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Abstract—In this paper, we consider the problem of sensing a
primary user in a cognitive radio network by employing multiple
antennas at the secondary user. Among the many spectrum-
sensing methods, the predicted eigenvalue threshold (PET) based
method is a promising non-parametric blind method that can
reliably detect the primary users without any prior information.
Then, a simplified PET sensing method, which needs to compare
only one eigenvalue to its threshold, is introduced. Compared
with the original PET sensing algorithm, the simplified algorithm
significantly reduces the computational complexity without any
loss in performance. A performance comparison between the
proposed method and other existing methods is provided.

Index Terms—cognitive radio, spectrum sensing, multiple-
antenna, predicted eigenvalue threshold, random matrix theory.

I. INTRODUCTION

Recently, the rapid growth in wireless communications has
contributed to a huge demand on the deployment of new
wireless services. However, recent research published by the
Federal Communications Commission (FCC) [1] shows that
the traditional static frequency allocation policy is not efficient
and results in poor spectrum utilization. The dramatic increase
in the demand for radio spectrum and the actual low spectral
efficiency has spurred the development of a next generation
wireless technology referred to as cognitive radio (CR). An
early work by Mitola introducing the concept of CR is [2].

Ultimately, a CR device (secondary user) must be aware of
its radio environment and capable of detecting the licensed
users, also known as primary users (PUs), i.e. a CR must
identify the unoccupied frequency bands, called white spaces.
Sensing the spectrum and dynamically accessing the white
spaces will significantly improve the spectrum utilization effi-
ciency. This ability to detect the white spaces in the spectrum
band of interest by the secondary user (SU) is usually called
spectrum sensing. In order to avoid interference with PUs, the
SU must quickly and robustly sense which parts of the relevant
spectrum are available or not. For instance, the upcoming CR
based standard IEEE 802.22, which is a wireless regional
network standard (WRAN), requires the detector to sense a
PU at a signal-to-noise ratio (SNR) of at least -22dB. At this
power level, the probability of detection must be higher than
0.9, while the probability of false alarm is lower than 0.1

[3]. Obviously, Spectrum sensing will be the backbone of any
autonomous CR.

Matched-filtering is known as the optimum method for
detecting the PUs [4]. However, there should be a priori
information about the PU such known preambles, midambles,
pilots etc. The performance of energy detector (ED) based
sensing is limited since it is very sensitive to noise variations.
On the other hand, the energy detector is simple, non coherent
and does not need any knowledge on the primary users sig-
nals [5], [6]. Cyclostationarity-based detectors provide higher
performance than energy detectors and are more robust to
noise level variations [7]. But they require prior knowledge on
the cyclic frequencies of the PU’s signal. Without this prior
knowledge, the cyclostationarity-based detectors have a large
complexity [8].

Multiple-antenna systems have been widely deployed to im-
prove the transmission reliability in wireless communications.
In a cognitive radio network, multiple-antenna SUs are benefi-
cial not only for a reliable communications but also to improve
the performance of spectrum sensing. The multiple-antenna
techniques are employed to exploit the spatial correlations of
multiple received signals. The maximum ratio combining, the
equal gain combining and the selection combining techniques
are applied to better sense the spectrum [9], [10]. These
methods are ED based and suffers of the noise uncertainty.
To overcome this difficulty, the authors in [11] proposed
the optimally combined energy detection (OCED) method
based on the principle of maximizing the SNR. The OCED
is approximated by the blindly combined energy detection
(BCED) [11]. These methods, unlike ED, does not need noise
power estimation and overcomes ED’s sensibility to noise
uncertainty. Some methods that employ the structure of the
signal sample covariance matrix exist in the literature. For
instance, we mention the covariance absolute value (CAV)
and the covariance Frobenius norm (CFN) methods [12].
Recently, some methods based on the eigenvalues analysis of
covariance matrix had emerged. The authors in [13] introduced
the maximum-minimum eigenvalue (MME) and the energy
with minimum eigenvalue (EME) detectors .

It was shown in [14], that the test statistic based on the
generalized likelihood ratio test (GLRT), when all parameters
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are completely unknown, is the arithmetic-to-geometric mean
(AGM) of the eigenvalues of the sample covariance matrix.
Actually, this is a sphericity test. Even though it is effective,
the AGM detector does not fully exploit the received signal
structure. Therefore, a new GLRT detector was proposed
in [15], [16]. The test statistic of the proposed detector is
given by the ratio of the largest eigenvalue to the average of
eigenvalues of the sample covariance matrix of the received
signal. This GRLT was developed for a single PU signal
through memoryless channel. Blind spectrum sensing with no
knowledge about the signal and the noise level at the receiver
has been studied in [17] based on information-theoretic criteria
(ITC).

In this paper, we introduce a non-parametric blind spectrum
sensing method based on the predicted eigenvalue threshold
(PET) originally introduced in [18]. This method was em-
ployed to detect the number of communications sources. Here,
the PET method is applied for spectrum sensing, since it is a
special case of source number detection problem. Thereafter,
the PET method is simplified to reduce the complexity with no
performance loss. The simplified PET (SPET) generalizes the
GLRT based test statistic proposed in [15], [16] to the case of
multiple PUs through a channel with memory. A performance
analysis based on new results in random matrix theory is
provided.

The remainder of the paper is organized as follows: Section
II defines the system model and introduces the different
assumptions. Section III presents the PET detection algorithm.
This algorithm is simplified in section IV. Section V provides
the performance analysis of the proposed method. The results
and algorithm performance evaluation are presented in section
VI. Finally, conclusions and perspectives of the research work
are presented in section VII.

II. SYSTEM MODEL

We assume that there are M ≥ 1 antennas at the SU. There
are two hypotheses:

H0, absence of signals, and H1, at least one signal is present.
(1)

In the presence of P primary users (PUj , 1 ≤ j ≤ P ), the
M × 1 observation vector at the receiver is expressed as:

x(n) =
P∑

j=1

Cj∑

k=0

hj(k)sj(n− k) +w(n), n = 1, 2, · · · (2)

where w(n) = [w1(n), ..., wM (n)]T is the M × 1 received
additive white Gaussian noise vector with zero-mean and
variance σ2

w. The order of the channel between PUj and each
antenna is Cj . The vector hj(n) = [h1j(n), ..., hMj(n)]

T

represents the channel among PUj and all the antennas; i.e.
hij(n) is the nth tap of the channel response between PUj
and the ith antenna.

Let us consider L consecutive samples and define the

corresponding signal/noise vectors:

xL(n) = [xT (n),xT (n− 1), ...,xT (n− L+ 1)]T

sL(n) = [sT1 (n), s
T
2 (n), ..., s

T
P (n)]

T

wL(n) = [wT (n),wT (n− 1), ...,wT (n− L+ 1)]T
(3)

where sTj (n) = [sj(n), sj(n− 1), ..., sj(n−Cj −L+1)] and
L is called the smoothing factor. A similar system model was
used in [13], [19] and the system is expressed in matrix form
as

xL(n) = HsL(n) +wL(n) (4)

where H is an ML × (C + PL) matrix and C =
∑P

j=1 Cj .
Defining the ML× (Cj + L) matrix Hj as

Hj =







hj(0) · · · · · · hj(Cj) · · · 0
...

. . .
. . .

...

0 · · · hj(0) · · · · · · hj(Cj)






, (5)

H is expressed as H = [H1,H2, ...,HP ].
The covariance matrix of the received signal, set to as X =

E[xLxL
H ], gives

X = HSHH + σ2
wIML (6)

where (∗)H represents the Hermitian transpose and S =
E[sLsLH ] is assumed to be of full rank. Let λ1 ≥ · · · ≥ λML
denote the eigenvalues of X . The received signal covariance
matrix is usually unknown. The sample covariance matrix is
employed to overcome this difficulty, and is given by

XN =
1
N

N∑

k=1

xL(k)(xL(k))H (7)

where N is the number of observed samples. The estimated
eigenvalues are `1, · · · , `ML such as `1 ≥ · · · ≥ `ML.

III. PREDICTED EIGENVALUES THRESHOLD (PET)

A. Mathematical Preliminaries

The rank of the part of the covariance matrix that represents
the signal (i.e., HSHH ) is C + PL. Hence, the lowest
eigenvalue of X is equal to σ2

w and its multiplicity order is
equal to (M − P )L − C [19]. By applying the eigenvalue
decomposition, the matrix X has a diagonal form,

UHXU = diag(ϑ1, · · · , ϑC+PL, 0, · · · , 0) + σ2
wIML (8)

in the basis U, where ϑ1 ≥ ϑ2 · · · ≥ ϑC+PL > 0. Obviously,
λk = ϑk + σ2

w for 1 ≤ k ≤ C + PL. This result requires that
the matrix H is overdetermined, i.e.,

L >
C

M − P
. (9)

For simplicity, we define q = ML for the rest of the paper.
Theorem 1: Suppose NXN has the complex Wishart dis-

tribution Wq(N,X ), and the eigenvalues of XN and X are
l1 ≥ · · · ≥ `q and λ1 ≥ · · · ≥ λk = · · · = λq = λ
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respectively. The limiting distribution of `avk the average of
the lowest q − k eigenvalue, as N → ∞, is

(N(q − k))(1/2)(`avk − λ)/λ dist−−→ N (0, 1). (10)

In the absence of signal, the matrix NXN follows a Wishart
complex distribution, i.e. NXN v Wq(N,X ).

Based on that, the authors in [18] proposed an upper bound
for each eigenvalue of the noise subspace. The upper threshold
of `k is predicted as

`upk =
[

(mk + 1)
1 + t[N(mk + 1)]1/2

1− t(N.mk)−1/2 −mk

]

︸ ︷︷ ︸

ηk(t)

1
q − k

q
∑

i=k+1

`i

︸ ︷︷ ︸

`av
k

(11)
where `avk is the average of the mk (= q − k) lowest eigen-
values, ηk(t) is the prediction factor and t is a two-direction
threshold that represents the confidence interval of the aver-
aged eigenvalue. The eigenvalue `k is considered in the noise
subspace when it satisfies the following condition

`k ≤ `upk . (12)

B. Predicted Eigenvalues Threshold Based Spectrum Sensing

The PET method is employed for detecting the commu-
nications sources number. Another well-known approach to
solve this problem is the ITC, and in particular minimum
description length (MDL) and Akaike information criterion
(AIC) [17]. The performance of PET method is superior to
the MDL under low SNR and enjoys consistency under high
SNR (contrary to the AIC) [18]. The PET method is based on
(12) and consists in adaptively modeling the noise eigenvalues
increase to determine the dimension of the noise subspace,
and hence, the signal subspace dimension. Actually, the PET
model is controlled by a single parameter t.

Spectrum sensing problem is a special case of the sources
number detection one. In the absence of PUs, the estimated
number of source signals should be zero. The original PET
(OPET) method, as described above, can applied directly to
conduct spectrum sensing. Based on that, the two hypotheses
in (1) are reformulated as

H0 : `k ≤ `upk , k = 1, 2, · · · , q − 1

H1 : k̂ ≥ 1, k̂ = arg max
k=1,··· ,q−1

`k > `upk . (13)

In the presence of P primary users, the dimension of signal
subspace is PL +

∑P
j=1 Cj (i.e., the contribution of PUj is

equivalent to L + Cj eigenvalues). The idea is to detect at
least one PU under H1. Since Cj is unknown and difficult to
be estimated, the presence of PUs is reflected by at least L
signal eigenvalues.

It is clear from (8) that when a certain eigenvalue λk̂
belongs to the signal subspace, then λ1, · · · , λk̂ are all signal
eigenvalues. This leads to the fact that when `1 is noise
eigenvalue then H0 is detected, i.e., there is no signal when
every eigenvalue does not exceed its own predicted threshold.
Also, H1 is detected when `L correspond to signals. Therefore,

the spectrum sensing problem as defined in (1) is modified to

H0 : `1/`av1 ≤ η1(t),
H1,0 : `1/`av1 > η1(t),
H1,1 : `L/`avL > ηL(t).

(14)

where `avk is defined in (11). The H1,0 hypothesis indicates the
presence of a weak PU’s signal, while H1,1 is the sensing state
for the presence of relatively non-weak signal. This method
is called the modified PET (MPET). This extra information
is sent to the media access control (MAC) layer of the
cognitive radio and could be very beneficial for the adaptive
joint scheduling of spectrum sensing and data transmission
in cognitive radio networks. This research work is in our
perspectives.

IV. SIMPLIFIED PREDICTED EIGENVALUES THRESHOLD

(SPET) METHOD

The above discussion indicates that the PET method could
be simplified to employ only one eigenvalue. The question
is which eigenvalue `k̂, 1 ≤ k̂ ≤ L, must be employed for
the spectrum sensing problem? It is `1. In fact, when `1
corresponds to noise, we are confident that all eigenvalues
belong to the noise subspace. On the other hand, if `1 is a
signal eigenvalue, the PU detection must not be missed even
though all the other eigenvalues corresponds to noise. This is
due to the privilege of protecting PUs over spectrum utilization
efficiency. Then, the PET method is simplified to test the
largest eigenvalue against its own predicted threshold. Hence,

the sensing problem can be expressed as `1/`av1
H1

≷
H0

η1(t), and

is altered to:
TSPET =

`1
1
q

∑q
i=1 `i

H1

≷
H0

γ, (15)

This decision statistic was found in [15], [16] based on GLRT
for a single source through memoryless channel. Our work
extends this decision statistic to a more general scenario. The
outline of the proposed SPET method is described by the
following algorithm.

Algorithm 1 Simplified PET (SPET) sensing method
1: Compute XN the sample covariance matrix of received

signals as defined in (7).
2: Obtain the ML eigenvalues of XN such as `1 ≥ · · · ≥

`ML.
3: Calculate the decision statistic TSPET introduced in (15).
4: Decide the presence of PU’s signal when TSPET > γ,

otherwise, the absence of signals is stated, where γ is
chosen to achieve a certain level of false alarm probability.

V. PERFORMANCE ANALYSIS AND DISCUSSION

Let Pm = P(H0|H1) be the probability of missing. The
missed detection leads to harmful interference with existing
PUs. The probability of false alarm is defined as Pf =
P(H1|H0). In fact false alarm error leads to inefficient usage
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of the spectrum. Practically, Pm must be minimal while Pf is
kept less than a certain level.

The performance of OPET method is controlled by t. The
two-direction threshold t is chosen to satisfy a certain level
of the false alarm probability Pf . For more details on the
expressions of Pm and Pf of OPET refer to [18]. Here, we
will focus on performance analysis of SPET. It is difficult to
obtain a simple closed form expression for the distribution of
TSPET. This is due to the same difficulty regarding the largest
eigenvalue.

A. Probability of False Alarm

New results in random matrix theory (RMT) revealed that
`1 converges in distribution to a Tracy-Widom distribution of
order β (β=1, 2 for real or complex observations, respectively)
when XN follows a Wishart distribution of order N [20].
These results were extended in [21] for a more general class of
samples. In their settings, the population model have a spectra
similar to that employed in our paper. The authors in [16]
established that these results imply that asymptotically TSPET

also follows a Tracy-Widom distribution.
Theorem 2: Let XN follows a Wishart distribution with

parameters N, q and TSPET be the ratio of largest eigenvalue to
the average trace. Then, as N, q → ∞, with cN = q

N → c ≥ 0,
the following holds

P

[
TSPET − µN,q

σN,q
< γ

]

≈ Fβ(γ)−
1

βqN

(
µN,q

σN,q

)2

F
′′

β (γ)

(16)
where the centering and scaling constants are

µN,q = (1 +
√
cN )2 ,

σN,q = N
−2
3 (1 +

√
cN )

(

1 +
1√
cN

)1/3

,
(17)

and Fβ(.) is the cumulative distribution function (CDF) of the
Tracy-Widom law of order β, while F

′′

β denotes the second
derivate of Fβ .

Proof: This claim descend from the work in [16], later
extended by Nadler [22].

In [22], it was established that this approximation is accurate
for finite value of N and q, even when N � q. Hence, the
probability of false alarm is given by

Pf = P [TSPET > γ|H0]

= 1− Fβ

(
γ − µN,q

σN,q

)

+
1

βqN

(
µN,q

σN,q

)2

F
′′

β

(
γ − µN,q

σN,q

)

(18)

Now for a given Pf , the threshold γ is obtained based on (18).
Obviously, the decision threshold is independent of the noise
power and the channel gains, and depends only on N , q and
Pf .

B. Probability of Missing

The sample covariance matrix is no longer a Wishart matrix
in the presence of a signal. Here, we try to approximate the
probability of missing in the presence of single strong source,

i.e., the signal subspace contains an eigenvalue of multiplic-
ity L. Under this assumption, it is clear that 1

q

∑q
i=1 `i =

1
q

[
L`1 +

∑q
i=L+1 `i

]
and the probability of missing is given

by

Pm = P [TSPET < γ|H1]

= 1− P

[
`1
σ2
w

>
(q − L)γ
q − Lγ

ξ
]

(19)

where ξ =
1

q−L

q∑
i=L+1

`i

σ2
w

is asymptotically approximated to
1 [15]. Also the largest eigenvalue has a limiting Gaussian
distribution as follows [23]

`1
dist−−→ N

(

λ1 +
(q − L)λ1σ2

w

N(λ1 − σ2
w)

,
λ2
1

N

)

, (20)

which imply that

`1
σ2
w

dist−−→ N
(
µn, σ2

n
)
, (21)

where µn = (1 + αρ)
(

1 + q−L
αρN

)

, σ2
n = (1+αρ)2

N , α = q
q−L

and ρ is the instantaneous received SNR. Hence, Pm is
approximated as

Pm = 1− Q
(

(q − L)γ
(q − Lγ)σn

− µn

σn

)

(22)

The average probability of missing is computed by averaging
over the distribution of ρ.

VI. RESULTS AND DISCUSSION

Here, we present some simulations results to demonstrate
the effectiveness of the proposed sensing methods. These
methods are evaluated through the probability of missing at a
false alarm probability of Pf = 0.1. In order to determine the
threshold for this given Pf , the decision statistic is calculated
for 105 independent random trials (at H0, when there is no
signal). We sort the decision statistic values in descending
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Figure 1. The eigenvalues and the adaptive PET model at SNR = 0dB,
N = 1000, P = 2, M = 4 and L = 10.
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Figure 2. The probability of missing versus SNR for OPET and SPET
methods compared with the asymptotic results at different values of the
number of the observed samples (N = 500, 2000, 5000, and 10000) when
M = 4, L = 1 and P = 1.

order to choose the detection threshold such as Pf × 105

samples of the generated statistic (out of 105) are above the
chosen threshold.

All results are based on 1000 Monte Carlo trials for each
method. For each realization, the binary phase-shift keying
modulated PU signals are randomly generated. Also, The ran-
dom channel taps follow a Gaussian distribution. For different
values of SNR, a random additive white Gaussian noise is
added such that

SNR =
E[ ‖x(n) −w(n)‖2]

E[ ‖w(n)‖2]
(23)

Fig. 1 shows the adaptive PET model of the sample co-
variance matrix eigenvalues at SNR = 0dB, P = 2, M = 4
and L = 10. It is clear that the noise subspace dimension
is (M − P )L, while each PU is represented by L eigenvalue
(PL in total). Each signal eigenvalue exceeds its own predicted
threshold.

Fig. 2 compares the sensing performance of OPET and
SPET with the asymptotic results in (18) and (22). These
simulations are done for different values of N when M = 4,
P = 1 and L = 1. Based on simulations, the two-direction
threshold t is chosen 1.108 to achieve a false alarm prob-
ability of 0.1. It is clear that the SPET method simplifies
the original one to reduce the complexity without leading to
any performance loss. Also, the simulations reveal that the
asymptotic results provides a good approximation of the SPET
sensing performance. Comparing the probability of missing for
different values of N shows that the performance improves
when the number of the observed samples at the receiver is
larger.

In Fig. 3 the probability of missing versus SNR for SPET
method at different smoothing factor values (L = 1, 5, 8,
10 and 15) is shown (for N = 10000, M = 4, P = 2
and C1 = C2 = 6). As can be seen from Fig. 3 increasing
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Figure 3. The probability of missing versus SNR for SPET algorithm at
different smoothing factor values (L=1, 5, 8, 10 and 15) when N = 10000,
M = 4, P = 2 and C1 = C2 = 6. Also, the probability of missing versus
L at a fixed SNR = −16dB.
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Figure 4. The MPET sensing performance (under H1,0 and H1,1) compared
with OPET and SPET methods when N = 10000, M = 4, P = 2, L = 10
and C1 = C2 = 6.

the smoothing factor up to 10 does improve the detection
performance. But, the probability of missing is almost constant
when L > 10. In fact, the computational complexity increases
when L is larger. Hence, the smoothing factor is chosen
relatively low as a compromise between decreasing complexity
and not leading to a performance degradation. Moreover, we
note that the SPET method still detects the presence of a signal
even when L does not satisfy the condition in (9), i.e. the
results shown in Fig. 3 for L = 1, 5.

The performance of MPET method is illustrated in Fig. 4.
This performance is evaluated by the detection probability of
weak signals and that of relatively non-weak signals, set to as
P(H1,0|H1) and P(H1,1|H1) respectively. This figure depicts
the probability of detection and the false alarm probability of
MPET, SPET and OPET methods. The detection probability
of a weak signal is very close to that of SPET and OPET. On
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Figure 5. Probability of missing versus SNR for several sensing methods
when N = 10000, M = 4, P = 2, C1 = C2 = 6 and L = 10.

the other hand, the presence of relatively non-weak signal is
stated with a detection probability of 0.9 when the SNR equals
-13dB.

A performance comparison among several sensing methods
is provided in Fig. 5. This comparison is done for the following
parameters: N = 10000, M = 4, P = 2, C1 = C2 = 6 and
L = 10. The OCED [11] outperforms the ED as it maximizes
the SNR. But this method is not blind since its decision statis-
tic is λ1

σ2
w

[11]. The ED suffers of noise uncertainty. The noise
power estimation error (in dB) is assumed to be uniformly
distributed in the interval [−B, B] [6], i.e., the ED is denoted
"ED-U(BdB)". It is clear that the performance significantly
degrades when B = 1dB. Among the different blind methods
the SPET one has the best performance followed by the
AGM method [14]. This result is well expected since the two
methods are GLRT based, but the SPET employs more the
signal structure. The MME detection [13] is a bit less effective
than the AGM detector but outperforms the CAV detector
[12]. The CAV detection is directly based on the entries of
the sample covariance matrix. Therefore, This method has a
smaller complexity but it is less representative of the signals.
Even though the ITC based methods [17] offer a low false
alarm probability, they are, surprisingly, not as efficient as the
other blind methods.

VII. CONCLUSIONS

In this paper, the PET method, originally used for num-
ber of communications sources detection, is employed for
multiple-antenna spectrum sensing. This method is simplified
to significantly reduce the computational complexity without
any performance loss compared with the original PET. The
detection performance is well predicted by the asymptotic
analysis which is based on new results in random matrix
theory. The SPET test statistic generalizes that of the GLRT
[15] to a more general scenario. The blind non-parametric
SPET detector outperforms the other blind detectors existing
in the literature.
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