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A discontinuous Galerkin method is proposed for computing the current density in superconductors characterized by a constitutive
power law between the current density and the electric field. The method is formulated to solve the nonlinear diffusion problem satisfied
by the electric field, both in the scalar and 2-D vectorial case. Application examples are given for a superconducting cylinder subjected
to an external magnetic field. Results are compared to those given by the mixed finite-element/finite-volume method and those obtained
using a standard finite-element software. Efficiency and robustness of the approach are illustrated on an example where the exponent in
the power law is spatially dependent.

Index Terms—Discontinuous Galerkin method, finite-element method, finite-volume method, nonlinear diffusion, superconductors.

I. INTRODUCTION

T HE constitutive power laws and are widely
used to characterize high temperature superconductors.

They are written as

(1)

(2)

where is the current density, the electric field, the critical 
electric field, the critical current density, and the power law 
exponent. The case corresponds to a normal conductor, 
while represents the critical state model suggested 
by Bean [1]. Several numerical methods have been proposed 
to solve nonlinear diffusion problems resulting from Maxwell’s 
equations [2]–[5]. Their results are satisfying when is uniform 
and sufficiently small. Few of them are suited when is large, 
and models where locally varies are uncommon.

In this paper, we present a Discontinuous Galerkin (DG) 
method for computing induced fields in superconductors. We 
work on solving the nonlinear diffusion problem in terms of the 
electric field in order to determine the current density when 
is large or locally varies. DG methods are well suited to treat 
discontinuous forms and use a piecewise high-order polyno-
mials basis for reducing spurious oscillations. In addition, they 
are naturally well adapted for parallel computing.

II. THE DIFFERENTIAL SYSTEM

In a two-dimensional setting where the magnetic induction
depends only on two space variables , the elec-
tric field and current density have a single nonzero com-
ponent and can thus be treated as scalar fields and . We set

, , and . The su-
perconductor sample has a vacuum magnetic permeability .
Denoting the superconductor domain by and its border by ,
Maxwell’s equations and the constitutive law (1) lead to the fol-
lowing nonlinear diffusion problem:

in

on
(3)

The system is established with a zero initial condition and the
boundary condition on results from Faraday’s law:

(4)

where is the outward normal vector.

III. DISCONTINUOUS GALERKIN METHOD

Let us consider a triangulation of the domain
. The DG approach combines discretization tools of finite-

element (FE) and finite-volume (FV) methods. It consists in
solving on each the weak formulation of the system (3):

(5)

where is a test function and is an interface between
two elements of or a part of .

A. FE Discretization on Each Element

On each triangle a finite-element approximation
space is defined. Its basis functions are Lagrange polynomials
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of degree . The number of nodes on is given by
. The discrete solution is written as

(6)

with its value at node . Since is a Liptschitz function, we
assume that

(7)

The elementary mass matrix is determined from the
scalar product:

(8)

and the global mass matrix is block diagonal.

B. Flux Term on the Interface Between Two Elements

As in an FV method, the interface term is treated
by a numerical flux , which verifies , where

and are neighboring elements. Its construction needs the
following functions at the interface : the mean value

(9)

and the jump

(10)

Many expressions of have been proposed in the case of the
Laplace operator. We choose the expression of based on the
Non-symmetric Interior Penalty method (NIP). The NIP method
consists of introducing a penalty term , in order
to guarantee continuity of and at the interface [6]. The
numerical flux is given by

(11)

where is a positive parameter.

C. The Discrete Problem

Rules for evaluating the different terms of the weak formula-
tion (5) exploit properties of mesh parametrization also called
“mapping”. The mapping is based on a bijective function such
as , which allows to transform the physical
space into a (reference) parametric space [7] (see
Fig. 1). The basis functions in the parametric space are the linear
combinations of , where . The terms of the weak
formulation (5) are evaluated in the parametric space, where
derivation and integration operations are more convenient, and
then mapped in the physical space.

After time discretization a discrete problem is obtained on
each triangle :

(12)

Fig. 1. Mapping of a triangle, from the (reference) parametric space to the
physical space.

where is the time step, is the solution at instant , and
represents the discretization of the Laplace operator

with numerical flux given in (11).
Unfortunately and we cannot directly use a

Newton iterative method to solve (12). We thus use the change
of variables: and , so that the
discrete problem (12) becomes

(13)

which can be solved using a Newton iterative method since
is continuous and differentiable.

Considering the contributions of all the elements in the mesh
(dropping the superscript), we introduce the global unknown
vector which will be evaluated at each iteration

of the Newton method, and we define such as

(14)

The iterative solution is obtained using the following
relation:

(15)

Thanks to relation (14), we have

(16)

so that equation (15) can be written as the following linear
system:

(17)

where .
The Newton iterations are started with and stopped

when .

IV. EXTENSION TO A SEMI-IMPLICIT SCHEME FOR THE 2-D
VECTORIAL CASE

Let us consider an infinitely long superconductor along the
axis. In a two-dimensional setting where the magnetic induction
is axial , the electric field and current density
have two nonzero components. The diffusion problem satisfied
by the electric field becomes vectorial:

(18)
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Our idea for getting the solution of this vectorial problem is to
solve independently the diffusion equations of each components

, of the electric field.
Setting , and

(19)

(20)

the diffusion equations for and are written

in

in

on
on

(21)

where are built from Faraday’s law and the hypothesis that
on .

We propose a semi-implicit approach in order to handle the
nonlinearity of the problem. At each time step, the explicit form

is used to determine the solution (and vice versa). This
assumption leads to the following expression of the nonlineari-
ties:

(22)

(23)

The Neumann boundary conditions are constructed thanks to
this semi-implicit formulation. In order to obtain the fluxes on
the boundary, we consider that

unknown is

unknown is
(24)

unknown is

unknown is
(25)

where , given in (26) and (27), are deduced from the scalar
product with the outward normal vector

(26)

(27)

The discrete system to solve becomes

(28)

where and are issued from the spatial discretization of
the Laplace operator. Unfortunately the inverses of these semi-
implicit functions and are nontrivial.

In accordance with the power law (2) we suppose that

(29)

Fig. 2. Current density distribution at � � 0.5 s with � � ���: (left) DG
method with � � �; (right) mixed FE-FV method.

(30)

These inverse functions are continuous and differentiable.
The previously described Newton iterative method is applied
for computing and .

V. NUMERICAL RESULTS

We consider a superconducting cylinder of radius
mm, characterized by 14.15 A/mm and
V/m. The external magnetic flux density field is

sinusoidal of amplitude , frequency and period .

A. Scalar Case

When the cylinder is subjected to an external transverse mag-
netic field in the direction the diffusion problem of the electric
field is scalar and given by (3). We report numerical results ob-
tained with 0.5 Hz, and 15 mT.

For , the current density distribution is plotted at
. Notice that we did not get convergence using the

-formulation [2] implemented in the Comsol software. Fig. 2
presents a comparison of our result to that given by the mixed
FE-FV method [3]. A good agreement is observed.

B. The 2-D Vectorial Case

Let us now assume that the external magnetic field is applied
in the direction. The diffusion problem vectorial and given by
(21). In this example we consider 50 Hz and 20 ms.
Based on the Bean model, the field required for full penetration
will occur at , where the applied field reaches its max-
imum value [8].

For , we present the distributions of the components
, of and the norm of the current density at

different times. Fig. 3 shows the components in partial penetra-
tion at . They have the expected symmetries because of
similarities of their diffusion equations. The penetration form is
different compared to the one obtained with a transverse mag-
netic field. Fig. 4 shows the components in full penetration at

. Symmetries of their distributions are unchanged. The
regions where we get iso-values are in a pie chart form.

The modulus is plotted in

Fig. 5. In partial penetration at , the repartition of the
current density is orthoradial. The full penetration of the super-
conducting cylinder is reached at as in the Bean model.
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Fig. 3. Current density components at � � ���: (left) � �� ; (right) � �� .

Fig. 4. Current density components at � � ���: (left) � �� ; (right) � �� .

Fig. 5. Norm � � � � at different instants: (left) � � ���; (right) � �
���.

C. Example with Nonuniform

It is well know that in practice the exponent is not a con-
stant: it locally varies and becomes large in regions where the
temperature is close to .

In this example, we suppose that , with
and . We note that and
. We consider a transverse magnetic field with

15 mT and 0.5 Hz. It is applied in the -direction, and the
diffusion problem of electric field is scalar.

The comparison to the results issued from -formulation im-
plemented in the Comsol software shows the validity of our ap-
proach. Fig. 6 presents the current density distribution at

Fig. 6. Current density distribution at � � ��� �, computed by DG method with
� � � (left) and �-formulation implemented in the Comsol software (right).

. Near the border is large and is close to 1. When
approaching the center of the cylinder, decreases and
becomes smaller.

VI. CONCLUSION

In this paper, we presented a Discontinuous Galerkin method
for solving the nonlinear diffusion problems describing the evo-
lution of the electric field in superconducting materials. The ro-
bustness of the approach was highlighted on examples where
the exponent in the power constitutive law is large and uniform
(for which standard finite-element codes fail to converge), and
when the exponent is space-dependent.

The implementation of a semi-implicit scheme based on
the same approach as the one used in is currently in progress.
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