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ON WEYL GROUPS IN MINIMAL SIMPLE GROUPS OF FINITE
MORLEY RANK

TUNA ALTINEL, JEFFREY BURDGES, AND OLIVIER FRECON

ABSTRACT. We prove that generous non-nilpotent Borel subgroups of con-
nected minimal simple groups of finite Morley rank are self-normalizing. We
use this to introduce a uniform approach to the analysis of connected minimal
simple groups of finite Morley rank through a case division incorporating four
mutually exclusive classes of groups. We use these to analyze Carter subgroups
and Weyl groups in connected minimal simple groups of finite Morley rank.
Finally, the self-normalization theorem is applied to give a new proof of an
important step in the classification of simple groups of finite Morley rank of
odd type.

1. INTRODUCTION

The theory of groups of finite Morley rank has become a well-established branch
of the model theory of groups. Most research is centered around the analysis of
the infinite simple ones and more precisely the following conjecture independently
stated by Gregory Cherlin and Boris Zil’ber.

Algebraicity Conjecture (Cherlin-Zil’ber):  An infinite simple group of
finite Morley rank, seen as a pure group structure, is a linear algebraic group over
an algebraically closed field.

The most important advances in the analysis of the infinite simple groups of
finite Morley rank have drawn upon three mathematical resources: the theory of
linear algebraic groups over algebraically closed fields, the classification of the finite
simple groups, and the analysis of the inherent structure of groups of finite Morley
rank using a kind of geometric approach that relying on genericity arguments.

As in the classification of the finite simple groups, the most difficult questions,
some of which are still open, have arisen in the analysis of “small” simple groups, in
particular, the connected minimal simple groups. These are the ones whose proper,
definable, connected subgroups are solvable. Their analysis, that widely varies from
one configuration to another, nevertheless permits impressive achievements as soon
as the definable subgroup structure is sufficiently rich, a phenomenon reminiscent of
the Feit-Thompson theorem in finite group theory. The fundamental articles [CJ04],
[Del08], [Fré08] are good examples of this. They deal with torsion elements in a
similar way to finite group theory, make use of genericity arguments and approach
such notions as the Weyl group in this abstract context.

In this paper, we follow the line of [CJ04], [Del08] and [BD09] while using results
and techniques from [Fré08] in order to provide a uniform approach to the analysis
of the connected minimal simple groups of finite Morley rank. This approach is
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based on a four-case division whose criteria are the structure of the Weyl group
and the intersections of maximal definable connected solvable subgroups (Borel
subgroups) and depends on the following central theorem that will be proven in the
third section:

Theorem 3.13 Any non-nilpotent generous Borel subgroup B of a minimal con-
nected simple group G is self-normalizing.

It is well-known in algebraic group theory that Borel subgroups are self-normalizing,
a fact for which the finite Morley rank analogue is open. Our partial answer uses
information on torsion elements (Weyl group) and the generic behaviour of the
simple groups in question. This line of reasoning prevails in the proof of the four-
case division that will be accomplished in the fourth section. The efficiency of
our case division and of Theorem 3.12 are illustrated in the fifth section where we
obtain general structural information on Carter and Borel subgroups of connected
minimal simple groups.

The general approach that underlines this article, and that aims at making ef-
ficient and conceptual use of the interplay between torsion elements in a group of
finite Morley rank and the generic behaviour of the same group, has a striking ap-
plication to the classification of the infinite simple ones. The final section contains
a new and simpler proof of one of the two main steps of the main result of [BCJ07],
which is the following theorem:

Theorem 6.1. — If G is a connected minimal simple group of odd type and of
Priifer 2-rank at least two, then G has no strongly embedded subgroup.

The fact that a nontrivial classification theorem has a direct proof as a consequence
of the development in this article and its precursors, is convincing evidence that
our methods deserve closer attention and are likely to be useful in the work around
the Algebraicity Conjecture.

2. PRELIMINARIES

We will use a variety of notions and results on groups of finite Morley rank. For
our readers’ convenience, we include most of them in this section with appropriate
references. Nevertheless, we assume some familiarity with the basics of groups of
finite Morley rank. An excellent, though somewhat aging, reference is [BN94], while
[ABCO08] may be of help for more recent developments. The fundamental papers
[CJ04], [BCJO7], [Del08] may help focus on some of the insights for this article.

Because of the ordinal character of the Morley rank, a group of finite Morley
rank satisfies the descending chain condition on definable subgroups: in a group
of finite Morley rank, there is no infinite descending chain of definable subgroups.
This property allows one to introduce various notions in the abstract context of
groups of finite Morley rank, analogous to geometric aspects of algebraic groups.
Thus, the connected component of a group G of finite Morley rank, denoted G°
and defined as the smallest definable subgroup of finite index, does exist and is the
intersection of all definable subgroups of finite index in G. A group of finite Morley
rank is said to be connected if it is equal to its connected component.

The connected component of a group is an example of a “large” definable set in
that it is of the same rank as the ambient group. In general, a definable subset X
of G is said to be generic if RM(X) = RM(G). Intuitively speaking, a connected
group is one where generic subsets intersect generically.
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Dually, if X is an arbitrary subset of a group G of finite Morley rank, then one
defines its definable hull, denoted d(X) as the intersection of all definable subgroups
of G containing X. The descending chain condition implies that the definable hull of
a set is well-defined and definable. This is a weak analogue of the Zariski closure in
algebraic geometry. The notion of a definable hull allows one to define the connected
component of an arbitrary subgroup of the ambient group G: if X is subgroup, then
X° is defined as X Nd(X)°, and X is said to be connected if X = X°. Various
algebraic properties are preserved as one passes to the definable hull:

Fact 2.1. - (Zil’ber) [BN94, Corollary 5.38] If G is a group of finite Morley rank
and H a solvable (resp. nilpotent) subgroup of class n, then d(H) has the same
properties.

A definable set in a group G of finite Morley rank is said to be indecomposable
if for any definable subgroup H < G whenever cosets of H decompose X into
more than one subset, then they decompose it into infinitely many. In particular,
an indecomposable subgroup is a connected subgroup. Zil’ber’s indecomposability
theorem states that indecomposable sets that contain the identity element of the
group generate definable connected subgroups. We will use the following corollaries
frequently, mostly without mention:

Fact 2.2. - [BN94, Corollary 5.28] Let G be a group of finite Morley rank. Then the
subgroup generated by a family of definable connected subgroups of G is definable
and the setwise product of finitely many of them.

Fact 2.3. - [BN94, Corollaries 5.29 and 5.32] Let G be a group of finite Morley
rank.

(1) Let H < G be a definable connected subgroup of G and X an arbitrary
subset of G. Then the subgroup [H, X] is definable and connected.

(2) Let H be a definable subgroup of G. Then the members of the derived (H™ )
and lower central series (H™) of H are definable. If H is connected, then
so are these subgroups of H.

The algebraic structure of an arbitrary group of finite Morley rank naturally
exhibits similarities to that of a linear algebraic group. A group of finite Morley
rank is built up from definable, minimal subgroups that are abelian:

Fact 2.4. — [Rei] [BN94, Theorem 6.4] In a group of finite Morley rank, a minimal,
infinite, definable subgroup A is abelian. Furthermore, either A is divisible or is an
elementary abelian p-group for some prime p.

This simple and historically old fact is what permits many inductive arguments
using Morley rank. The additional structural conclusions in Fact 2.4 are related to
the following general structural description of abelian groups of finite Morley rank.

Fact 2.5. — [Mac70Gr, Theorems 1 and 2] [BN94, Theorem 6.7] Let G be an abelian
group of finite Morley rank. Then the following hold:
(1) G =D& C where D is a divisible subgroup and C' is a subgroup of bounded
exponent;
(2) D=s, prime(®IpZPm) ® ®1Q where the index sets I, are finite;
(3) G = DB where D and B are definable characteristic subgroups, D is di-
visible, B has bounded exponent and D N B is finite. The subgroup D 1is
connected. If G is connected, then B can be taken to be connected.



4 TUNA ALTINEL, JEFFREY BURDGES, AND OLIVIER FRECON

It easily follows from this detailed description of abelian groups of finite Morley
rank that, in general, groups of finite Morley rank enjoy the property of lifting
torsion from definable quotients. More precisely, if G is a group of finite Morley
rank, H < G a definable subgroup of G and g € G such that ¢" € H for some
n € N*, where n is assumed to be the order of g in d(g)/d(g) N H and is a m-number
with 7 a set of prime numbers, then there exists ¢’ € gH Nd(g) such that ¢’ is again
a m-element. Here, a m-number is a natural number whose prime divisors belong to
m, and a w-element is an element whose order is a m-number. This torsion-lifting
property will be of crucial use in the analysis of Weyl groups in Section 3 and will
be used without mention.

Fact 2.5 has a nilpotent analogue:

Fact 2.6. — [Nes91, Theorem 2| [BN94, Theorem 6.8 and Corollary 6.12] Let G be
a nilpotent group of finite Morley rank. Then G is the central product B * D where
D and B are definable characteristic subgroups of G, D is divisible, B has bounded
exponent. The torsion elements of D are central in G.

We will need the following elementary property of nilpotent groups:

Fact 2.7. - [BN94, Lemma 6.3] Let G be a nilpotent group of finite Morley rank
and H a definable subgroup of infinite index in G. Then Ng(H)/H is infinite.

The structural properties of the solvable groups of finite Morley rank vary consid-
erably from those of the nilpotent ones. Mostly, the differences are best measured
by field structures that are definable in solvable non-nilpotent groups of finite Mor-
ley rank. Solvable groups of finite Morley rank tend to have a “definably linear”
character as illustrated by the following fundamental fact:

Fact 2.8. — (Zil’ber) [BN94, Theorem 9.1] Let G be an infinite, connected, solvable,
non-nilpotent group of finite Morley rank. Then there exist a field K and definable
connected sections U and T of G' and G/G’ respectively such that U = (K, +),
and T embeds in (K*,-). Moreover, these mappings are definable in the pure group
G, and each element of K is the sum of a bounded number of elements of T. In
particular, K is definable in G and hence of finite Morley rank.

We recall an old but fundamental theorem about fields of finite Morley rank:

Fact 2.9. - [Mac71Fi, Theorem 1] [BN94, Theorem 8.1] A field definable in a
structure of finite Morley rank is either finite or algebraically closed.

The ability to define an algebraically closed field in a connected solvable even-
tually culminates in the following result that generalizes a well-known property of
connected solvable algebraic groups.

Fact 2.10. - [BN94, Corollary 9.9] Let G be a connected solvable group of finite
Morley rank. Then G’ is nilpotent.

The Fitting subgroup of a group of finite Morley rank G, denoted F(G), is de-
fined to be the maximal, definable, normal, nilpotent subgroup of G. By works of
Belegradek and Nesin, this definition is equivalent to the one in finite group theory:
the subgroup generated by all normal, nilpotent subgroups. Nesin has also proven:

Fact 2.11. - [BN94, Theorem 9.21] Let G be a connected solvable group of finite
Morley rank. Then G/F(QG)°, thus also G/F(G), are divisible abelian groups.
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A Borel subgroup of a group of finite Morley rank is a maximal, definable, con-
nected, solvable subgroup.

For each prime p, a Sylow p-subgroup of any group G is defined to be a maximal
locally finite p-subgroup.

Fact 2.12. -

(1) [BN94, Theorem 6.19] For any prime number p, a locally finite p-subgroup
of a group of finite Morley rank is nilpotent-by-finite.

(2) [BN94, Proposition 6.18 and Corollary 6.20] If P is a nilpotent-by-finite
p-subgroup of a group of finite Morley rank, then P° = B xT is the central
product of a definable, connected, subgroup B of bounded erponent and a
divisible abelian p-group. In particular, P° is nilpotent.

For each prime p, a nilpotent definable connected p-group of finite Morley rank
is said to be p-unipotent if it has bounded exponent while a p-torus is a divisible
abelian p-group.

In general, a p-torus is not definable. It is the direct sum of finitely many copies
of Zpe, the Sylow p-subgroup of the multiplicative group of the complex numbers.
In particular, the p-elements of order at most p form a finite elementary abelian
p-group whose rank is called the Prifer p-rank of the torus in question.

The choice of terminology, “unipotent” and “torus”, is not coincidental. Fact
2.12 (2) shows that the Sylow p-subgroups of a group of finite Morley rank have
similarities with those of algebraic groups. These are of bounded exponent when
the characteristic of the underlying field is p, and divisible abelian when this char-
acteristic is different from p. In the notation of Fact 2.12 (2), this case division
corresponds to T' =1 or B = 1 respectively when the Sylow p-subgroup in question
is non-trivial.

A similar case division for the prime 2 has played a major role in developing a
strategy to attack parts of the Cherlin-Zil’ber conjecture. In this vein, a group of
finite Morley rank is said to be of even type if its Sylow 2-subgroups are infinite of
bounded exponent (B # 1, T = 1), of odd type if its Sylow 2-subgroups are infinite
and their connected components are divisible (B = 1, T # 1), of mized type if
B # 1 and T # 1 and of degenerate type if they are finite.

The main result of [ABCO8] states that a simple group of finite Morley rank
that contains a non-trivial unipotent 2-subgroup is an algebraic group over an
algebraically closed field of characteristic 2. In this article, we will use this result
and refer to it as the classification of simple groups of even type. Despite spectacular
advances for groups of odd type, no such extensive conclusion has been achieved.
In the degenerate type, it has been shown in [BBC07] that a connected group of
finite Morley rank of degenerate type has no involutions:

Fact 2.13. - [BBCO07, Theorems 1 and 3] Let G be a connected group of finite
Morley rank whose mazximal p-subgroups are finite. Then G contains no elements
of order p.

The following generalization of a well-known semisimple torsion property of al-
gebraic groups was proven following a similar line of ideas.

Fact 2.14. - [BC08b, Theorem 3] Let G be a connected group of finite Morley rank,
7 a set of primes, and a any w-element of G such that Cg(a)® does not contain a
non-trivial w-unipotent subgroup. Then a belongs to any mazimal w-torus of Cg(a).
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The generic element of a group of finite Morley rank is strongly related to the
structure of its tori. A divisible abelian group G of finite Morley rank is said to be:
a decent torus if G = d(T) for T its (divisible) torsion subgroup; a pseudo-torus if
no definable quotient of G is definably isomorphic to K for an interpretable field
K. It follows from elementary torsion properties of groups of finite Morley rank
that a decent torus is a pseudo-torus. The following remark based on important
work of Wagner on bad fields of non zero characteristic was the first evidence of
the relevance of these notions of tori.

Fact 2.15. - [AC04, Lemma 3.11] Let F be a field of finite Morley rank and nonzero
characteristic. Then F* is a good torus.

A good torus is a stronger version of a decent torus in that the defining property
of a decent torus is assumed to be hereditary.

Using the geometry of groups of finite Morley rank provided by genericity argu-
ments that we will outline later in this section, Cherlin and later the third author
obtained the following conjugacy results.

Fact 2.16. -

(1) [Che05, Extended nongenericity] In a group of finite Morley rank, maximal
decent tori are conjugate.

(2) [Fré09, Theorem 1.7] In a group of finite Morley rank, maximal pseudo-tori
are conjugate.

By Fact 2.16 (1), the Priifer p-rank of a group of finite Morley rank can be defined
as the Priifer p-rank of a maximal p-torus.

We quote the facts about decent and pseudo-tori that we will need. They help
illustrate that these more general notions of tori, introduced to investigate more
efficiently the structure of groups of finite Morley rank, share crucial properties
of tori in algebraic groups, and thus of illuminating what aspects of a notion of
algebraic torus influence the structure of algebraic groups.

Fact 2.17. -

(1) [Fré06b, Lemma 3.1] Let G be a group of finite Morley rank, N be a normal
definable subgroup of G, and T be a mazimal decent torus of G. Then
TN/N is a mazimal decent torus of G/N and every mazimal decent torus
of G/N has this form.

(2) [Fré09, Corollary 2.9] Let G be a connected group of finite Morley rank.
Then the mazimal pseudo-torus of F(G) is central in G.

(3) [AB09, Theorem 1] Let T be a decent torus of a connected group G of finite
Morley rank. Then Cq(T) is connected.

(4) [Fré09, Corollary 2.12] Let T be a pseudo-torus of a connected group G
of finite Morley rank. Then Cq(T) is connected and generous in G, and
Na(Ca(T))° = Co(T).

Before moving from tori to the unipotent side, we introduce a notion that is
related to both sides and thus fundamental to the understanding of groups of finite
Morley rank: Carter subgroups. In groups of finite Morley rank, Carter subgroups
are defined as being the definable connected nilpotent subgroups of finite index in
their normalizers.

In a reductive algebraic group, Carter subgroups correspond to maximal tori.
Hence, the notion of Carter subgroup offers a possibility to approach properties
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of algebraic tori in a purely group-theoretic form. Carter subgroups have strong
ties with the geometry of groups of finite Morley rank stemming from genericity
arguments. We will review some of these connections later in this section around
Fact 2.26.

We will need the following results on Carter subgroups:

Fact 2.18. — Let G be a group of finite Morley rank.

(1) [FJO5], [FJ08, Theorem 3.11] G has a Carter subgroup.

(2) [Fré09, Corollary 2.10] Each pseudo-torus is contained in a Carter subgroup
of G.

(3) [Wag94, Theorem 29] If G is solvable, its Carter subgroups are conjugate.

(4) [Fré08, Theorem 1.2] If G is a minimal connected simple group, its Carter
subgroups are conjugate.

(5) [Fré00a, Théoremes 1.1 and 1.2] If G is connected and solvable, any subgroup
of G containing a Carter subgroup of G is definable, connected and self-
normalizing.

The notions of reduced rank and Uy ,-groups were introduced by the second au-
thor in order to carry out an analogue of local analysis in the theory of the finite
simple groups. In a similar vein, a theory of Sylow Uy ,-subgroups was developed.
The notion of homogeneity was introduced by the third author in his refinement of
the unipotence analysis. The following definition lists the notions that will be used
in this article:

Definition 2.19. — [Bur04], [Fré06a], [Bur06]

o An abelian connected group A of finite Morley rank is indecomposable if it
s not the sum of two proper definable subgroups. If A is indecomposable and
A # 1, then A has a unique mazimal proper definable connected subgroup
J(A), and if A=1, let J(1) =1.
e The reduced rank of any abelian indecomposable group A of finite Morley
rank is T(A) = rk(A/J(A)).
o For any group G of finite Morley rank and any positive integer r, we define
Uor(G) = (A< G| A is indecomposable definable abelian,
7(A)=r, A/J(A) is torsion-free).

o A group G of finite Morley rank is said to be a Uy -group whenever G =
Uo,»(G), and to be homogeneous if each definable connected subgroup of G
is a Uy r-subgroup.

o The radical Uy(G) is defined as follows. Set To(G) = max{r | Uy ,.(G) # 1}
and set Up(G) = Uy 7y(c)(G)-

o In any group G of finite Morley rank, a Sylow Uy ,-subgroup is a mazimal,
definable, nilpotent Uy ,.-subgroup.

Fact 2.20. -

(1) [Bur04, Theorem 2.16] Let H be a connected solvable group of finite Morley
rank. Then Ug(H) < F(H).

(2) [Bur06, Corollary 3.5] Let G be a nilpotent group of finite Morley rank.
Then G = D x B is a central product of definable characteristic subgroups
D, B where D is divisible and B has bounded exponent. The latter group
s connected if and only if G is connected.
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Let T be the torsion part of D. Then we have decompositions of D and
B as follows.

D = d(T) * U()J(G) * U()’g(G) NN
B =U(G)aeUs(G)a ...

For a prime p, U,(G) is the largest normal p-unipotent subgroup of G.

The work of the third author shows that the theory of unipotence is much better
behaved when the unipotent groups in question are homogeneous in the sense of
Definition 2.19. The following fact is efficient in finding homogeneous groups.

Fact 2.21. — [Fré06a, Theorem 4.11] Let G be a connected group of finite Morley
rank. Assume that G acts definably by conjugation on H, a nilpotent Uy ,.-group.
Then [G, H] is a homogeneous Up ,.-group.

As was mentioned earlier, unipotence results are key to developing local analysis
in connected minimal simple groups of finite Morley rank. The following major
ingredients of local analysis will be used in the sequel.

Fact 2.22. — Let G be a minimal connected simple group. Let By, Bs be two distinct
Borel subgroups.

(1) [Bur07, Lemma 2.1] If we have Uy, (B1) # 1 and U,,(Bs) # 1, then F(Bq)N
F(By) = 1.

(2) [Bur07, Lemmas 3.5 and 3.6] Assume that By and Bs are two distinct Borel
subgroups such that (B1NBg)° is mazimal with respect to containment, and
that F(Bl) n F(BQ) # 1. ]f?o(Bﬁ > FO(BQ), then Fo(Bl) > ?0<H) and
7o(B2) = To(H), where H = (By N By)°.

(3) [Bur07, Proposition 4.1] Any definable connected nilpotent subgroup of B1N
By is abelian.

We close this section with a short overview of the geometric theory of groups of
finite Morley rank. Finite groups are discrete structures, and their structure is fre-
quently analyzed using counting arguments that tend to yield conjugacy theorems.
On the other hand, density arguments tend to prevail in the realm of algebraic
groups, and occasionally result in conjugacy results. In the theory of groups of
finite Morley rank one has recourse to both techniques, and occasionally profits
from the interplay between the finite and the infinite. A nice example of such an
interplay is provided by Weyl groups, the main theme of this article.

The geometric analysis of groups of finite Morley rank mostly involves genericity
arguments. A definable subset X of a group G of finite Morley rank is said to be
generous in G (or shortly, “generous” in case the ambient group is clear) if the
union of its conjugates is generic in GG. This notion was introduced and studied in
[Jal06]. The following were proven in [Jal06]:

Fact 2.23. - Let G be a group of finite Morley rank and H a definable, generous
subgroup of G.
(1) [Jal06, Lemma 2.2] The subgroup H is of finite index in Ng(H).
(2) [Jal06, Lemma 2.3] If X is a definable subset of H that is generous in G,
then X is generous in H.
(3) [Jal06, Lemma 2.4] If H is connected and X is a definable generic subset
of H, then X is generous in G.
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The first point in the above fact, despite its simple nature and proof, illustrates
the relationship between generic sets, Weyl groups and the presence of torsion in a
group of finite Morley rank.

The following caracterization of generosity is due to Cherlin who was inspired
by [Jal06]. It is a relatively simple but efficient illustration of the geometry of
genericity arguments.

Fact 2.24. - [ABCO08, Lemma IV 1.25][Jal06, Section 3.2] Let G be a connected
group of finite Morley rank and H definable, connected, and almost self-normalizing
subgroup of G. Let F be the family of all conjugates of H in G. Then the following
are equivalent.

(1) H is generous in G.
(2) The definable set

Hy={heH : {Xe€F:heX} is finite }

s generic in H.
(3) The definable set

Go={z ¢ UHg  {X e F:x e X} is finite }
geG

is generic in G.

As has been mentioned, there is a close connection between conjugacy and gener-
icity although this does not in general necessitate an implication in either direction.
The conjugacy results on decent and pseudo-tori go via genericity arguments. In
[Jal06], Jaligot proved the conjugacy of generous Carter subgroups of groups of
finite Morley rank. The most general conjugacy result for Carter subgroups that
does not depend on the generosity hypothesis was proven in [Fré08] for K*-groups,
that is the groups of finite Morley rank all of whose simple definable proper sections
are algebraic. Fact 2.18 (4) is the important particular case that deals with the
minimal connected simple groups and that we will need in this paper. In general,
it remains a major open problem whether one can remove the K* hypothesis.

Fact 2.25. — [Jal06, Part of Corollary 3.8] Le G be a group of finite Morley rank
and C a Carter subgroup of G. Then the following are equivalent:
(1) C is generous in G.

(2) C is generically disjoint from its conjugates.
A definable set X is generically disjoint from its conjugates if RM(X\UgeG\SmbG(X))
RM(X).
Fact 2.26. — Let G be a group of finite Morley rank. Then the following hold:

(1) [Jal06, Theorem 3.1] All generous Carter subgroups are conjugate;
(2) [FJO8, Theorem 3.11] [CJ04, Lemma 3.5] if G is solvable, its Carter sub-
groups are generically disjoint and generous.

The following observation about minimal connected simple groups illustrates the
connection between genericity, Carter subgroups and torsion elements.

Fact 2.27. - [AB09, Proposition 3.6] Let G be a minimal connected simple group.
If G has non-trivial torsion, then G has a generous Carter subgroup.
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3. THE WEYL GROUP OF A MINIMAL CONNECTED SIMPLE GROUP OF FINITE
MORLEY RANK

There are several definitions proposed for Weyl groups in groups of finite Morley
rank: in a group G of finite Morley rank, one can consider Ng(C)/C where C
is a Carter subgroup of G, or Ng(T)/Cq(T) where T is a maximal decent or
pseudo-torus. In simple algebraic groups, these possibilities yield natural, uniquely
defined, robust notions that are also equivalent. This equivalence is not known in
an arbitrary simple group of finite Morley rank.

Fact 2.18 (1) or the definition of a decent or pseudo-torus show that one can
define a notion of Weyl group in a group of finite Morley rank. Nevertheless, the
definition using Carter subgroups cannot yield a uniquely defined notion as long
as it is not known whether in general Carter subgroups are conjugate in groups of
finite Morley rank, an open problem. Thanks to Fact 2.16, this problem is overcome
in the case of the definitions involving tori, and we define the Weyl group W (G)
of a group G of finite Morley rank to be Ng(T')/Cq(T) where T is any maximal
decent torus of G.

Our first target in the present section is to verify that in a minimal connected sim-
ple group, the definition of a Weyl group that we have adopted is in fact equivalent
to the other above-mentioned possibilities. This will be done mainly in Proposition
3.2 and followed up in Corollaries 3.4 and 3.5.

The second target of this section involves the proof of the central result of this
paper. We will use our development of a robust notion of Weyl group to analyze
another well-known property of simple algebraic groups ([Hum81, Theorem 23.1]) in
the context of groups of finite Morley rank, namely the self-normalization of Borel
subgroups. This problem is open even in the context of minimal connected simple
groups of finite Morley rank. We will prove in Theorem 3.12 that the property
holds in a minimal connected simple group under additional hypotheses.

An important ingredient of our arguments is the conjugacy of Carter subgroups
in minimal connected simple groups (Fact 2.18 (4)). We will also need the following
fact which can be regarded as a very weak form of self-normalization:

Fact 3.1. - [AB09, Lemma 4.3] If B is a Borel subgroup of a minimal connected
simple group G such that Uy,(B) # 1 for some prime number p, then p does not
divide [Ng(B) : B].

Proposition 3.2. — Let G be a minimal connected simple group, and let C' be a
Carter subgroup of G. Then the Weyl group W (G) of G is isomorphic to Ng(C)/C.

PRrROOF — Let T be a maximal decent torus of G. Then T is contained in a
Carter subgroup of G (Fact 2.18 (2)) and, by the conjugacy of Carter subgroups
(Fact 2.18 (4)), we may assume T' < C. By Fact 2.6, we have C < Cg(T)°. If T is
non-trivial, then Cg(T) is a connected solvable subgroup of G by Fact 2.17 (3). In
particular C is self-normalizing in Cq(T') (Fact 2.18 (5)), and Fact 2.18 (3) and a
Frattini Argument yield Ng(T) = Co(T)Ng(C). Hence we obtain

Ng(C)/C = Ng(T)/Ca(T) =~ W(G) .
Suppose now that T' = 1, that is, G contains no non-trivial decent torus (Fact
2.16 (1)).

We assume toward a contradiction that Ng(C')/C is non-trivial. Then there is
a prime p dividing the order of Ng(C)/C. Let S be a Sylow p-subgroup of G.
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Since there exists no non-trivial decent torus in G, Fact 2.12 (2) implies that S° is
a p-unipotent subgroup of G. Moreover, it is non-trivial by Fact 2.13. Let B be a
Borel subgroup containing S°. Then we have S° < U,(B) and Fact 2.22 (1) shows
that B is the unique Borel subgroup containing S°. In particular, S normalizes
B and U,(B), and we obtain S° = U,(B) by maximality of S. Thus we have
Ng(B) = Ng(5°). _

Let D be a Carter subgroup of B (Fact 2.18 (1)). If some B-minimal section A
of S° is not centralized by B, then B/Cp(A) is definably isomorphic to a definable
subgroup of K* for a definable algebraically closed field K of characteristic p (Fact
2.8), and Fact 2.15 shows that B/Cp(A) is a decent torus. Then there is a non-
trivial decent torus in B by Fact 2.17 (1), contradicting our hypothesis. Thus D
centralizes each B-minimal section of S°, and this implies S° < D since Ng(D)°® =
D. Now N¢(D) normalizes S° = U, (D) and we have Ng(D) < Ng(S°) = Ng(B).
In particular D is a Carter subgroup of G and we may assume D = C (Fact 2.18 (4)).
By the conjugacy of Carter subgroups in B (Fact 2.18 (3)), the self-normalization
of C in B (Fact 2.18 (5)), and a Frattini Argument, we obtain Ng(B) = BNg(C)
and

N¢(C)/C = Ng(C)/(Ne(C) N B) ~ Ng(B)/B.

This implies that p divides the order of N¢g(B)/B, contradicting Fact 3.1. O

This result has the following consequence, which is similar to a classical result
for algebraic groups [Hum81, Exercise 6 p.142].

Corollary 3.3. — If C is a Carter subgroup of a minimal connected simple group
G, then C is a maximal nilpotent subgroup.

PrOOF — Let D be a nilpotent subgroup of G containing C. By Fact 2.1, we
may assume D is definable. Since Ng(C')/C is finite, Fact 2.7 implies that C' has
finite index in D, and thus C = D°. Let T be the maximal decent torus of C.
Then T is maximal in G by Fact 2.18 (2) and (4). Thus, if T' = 1, then Proposition
3.2 gives Ng(C) = C and D = C. On the other hand, if T # 1, then Cg(T) is a
connected solvable group by Fact 2.17 (3), and it contains D (Fact 2.6). Now, by
Fact 2.18 (5), we obtain D < N¢, (1) (C) = C, proving the maximality of C. O

Corollary 3.4. — Let G be a minimal connected simple group, and let S be a non-
trivial p-torus for a prime p. Then Ng(S)/Cq(S) is isomorphic to a subgroup of
W(G). Moreover, if S is mazimal, then we have Ng(S)/Cq(S) ~ W(G).

Proor — By Fact 2.18 (2), S is contained in a Carter subgroup C' of G. By
Fact 2.6, we have C' < Cg(5)°. Since S is non-trivial, then C¢(S) is a connected
solvable group Fact 2.17 (3), and C is self-normalizing in C¢(S) (Fact 2.18 (5)).
Now a Frattini Argument yields Ng(S) = Cq(S) Ny (s5)(C), and Ng(S)/Cqa(S) is
isomorphic to a subgroup of Ng(C)/C ~ W(G).

Moreover, if S is maximal, then S is characteristic in C, and we have Ng(C) =
Nng(s)(C). Hence we obtain W(G) ~ Ng(C)/C ~ Ng(S)/Ca(S). O

Corollary 3.5. — Let G be a minimal connected simple group, and let T be a
mazimal pseudo-torus of G. Then W(G) is isomorphic to Ng(T)/Cq(T).

PrOOF — When T # 1, we proceed as in the first paragraph of the proof of
Proposition 3.2. By Facts 2.18 (2) and 2.17 (2), T is a central subgroup of a Carter
subgroup C of G. If T is non-trivial, then Fact 2.17 (4) and Fact 2.18 (3) and
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(5) provide Ng(C)/C ~ Ng(T)/Cq(T). It then follows from Proposition 3.2 that
W(G) ~ Ng(T)/Cq(T).
Suppose now that 7" = 1. Note that in general, every decent torus is a pseudo-

torus. Thus by Fact 2.16 (2), every maximal decent torus in G is trivial as well. Tt
follows that both Ng(T)/Cq(T) and W (G) are trivial. O

Now, we move on to the problem of self-normalization of Borel subgroups. We
will need several results from [Del08] and [BD09], that we will present in a form
more suitable for our needs.

We begin by reformulating a large portion of the main theorem of [Del08]. In
doing so, we will use the conjugacy of Carter subgroups of minimal connected simple
groups and some of the preceding results. For the sake of completeness, we detail
how these new ingredients intervene in the proof together with Fact 2.17 (3).

Fact 3.6. — (Particular case of [Del08, Théoreme-Synthese]) Let G be a minimal
simple group of odd type. Then G satisfies one of the following four conditions:

o G ~PSLy(K) for an algebraically closed field K of characteristic p # 2;

o |W(G)| =1, and the Prifer 2-rank of G is one;

o |W(G)| = 2, the Priifer 2-rank of G is one, and G has an abelian Borel
subgroup C;

o |W(G)| = 3, the Priifer 2-rank of G is two, and the Carter subgroups of G
are not Borel subgroups.

PROOF — First we note that, by Fact 2.17 (3) and Corollary 3.4, our definition
of a Weyl group is equivalent to the one of [Del08, Théoréme-Synthese].

If the Priifer 2-rank of G is one and if W(G) is non-trivial, then, by [Del08,
Théoréme-Synthese] (1), either we have G ~ PSLy(K) for an algebraically closed
field K of characteristic p # 2, or G has an abelian Borel subgroup C such that
N¢g(C) = Cx (i) for an involution 4 inverting C. In particular, we have |IW(G)| = 2.

Hence we may assume that the Priifer 2-rank of G is at least two. By [Del08,
Théoreme-Synthese], the Priifer 2-rank of G is two and we have |W(G)| = 3. Let
S be a Sylow 2-subgroup of G. Since G is of odd type, S° is a non-trivial 2-torus,
it is contained in a Carter subgroup C of G (Fact 2.18 (2)), and S° is central in C
(Fact 2.6). Since [Del08, Théoréme-Synthese] (2) says that Co(S°)° is abelian and
divisible, we obtain C' = C(5°)°. Moreover, [Del08, Théoréme-Synthese] (2) says
that C' is not a Borel subgroup, so no Carter subgroup of G is a Borel subgroup by
Fact 2.18 (4). O

As for [BD09], the second part of the following fact, rather than the cyclicity of
the Weyl group, will be needed in the sequel.

Fact 3.7. — [BD09, Theorem 4.1] Let G be a minimal connected simple group, T a
mazimal decent torus of G, and T the set of primes p such that Zyp embeds into T
Then W(QG) is cyclic, and has an isomorphic lifting to G. Moreover, no element of
T divides |[W(G)|, except possibly 2.

The results of [BD09, §3] do not need that the group G be degenerate, but just
that |WW(G)| be odd. This increases their relevance for us in conjunction with results
from [BCO8b]. In particular, the following fact holds.

Fact 3.8. — [BD09, §3][BCO8b, §5] Let G be a minimal connected simple group, T
a mazimal decent torus of G, T the set of primes p such that Zy~ embeds into T,
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and 7' its complement. If W(G) is non-trivial and of odd order, then the following
conditions hold:

(1) [BCO8b, Corollary 5.3] the minimal prime divisor of |W (G)| does not belong
to T;

(2) [BD09, Corollary 3.8] Ca(T) is a Carter subgroup of G;

(3) [BD09, Theorem 3.1, Proposition 3.10] if Br is a Borel subgroup containing
Ce(T), and if either there is a T’'-element normalizing T and Br, or there
is a prime q such that the Prifer q-rank of T is > 3, then Cq(T) = Br.

It is worth noting that point (3) of Fact 3.8 is true even when W(G) is of even
order.
The following lemma does not necessitate minimal simplicity.

Lemma 3.9. — Let By and By be two generous Borel subgroups of a group G of
finite Morley rank. Then there exists g € G such that By N B3 contains a generous
Carter subgroup of G.

PRrROOF — Let C; be a Carter subgroup of B; for ¢ = 1, 2. Then C; is generous
in B; by Fact 2.26 (2), and C; is generous in G by Fact 2.23 (3). This implies that
C; has finite index in its normalizer in G (Fact 2.23 (1)), therefore C; is a Carter
subgroup of G. Now C; and C5 are conjugate (Fact 2.26 (1)), and there exists
g € G such that C§ = C, < B; N BY. O

Lemma 3.10. — Let G be a minimal connected simple group with a nilpotent Borel
subgroup B. Then B is a Carter subgroup of G, and the generous Borel subgroups
of G are conjugate with B, and they are generically disjoint.

PROOF — By Fact 2.4, B is non-trivial, so Ng(B)® is solvable and B is a Carter
subgroup of G.

Let By be a generous Borel subgroup of G. Then By contains a Carter subgroup
C of G (Lemma 3.9), and Fact 2.18 (4) implies that B is conjugate to C, thus to
By. The generic disjointness follows from Fact 2.25. (]

Now, we prove the self-normalization theorem. In the end of the proof, as noted
there as well, we could quote Fact 3.7 to finish quickly. Nevertheless, we will give
a slightly longer but direct argument for two reasons. The first is that the quick
ending is in fact longer in that it uses the full force of [BD09], which we do not need
here. The second and more important reason is that in Section 6, as explained after
Fact 6.4, it will be crucial to have a self-normalization argument that deals with
the special case when the Weyl group is of odd order in order to avoid referring to
[Del08]. We achieve this goal by reducing the proof of Theorem 3.12; at the end
of its first paragraph, to the case where the Weyl group of the ambient group is of
odd order, and then avoid using any argument that necessitates the use of [Del08],
in particular the full force of [BD09]. The care about the hypothesis in Fact 3.8,
that assumes the Weyl group to be of odd order, is also part of these efforts.

The direct approach will use the following classical result:

Fact 3.11. - [ABCO08, Lemmas IV.10.16 and IV.10.18] Let T be a p-torus of Priifer
p-rank 1 or 2, where p is a prime, and « an automorphism of T of order p, with a
finite centralizer in T. Then p € {2, 3}.

Theorem 3.12. — Any non-nilpotent generous Borel subgroup B of a minimal
connected simple group G is self-normalizing.



14 TUNA ALTINEL, JEFFREY BURDGES, AND OLIVIER FRECON

PROOF — We consider a non-nilpotent generous Borel subgroup B of a minimal
connected simple group G. If [W(G)| is even, then Fact 2.13 and the classification
of simple groups of even type shows that either B is self-normalizing, or G is of
odd type. In the second case, Fact 3.6 and Lemma 3.10 imply that G ~ PSLy(K)
for an algebraically closed field K, so B is self-normalizing. Hence we may assume
that |W(G)] is odd.

We assume toward a contradiction that B is not self-normalizing. By Lemma
3.9, B contains a (generous) Carter subgroup C of G. By Fact 2.18 (3) and a
Frattini argument, we have Ng(B) = BNy, ) (C), so C is not self-normalizing,
and the Weyl group of G is non-trivial (Proposition 3.2). Moreover |Ng(B)/B]
divides |W(G)|. Let T be the maximal decent torus of C. By Facts 2.18 (4) and
3.8 (2), T is a maximal decent torus of G and we have C = Cg(T).

Let p be a prime divisor of |[Ng(B)/B|. Since we have Ng(B) = BNy, ) (C),
there is a p-element w in Ny, p)(C) \ B such that w?” € B. In particular we have
w € Ng(T)\ Cq(T) and, by Fact 3.8 (3), the maximal p-torus R of T is non-trivial
of Priifer p-rank 1 or 2.

At this point, Fact 3.7 allows to finish the proof since it yields a contradiction.
As was explained above, we will not do this and give a more direct final argument.

Let Ry = Cr(w)®. It is a p-torus and we have w € Cg(Rg). Moreover, we have
C < Cg(R) < Cg(Rp) and Cg(Ryp) is connected by Fact 2.17 (3). Thus, if Ry is
non-trivial, then C is a Carter subgroup of the connected solvable subgroup C¢(Ry),
and Fact 2.18 (5) yields w € N, (r,)(C) = C, contradicting our choice of w. Hence
Ry is trivial and, since Fact 2.18 (5) implies wP € Ng(C) = C = Cq(T) < Cq(R),
the element w induces an automorphism ¢ of order p of R such that Cr(¢p) is finite.
Then, since we have p # 2, Fact 3.11 implies p = 3. But [W(G)]| is odd, so p is the
smallest prime divisor of |[W(G)|, contradicting Fact 3.8 (1). The proof is over. [

We use local analytic methods to refine our understanding of the relationships
between Carter subgroups of minimal connected simple groups, the Borel subgroups
containing these and the Weyl group of the ambient group. The conclusions in the
remainder of this section will not be used in the following sections.

Proposition 3.13. — Let H be a subgroup of a minimal connected simple group
G. If H contains a Carter subgroup C of G, then H is definable, and either it is
contained in Ng(C), or it is connected and self-normalizing.

PrROOF — We may assume that H is proper in G. First we show that H is
definable. The subgroup Hy generated by the conjugates of C' contained in H is
definable and connected by Fact 2.2. Since H has been assumed to be proper and
G is a minimal simple group, Hy is solvable. By conjugacy of Carter subgroups in
Hy (Fact 2.18 (3)) and a Frattini argument, we obtain H = HyNy(C). Thus Hy
has finite index in H, so H is definable. Note also that H® = Hy.

From this point on, we will assume that H is not contained in N¢g(C'). We note
that this assumption implies H° ¢ N¢(C). Thus, if the result holds for connected
groups, then H® is self-normalizing, and we have H = H°. Hence we may assume
that H is connected. In particular, H is solvable.

We assume that H is a maximal connected counterexample to the proposition.
Since the conjugacy of Carter subgroups in H (Fact 2.18 (3)) and a Frattini argu-
ment yield Ng(H) = HNy,)(C), the quotient group Ng(H)/H is isomorphic to
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a subgroup of W(G) by Proposition 3.2, and W(G) is non-trivial. By Facts 2.27
and 2.18 (4), C is generous in G.

We consider a Borel subgroup B containing H. By Fact 2.18 (5), the subgroup B
does not contain Ng(H). Since B contains H > C, it is non-nilpotent and generous
in G. So it follows from Theorem 3.12 that B is self-normalizing, and we obtain
H < B.

We will denote by U and V' respectively, either U,(B) and U,(H) in case U,(H)
is non-trivial for some prime number p, or Uy(B) and Uy z,(p)(H). In particular,
we have B = Ng(U). If H contains U, then Ng(H) normalizes U, contradicting
B = Ng(U), hence H does not contain U. In particular we obtain V' < Ny (V)°
and H < Ng(V)°. Now the maximality of H forces Ng(V) = Ng(V)°. But, if V
is non-trivial, then Fact 2.18 (5) shows that Ng(V)° does not contain N¢(H), and
since N¢(H) normalizes V, this contradicts Ng(V) = Ng(V)°. Hence V is trivial,
and H' centralizes U by Facts 2.10 and 2.20 (2). Thus we have Ng(H')° > H,
and the maximality of H provides Ng(H') = Ng(H')°. On the other hand, H’
is non-trivial since H > C'is non-nilpotent. Then Fact 2.18 (5) implies Ng(H) £
N¢(H')®, contradicting that Ng(H) normalizes H' and that Ng(H') = Ng(H')°.
This finishes our proof. (Il

The following strengthens Fact 3.8 (2):

Corollary 3.14. — Let G be a minimal connected simple group with a non-trivial
Weyl group, and let T be a non-trivial mazimal p-torus of G for a prime p. Then
Ca(T) is a Carter subgroup of G.

PROOF — Since W(G) and T are non-trivial, C¢(T) is not self-normalizing by
Corollary 3.4. But Facts 2.18 (2) and 2.6 show that Cg(T) contains a Carter
subgroup C of G, so Cg(T) is contained in Ng(C) by Proposition 3.13. Since
Cq(T) is connected by Fact 2.17 (3), we obtain the result. O

Furthermore, when W (G) is of odd order, we may slightly refine this result.
Since this corollary will not be needed later, we will allow ourselves to use Fact 3.7.
We emphasize that this application will not use the full force of this fact, namely
the cyclicity of the Weyl group.

Corollary 3.15. — Let G be a minimal connected simple group, let T be a non-
trivial mazimal p-torus of G for a prime p, and let V. ={(x € T | 2P = 1). If W(QG)
is non-trivial and of odd order, then Cg(V) is a Carter subgroup of G.

Proor — By Corollary 3.14, C = Cg(T) is a Carter subgroup of G. Then
T is a characteristic subgroup of C, and since V is characteristic in T', we find
N6(C) < No(T) < Na(V),

By Fact 2.18 (5), the subgroup C is self-normalizing in Ng(V)°. Since W(G)
is non-trivial, Proposition 3.2 shows that Ng(V)° does not contain Ng(C). In
particular, by the previous paragraph, Ng (V) is not connected, and Proposition
3.13 implies Ng(V) = Ng(C).

At this stage, we have

C=Cq(T) < Cg(V) < Na(V) = Na(C) = Na(T),
so Cq(V)/Cq(T) is a subgroup of N¢g(C)/C. Now Proposition 3.2 implies that

Ca(V)/Cq(T) is finite and of odd order, and Fact 3.7 shows that p does not divide
its order.
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It is well-known that any finite p’-group of automorphisms of a finite abelian
p-group P, which acts trivially on the set of the elements of order p of P, is trivial
(see for example, [Gor68, Theorem 2.4, p. 178]). Thus, Cs (V') centralizes the finite
subgroups (v € T | 22" = 1) of T for each n € N. It follows that C (V) centralizes
T, and we obtain Cq(V) = Ce(T) = C as desired. O

4. TETRACHOTOMY THEOREM

In Theorem 4.1, we will carry out a fine analysis of minimal connected simple
groups according to two criteria. The first criterion is the existence of a non-trivial
Weyl group. This criterion is motivated by the important role played by Weyl
groups in minimal connected simple groups of finite Morley rank. When the Weyl
group is non-trivial, it determines many structural aspects of the ambient group
as was exemplified in the classification of simple groups of even type or in [Del08].
On the other hand, when it is trivial, the ambient group has very high chances of
being torsion-free, and the arguments tend to use the geometry of G as in [Fré08].

Our second criterion is the size of the intersections of Borel subgroups. It was
already noticed in [Jal01] that the lack of intersection between Borel subgroups
makes it very difficult to analyze minimal connected simple groups. “Large” inter-
sections, like in the classification of the finite simples groups, allow a certain kind
of local analysis. We have set the following concrete criterion in order to measure
whether a minimal connected simple group admits largely intersecting Borel sub-
groups: the absence of a Borel subgroup generically disjoint from its conjugates
other than itself.

The following table introduces the four types of groups that emerge from these
two criteria:

A Borel subgroup generically dis-
joint from its conjugates

exists does not exist
trivial (1) (2)
Weyl group non-trivial | (3) 4)

Theorem 4.1. — (Tetrachotomy theorem) Any minimal connected simple group
G satisfies exactly one of the following four conditions:

e G is of type (1), its Carter subgroups are generous and any generous Borel
subgroup is generically disjoint from its conjugates;

e G is of type (2), it is torsion-free and it has neither a generous Carter
subgroup, nor a generous Borel subgroup;

o G is of type (3), its generous Borel subgroups are nilpotent: they are the
Carter subgroups;

o G is of type (4), its Carter subgroups are generous, and there is no nilpotent
Borel subgroup.

b2

In the sequel, by “type (i)” we will mean one of the four types caracterized in

Theorem 4.1.

Remark 4.2. -

e Bad groups [BN94, Chapter 13], and more generally full Frobenius groups
[Jal01], are examples of groups of type (1). The existence of any of these
groups is a well-known open problem.
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e The minimal connected simple groups with a nongenerous Carter subgroup
are of type (2) and are analyzed in [Fré08].

e The group PSLy(K) for an algebraically closed field K, is of type (4).

e By Fact 2.13, the classification of simple groups of even type, and Theorem
4.1, a non-algebraic minimal connected simple group with involutions is of
odd type and not of type (2). But the existence of a minimal connected
simple group with involutions and either of type (1), or of type (3), or not
algebraic and of type (4), is an open problem (compare Fact 3.6 and Theo-
rem 4.1). Furthermore, the description of three pathological configurations
by Deloro in [Del08] (see Fact 3.6) corresponds to the groups of type (1),
(3) and (4) respectively.

The following technical lemma is general and will provide the main argument for
the first parf of the proof of Theorem 4.1.

Lemma 4.3. — Let G be a group of finite Morley rank, K < H definable, connected
subgroups of G such that Ng(K) < Ng(H), K is generically disjoint from its
conjugates in G and almost self-normalizing. Then H is almost self-normalizing
and generically disjoint from its conjugates in G.

PROOF — By Fact 2.24, K is generous in G. Thus H is generous in G. By Fact
2.23 (1), H is almost self-normalizing in G, and by Fact 2.23 (2), K is generous in
H. We define K¢ = {K9g € Nog(H)} and Ky = {K9g € Ng(H)}. Note that
these two sets form a partitioning of the set of all the conjugates of K in G. Since
Na(K) < Ng(H), K\UKg D K\ (Ugch(K) K-q). Thus, K\ |J K¢ is generic in
K.

Now, suppose towards a contradiction that H is not generically disjoint from its
conjugates in G, equivalently the set H N (Ugch(H) HY) is generic in H. Then,
since 9N (H) HY is invariant under the action of H by conjugation, the generosity
of K in H implies that of KN, ¢y H? in H. Thus KN gy, ) H? is generic
in K by Fact 2.23 (2).

We set X = H\UKg. Then H = X U (|JKg). So,

Usgnein 7 = Uggnoan(X VUKR)?
= UggNG(H) X7U UggNG(H)(U Ku)?
= Uggnom X7 WUKG,
and
Kn |J H'=Kn | Xx)uEnJKe).
gZNg(H) géNg(H)
But K \ |JK¢g is generic in K, therefore K N (|JK¢g) is not generic in K. Since
by the previous paragraph K N Ug€Nc(H) HY is generic in K, KN UgQNg(H) X9 is
generic in K as well. Consequently, since K is generous in G, so is X by Fact 2.23
(3). Since the set X is generous in H by Fact 2.23 (2) and is invariant under the

action of H by conjugation, it is generic in H. This contradicts the generosity of
K in H since Ky D {KY|g € H}. The conlusion follows. O

PrOOF OF THEOREM 4.1 — First we note that, by Fact 2.18 (4), either all the
Carter subgroups of GG are generous, or G has no generous Carter subgroup. We
will divide our discussion into two cases:

Case I: W(G) = 1, equivalently, G is of type (1) or (2).
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We first prove that if B is a generous Borel subgroup of G, then it is generically
disjoint from its conjugates in G. The core of the argument is provided by Lemma
4.3. We will apply it in the special case of a pair C < B where B is a generous
Borel subgroup of G and C' is a Carter subgroup of B. For such a pair, Facts 2.26
(2) and 2.23 (3) imply that C is generous in B and then in G. It then follows from
Fact 2.23 (1) that C is a Carter subgroup of G. Since C is generous, by Fact 2.25
it is generically disjoint from its conjugates in G. Finally, the assumption of Case
I and Proposition 3.2 imply that Ng(C) = C < Ng(B). In fact, one can rapidly
deduce that both B and C are self-normalizing. After this preparation, Lemma 4.3
yields that B is also generically disjoint from its conjugates in G.

If G is of type (2), the preceding paragraph shows that G has no generous Borel
subgroup. In particular, G has no generous Carter subgroup, and G is torsion-free
by Fact 2.27.

If G is of type (1), it remains to prove that G has a generous Carter subgroup.
But a Borel subgroup B of G, generically disjoint from its conjugates, is generous
in G by Fact 2.24. Hence G has a generous Carter subgroup by Lemma 3.9.

Case II: G is of type (3) or (4).

In this case, G is not torsion-free, and its Carter subgroups are generous by Facts
2.27 and 2.18 (4).

If G is of type (3), we show that its Carter subgroups are generous Borel sub-
groups. Let B be a Borel subgroup of G generically disjoint from its conjugates.
Then B is generous in G by Fact 2.24, and by Lemma 3.9, B contains a generous
Carter subgroup C of G. Since W(G) is non-trivial, there exists w € Ng(C) \ C
(Proposition 3.2), and Fact 2.18 (5) implies w ¢ B. If B # C, then Theorem 3.12
gives BY # B and C' < B™. This implies that B is generically covered by its conju-
gates (Fact 2.26 (2)), and contradicts our choice of B. Hence we have B = C, and
any Carter subgroup of G is a generous Borel subgroup. Conversely, any generous
Borel subgroup of G is a Carter subgroup of G by Lemma 3.10.

If G is of type (4), then G has no nilpotent Borel subgroup by Lemma 3.10.
Indeed, a nilpotent Borel subgroup of G would be a Carter subgroup of G, and as
we have already noted, in types (3) and (4), the Carter subgroups of G are generous,
thus generically disjoint from their conjugates. This last conclusion contradicts the
assumption (4). O

5. STRUCTURE OF CARTER SUBGROUPS IN SIMPLE GROUPS OF TYPE (4)

As Remark 4.2 suggests, minimal connected simple algebraic groups over alge-
braically closed fields are of type (4). Thus, one expects simple groups of type (4)
to have properties close to those of algebraic groups. The following result provides
evidence in this direction by refining the structural description of a Carter subgroup
of a group of type (4).

Theorem 5.1. — Let G be a minimal connected simple group of type (4). Then
there is an interpretable field K such that each Carter subgroup definably embeds in
K* x K*.

PrROOF — Let C be a Carter subgroup of G, and let B be a Borel subgroup
containing C' such that either U,(B) is non-trivial for a prime ¢, or the integer
r = To(B) is maximal for any such Borel subgroup. By Lemma 3.10, B is non-
nilpotent and we have B # C. Since W(G) is non-trivial, Proposition 3.2 gives
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Ng(C) # C, and Fact 2.18 (5) shows that B does not contain Ng(C'). Hence by
Theorem 3.12, there exists w € Ng(C) \ Ng(B). In particular, C < BN BY is
abelian by Fact 2.22 (3).

If we have U,(B) # 1 for a prime ¢, then B has a G-minimal subgroup A
of exponent ¢q. If Co(A, AY) is non-trivial, then Cq(Ce (A4, A*))° is a proper
connected definable subgroup of G containing A and A*. Hence Fact 2.22 (1) shows
that B (resp. B™) is the unique Borel subgroup of G containing Ca(Cc(A, A™))°.
This contradicts B # B". Consequently C¢ (A4, A™) is trivial, and C is definably
isomorphic to a subgroup of B/Cg(A) x BY/Cpw(A") ~ B/Cg(A) x B/Cgp(A).
If B/Cp(A) = 1, then C is trivial, contradicting that C' is a Carter subgroup of
G. So, by Fact 2.8, there is an interpretable field K of characteristic ¢ such that
B/Cg(A) is definably isomorphic to a subgroup of K*. Hence we may assume that
Uq(B) =1 for each prime ¢, so r > 0.

We show that B has a B-minimal homogeneous Up ,-subgroup. By Fact 2.20 (1),
Up(B) is nilpotent, and by Fact 2.21 [B, Up(B)] is a homogeneous Uy ,-subgroup of
B, so we may assume [B, Uy(B)] = 1. Then Uy(B) is central in B, and C contains
Uo(B), so we have Uy(C) = Up(B) < Z(B). Thus we obtain

Uo(B") = Uog(B)" = Up(C)" = Up(C) = Uo(B),

and Up(B) is central in (B, B") = G, contradicting the simplicity of G. Hence B
has a B-minimal homogeneous Uy ,-subgroup A.

If Co(A, A¥) =1, then C is definably isomorphic to a subgroup of B/Cp(A) x
BY/Cpw(A") ~ B/Cp(A) x B/Cp(A). If B/Cp(A) =1, then C = 1, which con-
tradicts that C is a Carter subgroup of G. So, by Fact 2.8, there is an interpretable
field K such that B/Cp(A) is definably isomorphic to a subgroup of K*. Hence
we may assume that Co(A, AY) is non-trivial.

Let By be a Borel subgroup of G containing Ng(Ce (A4, A™))°. Then By contains
C, A and A"™. Since B # B", we have either By # B or By # B". In the first
case we consider Hy = (Byp N B)° and, in the second case, Hy = (By N BY)°. In
particular Hy contains C, and either A or A", so we have 7o(Hp) = r.

Let By and By be two distinct Borel subgroups of G containing Hy, such that
H = (By N By)° is maximal among all the choices of distinct Borel subgroups By
and By. Since B; and Bs contain Hy, they contain C, and they are generous in
G. Since To(Hp) = r, the maximality of r yields 7o(H) = To(B1) = To(B2) = 7.
Thus, by Fact 2.20 (1), Ug(H) < F(By) N F(Bz). In particular, this intersection is
non-trivial. But Fact 2.22 (2) implies that F(B;) N F(Bz2) = 1, a contradiction. O

6. A CLASSIFICATION THEOREM

In this section we apply a particular case of Theorem 3.12 to a concrete classifi-
cation problem and achieve a conceptual streamlining in the proof of a well-known
theorem in the theory of simple groups of finite Morley rank. We will provide a new
proof of one of the main ingredients of the analysis of strongly embedded subgroups
in [BCJOT]:

Theorem 6.1. - If G is a connected minimal simple group of odd type and of
Priifer 2-rank at least two, then G has no strongly embedded subgroup.

Our new proof is direct and simple. It can also be expected that the main lines
of the argument presented below will be generalized to other concrete problems in
the analysis of simple groups of odd type.
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The notion of strong embedding was imported from finite group theory, and
turned out to be almost as effective a tool as in its homeland. In order to appreciate
its importance, it suffices to consult Section 10.5 of [BN94], [ABCO08] or [BCJ07].
We will be content with saying that a simple group of finite Morley rank with a
strongly embedded subgroup is conjectured to be isomorphic to PSLs(K) where K
is algebraically closed of characteristic 2, and the strongly embedded subgroups are
the Borel subgroups. The following is one of the many equivalent definitions:

Definition 6.2. — Let G be a group of finite Morley rank with a proper definable
subgroup M. Then M is said to be strongly embedded in G if I(M) # 0 and for
any g € G\ M, I(M N M9) =0, where I(X) denotes the set of involutions in X.

Note that it follows from the definition that a strongly embedded subgroup is
self-normalizing. The presence of a strongly embedded subgroup imposes strong
limitations on the structure of a group of finite Morley rank the most decisive of
which concern involutions:

Fact 6.3. — [BN94, §10.5] Let G be a group of finite Morley rank with a strongly
embedded subgroup M. Then the following hold:

(1) Ng(S) < M for any non-trivial 2-subgroup S of M.

(2) A Sylow 2-subgroup of M is a Sylow 2-subgroup of G.

(3) The set I(G) is a single conjugacy class in G; the set I(M) is a single
congugacy class in M.

We will need from [BCJ07] the following three ingredients. The first two are
general lemmas proven early in that article while the last one is the theorem that
constitutes its “Case I”.

Fact 6.4. — [BCJO7] Let G be a minimal connected simple groups of finite Morley
rank and odd type. Suppose that G has Priifer 2-rank at least two, and that M is a
strongly embedded subgroup of G. Then the following hold:

(1) [Lemma 2.3] M® is a Borel subgroup of G.
(2) [Lemma 2.6] M° is generous in G.
(3) [84] No involution of M°® lies inside Z(M?°).

Apart from this important ingredient, our proof will be only using [BD09]. This
use necessitates a certain care as we will try to avoid any reference to [Del08] since
such a reference will potentially involve an implicit use of [BCJ07] and thus, a
vicious circle. This special care is the reason why we verify towards the end of the
proof that the Weyl group is of odd order. As was explained before Fact 3.11, in
this particular case Theorem 3.12 has a proof using the relevant parts of [BD09]
that do not use [Del08].

The rest of the ingredients are of a more general nature around genericity argu-
ments such as Fact 2.14.

PROOF OF THEOREM 6.1 — By way of contradiction, let us suppose that G
contains a strongly embedded subgroup M. By Fact 6.4 (1) and (2), M° is a
generous Borel subgroup of G.

By Fact 2.14, every 2-element in a group of odd type is contained in the connected
component of its centralizer. It then follows from Fact 6.3 (1) that M° contains all
the 2-elements of M. Thus M/M?° is of odd order.
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Next, we prove that W(G) is of odd order. Let C be a Carter subgroup of
Me°. By Lemma 3.9, C is also a Carter subgroup of G, and Facts 2.18 (2) and
(4) show that C contains a maximal 2-torus of G. Thus, the Sylow 2-subgroup T
of C' is nontrivial, and since T is characteristic in C, Fact 6.3 (1) implies that M
contains Ng(C). Since C is self-normalizing in M° by Fact 2.18 (5), the quotient
N¢g(C)/C is isomorphic to a subgroup of M/M?°, which is of odd order by the
previous paragraph. It follows using Proposition 3.2 that W (G) is of odd order.

We show that M° is not nilpotent and that M is not connected. Since G has
odd type, I(Z(F(M?))) is finite, so it is central in M°, and Fact 6.4 (3) forces
I(Z(F(M°))) = (. Since F(M?°) is nilpotent, this implies I(F(M°)) = 0, and
M?° is not nilpotent since M/M?® is of odd order. Now, if M is connected, then
M/F(M) is abelian (Fact 2.11), and all the involutions of M have the same image
in M/F(M) by Fact 6.3 (3). But I(F(M)) = 0, so a Sylow 2-subgroup of M has
just one involution. This contradicts Fact 6.3 (2) since G has Priifer 2-rank at least
two, hence M is not connected.

At this stage, Theorem 3.12 yields a contradiction. As W(G) has odd order, the
remarks preceding Fact 3.11 show that we have avoided applications of [Del08] and
hence of [BCJOT7] as well. O
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