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Quadratic stability for hybrid systems
with nested saturations

Mirko Fiacchini, Sophie Tarbouriech and Christophe Prieur

Abstract—The problems of characterizing quadratic stability
and computing an estimation of the domain of attraction for sat-
urated hybrid systems are addressed. Hybrid systems presenting
saturations and nested saturations on signals involved in both the
continuous-time and the discrete-time dynamics are considered.
Geometrical characterizations of local and global quadratic
stability are provided. Computation oriented conditions for
quadratic stability are given in form of convex constraints.

Index Terms—Hybrid systems, nested saturations, domain of
attraction, stability.

I. I NTRODUCTION

Hybrid systems are systems with both continuous-time
and discrete-time dynamics. Recently, the interest on hybrid
systems has been growing, see [1], [2], [3], [4], [5], mainlydue
to the increasing application of digital devices for the control
of real systems, like chemical processes, communications and
automotive systems. A proper analysis and control theory
has to be developed for hybrid systems. See for instance
[6], concerning the design of predictive controllers for hybrid
systems, and [7], on the use of hybrid controllers to improve
the performance.

In this paper, hybrid systems with nested saturations are
handled and both local and global stability are considered.
The attention is devoted to quadratic Lyapunov functions and
ellipsoidal contractive sets, as estimations of the domainof
attraction for hybrid systems with (nested) saturations. Con-
sidering ellipsoids entails some conservativeness with respect
to other families of sets (as polytopes), but permits to pose
the problem in an efficiently solvable form. The issue of
estimating the domain of attraction for saturated systems,
in continuous-time and discrete-time, has been dealt with
considering ellipsoids [8], [9], [10], [11], and polytopes[12].

A first contribution of the paper is the geometrical charac-
terization of saturated functions. It is proved that, givena state,
its image through a saturated function is contained in a known
state-dependent polytope. The property is also proved for the
case of nested saturations. Such results permit to character-
ize contractiveness of ellipsoids and to determine quadratic
Lyapunov functions by means of convex constraints. Some
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results present in literature for continuous-time, as [9],[11],
and discrete-time saturated systems, see [10], are improved
or recovered as particular cases of our approach, see also the
preliminary version of the work [13]. The results on local
and global quadratic stability for hybrid systems with simple
and nested saturations are other contributions. We also present
how the lower bound on the time interval between jumps can
be used in the formulation of the stability conditions. Finally,
computation oriented conditions for local and global quadratic
stability are stated and applied to numerical examples.

Notation. Given n ∈ N, denoteNn = {x ∈ N : 1 ≤ x ≤ n}.
GivenA∈R

n×m, Ai with i ∈Nn denotes itsi-th row, A( j) with
j ∈ Nm its j-th column andAi, j the entry of thei-th row and
j-th column ofA. The identity matrix of ordern is denotedIn,
the null m×n matrix is 0m×n. Given the matrixP= PT > 0,
define the ellipsoidE (P) = {x∈R

n : xTPx≤ 1}. Given the set
D and α ≥ 0, denote the setαD = {αx : x∈ D} and co(D)
is its convex hull. GivenJ ⊆ Nm, we denoteJ̄ = Nm\J, with
m∈ N. The symbol∗ stands for symmetric block.

II. PROBLEM STATEMENT

Consider the closed-loop saturated hybrid system, repre-
sented by using the hybrid framework introduced in [3], whose
continuous-time dynamics is given by

{

ẋ= ĝ(x) = Âx+ B̂ϕ (K̂x),

τ̇ = 1,
(1)

valid if (x,τ ) ∈ F , with x∈ R
n, and discrete-time dynamics

{

x+ = g̃(x) = Ãx+ B̃ϕ (K̃x),

τ+ = 0,
(2)

if (x,τ ) ∈ J . RegionsF andJ are referred to as the flow
and jump sets, respectively. Functionϕ :Ra →R

a denotes the
saturation, i.e.ϕi(y) = sgn(yi)min{|yi |, 1}, for all i ∈Na, with
y∈R

a. The saturation bounds are assumed equal to 1, without
loss of generality. SetsF andJ are given by

F = {(x,τ ) ∈ R
n+1 : xTMx≥ 0, or τ < ρ},

J = {(x,τ ) ∈ R
n+1 : xTMx≤ 0, and τ ≥ ρ},

(3)

where M = MT ∈ R
n×n and ρ ≥ 0, as in [14]. Different

kinds of flow and jump regions can be defined by (3), as
the reset conditions used in reset control as studied in [15],
[16]. Furthermore, choosingM = MT > 0 (or M = MT < 0),
the formulation (3) permits to restrict the dynamics to a
continuous-time (resp. discrete-time) system, see also [13].

Remark 1:The variableτ represents the time passed from
the last jump. Its introduction, together with the parameter
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ρ ≥ 0, permits to define a lower bound on the interval between
two successive jumps. Such a bound, referred to as “temporal
regularization”, can be used to prevent having an infinite
number of jumps in a finite time interval, i.e. Zeno solutions
[3], which should be avoided in real applications. Notice that
conditions on the statex ensuring the system flowing for a
certain amount of time, used in some applications, consist
in determining implicitly a positive value ofρ. Hereafter
the knowledge ofρ is used to allow the potential Lyapunov
function to increase during a jump. This leads to more general
results than those obtained imposing its decreasing duringboth
the flow and the jumps. This case is recovered by posingρ = 0.

Nested saturations are also considered to obtain a more
general model (see [17]). In fact, the presence of a further
saturation on the plant output is a realistic assumption, as
bounds on the measurements are often present. In such case,
the continuous dynamics of the hybrid system becomes

{

ẋ= ĝ(x) = Âx+ B̂ϕ (K̂x+ Êϕ (F̂x)),

τ̇ = 1,
(4)

and, analogously, the discrete dynamics is
{

x+ = g̃(x) = Ãx+ B̃ϕ (K̃x+ Ẽϕ (F̃x))

τ+ = 0.
(5)

The objectives of the paper can be summarized as follows.
Problem 1: Given the flow and jump sets,F and J ,

determine an ellipsoidal regionΩ = E (P), with P= PT > 0,
as large as possible, such that a Lyapunov function inΩ for
the saturated hybrid system (1)-(3), or for the hybrid system
with nested saturations (3)-(5), can be determined.

III. QUADRATIC STABILITY FOR SATURATED HYBRID

SYSTEMS

Hereafter we prove that the image of the statex through
a saturated functiong(x) is contained within a set explicitly
obtainable. This result permits to geometrically characterize
quadratic stability for saturated hybrid systems.

Definition 1: Given D ⊆ R
n, the support function ofD at

η ∈R
n is φD(η ) = sup

x∈D
η Tx.

Among the properties of support function, see [18], [19], we
have that set inclusion conditions can be given in terms of
linear inequalities involving the support functions.

Property 1: Given a closed, convex setD ⊆R
n, thenx∈ D

if and only if η Tx≤φD(η ), for all η ∈R
n. Given alsoC⊆R

n,
thenC⊆ D if and only if φC(η )≤ φD(η ), for all η ∈ R

n.

A. Convex bounds of saturated functions

The following theorem, stated for functionsg(x) = Ax+
Bϕ (Kx), with A ∈ R

n×n, B ∈ R
n×m and K ∈ R

m×n, can be
used to prove results for both the continuous-time and the
discrete-time dynamics, and then applied to hybrid systems.

Theorem 1:Given a function g(x) = Ax+ Bϕ (Kx), the
ellipsoid Ω = E (P), with P ∈ R

n×n and P = PT > 0, and
H(i,J) ∈R

1×n such that|H(i,J)x| ≤ 1 for all x∈ Ω, for every
J⊆Nm andi ∈ J, then we haveg(x)∈G(x) for all x∈ Ω, with

G(x) = co({N(J)x∈R
n : J ⊆Nm}),

and
N(J) = A+∑

i∈J̄

B(i)Ki +∑
i∈J

B(i)H(i,J). (6)

Proof: Considerx ∈ Ω. First notice that, givenJ ⊆ Nm

and i ∈ J, we have that|H(i,J)x| ≤ 1 implies thatϕi(Kx) ∈
co({Kix, H(i,J)x}). In fact, supposing thatKix ≥ 0, (case
Kix< 0 is analogous), ifKix≤ 1 thenϕi(Kx) = Kix. If Kix> 1
then ϕi(Kx) = 1 and H(i,J)x ≤ ϕi(Kx) < Kix, therefore the
inclusion is satisfied. This implies that

η TB(i)ϕi(Kx) ∈ co({η TB(i)Kix, η TB(i)H(i,J)x})⊆ R,

holds for allη ∈R
n, everyJ⊆Nm and everyi ∈ J. This means

that, for everyη ∈R
n, we have

min{η TB(i)Kix, η TB(i)H(i,J)x} ≤ η TB(i)ϕi(Kx)

≤ max{η TB(i)Kix, η TB(i)H(i,J)x}.

Hence for anyη ∈ R
n, every J ⊆ Nm and every i ∈ J,

an accurate choice between the valuesη TB(i)H(i,J)x and
η TB(i)Kix provides an upper bound ofη TB(i)ϕi(Kx). Thus,
given η ∈R

n andx∈ Ω, there existsJ(x,η )⊆ Nm such that

η Tg(x) = η TAx+ ∑
i∈Nm

η TB(i)ϕi(Kx)

≤ η TAx+ ∑
i∈J̄(x,η )

η TB(i)Kix+ ∑
i∈J(x,η )

η TB(i)H(i,J(x,η ))x,

(7)
holds. Hence the support function ofN(J(x,η ))x ∈ G(x) is
greater than or equal to the support function ofg(x), then
η Tg(x)≤ φG(x)(η ). From Property 1, we haveg(x) ∈ G(x).

The meaning of Theorem 1 is that, for allx∈ Ω, the image
g(x) is contained in the polytopeG(x), whose vertices are
known. Its extension to functions presenting nested saturations,
that is g(x) = Ax+Bϕ (Kx+Eϕ (Fx)), with E ∈ R

m×p and
F ∈ R

p×n, applies then to both discrete-time and continuous-
time systems with nested saturations, as well as to hybrid ones.

Theorem 2:Given a function g(x) = Ax + Bϕ (Kx +
Eϕ (Fx)), consider the ellipsoidΩ= E (P), with P∈R

n×n and
P= PT > 0, H( j,J) ∈R

1×n such that|H( j,J)x| ≤ 1 for every
J ⊆ Nm and j ∈ J, L(i, I(k)) ∈ R

1×n such that|L(i, I(k))x| ≤ 1
for everyk∈Nm, everyI(k)⊆ Np and i ∈ I(k), for all x∈ Ω.
Then we haveg(x) ∈ S(x) for all x∈ Ω, where

S(x) = co({Q(J, I)x∈ R
n : J ⊆ Nm, I(k)⊆ Np, k∈ Nm}),

whereI = {I(1), I(2), . . . , I(m)} and

Q(J, I) = A+ ∑
j∈J̄

B( j)

(

K j + ∑
i∈Ī( j)

E j ,iFi + ∑
i∈I( j)

E j ,iL(i, I( j))
)

+ ∑
j∈J

B( j)H( j,J).

Proof: Considerx∈ Ω. From Theorem 1 applied to the
function given byh(x) = Kx+Eϕ (Fx), we have thath(x) ∈
co({M(I)x}I ) for everyx∈ Ω, where

M(I) = K +∑
i∈Ī

E(i)Fi +∑
i∈I

E(i)L(i, I),

for every I ⊆ Np and {M(I)x}I is introduced, for notational
convenience, to denote the set{M(I)x : I ⊆ Np}. Theng(x) ∈
Ax+Bϕ (co({M(I)x}I )) and, for everyj ∈Nm, we have that

ϕ j(co({M(I)x}I ))={ϕ j(Tx) :T x∈co({M(I)x}I )}

⊆{co({Tjx,H( j,J)x}) :T x∈co({M(I)x}I )},



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. X, NO. X, XXXXXX XXXX 3

where the inclusion follows from the proof of Theorem 1.
Notice thatTx∈ co({M(I)x}I ), for all x ∈ Ω, is equivalent
to say that there existsλI ≥ 0, for every I ⊆ Np, such that

∑
I⊆Np

λI = 1 andTx= ∑
I⊆Np

λIM(I)x for all x∈R
n, or, equivalently,

Tjx= ∑
I⊆Nm

λIM j(I)x for all j ∈ Nm. Then, for every j ∈ Nm,

Tx∈ co({M(I)x}I ) implies Tjx∈ co({M j(I)x}I ) and thus

ϕ j(co({M(I)x}I ))⊆ co(
{

co({M j(I)x}I ), H( j,J)x
}

)

= co({M j(I0)x, . . . ,M j(I2p)x, H( j,J)x}),

where I1, I2, . . . , I2p denote, with a slight abuse of notation,
the possible subsets ofNp. Following the line of the proof
of Theorem 1, it can be proven that, for everyj ∈ J, every
x ∈ Ω and everyη ∈ R

n, there exists a choice between
η TB( j)H( j,J)x and one element of{η TB( j)M j(I)x : I ⊆ Np}
providing an upper bound ofη TB( j)ϕ j(co({M(I)x}I )). Then,
for every x∈ Ω and everyη ∈ R

n there exists a selection of
J(x,η )⊆ Nm and I( j,x,η ) ⊆Np, with j ∈ Nm, such that

η Tg(x)≤ η TAx+ ∑
j∈J̄(x,η )

η TB( j)

(

K j + ∑
i∈Ī( j ,x,η )

η TE j ,iFi

+ ∑
i∈I( j ,x,η )

η TE j ,iL(i, I( j,x,η ))
)

x+ ∑
j∈J(x,η )

η TB( j)H( j,J( j,x,η ))x,

and then, as for Theorem 1, we have thatg(x) ∈ S(x).
Notice that the bounding condition for nested saturations

involves the existence of a setI(k) for anyk∈Nm, besides of
J. There are 2m possible setsJ (each one representing a subset
of Nm) and 2p possibilities of everyI(k), with k∈Nm. Hence
there are 2(p+1)m different values ofQ(J, I ), although some of
them lead to redundant selections and could be discarded.

As shown in [13], applying Theorem 1 to continuous-time
and discrete-time systems permits to recover or extend results
presented in literature, for instance in [9], [10], [11].

B. Quadratic stability for saturated hybrid systems

The presented results are employed to state conditions
for quadratic stability for hybrid systems with saturations,
possibly nested. First the case of simple saturations (1)-(3)
is considered. We impose the decreasing of the candidate
Lyapunov functionV(x) = xTPx along the continuous trajec-
tories. Moreover, we have to ensure that the variation ofV(x)
during a jump plus the variation during a flowing interval of
ρ, is negative. This, with the temporal regularization, would
imply thatV(x) is decreasing between two successive jumps.
The resulting condition is less conservative than imposingthe
decreasing ofV(x) also during the jump. In the following,mc

and md are the number of columns of̂B and B̃, pc and pd

those ofÊ andẼ. Notice that the case of functions increasing
along flow trajectories and decreasing during jumps, as well
as more general cases, could be considered, see also [20].

Theorem 3:Given the hybrid system (1)-(3), consider the
ellipsoid Ω = E (P), with P ∈ R

n×n and P = PT > 0,
Ĥ(i, I) ∈R

1×n andH̃( j,J) ∈R
1×n such that|Ĥ(i, I)x| ≤ 1 and

|H̃( j,J)x| ≤ 1, for all x ∈ Ω, for every I ⊆ Nmc and i ∈ I ,
J ⊆ Nmd and j ∈ J, λ > 0, andσ ≥ 0. If

N̂(I)TP+PN̂(I)≤−2λ P, (8)

Ñ(J)Te−λρ InPe−λρ InÑ(J)−σM ≤ P, (9)

whereN̂(I) and Ñ(J) are defined as

N̂(I) = Â+ ∑
i∈Ī

B̂(i)K̂i + ∑
i∈I

B̂(i)Ĥ(i, I),

Ñ(J) = Ã+ ∑
j∈J̄

B̃( j)K̃ j + ∑
j∈J

B̃( j)H̃( j,J),
(10)

for all I ⊆Nmc andJ⊆Nmd , thenΩ is an ellipsoidal estimation
of the domain of attraction and a local Lyapunov function in
Ω for the hybrid system (1)-(3) can be determined.

Proof: Notice that, from temporal regularization, the
system can flow for allx∈ Ω. Condition (8) implies thatV(x)
decreases along the continuous-time trajectories, withinthe
whole setΩ. In fact, from Theorem 1 we have that ˆg(x)∈ Ĝ(x),
with Ĝ(x) = co({N̂(I)x ∈ R

n : I ⊆ Nmc}), which implies the
existence ofI(x,η )⊆Nmc such thatη T ĝ(x)≤ η T N̂(I(x,η ))x,
for all η ∈ R

n, as shown in the proof of Theorem 1, see (7).
Posingη T = xTP and from (8), we have that

V̇(x) = ∂V(x)
∂x ẋ= xTPẋ+ ẋTPx= xTPĝ(x)+ ĝ(x)TPx

≤ −xTλ Px− xTPλ x,

with ẋ= ĝ(x) as in (1). Consider the system̄̇x=−λ x̄, whose
trajectories are given by ¯x(t) = e−λ tIn x̄(0). The time-derivative
of V(x) along the trajectories of system̄̇x=−λ x̄ is given by

˙̄V(x̄) =
∂V(x̄)

∂ x̄
˙̄x= x̄TP ˙̄x+ ˙̄xTPx̄=−x̄Tλ Px̄− x̄TPλ x̄,

for everyx̄∈R
n. Then, for every initial conditionx(0)= x̄(0)∈

Ω, the time-derivatives along the trajectories of systems (1)
and ˙̄x=−λ x̄ are such thaṫV(x)− ˙̄V(x̄)≤ 0. Since the integral
of a non-positive function is smaller or equal than 0, we have

V(x(τ ))−V(x(0))=

τ
∫

0

V̇(x(t))dt ≤

τ
∫

0

˙̄V(x̄)dt

=

τ
∫

0

˙̄xTPx̄dt+

τ
∫

0

x̄TP ˙̄xdt= x̄(τ )TPx̄(τ )−x̄(0)TPx̄(0),

and then, forx(0) = x̄(0), we have that

V(x(τ )) ≤ x̄(τ )TPx̄(τ ) = x(0)Te−λ τ InPe−λ τ Inx(0). (11)

Thus the trajectories of systems (1) and˙̄x = −λ x̄ starting at
the same pointx(0) and after timeτ are such thatV(x(τ ))≤
V(x̄(τ )), for everyτ ≥ 0. Now we can prove that conditions
(8) and (9) imply that the value ofV(x) decreases between two
jumping instant. For the temporal regularization, it is sufficient
to prove that the variation (possibly positive) of functionV(x)
during a jump plus the variation ofV(x) after ρ of flowing is
non-positive. Such condition must be verified when the state
is in the jump setJ . Consider a jump at time 0 (no loss
of generality is introduced) followed by a flowing interval of
durationρ. Denote withx−0 the state before the jump andx+0
the state after the jump. Then the condition reads

V(x+0 )−V(x−0 )+

ρ
∫

0+

V̇(x)dt ≤ 0,
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for all x−0 ∈ J , and thus, beingV(x+0 ) = (x+0 )
TPx+0 , we have

x(ρ)TPx(ρ)≤ (x−0 )
TPx−0 . (12)

This has a clear geometrical meaning, as (12) is equivalent
to require thatV(x) before the jump is greater than (or
equal to) its value after timeρ, when a successive jump
could occur. From (11), withx(0) = x+0 , we have that if
(x+0 )

Te−λρ InPe−λρ Inx+0 ≤ (x−0 )
TPx−0 , or equivalently

g̃(x−0 )
TPg̃(x−0 ) = (x+0 )

TPx+0 ≤ (x−0 )
Teλρ InPeλρ Inx−0 , (13)

holds, then condition (12) is satisfied.
Considering the discrete-time dynamics, we have that ˜g(x)∈

G̃(x), with G̃(x) = co({Ñ(J)x∈R
n : J⊆Nmd}), from Theorem

1. The quadratic functionV(x) = xTPx, is convex and bounded
overRn. Since the supremum of a convex function relative to
a convex, compact setC is attained at some extreme ofC, see
[18], then there is an extreme of setG̃(x) where the maximum
of V(x) is attained. Therefore there existsJ(x)⊆Nmd such that

g̃(x)TPg̃(x)≤ xTÑ(J(x))TPÑ(J(x))x= sup
y∈G̃(x)

V(y). (14)

Then condition (9) implies (13) for allx∈ Ω∩J andτ ≤ ρ.
In fact, posingx= x−0 and applying the S-procedure, we have

(x+)TPx+ = g̃(x)TPg̃(x)≤ xTÑ(J(x))TPÑ(J(x))x

≤ xTeλρ In(P+σM)eλρ Inx,

that leads to satisfaction of condition (13), and hence (12), for
everyx∈ Ω such thatx∈ J .

A condition for global asymptotic stability is stated for
hybrid systems (1)-(3).

Corollary 1: Given the hybrid system (1)-(3) andP∈R
n×n

with P= PT > 0, λ > 0 andσ ≥ 0. If (8) and (9) hold with

N̂(I) = Â+∑
i∈Ī

B̂(i)K̂i , Ñ(J) = Ã+∑
j∈J̄

B̃( j)K̃ j , (15)

for every I ⊆ Nmc and J ⊆ Nmd , then a global Lyapunov
function for the hybrid system (1)-(3) can be determined.

Proof: The result follows from Theorem 3 witĥH(i, I) =
H̃( j,J) = 01×n, for all I ⊆ Nmc, J ⊆ Nmd , i ∈ I and j ∈ J.

Notice that asymptotic stability of the systems ˙x= Âx and
x+ = Ãx is a necessary condition for global asymptotic stability
of system (1)-(3), in fact, given by (8) and (9) withI = Nmc

(then Ī = /0) andJ=Nmd (thusJ̄= /0) in (15). Also asymptotic
stability of ẋ = (Â+ B̂K̂)x and x+ = (Ã+ B̃K̃)x, implied by
conditions (8) and (9) withI = /0 and J = /0 in (15), is
necessary. Analogous results for the case of nested saturations
(3)-(5) are stated in the following theorem.

Theorem 4:Given the hybrid system with nested satura-
tions (3)-(5), consider the ellipsoidΩ = E (P), with P∈R

n×n

and P = PT > 0, λ > 0 and σ ≥ 0. Assume there exist:
Ĥ( j,J) ∈ R

1×n such that|Ĥ( j,J)x| ≤ 1 for every J ⊆ Nmc

and j ∈ J; L̂(i, I(k)) ∈ R
1×n such that|L̂(i, I(k))x| ≤ 1 for

every k ∈ Nmc, every I(k) ⊆ Npc and i ∈ I(k), for all x ∈ Ω;
H̃(u,U) ∈ R

1×n such that|H̃(u,U)x| ≤ 1 for everyU ⊆ Nmd

and u ∈ U ; L̃(v,V(l)) ∈ R
1×n such that|L̃(v,V(l))x| ≤ 1 for

every l ∈ Nmd , everyV(l) ⊆ Npd and v∈V(l), for all x∈ Ω,
such that:

Q̂(J, I)TP+PQ̂(J, I)≤−2λ P, (16)

Q̃(U,V)Te−λρ InPe−λρ InQ̃(U,V)−σM ≤ P, (17)

with I = {I(1), . . . , I(mc)} andV = {V(1), . . . ,V(md)}, where
Q̂(J, I) and Q̃(U,V) are defined as

Q̂(J, I) = Â+ ∑
j∈J̄

B̂( j)

(

K̂ j + ∑
i∈Ī( j)

Ê j ,iF̂i

+ ∑
i∈I( j)

Ê j ,i L̂(i, I( j))
)

+ ∑
j∈J

B̂( j)Ĥ( j,J),

Q̃(U,V) = Ã+ ∑
u∈Ū

B̃(u)

(

K̃u+ ∑
v∈V̄(u)

Ẽu,vF̃v

+ ∑
v∈V(u)

Ẽu,vL̃(v,V(u))
)

+ ∑
u∈U

B̃(u)H̃(u,U),

(18)

for all J ⊆ Nmc, I(k) ⊆ Npc, k ∈ Nmc and all U ⊆ Nmd ,
V(l) ⊆ Npd , l ∈ Nmd . Then Ω is an ellipsoidal estimation of
the domain of attraction and a local Lyapunov function inΩ
for the hybrid system (3)-(5) can be determined.

Furthermore, a global Lyapunov function for the hybrid
system with nested saturations (3)-(5) can be determined if
conditions (16)-(17) hold with

Q̂(J, I ) = Â+ ∑
j∈J̄

B̂( j)

(

K̂ j + ∑
i∈Ī( j)

Ê j ,iF̂i

)

,

Q̃(U,V) = Ã+ ∑
u∈Ū

B̃(u)

(

K̃u+ ∑
v∈V̄(u)

Ẽu,vF̃v

)

,
(19)

for all J ⊆ Nmc, I(k) ⊆ Npc, k ∈ Nmc and all U ⊆ Nmd ,
V(l) ⊆ Npd , l ∈ Nmd , where I = {I(1), I(2), . . . , I(mc)} and
V = {V(1),V(2), . . . ,V(md)}.

Proof: This result can be proved by using reasonings anal-
ogous to those of Theorem 3 and Corollary 1 and employing
the results from Theorem 2.

Remark 2:FunctionV(x) in Theorems 3 and 4 and Corol-
lary 1 are not necessarily decreasing along the trajectories of
systems (1)-(3) and (3)-(5), due to jumps. However,V(x) can
be used to determine Lyapunov functions for the saturated
hybrid systems.

IV. COMPUTATIONAL ISSUES

Some computation oriented considerations on how to practi-
cally obtain a quadratic Lyapunov function for systems (1)-(3)
and (3)-(5) are provided. First, we propose a formulation of
the condition provided by Theorem 3 which can be reduced
in LMI form by fixing the value ofλ .

Proposition 1: Consider the hybrid system (1)-(3). Suppose
that there existW ∈ R

n×n with W =WT > 0, λ > 0, Ẑ(i, I) ∈
R

1×n andZ̃( j,J) ∈R
1×n for everyI ⊆Nmc, i ∈ I , J⊆Nmd and

j ∈ J, such that conditions
(

ÂW+ ∑
i∈Ī

B̂(i)K̂iW+ ∑
i∈I

B̂(i)Ẑ(i, I)+ λW
)

+
(

WÂT

+ ∑
i∈Ī

WK̂T
i B̂T

(i)+ ∑
i∈I

Ẑ(i, I)T B̂T
(i)+ λW

)

≤ 0,
(20)

[

W
(

WÃT + ∑
j∈J̄

WK̃T
j B̃T

( j)+ ∑
j∈J

Z̃( j,J)T B̃T
( j)

)

e−λρ In

∗ W

]

≥ 0,

(21)
[

1 Ẑ(i, I)

∗ W

]

≥ 0, ∀i ∈ I ,

[

1 Z̃( j,J)

∗ W

]

≥ 0, ∀ j ∈ J,

(22)
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are satisfied for everyI ⊆ Nmc and J ⊆ Nmd . Then setΩ =
E (P), with P=W−1, is an ellipsoidal estimation of the domain
of attraction and a local Lyapunov function inΩ for the hybrid
system (1)-(3) can be determined.

Proof: The proposition stems from Theorem 3. In fact, it
can be proved, using standard matrix inequalities manipulation
techniques, that (20)-(22) imply the conditions of the theorem,
with W = P−1, Ẑ(i, I) = Ĥ(i, I)W and Z̃( j,J) = H̃( j,J)W, for
everyI ⊆Nmc andi ∈ I , J⊆Nmd and j ∈ J. The only difference
is that condition (9), concerningx ∈ Ω and (x,τ ) ∈ J , is
relaxed in (21) imposing the condition on jumps for allx∈ Ω.
Finally, (22) assures that|Ĥ(i, I)x| ≤ 1 and|H̃( j,J)x| ≤ 1, for
all x∈ Ω, everyI ⊆ Nmc andJ ⊆ Nmd .

Notice that althoughV(x) in Proposition 1 do not decrease
along the trajectories, Lyapunov functions can be determined.

Remark 3:As stated in the proof of Proposition 1, the
condition on the variation of the value ofV(x) during the
jump is imposed over the whole setΩ, although it could have
been restricted to the setJ . In fact, the termσM in (9) is not
present in (21). This yields some conservativeness, but permits
to pose the problem in LMI form, fixingλ . Removing this
source of conservativeness is a possible future improvement.

The result provided in Proposition 1 can be used to pose an
optimization problem to maximize the size ofΩ and hence to
provide a solution to Problem 1.

Remark 4:A possible evaluation criterion is the maximiza-
tion of the value ofβ such that the polytopeβL= co({βv(k)∈
R

n : k ∈ NV}) is contained in the estimateΩ = E (P), where
v(k) ∈ R

n, with k ∈ NV , are given points in the state space.
The optimization problem results:

max
β ,λ , Z̃,Ẑ,W

β

s.t. (20),(21),(22), ∀I ⊆ Nmc, ∀J ⊆ Nmd
[

1 βv(k)T

∗ W

]

≥ 0, ∀k∈ NV ,

(23)
where, for sake of notational compactness, we denoted with
Z̃ and Ẑ the matricesẐ(i, I) and Z̃( j,J) for all I ⊆ Nmc and
i ∈ I , J ⊆ Nmd and j ∈ J. Constraints (20)-(22) ensure that
V(x) = xTPx yields a Lyapunov function inE (W−1) for the
hybrid system, and the second set of constraints imposes that
βv(k) ∈ E (W−1), for everyk∈ NV .

Notice that, although the constraints (20) and (21) are not
linear in the optimization variables, they are LMI for a fixedλ .
Then, the problem can be solved for different values ofλ > 0,
to obtain a guess of the maximal value ofβ . Notice also that
λ is a bound on the decreasing rate of the quadratic function
along the trajectories of the continuous-time dynamics, then it
could be considered as a design parameter and fixed before-
hand. The LMI condition for global asymptotic stability for
system (1)-(3) (and fixedλ ) follows.

Corollary 2: Consider the hybrid system (1)-(3), matrixP∈
R

n×n with P= PT > 0, λ > 0 andσ ≥ 0. If conditions
(

Â+ ∑
i∈Ī

B̂(i)K̂i
)T

P+P
(

Â+ ∑
i∈Ī

B̂(i)K̂i
)

≤−2λ P,
(

Ã+ ∑
j∈J̄

B̃( j)K̃ j
)T

e−λρ InPe−λρ In
(

Ã+ ∑
j∈J̄

B̃( j)K̃ j
)

−σM ≤ P,

(24)

hold for all I ⊆ Nmc andJ ⊆ Nmd , thenV(x) = xTPx yields a
global Lyapunov function for the hybrid system (1)-(3).

Remark 5:The conditions for hybrid systems with nested
saturations (3)-(5) can be easily recovered, by properly modi-
fying termsB̂(i)K̂iW in (20) andB̃(i)K̃iW in (21), as well terms
B̂(i)K̂i and B̃( j)K̃ j in (24).

V. NUMERICAL EXAMPLES

The systems presented below can be expressed as in (1)-(2),
or (4)-(5), by posingx= (xp, xc).

Example 1:Consider the linear unstable system, proposed
in [15], in closed-loop with a stabilizing reset PI controller:
{

ẋp = 0.1xp+ϕ (yc),

yp = xp,

{

ẋc =−0.2yp,

yc = xc−2yp.
(25)

The dynamics characterizing the reset behavior with saturation
is x+c = xc+ϕ (−xc). The minimum time interval between two
jumps is set to 2 seconds, that isρ = 2.

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

xp

x c

Fig. 1. SetΩ and trajectories of the saturated reset system.

We solve the optimization problem (23) where pointsv(k),
with k ∈ N4, are the vertices of the square setL = {x∈ R

2 :
‖x‖∞ ≤ 1}, and for different values ofλ . We found that the
value ofλ = 0.02 provides the best value (among those tested)
of β , that isβ = 3.2689 with

P=

[

0.0409 −0.0101

∗ 0.03241

]

.

The setΩ = E (P) is an estimation of the domain of attraction,
regardless of the set{x∈ R

n : xTMx ≥ 0}. In Figure 1,Ω is
depicted with some trajectories of the system assuming that
the jump can occur at anyx∈ Ω. Notice in particular the tra-
jectory marked in bold line with initial conditionx(0) = x−0 =
[5.1188 1.0376]T. With the first jump at time 0 the trajectory
leavesΩ, thenV(x) increases, i.e.V(x+0 ) = 1.0686> 1. At the
time of the second jump the state is contained in the ellipsoid,
with V(x(ρ−)) = 0.9196< 1. ThenV(x) decreases between
the two jumps, as ensured by Theorem 3.

Example 2:The case of nested saturations is considered. A
further saturation is added between the plant output and the
controller input of the continuous-time system (25):

{

ẋp = 0.1xp+ϕ (xc−2ϕ (xp)),

ẋc =−0.2ϕ (xp),
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while the discrete-time behavior is as in Example 1. The
solution of the optimization problem (23) adapted to nested
saturations and withλ = 0.02 leads to β = 1.8922. As
expected, the further saturation entails a reduction of thesize
of the estimation of the domain of attraction, see Figure 2.

Example 3:The condition for global asymptotic stability
provided by Corollary 2 is applied to a multi-input system.
Consider the system, inspired to the examples in work [21]
and references therein, whose dynamics are given by

Ap =

[

−4 1

0 −1

]

, Bp =

[

1 3

3 1

]

, Cp =
[

4 0
]

,

in closed-loop with continuous-time dynamical controller
whose matrices are

Ac =−3, Bc =−1, Cc =

[

0.1

0.22

]

, Dc =

[

−0.0625

−0.1250

]

.

The controller discrete-time dynamics is a saturated reset, i.e.
x+c = xc + ϕ (−xc), and the plant state performs an instanta-
neous rotation ofπ/4 radians at any jump instant. Notice that
asymptotic stability of both the open-loop and closed-loop
continuous-time systems in absence of saturation, necessary
conditions for global asymptotic stability, are ensured. Posing
ρ = 0.5 andλ = 0.01 and assuming that the jump can occur
at anyx∈ R

n, conditions (24) are satisfied by

P=







2.0972 0.0068 −0.0113

∗ 2.1054 −0.0056

∗ ∗ 1.8822






,

for every I ⊆ Nmc and J ⊆ Nmd . Then, from Corollary 2, the
saturated reset system is globally asymptotically stable and
V(x) = xTPx yields a global Lyapunov function.

VI. CONCLUSIONS

In this paper we dealt with the problems of characterizing
quadratic stability and computing ellipsoidal estimations of the
domain of attraction for saturated hybrid systems. The results
presented are based on a geometrical approach to the analysis
of saturated functions, also in case of nested saturations,which

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

xp

x c

Fig. 2. SetΩ and trajectories of the reset system with nested saturations.

permitted to formulate contractiveness conditions of ellipsoids
for a rather generic class of saturated hybrid systems.

An interesting forthcoming issue could be to exploit the
hybrid loop to improve the performance of a controlled system
in presence of exogenous signals. This could be achieved by
designing the reset law and both the flow and jump sets.
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