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Abstract

Using an unusual, yet natural invariant measure we show that
there exists a sensitive cellular automaton whose perturbations prop-
agate at asymptotically null speed for almost all configurations. More
specifically, we prove that Lyapunov Exponents measuring pointwise
or average linear speeds of the faster perturbations are equal to zero.
We show that this implies the nullity of the measurable entropy. The
measure µ we consider gives the µ-expansiveness property to the au-
tomaton. It is constructed with respect to a factor dynamical system
based on simple “counter dynamics”. As a counterpart, we prove that
in the case of positively expansive automata, the perturbations move
at positive linear speed over all the configurations.

1 Introduction

A one-dimensional cellular automaton is a discrete mathematical idealiza-
tion of a space-time physical system. The space AZ on which it acts is the
set of doubly infinite sequences of elements of a finite set A; it is called the
configuration space. The discrete time is represented by the action of a cel-
lular automaton F on this space. Cellular automata are a class of dynamical
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systems on which two different kinds of measurable entropy can be consid-
ered: the entropy with respect to the shift σ (which we call spatial) and the
entropy with respect to F (which we call temporal). The temporal entropy
depends on the way the automaton ”moves” the spatial entropy using a local
rule on each site of the configuration space. The propagation speed of the
different one-sided configurations, also called perturbations in this case, can
be defined on a specific infinite configuration, or as an average value on the
configuration space endowed with a probability measure. We can consider
perturbations moving from the left to the right or from the right to the left
side of the two sided sequences. Here we prove that the perturbations (going
to the left or to the right) move at a positive speed on all the configurations
for a positively expansive cellular automata and that in the sensitive case,
there exist automata with the property that for almost all the configurations,
the perturbations can move to infinity but at asymptotically null speed.

Cellular automata can be roughly divided into two classes: the class of
automata which have equicontinuous points and the class of sensitive cellular
automata (Kůrka introduces a more precise classification in [6]). This par-
tition of CA into ordered ones and disordered ones also corresponds to the
cases where the perturbations cannot move to infinity (equicontinuous class)
and to the cases where there always exist perturbations that propagate to
infinity.

The existence of equicontinuity points is equivalent to the existence of a
so-called ”blocking word” (see [6], [8]). Such a word stops the propagation
of perturbations so roughly speaking in the non sensitive case, the speed
of propagation is equal to zero for all the points which contains infinitely
many occurrences of ”blocking words”. For a sensitive automaton there is no
such word, so that perturbations may go to infinity. However, there are few
results about the speed of propagation of perturbations in sensitive cellular
automata except for the positively expansive subclass.

In [7], Shereshevsky gave a first formal definition of these speeds of prop-
agation (for each point and for almost all points) and called them Lyapunov
exponents because of the analogy (using an appropriate metric) with the well
known exponents of the differentiable dynamical systems.

Here we use a second definition of these discrete Lyapunov exponents
given by Tisseur [8]. The two definitions are quite similar, but for each
point, the Shereshevsky’s one uses a maximum value on the shift orbit. For
this reason the Shereshevsky’s exponents (pointwise or global) can not see
the ”blocking words” of the equicontinuous points and could give a positive
value (for almost all points) to the speed on these points. Furthemore, in
our sensitive example (see Section 5), for almost all infinite configurations,
there always exists some increasing (in size) sequences of finite configurations
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where the speed of propagation is not asymptoticaly null which implies that
the initial definition gives a positive value to the speed and does not take
into account a part of the dynamic of the measurable dynamical systems.

Using the initial definition of Lyapunov exponents due to Shereshevsky
[7], Finelli, Manzini, Margara ([2]) have shown that positive expansiveness
implies positivity of the Shereshevski pointwise Lyapunov exponents at all
points.

Here we show that the statement of Finelli, Manzini, Margara still holds
for our definition of pointwise exponents and the main difference between the
two results is that we obtain that the exponents are positive for all points
using a liminf rather that a limsup.

Proposition 1 For a positively expansive cellular automaton F acting on
AZ, there is a constant Λ > 0 such that, for all x ∈ X,

λ+(x) ≥ Λ and λ−(x) ≥ Λ,

where λ+(x) and λ−(x) are respectively the right and left pointwise Lyapunov
exponents.

The first part of the proof uses standard compactness arguments. The result
is stronger and the proof is completely different from the one in [2]. This
result is called Proposition 2 in Section 3 and it is stated for all F -invariant
subshifts X .

Our main result concerns sensitive automata and average Lyapunov ex-
ponents (I+µ and I−µ ). We construct a sensitive cellular automaton F and a
(σ, F )-invariant measure µF such that the average Lyapunov exponents I±

µF

are equal to zero.
By showing (see Proposition 3) that the nullity of the average Lyapunov

exponents implies that the measurable entropy is equal to zero, we obtain
that our particular automaton have null measurable entropy hµF (F ) = 0.

We also prove that this automaton is not only sensitive but µF -expansive
which is a measurable equivalent to positive expansiveness introduced by
Gilman in [3]. So even if this automaton is very close to positive expansive-
ness (in the measurable sense), its pointwise Lyapunov exponents are equal
to zero almost everywhere (using Fatou’s lemma) for a ”natural” measure
µF with positive entropy under the shift. The µF -expansiveness means that
”almost all perturbations” move to infinity and the Lyapunov exponents
represent the speed of the faster perturbation, so in our example almost all
perturbations move to infinity at asymptoticaly null speed.
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In view of this example, Lyapunov exponents or average speed of pertur-
bations appear a useful tool for proving that a cellular automata has zero
measure-theoretic entropy.

The next statement gathers the conclusions of Proposition 3, Proposition
5, Lemma 3 , Proposition 6, Proposition 7, Corollary 1, Remark 6.

Theorem 1 There exists a sensitive cellular automaton F with the following
properties: there exists a (σ, F )-invariant measure µF such that hµF (σ) > 0
and the Lyapunov exponents are equal to zero, i.e., I±

µF = 0, which implies

that hµF (F ) = 0. Furthemore this automaton F has the µF -expansiveness
property.

Let us describe the dynamics of the cellular automaton F and the related
”natural” invariant measure µF that we consider.

In order to have a perturbation moving to infinity but at a sublinear speed,
we define a cellular automaton with an underlying ”counters dynamics”, i.e.
with a factor dynamical system based on ”counters dynamics”.

Consider this factor dynamical system of F and call a ”counter” of size L
a set {0, . . . , L− 1} ⊂ N. A trivial dynamic on this finite set is addition of 1
modulo L. Consider a bi-infinite sequence of counters (indexed by Z). The
sizes of the counters will be chosen randomly and unboundly. If at each time
step every counter is increased by one, all counters count at their own rythm,
independently. Now we introduce a (left to right) interaction between them.
Assume that each time a counter reaches the top (or passes through 0; or
is at 0), it gives an overflow to its right neighbour. That is, at each time,
a counter increases by 1 unless its left neighbour reaches the top, in which
case it increases by 2. This object is not a cellular automaton because its
state space is unbounded. However, this rough definition should be enough
to suggest the idea.

• The dynamics is sensitive. Choose a configuration, if we change the
counters to the left of some coordinate −s, we change the frequency of ap-
parition of overflows in the counter at position −s (for example this happens
if we put larger and larger counters). Then the perturbation eventually ap-
pears at the coordinate 0.

• The speed at which this perturbation propagates is controlled by the
sizes of the counters. The time it takes to get through a counter is more or less
proportional to the size of this counter (more precisely, of the remaining time
before it reaches 0 without an overflow). So a good choice of the law of the
sizes of the counters allows us to control this mean time. More specifically,
we prove that that with high probability, information will move slowly. If
the size of the counters were bounded the speed would remain linear.
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In the cellular automaton F , we ”put up the counters” horizontally: we
replace a counter of size L = 2l by a sequence of l digits and we separate
sequences of digits by a special symbol, say E. Between two Es the dynamics
of a counter is replaced by an odometer with overflow transmission to the
right. More precisely, at each step the leftmost digit is increased by 1 and
overflow is transmitted.

Note that to model the action of a cellular automaton we need to in-
troduce in the factor dynamics a countdown which starts when the counter
reaches the top. The end of the countdown corresponds to the transmission
of the overflow. When the countdown is running, the time remaining before
the emission of the overflow does not depend on a possible overflow emmited
by a neighbouring counter. Nevertheless the effect of this overflow will affect
the start of the next countdown.

Finally, we construct an invariant measure based on Cesaro means of the
sequence (µ◦F n) where µ is a measure defined thanks to the counter dynamic
of the factor dynamical system .

2 Definitions and notations

2.1 Symbolic systems and cellular automata

Let A be a finite set or alphabet. Denote by A∗ the set of all concatenations
of letters in A. AZ is the set of bi-infinite sequences x = (xi)i∈Z also called
configuration space. For i ≤ j in Z, we denote by x(i, j) the word xi . . . xj

and by x(p,∞) the infinite sequence (vi)i∈N with vi = xp+i. For t ∈ N and
a word u we call cylinder the set [u]t = {x ∈ AZ : x(t, t + |u|) = u}. The
configuration set AZ endowed with the product topology is a compact metric
space. A metric compatible with this topology can be defined by the distance
d(x, y) = 2−i, where i = min{|j| : x(j) 6= y(j)}.

The shift σ:AZ → AZ is defined by σ(xi)i∈Z = (xi+1)i∈Z. The dynamical
system (AZ, σ) is called the full shift. A subshift X is a closed shift-invariant
subset X of AZ endowed with the shift σ. It is possible to identify (X, σ)
with the set X .

Consider a probability measure µ on the Borel sigma-algebra B of AZ.
When µ is σ-invariant the topological support of µ is a subshift denoted by
S(µ). We shall say that the topological support is trivial if it is countable. If
α = (A1, . . . , An) and β = (B1, . . . , Bm) are two partitions ofX , we denote by
α∨β the partition {Ai∩Bj , i = 1, . . . , n, j = 1, . . . , m}. Let T : X → X be a
measurable continuous map on a compact setX . The metric entropy hµ(T ) of
T is an isomorphism invariant between two µ-preserving transformations. Let
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Hµ(α) =
∑

A∈α µ(A) logµ(A), where α is a finite partition ofX . The entropy
of the finite partition α is defined as hµ(T, α) = limn→∞ 1/nHµ(∨

n−1
i=0 T

−iα)
and the entropy of (X, T, µ) as hµ(T ) = supα hµ(T, α).

A cellular automaton is a continuous self-map F on AZ commuting with
the shift. The Curtis-Hedlund-Lyndon theorem [4] states that for every cel-
lular automaton F there exist an integer r and a block map f : A2r+1 7→ A
such that F (x)i = f(xi−r, . . . , xi, . . . , xi+r). The integer r is called the radius
of the cellular automaton. If X is a subshift of AZ and F (X) ⊂ X , then the
restriction of F to X determines a dynamical system (X,F ) called a cellular
automaton on X .

2.2 Equicontinuity, sensitivity and expansiveness

Let F be a cellular automaton on AZ.

Definition 1 (Equicontinuity) A point x ∈ AZ is called an equicontinuous
point (or Lyapunov stable) if for all ǫ > 0, there exists η > 0 such that

d(x, y) ≤ η =⇒ ∀i > 0, d(T i(x), T i(y)) ≤ ǫ.

Definition 2 (Sensitivity) The automaton (AZ, F ) is sensitive to initial
conditions (or sensitive) if there exists a real number ǫ > 0 such that

∀x ∈ AZ, ∀δ > 0, ∃y ∈ AZ, d(x, y) ≤ δ, ∃n ∈ N, d(F n(x), F n(y)) ≥ ǫ.

The next definition appears in [3] for a Bernouilli measure.

Definition 3 (µ-Expansiveness) The automaton (AZ, F ) is µ-expansive if
there exists a real number ǫ > 0 such that for all x in AZ one has

µ
(
{y ∈ X : ∀i ∈ N, d(F i(x), F i(y)) ≤ ǫ}

)
= 0.

Notice that in [3] Gilman gives a classification of cellular automata based
on the µ-expansiveness and the µ-equicontinuity classes.

Definition 4 (Positive Expansiveness) The automaton (AZ, F ) is posi-
tively expansive if there exists a real number ǫ > 0 such that,

∀(x, y) ∈ (AZ)2, x 6= y , ∃n ∈ N such that d(F n(x), F n(y)) ≥ ǫ.

Kůrka [6] shows that, for cellular automata, sensitivity is equivalent to
the absence of equicontinuous points.
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2.3 Lyapunov exponents

For all x ∈ AZ, the sets

W+
s (x) = {y ∈ AZ : ∀i ≥ s, yi = xi}, W−

s (x) = {y ∈ AZ : ∀i ≤ s, yi = xi},

are called right and left set of all the perturbations of x, respectively.

For all integer n, consider the smallest “distance” in terms of configurations
at which a perturbation will not be able to influence the n first iterations of
the automaton:

I−n (x) = min{s ∈ N : ∀1 ≤ i ≤ n, F i(W−
s (x)) ⊂ W−

0 (F i(x))}, (1)

I+n (x) = min{s ∈ N : ∀1 ≤ i ≤ n, F i(W+
−s(x)) ⊂ W+

0 (F i(x))}.

We can now define the pointwise Lyapunov exponents by

λ+(x) = lim
n→∞

inf
I+n (x)

n
, λ−(x) = lim

n→∞
inf

I−n (x)

n
.

For a given configuration x, λ+(x) and λ−(x) represent the speed to which
the left and right faster perturbations propagate.

Definition 5 (Lyapunov Exponents) For a µ shift-invariant measure on
AZ, we call average Lyapunov exponents of the automaton (AZ, F, µ), the
constants

I+µ = lim inf
n→∞

I+n,µ
n

, I−µ = lim inf
n→∞

I−n,µ
n

, (2)

where

I+n,µ =

∫

X

I+n (x)dµ(x), I−n,µ =

∫

X

I−n (x)dµ(x).

Remark 1 The sensitivity of the automaton (AZ, F, µ) implies that for all
x ∈ AZ, (I+n (x) + I−n (x))n∈N goes to infinity.

3 Lyapunov exponents of positively expan-

sive cellular automata

Similar versions of the next lemma appear in [1] and [6]. The proof of similar
results in [2] using limsup is based on completely different arguments.

Lemma 1 Let F be a positively expansive CA with radius r acting on a
F -invariant subshift X ⊂ AZ. There exists a positive integer N+ such
that for all x and y in X that verify x(−∞,−r − 1) = y(−∞,−r − 1)
and Fm(x)(−r, r) = Fm(y)(−r, r) for all integers 0 < m ≤ N+, we have
x(r, 2r) = y(r, 2r).
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Proof Let Bn be the subset of (x, y) ∈ X ×X such that x(−∞,−r− 1) =
y(−∞,−r − 1), x(r, 2r) 6= y(r, 2r) and Fm(x)(−r, r) = Fm(y)(−r, r) for all
m < n. Each Bn is closed and Bn+1 ⊂ Bn. Positive expansiveness of F
implies limn→∞Bn = ∅ (see [1]). Since X is a compact set, there is a positive
integer N+ such that BN+ = ∅. ✷

Proposition 2 For a positively expansive CA acting on a bilateral subshift
X, there is a constant Λ > 0 such that for all x ∈ X, λ±(x) ≥ Λ.

Proof We give the proof for λ−(x) only, the proof for λ+(x) being similar.
Let r be the radius of the automaton. According to Lemma 1, for any

point x ∈ X we obtain that if y ∈ W−
−1(x) is such that F i(y)(−r, r) =

F i(x)(−r, r) (∀ 1 ≤ i ≤ N+) then y must be in W−
r (x) ⊂ W−

0 (x). From
the definition of I−

N+(x) in (1), this implies that I−
N+(x) ≥ 2r. Lemma 1 ap-

plied N+ times implies that for each 0 ≤ i ≤ N+, F n (F i(x)) (−r, r) =
F n (F i(y)) (−r, r) for all 0 ≤ n ≤ N+. It follows that F i(x)(r, 2r) =
F i(y)(r, 2r) (∀ 0 ≤ i ≤ N+). Using Lemma 1 once more and shifting r coor-
dinates of x and y yields σr(x)(r, 2r) = σr(y)(r, 2r) ⇒ x(2r, 3r) = y(2r, 3r)
so that I−2N+(x) ≥ 3r. Hence, for each integer t ≥ 1, using Lemma 1,
N+(t − 1)! + 1 times yields x (tr, (t+ 1)r) = y (tr, (t + 1)r) and therefore
ItN+(x) ≥ (t+1)r. Hence for all n ≥ N+ and all x ∈ X , I−n (x) ≥ ( n

N+ +1)r,
so that

λ−(x) = lim
n→∞

inf
I−n (x)

n
≥

r

N+
.

✷

4 Lyapunov Exponents and Entropy

Let F be a cellular automaton acting on a shift space AZ and let µ be a
σ-ergodic and F -invariant probability measure. According to the inequality

hµ(F ) ≤ hµ(σ)(I
+
µ + I−µ )

proved in [8, Theorem 5.1], one has I+µ + I−µ = 0 ⇒ hµ(F ) = 0. Here we
extend this result to the case of a σ and F -invariant measure on a sensitive
cellular automaton.

Proposition 3 If F is a sensitive cellular automaton and µ a shift and F -
invariant measure, I+µ + I−µ = 0 ⇒ hµ(F ) = 0.
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Proof Let α be a finite partition of AZ and αm
n (x) be the element of the

partition α ∨ σ−1α ∨ . . . σ−n+1α ∨ σ1α . . . ∨ σmα which contains x. Using [8,
Eq. (8)] we see that, for all finite partitions α,

hµ(F, α) ≤

∫

AZ

lim inf
n→∞

− log µ(α
I+n (x)

I−n (x)
(x))

I+n (x) + I−n (x)
×

I+n (x) + I−n (x)

n
dµ(x). (3)

Suppose that I+µ + I−µ = lim infn→∞

∫

X
n−1(I+n (x) + I−n (x))dµ(x) = 0. From

Fatou’s lemma we have
∫

X
lim infn→∞ n−1(I+n (x) + I−n (x))dµ(x) = 0. Since

n−1(I+n (x)+I−n (x)) is always a positive or null rational, there exists a set S ⊂
AZ of full measure such that ∀x ∈ S we have lim infn→∞ n−1(I+n (x)+I−n (x)) =
0. Since F is sensitive, for all points x ∈ AZ, we have limn→∞ I+n (x)+I−n (x) =
+∞ (see [8]) and the Shannon-McMillan-Breiman theorem (in the extended
case of Z actions see [5]) tells us that

∫

AZ

lim inf
n→∞

−
log µ(α

I+n (x)

I−n (x)
(x))

I+n (x) + I−n (x)
dµ = hµ(σ, α).

Since for all n and x, − logµ(α
I+n (x)

I−n (x)
(x)) > 0, we deduce that for all ǫ > 0

there is an integer Mǫ > 0 and a set Sǫ ⊂ S with µ(Sǫ) > 1− ǫ such that for
all x ∈ Sǫ,

0 ≤ lim inf
n→∞

− log µ(α
I+n (x)

I−n (x)
(x))

I+n (x) + I−n (x)
≤ Mǫ.

For all x ∈ Sǫ we obtain

φ(x) := lim inf
n→∞

− log µ(α
I+n (x)

I−n (x)
(x))

I+n (x) + I−n (x)
×

I+n (x) + I−n (x)

n
= 0,

which implies
∫

Sǫ
φ(x)dµ(x) = 0. Using the monotone convergence theo-

rem we deduce
∫

AZ φ(x)dµ(x) = 0. It then follows from (3) that hµ(F ) =
supα hµ(F, α) = 0. ✷

5 The cellular automaton and its natural fac-

tor

We define a cellular automaton for which the dynamic on a set of full mea-
sure is similar to the ”counters dynamic” described in the introduction. The
unbounded size counters are ”simulated” by the finite configurations in the
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interval between two special letters ”E”. We will refer to these special sym-
bols as “emitters”. Between two E’s, the dynamic of a counter is replaced by
an odometer with overflow transmission to the right. We add ”2” and ”3” to
{0; 1} in the set of digits in order to have the sensitive dynamic of counters
with overflows transmission. The states 2 and 3 are interpreted as “0 + an
overflow to be sent”, and “1 + an overflow to be sent”. Using this trick,
we let overflow move only one site per time unit. Notice that 3 is necessary
because it may happen that a counter is increased by 2 units in one time
unit.

5.1 The cellular automaton

We define a cellular automaton F from AZ to AZ with A = {0; 1; 2; 3;E}.
This automaton is the composition F = Fd ◦ Fp of two cellular automata Fd

and Fp. The main automaton Fd is defined by the local rule fd

fd(xi−2xi−1xi) = 1E(xi)xi + 1E(xi)
(
xi − 2× 1{2,3}(xi) + 1{2,3}(xi−1)

)

+ 1E(xi)1E(xi−1)
(
1 + 1{2}(xi−2)

)
, (4)

where E = A \ {E} and,

1S(xi) =
{
1 if xi ∈ S,
0 otherwise.

The automaton Fp is a “projection” on the subshift of finite type made of
sequences having at least three digits between two ”E” which is left invariant
by Fd. Its role is simply to restrict the dynamics to this subshift. It can be
defined by the local rule fp

fp(xi−3, . . . , xi, . . . xi+3) = 1E(xi)xi + 1E(xi)xi ×
3∏

j=−3
j 6=0

1E(xi+j). (5)

The dynamic of F is illustrated in Figure 1 for a particular configuration.
The projection fp prevents the dynamic of F to have equicontinuous points
(points with ”blocking words”EE”) and simplifies the relationship between
the cellular automaton and the model. The non-surjective cellular automaton
acts surjectively on its ω-limit space X which is a non finite type subshift
with a minimal distance of 3 digits between two ”E”. By definition, we have
X = limn→∞ ∩n

i=1F
i(AZ). The set X is rather complicated. We do not want

to give a complete description. Some basic remarks may be useful for a better
understanding of the results. Note that the Es do not change after the first
iteration and that xi = 3 implies xi−1 = E. We can show that the word
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x = . . . 0 E 1 1 0 E 0 2 2 2 E . . .
F (x) = . . . 0 E 2 1 0 E 1 0 1 1 E . . .
F 2(x) = . . . 0 E 1 2 0 E 2 0 1 1 E . . .
F 3(x) = . . . 0 E 2 0 1 E 1 1 1 1 E . . .
F 4(x) = . . . 0 E 1 1 1 E 2 1 1 1 E . . .
F 5(x) = . . . 0 E 2 1 1 E 1 2 1 1 E . . .
F 6(x) = . . . 0 E 1 2 1 E 2 0 2 1 E . . .
F 7(x) = . . . 0 E 2 0 2 E 1 1 0 2 E . . .
F 8(x) = . . . 0 E 1 1 0 E 3 1 0 0 E . . .
F 9(x) = . . . 0 E 2 1 0 E 2 2 0 0 E . . .

(6)

Figure 1: An illustration of the dynamic of F defined by 5–4 on the config-
uration x, assuming that x is preceded by enough 0.

222 does not appear after the second iteration and that F i(x)(k, k+1) = 22
only if F i−1(x)(k − 2: k + 1) ∈ {2E21, 0E31, 1E31, 2E31}. According to the
definition (4), the evolution of finite configurations without emitter ”E” leads
to sequences which contains only the digits ”1” and ”0”. This is the dynamic
of the emitter ”E” with the overflows crossing the ”Es” that maintain and
move the letters ”2” and ”3”. There is at most two letters ”2” between two
consecutive letters ”E”. A typical word between two ”E” is of the form E3uE,
E2uE, E3u12u2E or E2u12u2E, where u, u1 and u2 are finite sequences of
letters ”0” and ”1” (the words u1 and u2 can be empty). Notice that all
possible words u, u1, u2 do not appear in X . For example, the word E200E
does not belong to the language of X .

As we want to study the dynamic on finite (but unbounded) counters,
we define the set Ω ⊂ X of configurations with infinitely many E in both
directions. This non compact set is obviously invariant by the dynamics. We
are going to define a semi conjugacy between (Ω, F ) and the model in the
next section.

5.2 The natural factor

In order to make more intuitive the study of the dynamic of F and to define
(see Section 7) a natural measure, we introduce the projection of this CA
which is a continuous dynamical system that commutes with an infinite state
1-dimensional shift.

The word between two consecutive Es can be seen as a “counter” that
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overflows onto its right neighbour when it is full. At each time step E ”emits”
1 on its right except when the counter on its left overflows: in this case there
is a carry of 1 so the E ”emits” 2 on its right.

x = . . . 0

emitter i
︷︸︸︷

E 0 0 2

emitter i + 1
︷︸︸︷

E 1 1 0 0

emitter i + 2
︷︸︸︷

E . . .
F (x) = . . . 0 E 1 0 0

︸ ︷︷ ︸

counter i

E 3 1 0 0
︸ ︷︷ ︸

counter i + 1

E . . .

In what follows we call counter a triple (l, c, r), where l is the number of digits
of the counter, c is its state and r is the overflow position in the counter. In
Figure 1, in the first counter the countdown starts in F 5(x) when the ”2” is
followed by ”11”. This ”2” can propagate at speed one to the next emitter
”E”.

Recall that Ω ⊂ X is a set of configurations with infinitely many Es in
both directions and has at least three digits between two Es. Define the
sequence (sj)j∈Z of the positions of the Es in x ∈ Ω as follows:

s0(x) = sup {i ≤ 0 : xi = E},

sj+1(x) = inf {i > sj(x) : xi = E} for j ≥ 0,

sj(x) = sup {i < sj+1(x) : xi = E} for j < 0.

Denote by u = (ui)i∈Z = (li, ci, ri)i∈Z a bi-infinite sequence of counters. Let
B = N

3 and σB be the shift on BZ. We are going to define a function ϕ
from Ω → BZ. We set for all i ∈ Z, li(x) = si+1(x) − si(x) − 1 and define
di(x) =

∑si+1−1
j=si+1 xj2

j−si−1. We denote by ci = 2li the period of the counter
(li, ci, ri).

For each x ∈ Ω and i ∈ Z we set ci(x) = di(x) modulo ci(x) and we write

ri(x) =

{
li + 1−max {j ∈ {si + 1, . . . , si+1 − 1} : xj > 1}+ si if di(x) ≥ ci(x)
0 otherwise.

For each x ∈ Ω we can define ϕ(x) = (li(x), ci(x), ri(x))i∈Z. Remark that
since ri(x) ≤ li(x) and ci(x) ≤ 2li(x), the set ϕ(Ω) is a strict subset (N3)Z .

On ϕ(Ω), we define a dynamic on the counters through a local function.
First we give a rule for incrementation of the counters. For a = 1 or 2, we
set







(li, ci, 0) + a = (li, ci + a, 0) if ci < ci − a (R1)
(li, ci, 0) + a = (li, ci + a− ci , li) if ci + a ≥ ci (R2)
(li, ci, ri) + a = (li, ci + a, ri − 1) if ri > 0 (R3).

12



u = . . . (3, 3, 0) (4, 0, 0) . . .
H(u) = . . . (3, 4, 0) (4, 1, 0) . . .
H2(u) = . . . (3, 5, 0) (4, 2, 0) . . .
H3(u) = . . . (3, 6, 0) (4, 3, 0) . . .
H4(u) = . . . (3, 7, 0) (4, 4, 0) . . .
H5(u) = . . . (3, 0, 3) (4, 5, 0) . . .
H6(u) = . . . (3, 1, 2) (4, 6, 0) . . .
H7(u) = . . . (3, 2, 1) (4, 7, 0) . . .
H8(u) = . . . (3, 3, 0) (4, 9, 0) . . .
H9(u) = . . . (3, 4, 0) (4, 10, 0) . . .

Figure 2: The dynamic in Figure 1 for the natural factor.

We define the local map h on N
3 × N

3 by

h(ui−1ui) = ui + (1 + 1{ri−1=1}(ui−1)),

where the addition must be understood following the incrementation proce-
dure above, with a = 1 + 1{ri−1=1}(ui−1). Let H be the global function on
(N3)Z. This is a “cellular automaton on a countable alphabet”.

Note that, the (li)i∈Z do not move under iterations. At each step, the
counter ci is increased by a modulo ci (a = 1 in general, while a = 2 if
counter i − 1 “emits” an overflow). When ci has made a complete turn ri
starts to count down li, li − 1 . . . 1, 0 ; after li steps ri reaches 0, indicating
that (in the automaton) the overflow has reached its position.

Remark 2 Notice that if 2l < 2l, we cannot have ci = 2l − a and ri > 0
since ri is back to 0 before ci−1 completes a new turn. This technical detail
is the reason why we impose a minimal distance 3 (more than the distance
one required for the sensitivity condition) between two successive E.

5.3 Semi conjugacy

Proposition 4 We have the following semi conjugacy,

F
Ω −→ Ω
↓ ϕ ↓ ϕ

H
ϕ(Ω) −→ ϕ(Ω)

13



with
ϕ ◦ F = H ◦ ϕ.

Proof Let x ∈ Ω. Denote ϕ(x) = (li, ci, ri)i∈Z, x
′ = F (x) and ϕ(x′) =

(l′i, c
′
i, r

′
i)i∈Z. We have to prove that (li, ci, ri) + 1 + 1{ri−1=1} = (l′i, c

′
i, r

′
i)

where the addition satisfies the rules R1, R2, R3.
First, we recall that the Es do not move so that l′i = li.
Consider the first digit after the ith emitter E :x′

si+1 = xsi+1 − 2 ×
1{2,3}(xsi+1)+1+1{2}(xsi−1). Clearly we have ri−1 = 1 if and only if xsi−1 = 2
so x′

si+1 = xsi+1+1+1{ri−1=1}−2×1{2,3}(xsi+1). For all si+2 ≤ j ≤ si+1−1,

x′
j = xj − 2 × 1{2}(xj) + 1{2,3}(xj−1). Since di(x) =

∑si+1−1
j=si+1 xj2

j−si−1, if
xsi+1−1 6= 2 then di(x

′) = di(x) + 1 + 1{ri−1=1} and if xsi+1−1 = 2 then
di(x

′) = di(x) + 1 + 1{ri−1=1} − 2 × 2−li = di(x) + 1 + 1{ri−1=1} − ci. As
c′i = di(x

′)mod ci then for all x ∈ Ω one has c′i = ci + 1 + 1{ri−1=1}mod ci.
It remains to understand the evolution of the overflow ri. First, notice

that if di(x
′) = ci = 2li then x′(si, si+1) = E21(li−1)E and if di(x

′) = ci +1 =
2li+1 then x′(si, si+1) = E31(li−1)E. After li iteration of F , the configurations
E21(li−1)E and E31(li−1)E have the form Ew2E. The maximum value taken
by di(x) is when x(si, si+1) = Eu2E where di(z) < 2li if z(si, si+1) = Eu0E.
As noted in Remark 2, the counters, which have at least a size of 3, have
not the time to make a complete turn during the countdown (2li < ci) which
implies that di(x) ≤ ci + 2li < 2ci. Since each counters can not receive
an overflow at each iteration then di(x) < 2ci − 2 (when li ≥ 3, li−1 ≥ 3,
θ × li < ci − 2 = 2li − 2 where θ < 2 ). Clearly ri = 0 if and only if
di = ci < ci (addition rule R1). As di < 2ci − 2, if ci = ci − 2 = di(x) and
xsi−1 = 2 or ci = ci − 1 = di(x) (ri = 0) then x′(si, si+1) = E21(li−1)E or
x′(si, si+1) = E31(li−1)E which implies that r′i = li (addition rule R2).

Now remark that if ri > 0 then x(si, si+1) = Eu21kE with 0 ≤ k ≤ li − 1
and u is a finite sequence of letters ”0”, ”1”, ”2” or ”3”. Using the local rule
of F , we obtain that the letter ”2” move to the right of one coordinate which
implies that r′i = ri − 1 (addition rule R3).

✷

Remark 3 We remark that ϕ is not injective. Consider the subset of X
defined by

Ω∗ = Ω ∩ {x ∈ {0, 1, E}Z : x0 = E}.

It is clear that ϕ is one to one between Ω∗ and ϕ(Ω) since the origin is fixed
and there is only one way to write the counters with 0 and 1. We will use
this set, keeping in mind that it is not invariant for the cellular automaton
F .
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Remark 4 If x ∈ AZ, we use ci(x) to denote ci(ϕ(x)) and li(x) instead of
li(ϕ(x)). This should not yield any confusion. To take the dynamics into
account, we write cti(x) = ci(ϕ(F

t(x))) = ci(H
t(ϕ(x))) and similarly for li(x)

and ri(x). Note that lti(x) = li(x) for all t.

5.4 Limit periods

The natural period of the counter i, is its number of states, say ci. We
introduce the notion of real period or asymptotic period of a counter which
is, roughly speaking, the time mean of the successive observed periods. It
can be formally defined as the inverse of the number of overflow emitted by
the counter (to the right) per unit time. More precisely, we define Ni(x), the
inverse of the real period pi(x) for the counter number i in x by

Ni(x) = lim
t→+∞

1

t

t∑

k=0

1{1}(r
t
i(x)).

Lemma 2 The real period pi(x) exists and, Ni(x) = 1
pi(x)

=
∑−∞

k=i 2
−
∑k

j=i lj(x).

Proof Let nt
i be the number of overflows emitted by the counter i in x

before time t.

nt
i(x) =

t∑

k=0

1{1}(r
t
i(x)).

The number of turns per unit time is the limit when t → +∞ of nt
i/t if it

exists. We can always consider the limsup N+
i and the liminf N−

i of these
sequences.

After t iterations, the counter indexed by i has been incremented by t (one
at each time step) plus the number of overflow “received” from the counter
(i−1). We are looking for a recursive relationship between nt

i and nt
i−1. Some

information is missing about the delays in the “overflow transmission”, but
we can give upper and lower bounds.

The number of overflows emitted by counter i at time t is essentially given
by its initial position + its “effective increase” - the number of overflows
delayed, divided by the size ci of the counter. The delay in the overflow
transmission is at least li. The initial state is at most ci. Hence, we have,

nt
i(x) <

ci(x) + t + nt
i−1(x)

ci(x)
and, nt

i(x) >
t+ nt

i−1(x)− li(x)

ci(x)
.
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So for the limsup N+
i and liminf N−

i , we obtain N±
i = 1

ci
(1 + N±

i−1).

Remark that for all t ∈ N we have N+
i −N−

i = 1
ci
(N+

i−1−N−
i−1) = ( 1

ci
)(N+

i−t−

N−
i−t). Since 1

ci
≤ N−

i ≤ N+
i ≤ 2

ci
, the limit called Ni exists and finally we

have

Ni(x) =

−∞∑

k=i

k∏

j=i

c−1
j (x) =

−∞∑

k=i

2−
∑k

j=i lj(x). (7)

✷

Remark 5 The series above are lesser than the convergent geometric series
(
∑n

k=1 2−3k)n∈N since li is always greater than 3. Note that in the constant
case, li = L, the limit confirm the intuition because the period is

p =
1

Ni

=
1

∑+∞
k=1 2

−kL
= 2L − 1.

6 Sensitivity

For the special cellular automata F , we say that a measure µ satisfies condi-
tions (*) if for all l ∈ (N)Z one has µ(AZ \Ω) = 0 and µ({x ∈ Ω : (li(x))i∈Z =
l}) = 0. These “natural” conditions are satisfied by the invariant measure
µF we consider (see Section 7, Remark 6).

Proposition 5 The automaton F is sensitive to initial conditions. More-
over, it is µ-expansive if µ satisfies condition (*).

Proof Fix ǫ = 2−2 = 1
4
as the sensitive and µ-expansive constant. When

x ∈ Ω, it is possible to define l(x) which is the sequence of the size of the
counters for x and to use the model (H,ϕ(Ω)) to understand the dynamic.

We can use Lemma 2 to prove that for the model, if we modify the nega-
tive coordinates of the sequence li we also modify the asymptotic behaviour
of the counter at 0. Such a change in the asymptotic behaviour implies that
at one moment, the configuration at 0 must be different. From the cellular
automaton side, we will show that a change of the real period of the ”central
counter” will affect the sequences (F t(x)(−1, 1))t∈N which is enough to prove
the sensitivity and µ-expansiveness conditions.

For each x ∈ Ω with x0 6= E, consider the sequence l[0,−∞](x) =
l0(x)l−1(x) . . . l−k(x) . . .. We claim that if l[0,−∞](x) 6= l[0,−∞](y) then
N0(x) 6= N0(y). Let j be the first negative or null integer such that

lj(x) 6= lj(y). By Lemma 2, there exists a positive realK1 =
∑j−1

k=0 2
−
∑k

i=0 li(x)
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such that

N0(x) = K1 +K12
−lj(x) +K12

−lj(x)(
∞∑

k=j+1

2−
∑k

i=j+1 li(x))

and

N0(y) = K1 +K12
−lj(y) +K12

−lj(y)(
∞∑

k=j+1

2−
∑k

i=j+1 li(y)).

So writing K2 = K12
−lj(x) we obtain

N0(x)−N0(y) >
K2

2
−

K2

2
(

∞∑

k=j+1

2−
∑k

i=j+1 li(y)).

As
∑∞

k=i+1 2
−

∑k
j=i+1 lj(y) is less than the geometric series

∑∞
k=0 2

−3k = 1
7
we

prove the claim.
If x0 = E, using the shift commutativity of F we obtain that if

l[−1,−∞](x) 6= l[−1,−∞](y) then N−1(x) 6= N−1(y).

Remark that for each x ∈ Ω and δ = 2−n > 0, there exists y ∈ Ω such
that yi = xi for i ≥ −n and l(x) 6= l(y) (sensitivity conditions). We are going
to show that if li(x) 6= li(y) (i < 0; x ∈ Ω) then there exist some t ∈ N such
that F t(x)(−1, 1) 6= F t(y)(−1, 1).

First, we consider the case where x0 = E. In this case, since N−1(x) 6=
N−1(y), there is t such that nt

−1(x) 6= nt
−1(y). At least for the first such t,

rt−1(x) 6= rt−1(y) since rt−1(x) = 1 and rt−1(y) 6= 1. But this exactly means
that xt

−1 = 2 and yt−1 6= 2. Hence xt
−1 6= yt−1.

Next assume that x0 6= E. We have N0(x) > N0(y). This implies that
nt
0(x)− nt

0(y) goes to infinity. Hence the difference ct0(x)− ct0(y) (which can
move by 0, 1 or −1 at each step) must take (modulo c0) all values between
0 and c0 − 1. In particular, at one time t, the difference must be equal to
2−T0−1. If x−1 = E, then T0 = −1 which implies that xt

0 6= yt0. Otherwise, in
view of the conjugacy, it means that

T1−1∑

i=T0+1

xt
i2

i−T0−1 −
T1−1∑

i=T0+1

yti2
i−T0−1 = 2−T0−1(modulo c0),

that is, either xt
0 6= yt0 or xt

0 = yt0 and xt
−1 6= yt−1. We have proved the

sensitivity of F for x ∈ Ω.

To show that x ∈ Ω satisfies the µ-expansiveness condition, we need to
prove that the set of points which have the same asymptotic period for the
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central counter is a set a measure zero. For each point x the set of all points
y such that F t(x)(−1, 1) = F t(y)(−1, 1) or d(F t(x), F t(y)) ≤ 1

4
(t ∈ N), is

denoted by D(x, 1
4
). Following the arguments of the proof of the sensitivity

condition above, we see that every change in the sequence of letters “Es”
in the left coordinates will affect the central coordinates after a while, so
we obtain that D(x, 1

4
) ⊂ {y : li(y) = li(x) : i < 0}. Since µ satisfies

condition (*), we have µ(D(x, 1
4
)) = 0 which is the condition required for the

µ-expansiveness.
Now suppose that x ∈ {0, 1, 2, 3, E}Z \ Ω. First notice that if there is

at least one letter E in the left coordinates, the sequence F t(x)(−1, 1) does
not depend on the position or even the existence of a letter E in the right
coordinates. Recall that after one iteration, the word 22 appears only directly
after a letter E. So when there is at least one letter E in the negative
coordinates of x, the arguments and the proof given for x ∈ Ω still work.

If there is no letter E in the negative coordinates of x, for any δ = 2−n, we
can consider any y ∈ Ω such that yi = xi if −n ≤ i ≤ n. For x ∈ {0, 1, 2}Z,
the dynamic is only given by the letter 2 which move on sequences of 1 (see
Figure 1). The sequence F t(x)(−1, 1) can not behave like a counter because
it is an ultimately stationary sequence (after a letter “2” pass over a “1” it
remains a “0” that can not be changed) and the real period of the central
counter of y is obviously strictly greater than 1. Then in this case again,
the sequences F t(x)(−1, 1) and F t(y)(−1, 1) will be different after a while
which satisfies the sensitivity condition. Since the only points z such that
F t(z)(−1, 1) = F t(x)(−1, 1) belong to the set of null measure {0, 1, 2, 3}Z (as
µ satisfies conditions (*)), we obtain the µ-expansiveness condition. ✷

7 Invariant measures

7.1 Invariant measure for the model

We construct an invariant measure for the dynamics of the counters. Firstly,
let ν∗ denote a measure on N\{0, 1, 2} and secondly, let ν = ν⊗Z

∗ be the prod-
uct measure. To fix ideas, we take ν∗ to be the geometric law of paramater
ν = 2

3
on N conditionned to be larger than 3, i.e.,

ν∗(k) =

{
νk∑
j>2 ν

j if k ≥ 3

0 if k < 3.

Notice that the expectation of l0 is finite :
∑

l0>2 ν∗(l0) × l0 < +∞. We
denote by mL the uniform measure on the finite set {0, . . . , L − 1}. Given
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a two-sided sequence l = (li)i∈Z, we define a measure on N
Z supported on

∏

i∈Z{0, . . . , 2
li − 1}, defining ml = ⊗i∈Zm2li , so that for all k0, . . . , km inte-

gers,

ml({ci = k0, . . . , ci+m = km}) =

{

2−
∑i+m

j=i lj if, ∀i ≤ j ≤ i+m, cj < 2lj

0 otherwise.

We want this property for the counters to be preserved by the dynamics.
But, for the overflow, we do not know a priori how the measure will behave.
Next we construct an initial measure and iterate the sliding block code on
the counters H . For all l = (li)i∈Z, we set νl = ⊗i∈Zδli , and, η = ⊗i∈Zδ0,
where δk denotes the Dirac mass at integer k. We consider the measures

µH
l = νl ⊗ml ⊗ η,

which give mass 1 to the event {∀i ∈ Z, ri = 0}. Then, we define,

µ̃H =

∫

NZ

µH
l ν(dl).

The sequence 1
n

∑n−1
k=0 µ̃

H ◦H−k has convergent subsequences. We choose one
of these subsequences, (ni), and write

µH = lim
i→∞

1

ni

ni−1∑

k=0

µ̃H ◦H−k.

7.2 Invariant measure for F

Now we construct a shift and F -invariant measure for the cellular automaton
space.

Recall that Ω∗ = Ω ∩ {x ∈ {0, 1, E}Z : x0 = E} (see Remark 3). We
write, for all integer k, Ω∗

k = σkΩ∗. Let us define, for all measurable subsets
I of AZ,

µF
l =

l0−1∑

k=0

µH
l (ϕ(I ∩ Ω∗

k)) .

This measure distributes the mass on the l0 points with the same image (in
the model) corresponding to the l0 possible shifts of origin. The total mass
of this measure is l0. Since the expectation of l is l̄ =

∑∞
i=3 ν∗(l)× l < ∞ is

finite (if ν = 2
3
; l = 5), we can define a probability measure

µ̃F =
1

l

∫

NZ

µF
l ν(dl).
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The measure µ̃F is shift-invariant (see further) but it is supported on a non
F -invariant set. In order to have a F -invariant measure we take an adherence
value of the Cesaro mean. We choose a convergent subsequence (nij ) of the
sequence (ni) defining µH and write

µF = lim
j→∞

1

nij

nij
−1

∑

k=0

µ̃F ◦ F−k.

Remark 6 Since for the measure µF , the length between two “Es” follows a
geometric law, the measure µF satisfies the conditions (*) defined in Section
6, and from Proposition 5, the automaton F is µF -expansive.

Lemma 3 The measure µH is σB and H-invariant. The measure µF is
σ and F -invariant. For all measurable subsets U of ϕ(Ω) such that l0 is
constant on U ,

µF (ϕ−1(U)) =
l0

l
µH(U).

Proof The shift invariance of µH follows from the fact that ν is a product
measure and that the dynamic commutes with the shift so the Cesaro mean
does not arm. H and F invariance of µH and µF follow from the standard
argument on Cesaro means.

Shift invariance of µF comes from a classical argument of Kakutani towers
because µH is essentially the induced measure of µF for the shift on the set
Ω∗. We give some details. We choose a measurable set I such that l0 is
constant on I. Choose l = (li)i∈Z. Noticing that ϕ(σ−1(I)∩Ω∗

k) = ϕ(I ∩Ω∗
k)

as soon as k ≥ 1, a decomposition of I such as I = ∪l0−1
k=0 I ∩ Ω∗

k yields

µF
l (σ

−1I) = µF
l (I)− µF

l (I ∩ Ω∗) + µF
l (σ

−1(I) ∩ Ω∗).

We remark that
ϕ(σ−1(I) ∩ Ω∗) = σ−1

B (ϕ(I ∩ Ω∗))

so that
µF
l (σ

−1(I) ∩ Ω∗) = µH
l

(
σ−1
B (ϕ(I ∩ Ω∗))

)
.

Now we integrate with respect to l and use the σ−1
B -invariance of µ̃H to

conclude that
µ̃F (σ−1I) = µ̃F (I).

For a measurable set I, we decompose I = ∪L∈N(I ∩ {x ∈ Ω : l0(x) =
L}). Since F commutes with σ, the Cesaro mean does not affect the shift
invariance. Hence, µF is shift invariant.
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Now, we make explicit the relationship between µH and µF . Let V ⊂ Ω be
an event measurable with respect to the σ-algebra generated by (li, ci; i ∈ Z).
There is an event U ⊂ ϕ(Ω) such that V = ϕ−1(U). Write V = ∪L∈NVL,
where VL = V ∩ {x ∈ Ω : l0(x) = L}. Since ϕ(VL ∩ Ω∗

k) = ϕ(VL) =: UL for
all 0 ≤ k < L, we can write

µF
l (VL) =

L−1∑

k=0

µH
l (ϕ(VL ∩ Ω∗

k)) = LµH
l (ϕ(VL)).

Integrating with respect to l gives

µ̃F (V ) =
1

l

∑

L∈N

Lµ̃H(UL)ν(L).

If l0 is constant on U then L = l0 and we get

µ̃F (ϕ−1(U)) =
L

l
µ̃H(U)

Since F−1(ϕ−1(U)) = ϕ−1(H−1(U)) and the Cesaro means are taken along
the same subsequences, we are done. ✷

Lemma 4 Fix M ∈ Z,M < 0 and a sequence L = (LM , . . . , L0). Consider
the cylinder VL = {x ∈ Ω : (lM(x), . . . , l0(x)) = L}. For all M < i < 0, and
all 0 ≤ k < 2Li,

µF ({x : ci(x) = k}|VL) = 2−Li .

Proof Let F be the σ-algebra generated by {(cj, rj)|j < 0} and {lj, j ∈ Z}.
We claim that, almost surely,

µH({c0 = k} | F) = ml({c0 = k}) = 2−l0 .

Let u, v ∈ ϕ(Ω). If ui = vi for all i < 0, and c0(v) = c0(u) + a, then
c0(H

n(v)) = c0(H
n(u)) + a. The function ∆n(u) = c0(H

n(u)) − c0(u) is
F -measurable. We deduce that

µ̃H(H−n({c0 = k}) |F) = (νl(u) ⊗ml(u) ⊗ η)({c0 = k −∆n(u)} | F)

= m2l0(u)(k −∆n(u))

= m2l0 (k)

= 2−l0.

Remark that the last claim implies µH({ci = k}|ϕ(VL)) ≥ µH(H−n({c0 =
k}) |F), so µH({ci = k}|ϕ(VL)) = 2−l0.
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We prove the claim by taking the Cesaro mean and by going to the
limit. We extend the result to all integer i using the shift invariance and the
independence of ci with respect to lj when j > i. We conclude by applying
Lemma 3:

µF ({x : ci(x) = k}|VL) =
µF ({x : ci(x) = k} ∩ VL)

µF (VL)

=
L0

l
µH(ϕ({x : ci(x) = k} ∩ VL))

L0

l
µH(ϕ(VL))

= µH({ci = k}|ϕ(VL))

= 2−Li.

✷

Remark 7 Using Lemma 4 we obtain

µH({ci = k0, . . . , ci+m = km}|li, . . . , li+m) =

{

2−
∑i+m

j=i lj if ∀i ≤ j ≤ i+m, cj < 2lj ,
0 otherwise.

Proposition 6 The shift measurable entropy of hµF
(σ) is positive.

Proof Let α be the partition of Ω by the coordinate 0 and denote by
αn
−n(x) the element of the partition α ∨ σ−1α... ∨ σ−n+1 ∨ σ1... ∨ σnα

which contains x. It follows from the definition of µF , that µF (αn
−n(x)) ≤

ν
(
l(y) ∈ N

Z : y ∈ αn
−n(x)

)
. For all x ∈ Ω there exist sequences of pos-

itive integers (−N+
i )i∈N and (N−

i )i∈N such that x−N+
i

= xN−
i

= E. Let

K = ν3

1−ν
=

∑

j>2 ν
j . If y ∈ Ω ∩ α

N+
i

−N−
i

(x) then

ν (l(y)) = ν∗(l0)π
i
k=1 (ν∗(l−k)ν∗(lk)) = νN−

i +N+
i +1/(K2i+1).

Since li ≥ 3 and
∑i

k=−i lk = N−
i +N+

i , we obtain

log (ν(l(y))) = (N−
i +N+

i +1) log ν−(2i+1) logK ≤ (N−
i +N+

i +1) log
1

1− ν
.

Since µF (Ω) = 1 we get

lim
i→∞

∫

AZ

− log(µF (α
N+

i

−N−
i

(x)))

N−
i +N+

i + 1
dµF (x) ≥ (log

1

1− ν
) > 0.

By the probabilistic version of the Shannon-McMillan-Breiman theorem for
a Z-action [5], the left side of the previous inequality is equal to hF

µ (σ), so
we can conclude. ✷
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8 Lyapunov exponents

Recall that no information can cross a counter before it reaches the top, that
is, before time 1

2
(ci − ci) since at each step the counter is incremented by 1

or 2. When the information reaches the next counter, it has to wait more
than 1

2
(ci+1 − ci+1), where this quantity is estimated at the arrival time of

the information, and so on.
But each counter is uniformly distributed among its possible values. So

expectation of these times is bounded below by 1
4
E[ci] = E[2li−2]. A good

choice of the measure ν can make the expectation of the li finite so that we
can define the invariant measure µF . But E[2li ] is infinite so that expectation
of time needed to cross a counter is infinite and hence the sum of these times
divided by the sum of the length of the binary counters tends to infinity.

Instead of being so specific, we use a rougher argument. Taking ν∗ to
be geometric, we show that there exists a counter large enough to slow the
speed of transmission of information. That is, for given n, there is a counter
of length larger than 2 lnn, information needs a time of order nδ, with δ > 1
to cross. This is enough to conclude.

Proposition 7 We have
I+
µF + I−

µF = 0.

Proof We just have to show that I+
µF = 0 since I−

µF is clearly zero. Recall

that I+n (x) is the minimal number of coordinates that we have to fix to ensure
that for all y such that as soon as y(−I+n (x),∞) = x(−I+n (x),∞), we have
F k(y)(0,∞) = F k(x)(0,∞) for all 0 ≤ k ≤ n. Let

tF (n)(x) = min{s : ∃y, y(−n,∞) = x(−n,∞) and F s(x)(0,∞) 6= F s(y)(0,∞)}

be the time needed for a perturbation to cross n coordinates. Note that tF (n)
and I+n are related by tF (s)(x) ≥ n ⇔ I+n (x) ≤ s. We now define an analog
of tF (n) for the model. For all x ∈ ϕ(Ω), let Mn(x) be the smallest negative
integer m such that

∑0
i=m li(x) ≤ n. Define

tH(n)(x) = min

{

s ≥ 0 : ∃y ∈ Ω,
y(Mn(x),∞) = x(Mn(x),∞),
Hs(x)(0,∞) 6= Hs(y)(0,∞)

}

.

Define for all large enough positive integer, the subset of Ω

Un =






x :

l0(x) ≤ 2 ln(n),
∃i ∈ {Mn(x), . . . ,−1}, li(x) ≥ 2 ln(n),

ci(x) ≤ 2li(x) − 21.5 ln(n)






.
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We claim that
lim
n→∞

µF (Un) = 1.

Choose and fix an integer n large. Note that if ∀i ∈ {Mn(x), . . . , 0}, li ≤ 2 ln(n),
we have |Mn(x)| ≥

n
2 ln(n) . Write M = −⌊ n

2 ln(n)⌋ and define

Vn =
{

L ∈ N
|M |+1 : L0 ≤ 2 lnn and ∀i ∈ {M, . . . ,−1}, Li ≤ 2 ln(n)

}

.

Note that on {l0 ≤ 2 lnn}, existence of i ≥ M with li ≥ 2 ln n yields existence of
i ≥ Mn(x) ≥ M with li ≥ 2 lnn (the same i).

Given a L = (LM , . . . , L0) in the complementary of Vn denoted by V c
n , we

denote V Ω
L = {x ∈ Ω : (lM (x), . . . , l0(x)) = L} and we denote i(L) the larger index

M < i < 0 with Li > 2 lnn. Let V c∗
n be the subset of V c

n with L0 ≤ 2 ln(n). The
measure of Un is bounded below by

µF (Un) =
∑

L∈NM

µF (Un ∩ V Ω
L )

≥
∑

L∈V c∗
n

µF (Un ∩ V Ω
L })

≥
∑

L∈V c∗
n

µF ({ci(L)(x) ≤ 2li(L) − 21.5 ln (n)} ∩ V Ω
L )

=
∑

L∈V c∗
n

µF
(

ci(L)(x) ≤ 2li(L) − 21.5 ln (n) |V Ω
L

)

µF
(
V Ω
L

)
.

According to Lemma 4, given the li’s, for M ≤ i ≤ 0, the random variable ci
is uniformly distributed. Hence for all L ∈ V c∗

n ,

µF ({x|ci(x) ≥ 2li−21.5 ln(n)}|V Ω
L ) = 21.5 ln(n)2−Li(L) ≤ 21.5 ln(n)−2 ln(n) = n−0.5 ln(2),

so that

µF (Un) ≥
∑

L∈V c∗
n

(1− n−0.5 ln(2))µF
(
V Ω
L

)
≥ (1− n−0.5 ln(2))ν(V c∗

n ).

Since ν∗(li ≥ 2 ln(n)) = cst.
∑

k≥2 ln(n) ν
k ≤ cst.n2 ln ν , and the li’s are inde-

pendent, it is straightforward to prove the existence of constants c1, c2 and
c3 independent on n, such that,

ν (Vn) ≤



1−
∑

k≥2 ln(n)

νk





|M |

≤ c1n
2 ln ν + c2 exp

(

−c3
n1−2 ln(ν)

2 ln(n)

)

,

and ν(V c∗
n ) ≥ (1− ν(Vn))ν∗(l0 ≤ 2 ln(n)).
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We conclude that

µF (Un) ≥
(
1− n−0.5 ln(2)

)
(1−c4n

2 ln ν)

(

1− c1n
2 ln ν + c2 exp

(

−c3
n1−2 ln(ν)

2 ln(n)

))

.

Since ν = 2
3
, 2 ln(ν) < 1, this bound converges to 0 and the claim follows.

Now, we claim that there is a constant c > 0 and a constant δ > 1 such
that on Un, we have

tH(n)(x) ≥ cnδ.

Indeed, if x ∈ Un, and y is such that y(−n,∞) = x(−n,∞), then M(x, n) =
M(y, n) =: M and ϕ(y)(−M,∞) = ϕ(x)(−M,∞). Hence there is an index
0 < i ≤ M with li(x) = li(y) = L and ci(x) = ci(y) = c satisfying

L ≥ 2 ln(n) and c ≤ 2L − 21.5 ln(n).

Notice that i < 0 because x ∈ Un. For all s ≤ 1
2
21.5 ln(n), we have rsi (x) =

rsi (y) = 0, since csi (x) < 2li(x). Hence, for all j > i (and in particular for
j = 0), csj(x) = csj(y). For j = 0, this implies that tH(n)(x) ≥

1
2
n1.5 ln 2. As

1.5 ln(2) > 1 the claim holds.

There is no y with y(−n,∞) = x(−n,∞) and F s(x)(0,∞) 6= F (y)(0,∞)
if s < tH(n)(x) because y(−n,∞) = x(−n,∞) ⇒ ϕ(y)(−M(x, n),∞) =
ϕ(x)(−M(x, n),∞). This implies that tF (n)(x) ≥ tH(n)(x). It follows that
tF (n)(x) ≥ cnδ on Un.

Setting s =
[

n
1
δ

]

, we see that tF (
[

n
1
δ

]

) ≥ n ⇔ I+n ≤
[

n
1
δ

]

. We deduce

that there is a constant c such that, on Un,

I+n (x)

n
≤ cn

1
δ
−1.

Since I+n (x)
n

is bounded (by r = 2, radius of the automaton), the conclusion
follows from the inequality

∫
I+n
n
dµF ≤

∫

Un

c n
1
δ
−1dµF + 2µF (U c

n).

That is,
I+
µF = 0.

✷

Using Proposition 3 we obtain

Corollary 1 The measurable entropy hµF (F ) is equal to zero.
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9 Questions

We end this paper with a few open questions and conjectures.

Conjecture 1 The measure µF is shift-ergodic.

The measure µF is clearly not F -ergodic since the Es do not move. It is still
not clear to us whether or not it is possible to construct a sensitive automaton
with null Lyapunov exponents for a F -ergodic measure.

Conjecture 2 A sensitive cellular automaton acting surjectively on an irre-
ducible subshift of finite type has average positive Lyapunov exponents if the
invariant measure we consider is the Parry measure on this subshift.

Conjecture 3 If a cellular automaton has no equicontinuous points (i.e.

it is sensitive), then there exists a point x such that lim inf I+n (x)
n

> 0 or

lim inf I−n (x)
n

> 0.
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