G -1 (F (x))) 2 f (x)dx 1/2 = 2 R (G(x) -F (x)) 2 f (x) dx 1/2 × 1 0 (F -1 (u) -G -1 (u)) 2 du 1/2 .
Recognizing that the second factor in the r.h.s. is equal to W 2 (µ, ν), one concludes that (1.4) holds as soon as W 2 (µ, ν) < +∞. To prove (1.4) without assuming finiteness of W 2 (µ, ν), one defines a sequence (G n ) n of cumulative distribution functions converging pointwise to G by setting

G n (x) =      F (x) ∧ 1 n if x < G -1 ( 1 n ) G(x) if x ∈ [G -1 ( 1 n ), G -1 ( n-1 n )) F (x) ∨ n-1 n if x ≥ G -1 ( n-1 n ) For x < G -1 ( 1 n ), G(x) < 1 n , |F (x) -G n (x)| = (F (x) -1 n ) + ≤ min(|F (x) -G(x)|, (F (x) - 1 n+1 ) + ) ≤ |F (x) -G n+1 (x)|. Similarly, for x ≥ G -1 n-1 n , G(x) ≥ n-1 n , |F (x) -G n (x)| = ( n-1 n -F (x)) + ≤ min(|F (x) -G(x)|, ( n n+1 -F (x)) + ) ≤ |F (x) -G n+1 (x)|. As a consequence, for fixed x ∈ R, the sequence (|G n (x)-F (x)|) n∈N is non-decreasing and goes to |G(x)-F (x)| as n → ∞. By monotone convergence, one deduces that lim n→+∞ R (Gn-F ) 2 f (x)dx = R (G-F ) 2 f (x)dx. Moreover, G -1 n (u) =      F -1 (u) ∧ G -1 ( 1 n ) if u ≤ 1 n G -1 (u) if u ∈ ( 1 n , n-1 n ] F -1 (u) ∨ G -1 ( n-1 n ) if u > n-1 n .
As a consequence, denoting by ν n the probability measure with c.d.f.

G n , W 2 2 (µ, ν n ) = 1 0 (F -1 (u)- G -1 n (u)) 2 du < +∞ and W 2 2 (µ, ν) ≤ lim inf n→∞ W 2 2 (µ, ν n
) by Fatou Lemma. One concludes by taking the limit n → +∞ in (1.4) written with (ν n , G n ) replacing (ν, G).

Proof of Proposition 1.6

Let us assume that b < +∞ and R (f -g) 2 f

(x)dx < +∞. By integration by parts, for n 

∈ N * , n -n (F -G) 2 f (x)dx = (F -G) 2 (x) x m dy f (y) +n -n -2 n -n (F -G)(f -g)(x)
≤ (F -G) 2 (x) x m dy f (y) ≤ b (F -G) 2 (x) +∞ x f (y)dy = b ∞ x (f -g)(y)dy 2 +∞ x f (y)dy ≤ b ∞ x (f -g) 2 f (y)dy.
where the right-hand-side tends to 0 as x → +∞ by integrability of (f -g) 2 f on the real line.

Similarly, lim x→-∞ (F -G) 2 (x) m x dy f (y) = 0. Taking the limit n → ∞ in (3.1) and using again the definition of b, one deduces that

R (F -G) 2 f (x)dx ≤ 2b R |(F -G)(f -g)|(x) 1 {x≥m} ∞ x f (y)dy + 1 {x<m} x -∞ f (y)dy dx. (3.2) 
The product

|(F -G)(f -g)|(x) × 1 {x≥m} ∞ x f (y)dy + 1 {x<m} x -∞ f (y)dy
is locally integrable on R since the first factor is integrable and the second one is locally bounded. Let a n < +∞ denote the integral of this function on [-n, n].

By Cauchy Schwarz inequality,

a n ≤ R (f -g) 2 f (x)dx   n -n f (F -G) 2 (x) 1 {x≥m} ∞ x f (y)dy + 1 {x<m} x -∞ f (y)dy 2 dx   1/2 . (3.3) Now, setting ε n = (F -G) 2 (n) ∞ n f (y)dy + (F -G) 2 (-n) -n -∞ f (y)dy
, we obtain by integration by parts that for n ≥ |m|,

n -n f (F -G) 2 (x) 1 {x≥m} ∞ x f (y)dy + 1 {x<m} x -∞ f (y)dy 2 dx = (F -G) 2 (x) ∞ x f (y)dy n m -2 n m (F -G)(f -g)(x) ∞ x f (y)dy dx - (F -G) 2 (x) x -∞ f (y)dy m -n + 2 m -n (F -G)(f -g)(x) x -∞ f (y)dy dx = -4(F -G) 2 (m) + ε n -2 n -n (F -G)(f -g)(x) 1 {x≥m} ∞ x f (y)dy - 1 {x<m} x -∞ f (y)dy dx ≤ 2a n + ε n .
Plugging this estimation in (3.3), one deduces that

∀n ≥ |m|, a n ≤ 1 {an>0} 2 + ε n a n R (f -g) 2 f (x)dx.
Using that, according to the analysis of the boundary terms in the first integration by parts performed in the proof, lim n→+∞ ε n = 0 and that (a n ) n is non-decreasing, one may take the limit n → ∞ in this inequality to obtain

R |(F -G)(f -g)|(x) 1 {x≥m} ∞ x f (y)dy + 1 {x<m} x -∞ f (y)dy dx ≤ 2 R (f -g) 2 f (x)dx.
One easily concludes with (3.2).

Proof of Theorem 1.2

Let ν be a probability measure on R d 1 × R d 2 ) with respective marginals ν 1 and ν 2 and such that χ 2 (ν|µ 1 ⊗ µ 2 ) < +∞, ρ denote the Radon-Nykodym derivative dν dµ 1 ⊗µ 2 and for

x 1 ∈ R d 1 , ρ 1 (x 1 ) = R d 2 ρ(x 1 , x 2 )dµ 2 (x 2 ). Notice that χ 2 2 (ν, µ 1 ⊗ µ 2 ) = R d 1 +d 2 (ρ(x 1 , x 2 ) -1) 2 dµ 1 (x 1 )dµ 2 (x 2 ).
According to the tensorization property of transport costs (see for instance Proposition A.1 [START_REF] Gozlan | Transport inequalities -A survey, Markov Processes and Related Fields[END_REF]),

W 2 2 (µ 1 ⊗ µ 2 , ν) ≤ W 2 2 (µ 1 , ν 1 ) + R d 1 1 {ρ 1 (x 1 )>0} W 2 2 µ 2 , ρ(x 1 , .) ρ 1 (x 1 ) µ 2 dν 1 (x 1 ) (4.1)
By the inequality T χ (C 1 ) satisfied by µ 1 , the equality dν 1 dµ 1 (x 1 ) = ρ 1 (x 1 ) = R d 2 ρ(x 1 , x 2 )dµ 2 (x 2 ) and Jensen's inequality, one has

W 2 2 (µ 1 , ν 1 ) ≤ C 1 χ 2 2 (ν 1 |µ 1 ) = C 1 R d 1 (ρ 1 (x 1 ) -1) 2 dµ 1 (x 1 ) ≤ C 1 χ 2 2 (ν, µ 1 ⊗ µ 2 ). (4.2)
So the first term of the right-hand-side of (4.1) is controled by χ 2 2 (ν, µ 1 ⊗ µ 2 ). By the inequality

T χ (C 2 ) satisfied by µ 2 , when ρ 1 (x 1 ) > 0, W 2 2 µ 2 , ρ(x 1 ,.) ρ 1 (x 1 ) µ 2 ≤ C 2 R d 2 ρ(x 1 ,x 2 ) ρ 1 (x 1 ) -1 2 dµ 2 (x 2 )
. Unfortunately, there is no hope to control

R d 1 +d 2 1 {ρ 1 (x 1 )>0} ρ(x 1 , x 2 ) ρ 1 (x 1 ) -1 2 dν 1 (x 1 )dµ 2 (x 2 ) = R d 1 +d 2 1 {ρ 1 (x 1 )>0} ρ(x 1 , x 2 ) ρ 1 (x 1 ) -1 2 ρ 1 (x 1 )dµ 1 (x 1 )dµ 2 (x 2 )
in terms of χ 2 2 (ν, µ 1 ⊗ µ 2 ) because of the possible very small values of ρ 1 (x 1 ). Therefore it is not enough to plug the latter inequality into the right-hand-side of (4.1) to conclude that µ 1 ⊗ µ 2 satisfies a transport-chi-square inequality. So we are only going to use this inequality for ρ 1 (x 1 ) ≥ 1 α where α is some constant larger than 1 to be optimized at the end of the proof. Using Lemma 4.1 below with β = α, one obtains

R d 1 W 2 2 µ 2 , ρ(x 1 , .) ρ 1 (x 1 ) µ 2 1 {ρ 1 (x 1 )≥ 1 α } dν 1 (x 1 ) = αC 2 R d 1 +d 2 (ρ(x 1 , x 2 ) -1) 2 1 {ρ 1 (x 1 )≥ 1 α } dµ 1 (x 1 )dµ 2 (x 2 ). (4.3)
For small positive values of ρ 1 , we use the estimation of W 2 2 µ 2 , ρ(x 1 ,.) ρ 1 (x 1 ) µ 2 deduced from the optimal coupling for the total variation distance. If ν = µ, let ε denote a Bernoulli random variable with parameter p = R d 2 ρ(x 1 ,x 2 )

ρ 1 (x 1 ) ∧ 1 dµ 2 (x 2 ) and (X, Y, Z) denote an independent R d 2 × R d 2 × R d 2 -valued random vector with X, Y and Z respectively distributed according to 1 p ρ(x 1 ,x 2 ) ρ 1 (x 1 ) ∧ 1 dµ 2 (x 2 ), 1 1-p 1 -ρ(x 1 ,x 2 ) ρ 1 (x 1 ) + dµ 2 (x 2 ) and 1 1-p ρ(x 1 ,x 2 ) ρ 1 (x 1 ) -1 + dµ 2 (x 2
). The random variables εX + (1 -ε)Y and εX + (1 -ε)Z are respectively distributed according to dµ 2 (x 2 ) and ρ(x 1 ,x 2 ) ρ 1 (x 1 ) dµ 2 (x 2 ). As a consequence,

W 2 2 µ 2 , ρ(x 1 , .) ρ 1 (x 1 ) µ 2 ≤ E (1 -ε) 2 (Y -Z) 2 = (1 -p)E (Y -Z) 2 ≤ 2(1 -p) E Y - R d 2 y 2 dµ 2 (y 2 ) 2 + E Z - R d 2 y 2 dµ 2 (y 2 ) 2 ≤ 2 R d 2 x 2 - R d 2 y 2 dµ 2 (y 2 ) 2 ρ(x 1 , x 2 ) ρ 1 (x 1 ) -1 dµ 2 (x 2 ).
One deduces

R d 1 1 {0<ρ 1 (x 1 )< 1 α } W 2 2 µ 2 , ρ(x 1 , .) ρ 1 (x 1 ) µ 2 dν 1 (x 1 ) ≤ 2 R d 1 +d 2 x 2 - R d 2 y 2 dµ 2 (y 2 ) 2 |ρ(x 1 , x 2 ) -ρ 1 (x 1 )| 1 {ρ 1 (x 1 )< 1 α } dµ 1 (x 1 )dµ 2 (x 2 ) ≤ 2 R d 1 +d 2 x 2 - R d 2 y 2 dµ 2 (y 2 ) 4 1 {ρ 1 (x 1 )< 1 α } dµ 1 (x 1 )dµ 2 (x 2 ) 1/2 × R d 1 +d 2 (ρ(x 1 , x 2 ) -ρ 1 (x 1 )) 2 1 {ρ 1 (x 1 )< 1 α } dµ 1 (x 1 )dµ 2 (x 2 ) 1/2 ≤ 2C 2 (3d 2 + 2)d 2 R d 1 α 2 (ρ 1 (x 1 ) -1) 2 (α -1) 2 1 {ρ 1 (x 1 )< 1 α } dµ 1 (x 1 ) 1/2 × R d 1 +d 2 [(ρ(x 1 , x 2 ) -1) 2 -(ρ 1 (x 1 ) -1) 2 ]1 {ρ 1 (x 1 )< 1 α } dµ 1 (x 1 )dµ 2 (x 2 ) 1/2 ≤ C 2 α (3d 2 + 2)d 2 α -1 R d 1 +d 2 (ρ(x 1 , x 2 ) -1) 2 1 {ρ 1 (x 1 )< 1 α } dµ 1 (x 1 )dµ 2 (x 2 ),
where we used Cauchy Schwarz inequality for the second inequality, then Lemma 4.2 below and an explicit computation of the third factor for the third inequality and last the inequality √ b √ a -b ≤ a 2 for any a ≥ b ≥ 0. Inserting this estimation together with (4.2) and (4.3) into (4.1), one obtains

W 2 2 (µ 1 ⊗ µ 2 , ν) ≤C 1 χ 2 2 (ν 1 , µ 1 ) + C 2 α 1 ∨ (3d 2 + 2)d 2 α -1 χ 2 2 (ν, µ 1 ⊗ µ 2 ).
For the optimal choice α = 1 + (3d 2 + 2)d 2 , one concludes that the measure µ 1 ⊗ µ 2 satisfies T χ (C 1 + C 2 (1 + (3d 2 + 2)d 2 )). Exchanging the roles of µ 1 and µ 2 in the above reasonning, one obtains that µ 1 ⊗ µ 2 also satisfies T χ (C 2 + C 1 (1 + (3d 1 + 2)d 1 )). (ρ(x 1 , x 2 ) -1) 2 1 {ρ 1 (x 1 )≥ 1 α } dµ 1 (x 1 )dµ 2 (x 2 ).

Proof : Developping the squares and using the definition of ρ 1 and the equality dν 1 (x 1 ) = ρ 1 (x 1 )dµ 1 (x 1 ), one checks that the difference between the right-hand-side and the first term of the left-hand-side is equal to

R d 1 β - 1 ρ 1 (x 1 ) R d 2
ρ 2 (x 1 , x 2 )dµ 2 (x 2 ) + (1 -2β)ρ 1 (x 1 ) + β 1 {ρ 1 (x 1 )≥ 1 α } dµ 1 (x 1 ).

One easily concludes by remarking that the first integral is retricted to the x 1 ∈ R d 1 such that 1 ρ 1 (x 1 ) ≤ α ≤ β and that R d 2 ρ 2 (x 1 , x 2 )dµ 2 (x 2 ) ≥ R d 2 ρ(x 1 , x 2 )dµ 2 (x 2 ) 2 = ρ 2 1 (x 1 ). Proof : According to Theorem 1.1, µ satisfies P(C). By spatial translation, one may assume that R d ydµ(y) = 0. Applying the Poincaré inequality P(C) to the functions x = (x 1 , . . . , x d ) ∈ R d → x i , x → x 2 i and x → x i x j with 1 ≤ i = j ≤ d, yields,

R d x 2 i dµ(x) ≤ C R d x 4 i dµ(x) ≤ 4C R d x 2 i dµ(x) + R d x 2 i dµ(x) 2 ≤ 5C 2 R d (x i x j ) 2 dµ(x) ≤ C R d x 2 i + x 2 j dµ(x) + R d x i x j dµ(x) 2 ≤ 2C 2 + R d x 2 i dµ(x) R d x 2 j dµ(x) ≤ 3C 2 .
One easily concludes by summation of these inequalities.

- 1 2

 1 ln dν dµ (x) dν(x) if ν absolutely continuous w.r.t. µ +∞ otherwise dµ(x) = dν dµ -1 2 L 2 (µ) if ν absolutely continuous w.r.t. µ +∞ otherwise .Next, we precise the inequalities that will be discussed in the paper. Definition 0.1 The probability measure µ on R d is said to satisfy the Poincaré inequality P(C) with constant C if ∀ϕ : R d → R C 1 with a bounded gradient, )| 2 dµ(x) the transport-chi-square inequality T χ (C) with constant C if ∀ν probability measure on R d , W 2 (µ, ν) ≤ √ Cχ 2 (ν|µ).

  the log-Sobolev inequality LS(C) with constant C if ∀ϕ : R d → R C 2 compactly supported, R ϕ 2 (x) ln(ϕ 2 (x))dµ(x) -R ϕ 2 (x)dµ(x) ln R ϕ 2 (x)dµ(x) ≤ C R |∇ϕ(x)| 2 dµ(x).the transport-entropy inequality T H (C) with constant C if ∀ν probability measure on R d , W 2 (µ, ν) ≤ √ CH(ν|µ).

Proposition 1 . 6

 16 Let f (x) be a positive probability density on the real line with cumulative distribution function F (x) = x -∞ f (y)dy and median m such that b

. 1 ) 1 :

 11 Proof of Lemma 2.Let us first suppose that µ admits a positive continuous density f w.r.t. the Lebesgue measure. Using the change of variables (v, w) = (F (x), F (y)) for the third equality then the equivalence w

1 )

 1 For x larger than the median m of the density f , by definition of b, then by the equality (F -G)(x) = ∞ x (g -f )(y)dy and Cauchy-Schwarz inequality, one has 0

Lemma 4 . 1 R d 1 +d 2 ρ(x 1 , x 2 ) ρ 1 (x 1 ) - 1 21 1 (ρ 1 (x 1 )

 4121211111 For β ≥ α > 0, {ρ 1 (x 1 )≥ 1 α } dν 1 (x 1 )dµ 2 (x 2 ) + β R d -1) 2 1 {ρ 1 (x 1 )≥ 1 α } dµ 1 (x 1 ) ≤ β R d 1 +d 2

Lemma 4 . 2

 42 If a probability measure µ on R d satisfies T (C), then ) ≤ (3d + 2)dC 2 .
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