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Quadratic stability for hybrid systems
with nested saturations

Mirko Fiacchini, Sophie Tarbouriech and Christophe Prieur

Abstract—The problems of characterizing quadratic stability —results present in literature for continuous-time, as [21],
and computing an estimation of the domain of attraction for @t- gnd discrete-time saturated systems, see [10], are imgrove
urated hybrid systems are addressed. Hybrid systems preséng racovered as particular cases of our approach, see @so th

saturations and nested saturations on signals involved indih the limi . f th Kk 1131, Th It | |
continuous-time and the discrete-time dynamics are consated. preliminary version of the work [13]. € results on loca

Geometrical characterizations of local and global quadraic and global quadratic stability for hybrid systems with sienp
stability are provided. Computation oriented conditions for and nested saturations are other contributions. We alsepte

quadratic stability are given in form of convex constraints how the lower bound on the time interval between jumps can
Index Terms—Hybrid systems, nested saturations, domain of b€ used in the formulation of the stability conditions. Hiya
attraction, stability. computation oriented conditions for local and global qaidr

stability are stated and applied to numerical examples.
Notation. Given n € N, denoteN, = {xe N:1 < x < n}.
. ) ) . GivenAc R™M A with i € N, denotes its-th row, Aj) with
Hyb_r|d syst_ems are s_ystems with both_ contmuou_s—tln}eE Npm its j-th column andA; ; the entry of thei-th row and
and discrete-time dynamics. Recently, the interest omdybrj_th column ofA. The identity matrix of orden is denotedn,

systems has been growing, see [1], [2], [3], [4], [5], mallie  1ha 11 m x n matrix is Qq.p,. Given the matrixP = PT > 0,
to the increasing application of digital devices for thettoh j.fine the ellipsoid?(P) = {x € R": xTPx< 1}. Given the set
of real systems, like chemical processes, communicatinds ¥ anda > 0 denote the setrD — {ax: xe D} and cgD)
automotive systems. A proper analysis and control theo@’its convex hull. GiverJ C Ny, we denote] = Nm\J, with

has to be developed for hybrid systems. See for insta%eeN The symbok stands for symmetric block
[6], concerning the design of predictive controllers foibhig ' '

systems, and [7], on the use of hybrid controllers to improve Il. PROBLEM STATEMENT

the performance. Consider the closed-loop saturated hybrid system, repre-

In this paper, hybrid systems with nested saturations are . . ) . '
handled and both local and global stability are consideresae.mf3d by using the hybr|d f_ramework introduced in [3], véhos
The attention is devoted to quadratic Lyapunov functiors arc,':ontmuous—ume dynamics is given by

ellipsoidal contractive sets, as estimations of the donadin { x = §(x) = Ax+ Bg (Kx),

I. INTRODUCTION

1)

attraction for hybrid systems with (nested) saturationsn-C T=1
sidering ellipsoids entails some conservativeness wispaet
to other families of sets (as polytopes), but permits to po¥alid if (x,7) € 7, with x € R", and discrete-time dynamics
the problem in an efficiently solvable form. The issue of xt = §(x) = Ax+ B (Kx)
estimating the domain of attraction for saturated systems, { L ’
in continuous-time and discrete-time, has been dealt with =0
considering ellipsoids [8], [9], [10], [11], and polytopf&2]. if (x,1) € #. RegionsZ and ¢ are referred to as the flow

A first contribution of the paper is the geometrical charagmd jump sets, respectively. Functipn R? — R? denotes the
terization of saturated functions. It is proved that, gieestate, saturation, i.e¢; (y) = sgnly;) min{yi|, 1}, for all i € N, with
its image through a saturated function is contained in a know e R2, The saturation bounds are assumed equal to 1, without

state-dependent polytope. The property is also provedi®r oss of generality. Sets? and 7 are given by
case of nested saturations. Such results permit to characte 1. T
F={(x,1) eR"™: x'Mx>0, or 1<p},

ize contractiveness of ellipsoids and to determine quadrat
Lyapunov functions by means of convex constraints. Some _# ={(x,7) e R"!: xTMx<0, and 1> p},

)

3

®3)

—MT nxn i i
This work was partially supported by the ANR project ArHy@&RPEGE, Where M=M" e R “" and .P >0, as in [14] Different
contr. num. ANR-2008 SEGI 004 01-30011459. kinds of flow and jump regions can be defined by (3), as
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{fiacchini, sophie.tarbouriech}@aas.fr. the formulation (3) permits to restrict the dynamics to a
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trol,  Gipsa-lab, Domaine  universitaire, 961 rue de a R k 1:Th iabl he ti df

Houile Blanche, BP 46, 38402 Grenoble Cedex, France. R€MAark 1:The variabler represents the time passed from

chri st ophe. pri eur @i psa-| ab. grenobl e-i np. fr. the last jump. Its introduction, together with the paramete
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p > 0, permits to define a lower bound on the interval betweemd

two successive jumps. Such a bound, referred to as “temporal NJ)=A+ ZB(i)Ki +ZB(i)H(i,J). (6)

regularization”, can be used to prevent having an infinite i€d i€

number of jumps in a finite time interval, i.e. Zeno solutions  Proof: Considerx € Q. First notice that, giverd C Ny,

[3], which should be avoided in real applications. Noticatthandi € J, we have thatH(i,J)x| < 1 implies that¢;(Kx) €

conditions on the stat& ensuring the system flowing for aco({Kijx, H(i,J)x}). In fact, supposing thakix > 0, (case

certain amount of time, used in some applications, conskgi < 0 is analogous), iKix < 1 theng¢;(Kx) = Kix. If Kix>1

in determining implicitly a positive value op. Hereafter then ¢;(Kx) =1 andH(i,J)x < ¢i(Kx) < Kix, therefore the

the knowledge ofp is used to allow the potential Lyapunovinclusion is satisfied. This implies that

function to increase during a jump. This leads to more génera .

results than those obtained imposing its decreasing dboiiy N8 $i(Kx) € co({n'ByKix, n'BH(i,9)x}) C R,

the flow and the jumps. This case is recovered by pogiad). holds for alln € R", everyJ C N, and evenyi € J. This means

Nested saturations are also considered to obtain a mdhat, for everyn € R", we have

genera_l model (see [17]). In fa<_:t, the presence of a _further min{nTB(i>Kix, nTB(i>H(i,J)x} < nTB(i>¢i(KX)

saturation on the plant output is a realistic assumption, as T T )

bounds on the measurements are often present. In such case, < max{n BKix, n'BH(i,J)x}.

the continuous dynamics of the hybrid system becomes Hence for anyn € R", every J C N, and everyi € J,

i R By Bl an accurate choice between the valugsB;H(i,J)x and

{ X=0(x) = Ax+ B (Kx+E$ (FX)), (4) nTB;Kix provides an upper bound 01TB<i)(d)>i(Kx). Thus,

=1, givenn € R" andx € Q, there exists)(x,n) C Ny, such that
and, analogously, the discrete dynamics is nTg(x) = n"Ax+ % n"B(i)¢i (KX)
- ~ ~ ~ ~ ~ 1€ENm
xt = §(x) = Ax+ B¢ (Kx+E¢(Fx)) (5) <n"Ax+ 3 nByKix+ ¥ nByH(,I(x,n))x,
1t =0. i€d(x,n) icJ(x,n) @

The objectives of the paper can be summarized as follows|ds. Hence the support function dFJ(x,n))x € G(X) is

Problem 1: Given the flow and jump sets#? and 7, greater than or equal to the support functiongék), then
determine an ellipsoidal regiof = &(P), with P=PT > 0, nTg(x) < @ (N). From Property 1, we hawg(x) € G(x). B
as large as possible, such that a Lyapunov functioifor ~ The meaning of Theorem 1 is that, for alE Q, the image
the saturated hybrid system (1)-(3), or for the hybrid systeg(x) is contained in the polytop&(x), whose vertices are

with nested saturations (3)-(5), can be determined. known. Its extension to functions presenting nested seéoms
that is g(x) = Ax+ B¢ (Kx+ E¢(Fx)), with E € R™P and
[1l. QUADRATIC STABILITY FOR SATURATED HYBRID F € RP*", applies then to both discrete-time and continuous-
SYSTEMS time systems with nested saturations, as well as to hybed.on

Hereafter we prove that the image of the statéthrough Theorem 2:Given a function g(x) = Ax+ B¢ (Kx +
a saturated functiog(x) is contained within a set explicitly E¢ (Fx)), consider the ellipsoi@ = &' (P), with P € R™" and
obtainable. This result permits to geometrically chammte P=PT >0, H(j,J) € RY>" such thatH(j,J)x| < 1 for every

quadratic stability for saturated hybrid systems. JC NpandjeJ, L(i,1(k) € R™" such thatL(i,I (k))x| <1
Definition 1: Given D C R", the support function oD at for everyk € Ny, everyl (k) C N, andi € I(k), for all x € Q.
neR"is @(n) =supn’x Then we haveg(x) € S(x) for all x e Q, where
xeD

Among the properties of support function, see [18], [19], we S(X) = co({Q(J,I)x € R": J C N, I (k) C Np, k € Nm}),
have that set inclusion conditions can be given in terms ghare| — {1(1),1(2),...,1(m)} and
linear inequalities involving the support functions.

Property 1: Given a closed, convex sBtC R", thenx € D Q1) =A+ 3 B (Kj + Y EjiF+ Y EjiL(,l (j)))
if and only if nTx < @ (n), for all n € R". Given alsoC C R", jed i€l (i) i€l(i)

thenC C D if and only if @(n) < @(n), for all n € R". +ngB(j)H(jaJ)-

Proof: Considerx € Q. From Theorem 1 applied to the

) ) function given byh(x) = Kx+E¢(Fx), we have thah(x) €

The following theorem, stated for functiorg§x) = Ax+ co({M(1)x}) for everyx € Q, where
Bo(Kx), with Ae R™", Be R™™ and K € R™™", can be _
used to prove results for both the continuous-time and the M(I) = K+ZE(i)F|+ZE<i)|—(|7|)7
discrete-time dynamics, and then applied to hybrid systems el '€

Theorem 1:Given a functiong(x) = Ax+ B¢ (Kx), the for everyl C Ny and {M(l)x}, is introduced, for notational
ellipsoid Q = &(P), with P € R™" and P = PT > 0, and convenience, to denote the s@l(l)x: 1 C Np}. Theng(x) €
H(i,J) € R™" such thatH (i,J)x| < 1 for all x € Q, for every Ax+B¢(co({M(I)x})) and, for everyj € Ny, we have that

J C N andi € J, then we havey(x) € G(x) for all x€ Q, with i (co({M(1)x})) ={;(TX): Txeco({M(1)x})}
G(x) = co({N(J)x € R": I C Np}), C{eo({Tjx,H(j,I)x}):Txeco({M(l)x})},

A. Convex bounds of saturated functions
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where the inclusion follows from the proof of Theorem 1. N(J)TeAPhpg2PhN(J) — oM < P, 9)
Notice thatTx e co({M(I)x},), for all x € Q, is equivalent . _

to say that there exista, > 0, for everyl C Ny, such that whereN(l) andN(J) are defined as

ZA' =1landTx= Z’\' I)x for all xe R", or, equivalently,

N(|) =A+ i (|)K| +> é(i)l:i(l,”,
1< 1< ) g e 10
Tix= %)u )x for aII j € N Then, for everyj € Ny, N(J)=A+ 3 BjKj+ 3 BjH(j,J), (10)
jed jed
Txe co({M( )x}1) implies Tjx € co({M;j(1)x}/) and thus ) o o
. for all | € N, andJ € Ny, thenQ is an ellipsoidal estimation
¢j(co({M(1)x}))  co({co({M;(1)x}), H(j,d)x}) of the domain of attraction and a local Lyapunov function in
=co({M;j(lo)X,...,Mj(l2p)x, H(j,J)x}), Q for the hybrid system (1)-(3) can be determined.

where Iy, lo,... I» denote, with a slight abuse of notation, Proof: Notice that, from temporal regularization, the

System can flow for atk € Q. Condition (8) implies tha¥/ (x)
decreases along the continuous-time trajectories, with@n
whole seQ. In fact, from Theorem 1 we have thg(x) € G(x),
with G(x) = co({N(I)x e R": | C ch}) which implies the
existence of (x,n) € N, such thatpT§(x) < nTN(1(x,n))x,
for all n € R", as shown in the proof of Theorem 1, see (7).
Posingn™ = x"P and from (8), we have that

the possible subsets Of,. Following the line of the proof
of Theorem 1, it can be proven that, for eveng J, every
X e Q and everyn € R", there exists a choice between"
n B H(j,J)x and one element O{nTB HMj()x:1 S Np}
prowdmg an upper bound 01TB q),(co({M( )x})). Then,
for everyx € Q and everyn € R” there exists a selection of
J(x,n) € Nm andl(j,x,n) € Np, with j € Nm, such that

V(x) = D05 — xTPx+ xTPx = X" Pg(x) + §(X) T Px
Ta(x) < nTAx+ B (K + EiiFR ox
gk <n JEJZ nn ()( J |€I(szn§7 M < —x"APx—xTPAx,

+ 5 NTELGIGxn))x+ 3 B H(Ixn)x
E.]

el () with x=§(x) as in (1). Consider the systeri= —AX, whose

trajectories are given by(f) = e *!nx(0). The time-derivative

and then, as for Theorem 1, we have that) € S(x). B of V(x) along the trajectories of systeri= —AX is given by
Notice that the bounding condition for nested saturations

involves the existence of a skk) for anyk € N, besides of V(X = 5V® = X PX X PX= X APX— XTPAX

J. There are ? possible setd (each one representing a subset ’

of Ny and 2 possibilities of everyt (k), with k € Nm. Hence o, everyxe R, Then, for every initial conditiom(0) = X(0) €
there are 2+1™ different values of)(J, 1), although some of Q, the time-derivatives along the trajectories of systens (1
them lead to redundant selections and could be discarded.gnqx— —Axare such tha¥/ (x) — V(X) < 0. Since the integral

As shown in [13], applying Theorem 1 to continuous-timgs 4 non-positive function is smaller or equal than 0, we have
and discrete-time systems permits to recover or extendtsesu

presented in literature, for instance in [9], [10], [11].
V(X(T) /v dt</V K)dt
B. Quadratic stability for saturated hybrid systems T
The presented results are employed to state conditions :/5( det+/_Tdet X(1)"Px(1)—x(0)TPX(0),
for quadratic stability for hybrid systems with saturagpn 0

possibly nested. First the case of simple saturations3))-

is considered. We impose the decreasing of the candid%ﬂed then, fox(0) = X(0), we have that

Lyapunov functionV (x) = x" Px along the continuous trajec- V(X(1)) < ;(T)TP;(T) _ X(o)Tef)\TlnPefAﬂnx(o). (11)

tories. Moreover, we have to ensure that the variatiow ©f) n

during a jump plus the variation during a flowing interval offhus the trajectories of systems (1) axne- —AX starting at

p. is negative. This, with the temporal regularization, vebulthe same poink(0) and after timer are such tha¥ (x(1)) <

imply thatV (x) is decreasing between two successive jumpg(x(t)), for everyt > 0. Now we can prove that conditions

The resulting condition is less conservative than imposireg (8) and (9) imply that the value &f(x) decreases between two

decreasing o¥ (x) also during the jump. In the followingn: jumping instant. For the temporal regularization, it isfisignt

andmy are the number of columns & and B, p. and py to prove that the variation (possibly positive) of functid(x)

those ofE andE. Notice that the case of functions increasinguring a jump plus the variation of (x) after p of flowing is

along flow trajectories and decreasing during jumps, as welbn-positive. Such condition must be verified when the state

as more general cases, could be considered, see also [20]is in the jump set #. Consider a jump at time O (no loss
Theorem 3:Given the hybrid system (1)-(3), consider thef generality is introduced) followed by a flowing intervel o

ellipsoid Q = &(P), with P € R™" and P = PT > 0, durationp. Denote withx, the state before the jump ang

H(i,1) e R andH(j,J) € R™" such thatH(i,I)x] <1 and the state after the jump. Then the condition reads

IF(j,d)x| <1, for all xe Q, for every| C Ny, andi € I,

JCNp,andjeJ, A >0,ando >0. If

h
A - V(xg)—V(xg)+/\'/(x)dtgo,
N(HTP+PN(l) < —2AP, (8)
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for all x; € _#, and thus, beiny (xJ) = (x§)TPxJ, we have Q(U,V)Te APhpe2phQU, V) — oM < P, (17)

X(p)TPx(p) < (x5)TPxg . (12) with I ={1(2),...,I(m¢)} andV ={V(1),...,V(my)}, where

This has a clear geometrical meaning, as (12) is equwalé% andQ(U V) are defined as

to require thatV(x) before the jump is greater than (or Q(J,1)=A+ 5 I B (KH' s EjiR

equal to) its value after timep, when a successive jump jed iel(j)
could occur. From (11), withx(0) = xJ, we have that if + 5 ElG,1( ))) + Z B H(j,d),
(xg)TeMPhpeAPinyt < (x)TPxy, or equivalently i€l(j) (18)
T A o _ _ U,V)=A+ B Ku+ Euvh
0 )TPa0G ) = 06)TP% < (g TePpevng, (13 OUV)I=A+ 38w (K &(w o
holds, then condition (12) is satisfied. + 3 Eu,vE(V,V(u))) + ¥ ByH(uU),
veV (u) uey

_ Considering the discrete-time dynamics, we havegtate
G(x), with G(x) =co({N(J)xe R": JCde}) from Theorem for all J C Ny, 1(k) C Ny, k€ Ny, and all U C Ny,

1. The quadratic functiod (x) = x" Px, is convex and boundedV(l) C Ny,, | € Ni,. ThenQ is an ellipsoidal estimation of
overR". Since the supremum of a convex function relative tthe domain of attraction and a local Lyapunov functionGin

a convex, compact s€t is attained at some extreme ©f see for the hybrid system (3)-(5) can be determined.

[18], then there is an extreme of $8{x) where the maximum  Furthermore, a global Lyapunov function for the hybrid
of V(x) is attained. Therefore there exists) C Ny, such that system with nested saturations (3)-(5) can be determined if

Q(X)TPQ(X) ngN(J(x))TPN(J(x))x: supV(y). (14) conditions (16)-(17) hold with

YEGW) QU =A+ 3 B (Ri+ 5 EjR).
Then condition (9) implies (13) for ake QN _# and1 < p. N e e o (19)
In fact, posingx = x;, and applying the S-procedure, we have QU,V)=A+ 3 By (Ku—i— 2( )EU,VFV),
T T T Tod ueU veV(u
Oy TPt = ie)m?g( ) <X '\g‘;fx)) PNEX) for all J C N, 1(K) C Np,, k € Ny, and all U € Ny,
< x &Pn(P+oM)ePinx, V(1) C Npy, | € Nmy,, where| = {I(1),1(2),...,1(m¢)} and
that leads to satisfaction of condition (13), and hence,(?) V ={V(1),V(2),...,V(mg)}.
everyx € Q such thatxe ¢. [ ] Proof: This result can be proved by using reasonings anal-
A condition for global asymptotic stability is stated forogous to those of Theorem 3 and Corollary 1 and employing
hybrid systems (1)-(3). the results from Theorem 2. ]

Corollary 1: Given the hybrid system (1)-(3) ariRlc R™" Remark 2:FunctionV(x) in Theorems 3 and 4 and Corol-
with P=PT >0,A >0 ando > 0. If (8) and (9) hold with lary 1 are not necessarily decreasing along the trajestarfie
~ ~ s o ~ ~ s systems (1)-(3) and (3)-(5), due to jumps. HoweWx) can
N() :A+_€ZIB<i)K" NQ)=A+ %,BU)KJ’ (15)  be used to determine Lyapunov functions for the saturated
i i

hybrid systems.
for every | C Ny, and J C Ny, then a global Lyapunov

function for the hybrid system (1)-(3) can be determined. IV. COMPUTATIONAL ISSUES
Proof: The result follows from Theorem 3 witH(i,1) =

N(J J) O1.p, for all | C Nrrk;, Jc de’ icl andj €l m Some computation oriented considerations on how to practi-

cally obtain a quadratic Lyapunov function for systems (@)-
+Notlce that asymptotic stability of the systems- Ax and and (3)-(5) are provided. First, we propose a formulation of
X" = Axis a necessary condition for global asymptotic stablh%e condition provided by Theorem 3 which can be reduced
of system (1)-(3), in fact, given by (8) and (9) with= Ny,

in LMI form by fixing the value ofA.
thenl = 0) andJ = Ny, (thusJ = 0) in (15). Also asymptotic
gtablhty of)x— (A—|— Ig;%)(x and x*+ )_ (Af—i— )BK)X |mp)llleg by Proposition 1: Consider the hybrid system (1)-(3). Suppose

nxn T
conditions (8) and (9) withi — 0 and J — @ in (15), is At there exisw € R™" with W =W > 0,2 >0, Z(i,1) €
R¥>MandZ(j,J) € R**" for everyl C Ny, i€l,JC Ny, and
necessary. Analogous results for the case of nested saturat e 3, such that conditions
(3)-(5) are stated in the following theorem. J
Theorem 4:Given the hybrid system with nested satura- (AW+ ZB KiW + Z B Z(i, I)+)\W) (WAT

tions (3)-(5), consider the ellipsoi@ = £(P), with P € R™" il (20)
and P=P" >0, A >0 and 0 > 0. Assume there exist: + 3 WKTB] + Z Z(, I)TBT)+)\W) <0,
H(j,J) € R™" such that|H(j,J)x| < 1 for everyJ C Ny, i€l

everyk € Nm,, everyl(k) C Ny, andi € I(k), for all x € Q; jed jed >0,

H(u,U) € RY" such that/H (u,U)x| < 1 for everyU C N, * w

anduc U; L(vV(1)) € R™" such that|L(v,V(1))x <1 for . . (21)

everyl € Ny, everyV(l) C Np, andve V(l), for all xe Q, [ 1 Z(,1) ] S0 Viel [ 1 Z(j,9) 0. ¥jed
— ) ) W - ) )

and j € J; L(i,1(k)) € R™" such that|I:(i,I(k))x| <1 for lw (WAT + 5 WRTB], + 5 2(j,3)TE], )eeh

such that: * w *
QULNTP+PQ(J,1) < —2AP, (16) (22)
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are satisfied for every C Ny, andJ C Ny,. Then setQ =  hold for all | C Ny, andJ € Ny, thenV (x) = xTPx yields a

&(P), with P=W~1, is an ellipsoidal estimation of the domainglobal Lyapunov function for the hybrid system (1)-(3).

of attraction and a local Lyapunov function@for the hybrid Remark 5:The conditions for hybrid systems with nested

system (1)-(3) can be determined. saturations (3)-(5) can be easily recovered, by properlgimo
Proof: The proposition stems from Theorem 3. In fact, ifying termsﬁ(i)giw in (20) andé(i)KiW in (21), as well terms

can be proved, using standard matrix inequalities manjpmla B;)K; and Bj)K;j in (24).

techniques, that (20)-(22) imply the conditions of the tieao,

with W =P~2, Z(i,1) = H(i, )W and Z(j,J) = H(j,J)W, for V. NUMERICAL EXAMPLES

everyl C Ny, andi €1, 3 C Ny, andj € J. The only difference  The systems presented below can be expressed as in (1)-(2),

is that condition (9), concerning € Q and (x,7) € ¢, is or (4)-(5), by posing« = (Xp, Xc).

relaxed in (21) imposing the condition on jumps fora#t Q. Example 1:Consider the linear unstable system, proposed
Finally, (22) assures thaH (i,1)x| <1 and|H(j,J)x| <1, for in [15], in closed-loop with a stabilizing reset Pl contestl
all xe Q, everyl C Ny, andJ C Npy,. | %, = 0.1X,+ . — _02

Notice that althouglV (x) in Proposition 1 do not decrease { P B P+ @0 { 5 B Yo (25)
along the trajectories, Lyapunov functions can be detezthin Yo =Xp, Yo =%—2p.

Remark 3:As stated in the proof of Proposition 1, theThe dynamics characterizing the reset behavior with sadura
condition on the variation of the value &f(x) during the isx =x:+ ¢ (—xc). The minimum time interval between two
jump is imposed over the whole s@t although it could have jumps is set to 2 seconds, thatgs= 2.
been restricted to the sgf . In fact, the termoM in (9) is not
presentin (21). This yields some conservativeness, butifer
to pose the problem in LMI form, fixingl. Removing this
source of conservativeness is a possible future improvemen

The result provided in Proposition 1 can be used to pose an
optimization problem to maximize the size @fand hence to
provide a solution to Problem 1.
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Remark 4: A possible evaluation criterion is the maximiza- % of
tion of the value of3 such that the polytopBL = co({Bv(k) €
R": ke Ny}) is contained in the estima@ = & (P), where N
v(k) € R", with k € Ny, are given points in the state space.
The optimization problem results: T
max 8 . ‘ : : ‘ ‘ ‘
B.A,ZZW 6 -4 -2 K 2 4 6
s.t. (20),(21),(22), VI € N, VJC Npy i o P
Fig. 1. SetQ and trajectories of the saturated reset system.
1 Bvk)’
% W >0, vkeNy, We solve the optimization problem (23) where pointk),

(23) With k€ Ny, are the vertices of the square et {x € R2:
where, for sake of notational compactness, we denoted withl~ < 1}, and for different values oA. We found that the

Z andZ the matricesZ(i,1) and Z(j,J) for all I C Ny, and value ofA = 0.02 prowdes_the best value (among those tested)
i €1, JC Ny, and j € J. Constraints (20)-(22) ensure thaPf B, that isf = 3.2689 with

V(x) = x"Px yields a Lyapunov function ir®(W~1) for the 0.0409 —0.0101

hybrid system, and the second set of constraints imposeés tha = . 0.03241 ] :

Bv(k) € &W™1), for everyk € Ny. '

Notice that, although the constraints (20) and (21) are nbhe setQ = &(P) is an estimation of the domain of attraction,
linear in the optimization variables, they are LMI for a fixed regardless of the seix € R": x"Mx > 0}. In Figure 1,Q is
Then, the problem can be solved for different valued of 0, depicted with some trajectories of the system assuming that
to obtain a guess of the maximal value®fNotice also that the jump can occur at anye Q. Notice in particular the tra-

A is a bound on the decreasing rate of the quadratic functifgetory marked in bold line with initial conditior(0) = x; =
along the trajectories of the continuous-time dynamiosntl  [5.1188 10376 . With the first jump at time O the trajectory
could be considered as a design parameter and fixed befdeavesQ, thenV (x) increases, i.e/(x}) = 1.0686> 1. At the
hand. The LMI condition for global asymptotic stability fortime of the second jump the state is contained in the ellghsoi

system (1)-(3) (and fixed) follows. with V(x(p~)) =0.9196< 1. ThenV(x) decreases between
Corollary 2: Consider the hybrid system (1)-(3), matfhe the two jumps, as ensured by Theorem 3.
R™M with P=PT >0, A >0 ando > 0. If conditions Example 2: The case of nested saturations is considered. A
further saturation is added between the plant output and the

~ A~ ~ T ~ ~ ~
LK (K) < —
(A+%rB('>K') P P(A+i§,—B<'>K') s-2P controller input of the continuous-time system (25):

~ ~ ~ T _ o ~ ~ ~
(A+%J_B(J-)Kj) e APhpg Apln(AJr%J_B(j)KJ) — oM <P, Xp = 0.1xp+ ¢ (X — 20 (Xp)),
(24) X =-02¢(xp),
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while the discrete-time behavior is as in Example 1. Theermitted to formulate contractiveness conditions opebids
solution of the optimization problem (23) adapted to nestddr a rather generic class of saturated hybrid systems.
saturations and with = 0.02 leads tof3 = 1.8922. As An interesting forthcoming issue could be to exploit the
expected, the further saturation entails a reduction osthe hybrid loop to improve the performance of a controlled syste

of the estimation of the domain of attraction, see Figure 2.in presence of exogenous signals. This could be achieved by

Example 3:The condition for global asymptotic stability designing the reset law and both the flow and jump sets.

provided by Corollary 2 is applied to a multi-input system.

Consider the system, inspired to the examples in work [21]
and references therein, whose dynamics are given by [1]
-4 1
0 -1

1 3

Ap = 3 1

, Bp , G=[4 0],

in closed-loop with continuous-time 3]
whose matrices are

dynamical controller

(4]
(5]

The controller discrete-time dynamics is a saturated résget ]
X =%+ ¢(—xc), and the plant state performs an instanta-
neous rotation oft/4 radians at any jump instant. Notice that[’]
asymptotic stability of both the open-loop and closed-loop
continuous-time systems in absence of saturation, nagessés]
conditions for global asymptotic stability, are ensuredsiRg

p =0.5 andA =0.01 and assuming that the jump can occur
at anyx € R", conditions (24) are satisfied by [9]

0.1
0.22

—0.0625

Ac P e G ~0.1250

aDC:

2.0972 00068 —-0.0113 10
P= * 2.1054 —-0.0056 |, ol
* * 1.8822

[11]
for everyl C Ny, andJ C Ny,. Then, from Corollary 2, the
saturated reset system is globally asymptotically stabié a
V(x) = x"Px yields a global Lyapunov function. [12]

VI. CONCLUSIONS [13]

In this paper we dealt with the problems of characterizing
quadratic stability and computing ellipsoidal estimasiaf the (14]
domain of attraction for saturated hybrid systems. Theltesu;s;
presented are based on a geometrical approach to the analysi
of saturated functions, also in case of nested saturatidrish [16]

[17]

(18]
[19]

[20]

[21]

" ‘ ‘ ‘ ‘ ‘ ‘
-2 0 2 4 6
Xp

Fig. 2. SetQ and trajectories of the reset system with nested satugation
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