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On the Commuting variety of a reductive Lie algebra.

Introduction

In this note, the base field k is algebraically closed of characteristic 0, g is a reductive Lie algebra of finite dimension, ℓ is its rank, and G is its adjoint group.

1.1. The dual of g identifies to g by a non degenerate symmetric bilinear form on g extending the Killing form of the derived algebra of g. Denote by (v, w) → v, w this bilinear form and denote by I g the ideal of k[g × g] generated by the functions (x, y) → v, [x, y] 's with v in g. The commuting variety C(g) of g is the subvariety of elements (x, y) of g × g such that [x, y] = 0. It is the underlying variety to the subscheme S(g) of g × g defined by I g . It is a well known and long standing open question whether or not this scheme is reduced, that is C(g) = S(g). According to Richardson [START_REF] Richardson | Commuting varieties of semisimple Lie algebras and algebraic groups[END_REF], C(g) is irreducible and according to Popov [Po08, Theorem 1], the singular locus of S(g) has codimension at least 2 in C(g). Then, according to Serre's normality criterion, arises the question to know whether or not C(g) is normal. There are many results about the commuting variety. A result of Dixmier [START_REF] Dixmier | Champs de vecteurs adjoints sur les groupes et algèbres de Lie semi-simples[END_REF] proves that I g contains all the elements of the radical of I g which have degree 1 in the second variable. In [Ga-Gi06], Gan and Ginzburg prove that for g simple of type A, the invariant elements under G of I g is a radical ideal of the algebra k[g × g] G of invariant elements of k[g × g] under G. In [START_REF] Ginzburg | Isospectral commuting variety, the Harish-Chandra D-module, and principal nilpotent pairs[END_REF], Ginzburg proves that the normalisation of C(g) is Cohen-Macaulay.

1.2. Main results and sketch of proofs. According to the identfication of g and its dual, k[g × g] equals the symmetric algebra S(g × g) of g × g. The main result of this note is the following theorem:

Theorem 1.1. The subscheme of g × g defined by I g is Cohen-Macaulay and normal. Furthermore, I g is a prime ideal of S(g × g).

According to Richardson's result and Popov's result, it suffices to prove that the scheme S(g) is Cohen-Macaulay. The main idea of the proof in the theorem uses the main argument of the Dixmier's proof: for a finitely generated module M over S(g × g), M = 0 if the codimension of its support is at least l + 2 with l the projective dimension of M (see Appendix A).

Introduce the characteristic submodule of g, denoted by B g . By definition, B g is a submodule of S(g × g) ⊗ k g and an element ϕ of S(g × g) ⊗ k g is in B g if and only if for all (x, y) in g × g, ϕ(x, y) is in the sum of subspaces g ax+by with (a, b) in k 2 \ {0} and g ax+by the centralizer of ax + by in g. According to a Bolsinov's result, B g is a free S(g × g)-module of rank b g , the dimension of the Borel subalgebras of g. Moreover, the orthogonal complement of B g in S(g × g) ⊗ k g is a free S(g × g)-module of rank b gℓ. These two results are fundamental in the proof of the following proposition: Proposition 1.2. For i positive integer, the submodule i (g) ∧ b g (B g ) of S(g × g) ⊗ k i+b g (g) has projective dimension at most i.

Denoting by E the quotient of S(g × g) ⊗ k g by B g , let E i be the quotient of i (E) by its torsion module. The S(g × g)-modules i (g) ∧ b g (B g ) and E i are isomorphic. Furthermore, for i ≥ 2, E i is isomorphic to a direct factor of the quotient of E ⊗ S(g×g) E i-1 by its torsion module. Denoting by E i-1 this quotient, the projective dimension of E i-1 is at most

d i-1 + 1 if d i-1 is the projective dimension of E i-1
, whence a proof of the proposition by induction on i.

Let d be the S(g × g)-derivation of the algebra S(g × g) ⊗ k (g) such that for all v in g, dv is the function on g × g, (x, y) → v, [x, y] . Then the ideal of S(g × g) ⊗ k (g) generated by b g (B g ) is a graded subcomplex of the graded complex S(g × g) ⊗ k (g). The support of the homology of this complex is contained in C(g). Then we deduce from Proposition 1.2 that this complex has no homology in degree different from b g and k[C(g)] is Cohen-Macaulay by Auslander-Buchsbaum's theorem.

Notations.

• For V a module over a k-algebra, its symmetric and exterior algebras are denoted by S(V) and (V) respectively. If E is a subset of V, the submodule of V generated by E is denoted by span(E). When V is a vector space over k, the grassmannian of all d-dimensional subspaces of V is denoted by Gr d (V).

• All topological terms refer to the Zariski topology. If Y is a subset of a topological space X, denote by

Y the closure of Y in X. For Y an open subset of the algebraic variety X, Y is called a big open subset if the codimension of X \ Y in X is at least 2.
For Y a closed subset of an algebraic variety X, its dimension is the biggest dimension of its irreducible components and its codimension in X is the smallest codimension in X of its irreducible components. For X an algebraic variety, k[X] is the algebra of regular functions on X.

• All the complexes considered in this note are graded complexes over Z of vector spaces and their differentials are homogeneous of degree -1 and they are denoted by d. As usual, the gradation of the complex is denoted by C • .

• The dimension of the Borel subalgebras of g is denoted by b g . Set n := b gℓ so that dim g = 2b gℓ g = 2n + ℓ.

• The dual g * of g identifies with g by a given non degenerate, invariant, symmetric bilinear form ., . on g × g extending the Killing form of [g, g].

• For x ∈ g, denote by g x the centralizer of x in g. The set of regular elements of g is

g reg := {x ∈ g | dim g x = ℓ}.
The subset g reg of g is a G-invariant open subset of g. According to [V72], g \ g reg is equidimensional of codimension 3.

• Denote by S(g) g the algebra of g-invariant elements of S(g). Let p 1 , . . . , p ℓ be homogeneous generators of S(g) g of degree d 1 , . . . , d ℓ respectively. Choose the polynomials p 1 , . . . , p ℓ so that

d 1 ≤ • • • ≤ d ℓ .
For i = 1, . . . , ℓ and (x, y) ∈ g × g, consider a shift of p i in direction y: p i (x + ty) with t ∈ k. Expanding p i (x + ty) as a polynomial in t, one obtains

p i (x + ty) = d i m=0 p (m) i (x, y)t m ; ∀(t, x, y) ∈ k × g × g (1)
where y → (m!)p (m) i (x, y) is the derivative at x of p i at the order m in the direction y. The elements p (m) i defined by (1) are invariant elements of S(g) ⊗ k S(g) under the diagonal action of G in g × g. Remark that p (0) i (x, y) = p i (x) while p (d i ) i (x, y) = p i (y) for all (x, y) ∈ g × g.

Remark 1.3. The family P x := {p (m) i (x, .);

1 ≤ i ≤ ℓ, 1 ≤ m ≤ d i } for x ∈ g, is a
Poisson-commutative family of S(g) by Mishchenko-Fomenko [START_REF] Mishchenko | Euler equations on Lie groups[END_REF]. One says that the family P x is constructed by the argument shift method.

• Let i ∈ {1, . . . , ℓ}. For x in g, denote by ε i (x) the element of g given by

ε i (x), y = d dt p i (x + ty) | t=0
for all y in g. Thereby, ε i is an invariant element of S(g) ⊗ k g under the canonical action of G. According to [Ko63, Theorem 9], for x in g, x is in g reg if and only if ε 1 (x), . . . , ε ℓ (x) are linearly independent. In this case, ε 1 (x), . . . , ε ℓ (x) is a basis of g x . Denote by ε (m) i , for 0 ≤ m ≤ d i -1, the elements of S(g × g) ⊗ k g defined by the equality:

ε i (x + ty) = d i -1 m=0 ε (m) i (x, y)t m , ∀(t, x, y) ∈ k × g × g (2)
and set: V x,y := span({ε i (x, y) (0) , . . . , ε i (x, y) (d i -1) , i = 1, . . . , ℓ}) for (x, y) in g × g.

Characteristic module

For (x, y) in g × g, set:

V ′ x,y = (a,b)∈k 2 \{0}
g ax+by , and denote by P x,y the span of x and y. By definition, the characteristic module B g of g is the submodule of elements ϕ of S(g × g) ⊗ k g such that ϕ(x, y) is in V ′ x,y for all (x, y) in g × g. In this section, some properties of B g are given.

2.1. Denote by Ω g the subset of elements (x, y) of g × g such that P x,y has dimension 2 and such that P x,y \ {0} is contained in g reg . According to [CMo08, Corollary 10], Ω g is a big open subset of g × g.

Proposition 2.1. Let (x, y) be in g × g such that P x,y ∩ g reg is not empty.

( 

[x, V x,y ] is the orthogonal complement of V x,y in g. (v) The space V x,y is contained in V ′ x,y . Moreover, V x,y = V ′ x,y if (x, y) is in Ω g . (vi) For i = 1, . . . , ℓ and for m = 0, . . . , d i -1, ε (m) i is a G-equivariant map. Proof. (i) For pairwise different elements t i,1 , . . . , t i,d i -1 , i = 1, . . . , ℓ of k \ {0}, the ε (m)
i (x, y)'s, m = 0, . . . , d i -1 are linear combinations of the ε i (x + t i, j y)'s, j = 1, . . . , d i -1 for i = 1, . . . , ℓ. Furthermore, for all z in g reg , ε 1 (z), . . . , ε ℓ (z) is a basis of g z by [Ko63, Theorem 9], whence the assertion since the maps ε 1 , . . . , ε ℓ are homogeneous.

(ii) Let O be an open subset of (k \ {0}) 2 such that ax + by is in g reg for all (a, b) in O. For all (a, b) in O, [x, g ax+by ] = [y, g ax+by ] since [ax + by, g ax+by ] = 0 and since ab 0, whence the assertion by (i).

(iii) According to [Bou02, Ch. V, §5, Proposition 3],

d 1 + • • • + d ℓ = b g . So V x,y has dimension at most b g . By [Bol91, Theorem 2.1], V x,y has dimension b g if and only if (x, y) is in Ω g . (iv) According to [Bol91, Theorem 2.1], V x,
y is a totally isotropic subspace with respect to the skew bilinear form on g

(v, w) -→ ax + by, [v, w] for all (a, b) in k 2 . As a result, by invariance of ., . , V x,y is orthogonal to [x, V x,y ]. If (x, y) is in Ω g , g x has dimension ℓ and it is contained in V x,y . Hence, by (iii), dim [x, V x,y ] = b g -ℓ = dim g -dim V x,y so that [x, V x,y ] is the orthogonal complement of V x,y in g. Conversely, if [x, V x,y ] is the orhogonal com- plement of V x,y in g, then dim V x,y + dim [x, V x,y ] = dim g.
Since P x,y ∩ g reg is not empty, g ax+by ∩ V x,y has dimension ℓ for all (a, b) in a dense open subset of k 2 . By continuity, g x ∩ V x,y has dimension at least ℓ so that 2dim V x,yℓ ≥ dim g.

Hence, by (iii), (x, y) is in Ω g . (v) According to [Ko63, Theorem 9], for all z in g and for i = 1, . . . , ℓ, ε i (z) is in g z . Hence for all t in k,

ε i (x + ty) is in V ′ x,y . So ε (m) i (x, y) is in V ′ x,y for all m, whence V x,y ⊂ V ′ x,y . Suppose that (x, y) is in Ω g . According to [Ko63, Theorem 9], for all (a, b) in k 2 \ {0}, ε 1 (ax + by), . . . , ε ℓ (ax + by
) is a basis of g ax+by . Hence g ax+by is contained in V x,y , whence the assertion.

(vi) Let i be in {1, . . . , ℓ}.

Since p i is G-invariant, ε i is a G-equivariant map. As a result, its 2- polarizations ε (0) i , . . . , ε (d i -1) i are G-equivariant under the diagonal action of G in g × g.
Theorem 2.2. (i) The module B g is a free module of rank b g whose a basis is the sequence

ε (0) i , . . . , ε (d i -1) i , i = 1, . . . , ℓ. (ii) For ϕ in S(g × g) ⊗ k g, ϕ is in B g if and only if pϕ ∈ B g for some p in S(g × g) \ {0}. (iii) For all ϕ in B g and for all (x, y) in g × g, ϕ(x, y) is orthogonal to [x, y].
Proof. (i) and (ii) According to Proposition 2.1,(v), ε (m) i is in B g for all (i, m). Moreover, according to Proposition 2.1,(iii), these elements are linearly independent over S(g × g). Let ϕ be an element of

S(g × g) ⊗ k g such that pϕ is in B g for some p in S(g × g) \ {0}. Since Ω g is a big open subset of g × g, for all (x, y) in a dense open subset of Ω g , ϕ(x, y) is in V x,y by Proposition 2.1,(v). According to Proposition 2.1,(iii), the map Ω g -→ Gr b g (g), (x, y) -→ V x,y
is regular. So, ϕ(x, y) is in V x,y for all (x, y) in Ω g and for some regular functions a i,m , i = 1, . . . , ℓ, m = 0, . . . ,

d i -1 on Ω g , ϕ(x, y) = ℓ i=1 d i -1 m=0 a i,m (x, y)ε (m) i (x, y)
for all (x, y) in Ω g . Since Ω g is a big open subset of g × g and since g × g is normal, the a i,m 's have a regular extension to g × g. Hence ϕ is a linear combination of the ε (m) i 's with coefficients in S(g × g). As a result, the sequence ε (m) i , i = 1, . . . , ℓ, m = 0, . . . , d i -1 is a basis of the module B g and B g is the subset of elements ϕ of S(g × g) ⊗ k g such that pϕ ∈ B g for some p in S(g × g) \ {0}.

(iii) Let ϕ be in B g . According to (i) and Proposition 2.1,(iv), for all (x, y) in Ω g , [x, ϕ(x, y)] is orthogonal to V x,y . Then, since y is in V x,y , [x, ϕ(x, y)] is orthogonal to y and ϕ(x, y), [x, y] = 0, whence the assertion.

2.2. Also denote by ., . the natural extension of ., . to the module S(g × g) ⊗ k g.

Proposition 2.3. Let C g be the orthogonal complement of B g in S(g × g) ⊗ k g. (i) For ϕ in S(g × g) ⊗ k g, ϕ is in C g if and only if ϕ(x, y) is in [x, V x,y ] for all (x, y) in a nonempty open subset of g × g.
(ii) The module C g is free of rank b gℓ. Furthermore, the sequence of maps

(x, y) → [x, ε (1) i (x, y)], . . . , (x, y) → [x, ε (d i -1) i (x, y)], i = 1, . . . , ℓ is a basis of C g . (iii) The orthogonal complement of C g in S(g × g) ⊗ k g equals B g . Proof. (i) Let ϕ be in S(g × g) ⊗ k g. If ϕ is in C g , then ϕ(x, y) is orthogonal to V x,y for all (x, y) in Ω g .
Then, according to Proposition 2.1,(iv), ϕ(x, y) is in [x, V x,y ] for all (x, y) in Ω g . Conversely, suppose that ϕ(x, y) is in [x, V x,y ] for all (x, y) in a nonempty open subset V of g × g. By Proposition 2.1,(iv) again, for all (x, y) in V ∩ Ω g , ϕ(x, y) is orthogonal to the ε (m) i (x, y)'s, i = 1, . . . , ℓ, m = 0, . . . , d i -1, whence the assertion by Theorem 2.1.

(ii) Let C be the submodule of S(g × g) ⊗ k g generated by the maps

(x, y) → [x, ε (1) i (x, y)], . . . , (x, y) → [x, ε (d i -1) i (x, y)], i = 1, . . . , ℓ
According to (i), C is a submodule of C g . This module is free of rank b gℓ since [x, V x,y ] has dimension b gℓ for all (x, y) in Ω g by Proposition 2.1, (iii) and (iv). According to (i), for ϕ in C g , for all (x, y) in Ω g ,

ϕ(x, y) = ℓ i=1 d i -1 m=1 a i,m (x, y)[x, ε (m) i (x, y)]
with the a i,m 's regular on Ω g and uniquely defined by this equality. Since Ω g is a big open subset of g × g and since g × g is normal, the a i,m 's have a regular extension to g × g. As a result, ϕ is in C, whence the assertion.

(iii) Let ϕ be in the orthogonal complement of C g in S(g × g) ⊗ k g. According to (ii), for all (x, y) in Ω g , ϕ(x, y) is orthogonal to [x, V x,y ]. Hence by Proposition 2.1,(iv), ϕ(x, y) is in V x,y for all (x, y) in Ω g . So, by Theorem 2.1, ϕ is in B g , whence the assertion.

Denote by B and C the localizations of B g and C g on g × g respectively. For (x, y) in g × g, let C x,y be the image of C g by the evaluation map at (x, y).

Lemma 2.4. There exists an affine open cover O of Ω g verifying the following condition: for all O in O,

there exist some subspaces E and F of g, depending on O, such that

g = E ⊕ V x,y = F ⊕ C x,y
for all (x, y) in O. Moreover, for all (x, y) in O, the orthogonal complement of V x,y in g equals C x,y .

Proof. According to Proposition 2.1,(iii) and (iv), for all (x, y) in Ω g , V x,y and C x,y have dimension b g and b gℓ respectively so that the maps

Ω g -→ Gr b g (g), (x, y) -→ V x,y , Ω g -→ Gr b g -ℓ (g), (x, y) -→ C x,y
are regular, whence the assertion.

Torsion and projective dimension

Let E and E # be the quotients of S(g × g) ⊗ k g by B g and C g respectively. For i positive integer, denote by E i the quotient of i (E) by its torsion module.

Let B *

g and C * g be the duals of B g and C g respectively.

Lemma 3.1. (i) The S(g × g)-modules E and E # have projective dimension at most 1.

(ii) The S(g × g)-modules E and E # are torsion free.

(iii) The modules C g and B g are the duals of E and E # respectively.

(iv) The canonical morphism from E to C * g is an embedding.

Proof. (i) By definition, the short sequences of S(g × g)-modules, 

0 -→ B g -→ S(g × g) ⊗ k g -→ E -→ 0 0 -→ C g -→ S(g × g) ⊗ k g -→ E # -→
× g) ⊗ k g, ϕ is in C g if pϕ is in C g for some p in S(g × g) \ {0}
, whence E # is torsion free.

(iii) According to the exact sequences of (i), the dual of E is the orthogonal complement of B g in S(g × g) ⊗ k g and the dual of E # is the orthogonal complement of C g in S(g × g) ⊗ k g, whence the assertion since C g is the orthogonal complement of B g in S(g × g) ⊗ k g by definition and since B g is the orthogonal complement of C g in S(g × g) ⊗ k g by Proposition 2.3,(iii).

(iv) Let ω be in the kernel of the canonical morphism from E to C * g . Let ω be a representative of ω in S(g × g) ⊗ k g. According to Proposition 2.3,(iii), B g is the orthogonal complement of C g in S(g × g) ⊗ k g so that ω is in B g , whence the assertion.

Set:

ε = ∧ ℓ i=1 ε (0) i ∧ • • • ∧ ε (d i -1)
i and for i positive integer, denote by θ i the morphism

S(g × g) ⊗ k i (g) -→ i (g) ∧ b g (B g ), ϕ -→ ϕ ∧ ε.
Proposition 3.2. Let i be a positive integer.

(i) The morphism θ i defines through the quotient an isomorphism from E i onto i (g) ∧ b g (B g ).

(ii) The short sequence of S(g × g)-modules

0 -→ B g ⊗ S(g×g) E i -→ g ⊗ k E i -→ E ⊗ S(g×g) E i -→ 0 is exact.
Proof. (i) For j positive integer, denote by π j the canonical map from S(g × g) ⊗ k j (g) to j (E). Let ω be in the kernel of π i . Let O be an element of the affine open cover of Ω g of Lemma 2.4 and let W be a subspace of g such that g = W ⊕ V x,y for all (x, y) in O so that π 1 induces an isomorphism

k[O] ⊗ k W -→ k[O] ⊗ S(g×g) E
Moreover, B g is the kernel of π 1 . Then, from the equality

k[O] ⊗ k i (g) = i j=0 j (W) ∧ k[O] ⊗ S(g×g) i-j (B g ) it results that the restriction of ω to O is in k[O] ⊗ S(g×g) i-1 (g) ∧ B g .
Hence the restriction of ω ∧ ε to O equals 0 and ω is in the kernel of θ i since i (g) ∧ b g (B g ) has no torsion as a submodule of a free module. As a result, θ i defines through the quotient a morphism from i (E) to i (g) ∧ b g (B g ). Denote it by ϑ ′ i . Since i (g) ∧ b g (B g ) is torsion free, the torsion submodule of i (E) is contained in the kernel of ϑ ′ i . Hence ϑ ′ i defines through the quotient a morphism from E i to i (g) ∧ b g (B g ). Denoting it by ϑ i , ϑ ′ i and ϑ i are surjective since too is θ i .

Let ω be in the kernel of ϑ ′ i and let ω be a representative of ω in S(g × g)

⊗ k i (g). Then ω ∧ ε = 0 so that the restriction of ω to the above open subset O is in k[O] ⊗ S(g×g) i-1 (g) ∧ B g .
As a result, the restriction of ω to O equals 0. So, ω is in the torsion submodule of i (E), whence the assertion.

(ii) By definition, the sequence

0 -→ B g -→ S(g × g) ⊗ k g -→ E -→ 0 is exact. Then the sequence Tor S(g×g) 1 (E, E i ) -→ B g ⊗ S(g×g) E i -→ g ⊗ k E i -→ E ⊗ S(g×g) E i -→ 0
is exact. By definition, E i is torsion free. As a result, B g ⊗ S(g×g) E i is torsion free since B g is a free module. Then, since Tor S(g×g) 1 (E, E i ) is a torsion module, its image in B g ⊗ S(g×g) E i equals 0, whence the assertion.

3.2.

For i positive integer, ., . has a canonical extension to S(g × g) ⊗ k i (g) denoted again by ., . .

Lemma 3.3. Let i be a positive integer. Let T i be the torsion module of E ⊗ S(g×g) E i and let T ′ i be its inverse image by the canonical morphism

g ⊗ k E i → E ⊗ S(g×g) E i .
(i) The canonical morphism from i (E) to i (C * g ) defines through the quotient an embedding of E i into i (C * g ). (ii) The module of T ′ i is the intersection of g ⊗ k E i and B g ⊗ S(g×g) i (C * g ). (iii) The module T ′ i is isomorphic to Hom S(g×g) (E # , E i ). Proof. (i) According to Lemma 3.1,(iii), there is a canonical morphism from i (E) to i (C * g ). Let ω be in its kernel and let ω be a representative of ω in S(g × g) ⊗ k i (g). Then ω is orthogonal to i (C g ) with respect to ., . . So for O as in Lemma 2.4, the restriction of

ω to O is in k[O] ⊗ S(g×g) i-1 (g) ∧ B g .
Hence the restriction of ω to O equals 0. In other words, ω is in the torsion module of i (E), whence the assertion since i (C * g ) is a free module. (ii) Since i (C * g ) is a free module, by Proposition 3.2,(ii), there is a morphism of short exact sequences 0

/ / B g ⊗ S(g×g) E i / / g ⊗ k E i / / E ⊗ S(g×g) E i / / 0 0 / / B g ⊗ S(g×g) i (C * g ) / / g ⊗ k i (C * g ) / / E ⊗ S(g×g) i (C * g ) / / 0
Moreover, the two first vertical arrows are embeddings. Hence T ′ i is the intersection of g ⊗ k E i and B g ⊗ S(g×g) i (C * g ) in g ⊗ k i (C * g ). (iii) According to the identification of g with its dual, g ⊗ k E i = Hom k (g, E i ). Moreover, according to the short exact sequence of S(g × g)-modules

0 -→ C g -→ S(g × g) ⊗ k g -→ E # -→ 0 the sequence of S(g × g)-modules 0 -→ Hom S(g×g) (E # , E i ) -→ Hom k (g, E i ) -→ Hom S(g×g) (C g , E i ) -→ Ext 1 S(g×g) (E # , E i )
is exact. For ϕ in Hom S(g×g) (S(g × g) ⊗ k g, E i ), ϕ is in the kernel of the third arrow if and only if C g is contained in the kernel of ϕ. On the other hand, according to the identification of g and its dual, Hom k (g, i (C * g ) identifies with g ⊗ k i (C * g ). By Proposition 2.3, B g is the orthogonal complement of C g in S(g × g) ⊗ k g and C * g is a free S(g × g)-module. So, for ψ in Hom S(g×g) (S(g × g) ⊗ k g, i (C * g )), ψ equals 0 on C g if and only if it is in B g ⊗ S(g×g) i (C * g ), whence the assertion by (ii).

The following corollary results from Lemma 3.3.

Corollary 3.4. Let i be a positive integer and let E i be the quotient of E ⊗ S(g×g) E i by its torsion module.

Then the short sequence of S(g × g)-modules 

0 -→ Hom S(g×g) (E # , E i ) -→ g ⊗ k E i -→ E i -→ 0 is exact.
-→ C g -→ S(g × g) ⊗ k g -→ E # -→ 0 one deduces the exact sequence 0 -→ Hom S(g×g) (E # , M) -→ Hom k (g, M) -→ Hom S(g×g) (C g , M) -→ Ext 1 S(g×g) (E # , M) -→ 0.
Since C g is a free module, Hom S(g×g) (C g , M) is functorially isomorphic to C * g ⊗ S(g×g) M. Then by the right exactness of the functor A g ⊗ S(g×g) •, there is an isomorphism of exact sequences Hom k (g, M)

/ / Hom S(g×g

) (C g , M) / / Ext 1 S(g×g) (E # , M) / / 0 g ⊗ k M / / δ 0 O O C * g ⊗ S(g×g) M / / δ 1 O O A g ⊗ S(g×g) M / / δ O O 0
Since the two sequences depends functorially on M, from the isomorphisms of functors

g ⊗ k • -→ Hom k (g, •), C * g ⊗ S(g×g) • -→ Hom S(g×g) (C g , •)
, we deduce that the restrictions to Mod S(g×g) (0) of the functors Ext 1 S(g×g) (E # , •) and A g ⊗ S(g×g) • are isomorphic.

Suppose the statement true for d -1. Setting Q := ι(S(g × g) ⊗ k g), one has two short exact sequences

0 -→ B g -→ S(g × g) ⊗ k g -→ Q -→ 0, 0 -→ Q -→ C * g -→ A g -→ 0.
Since E # has projective dimension at most 1 by Lemma 3.1, Ext 2 S(g×g) (E # , Z) = 0. Then, by induction hypothesis, one has a commutative diagram

0 0 0 Ext 1 S(g×g) (E # , Z) d / / O O Ext 1 S(g×g) (E # , P) d / / O O Ext 1 S(g×g) (E # , M) / / O O 0 0 / / C * g ⊗ S(g×g) Z d / / δ O O C * g ⊗ S(g×g) P d / / δ O O C * g ⊗ S(g×g) M / / δ M O O 0 Q ⊗ S(g×g) Z d / / δ O O Q ⊗ S(g×g) P d / / δ O O Q ⊗ S(g×g) M / / δ O O 0
with exact lines and columns since C * g is a free module. Let a and a ′ be in C * g ⊗ S(g×g) P such that da

= da ′ . Then a -a ′ = da 1 with a 1 in C * g ⊗ S(g×g) Z so that d•δa -d•δa ′ = d•δ•da 1 = 0 whence a morphism C * g ⊗ S(g×g) M δ M -→ Ext 1 S(g×g) (E # , M) uniquely defined by the equality δ M •d = d•δ. Let a be in Ext 1 S(g×g) (E # , M). Then a = d•δa 1 = δ M •da 1 with a 1 ∈ C * g ⊗ S(g×g) P. Hence δ M is surjective. Let b be in the kernel of δ M . Then b = db 1 , d•δb 1 = 0, δb 1 = d•δb 2 with b 1 ∈ C * g ⊗ S(g×g) P, b 2 ∈ C * g ⊗ S(g×g) Z.
so that b 1db 2 = δb 3 with b 3 in Q ⊗ S(g×g) P, whence b = δ•db 3 . As a result, the above diagram is canonically completed by an exact third column and one has an isomorphism of short exact sequences

Ext 1 S(g×g) (E # , Z) / / Ext 1 S(g×g) (E # , P) / / Ext 1 S(g×g) (E # , M) / / 0 A g ⊗ S(g×g) Z / / O O A g ⊗ S(g×g) P / / O O A g ⊗ S(g×g) M / / O O 0 .
Since the two sequences depends functorially on the short exact sequence 0 -→ Z -→ P -→ M -→ 0 and since the restrictions to Mod S(g×g) (d -1) of the two functors Ext 1 S(g×g) (E # , •) and A g ⊗ S(g×g) • are isomorphic, too is their restrictions to Mod S(g×g) (d), whence the lemma since all object of Mod S(g×g) has a finite projective dimension.

From the exact sequence,

0 -→ B g -→ S(g × g) ⊗ k g -→ C * g -→ A g -→ 0, we deduce the graded homology complex, 0 -→ B g ⊗ S(g×g) E i -→ g ⊗ k E i -→ C * g ⊗ S(g×g) E i -→ A g ⊗ S(g×g) E i -→ 0 denoted by C • .
For i positive integer, let d i and d ′ i be the projective dimensions of E i and Hom S(g×g) (E # , E i ). Lemma 3.6. Let Q be the space of cycles of degree 2 of the complex C • .

(i) Denoting by d ′′ i the projective dimension of Ext 1 S(g×g

) (E # , E i ), d ′ i is at most sup{d ′′ i -2, d i }. (ii)
The complex C • has no homology in degree 0, 1 and 3. Moreover, Q identifies with Hom S(g×g) (E # , E i ). (iii) The module Hom S(g×g) (E # , E i ) has projective dimension at most d i .

Proof. (i) From the short exact sequence

0 -→ C g -→ S(g × g) ⊗ k g -→ E # -→ 0 one deduces the exact sequence 0 -→ Hom S(g×g) (E # , E i ) -→ Hom k (g, E i ) -→ Hom S(g×g) (C g , E i ) -→ Ext 1 S(g×g) (E # , E i ) -→ 0 whence the two short exact sequences 0 -→ Hom S(g×g) (E # , E i ) -→ Hom k (g, E i ) -→ Z -→ 0 0 -→ Z -→ Hom S(g×g) (C g , E i ) -→ Ext 1 S(g×g) (E # , E i ) -→ 0 with Z the image of the arrow Hom k (g, E i ) -→ Hom S(g×g) (C g , E i )
Denoting by d the projective dimension of Z, one deduces the inequalities

d ′ i ≤ sup{d -1, d i }, d ≤ sup{d ′′ i -1, d i } since C g
is a free module, whence the assertion.

(ii) By right exactness of the functor • ⊗ S(g×g) E i , C • has no homology in degree 0 and 1. Moreover, its space of cycles of degree 3 is a torsion submodule of C 3 . Since E i is torsion free and since B g is free, C 3 has no torsion. Hence C • has no homology in degree 3. According to Lemma 3.3,(ii) and (iii), Hom S(g×g) (E # , E i ) identifies with a submodule of g ⊗ k E i . According to these identifications, Q is the space of morphisms from S(g × g) ⊗ k g to E i , equal to 0 on C g , that is Q = Hom S(g×g) (E # , E i ).

(iii) By (ii), one has a short exact sequence

0 -→ Hom S(g×g) (E # , E i ) -→ C * g ⊗ S(g×g) E i -→ A g ⊗ S(g×g) E i -→ 0. So, A g ⊗ S(g×g) E i has projective dimension at most sup{d ′ i + 1, d i }. According to Lemma 3.5, A g ⊗ S(g×g) E i and Ext 1 S(g×g) (E # , E i ) are isomorphic. So by (i), d ′ i ≤ sup{d ′ i -1, d i }, whence d ′ i ≤ d i .
The following corollary results from Corollary 3.4 and Lemma 3.6,(iii), since B g is free.

Corollary 3.7. Let i be a positive integer. Then E i has projective dimension at most d i + 1.

3.4.

For i a positive integer and for M a S(g × g)-module, let consider on M ⊗i the canonical action of the symmetric group S i . For σ in S i , denote by ǫ(σ) its signature. Let M ⊗i sign be the submodule of elements a of M ⊗i such that σ.a = ǫ(σ)a for all σ in S i and let δ i be the endomorphism of M ⊗i ,

a -→ δ i (a) = 1 i! σ∈S i ǫ(σ)σ.a.
Then δ i is a projection of M ⊗i onto M ⊗i sign . For L submodule of C * g , denote by L i the image of L ⊗i by the canonical map from L ⊗i to (C * g ) ⊗i and set L i,sign := L i ∩ (C * g ) ⊗i sign . Let i (L) be the quotient of i (L) by its torsion module. For i ≥ 2, identify S i-1 with the stabilizer of i in S i and denote by L i-1,sign,1 the submodule of elements a of L i such that σ.a = ǫ(σ)a for all σ in S i-1 . Lemma 3.8. Let i be a positive integer and let L be a submodule of C * g . (i) The module L i is isomorphic to the quotient of L ⊗i by its torsion module. (ii) The module L i,sign is isomorphic to i (L). (iii) For i ≥ 2, the module L i,sign is a direct factor of L i-1,sign,1 .

(iv) For i ≥ 2, the module L i-1,sign,1 is isomorphic to the quotient of i-1 (L) ⊗ S(g×g) L by its torsion module.

Proof. (i) Let L 1 and L 2 be submodules of a free module F over S(g × g). From the short exact sequence

0 -→ L 2 -→ F -→ F/L 2 -→ 0 one deduces the exact sequence Tor 1 S(g×g) (L 1 , L 2 ) -→ L 1 ⊗ S(g×g) L 2 -→ L 1 ⊗ S(g×g) F -→ L 1 ⊗ S(g×g) (F/L 2 ) -→ 0.
Since F is free, L 1 ⊗ S(g×g) F is torsion free. Hence the kernel of the second arrow is the torsion module of L 1 ⊗ S(g×g) L 2 since Tor 1 S(g×g) (L 1 , L 2 ) is a torsion module, whence the assertion by induction on i. (ii) There is a commutative diagram

L ⊗i / / δ i (C * g ) ⊗i δ i L ⊗i sign / / (C * g ) ⊗i
sign so that L i,sign is the image of L ⊗i sign by the canonical morphism L ⊗i -→ (C * g ) ⊗i , whence a commutative diagram

L ⊗i sign / / i (L) (C * g ) ⊗i sign / / i (C * g )
According to (i), the kernel of the left down arrow is the torsion module of L ⊗i sign so that the kernel of the right down arrow is the torsion module of i (L) since the horizontal arrows are isomorphisms. Moreover, the image of

L i,sign in i (C * g ) is the image of i (L). Hence i (L) is isomorphic to L i,sign . (iii) Denote by Q i the kernel of the endomorphism δ i of (C * g ) ⊗i . Since δ i is a projection onto (C * g ) ⊗i sign such that δ i (L i ) is contained in L i,sign , (C * g ) ⊗i = (C * g ) ⊗i sign ⊕ Q i , L i = L i,sign ⊕ Q i ∩ L i whence L i-1,sign,1 = L i,sgn ⊕ Q i ∩ L i-1,sign,1 since L i,sign is a submodule of L i-1,sign,1 . (iv) Let L ′ i be the image of L i-1,sign,1 by the canonical morphism (C * g ) ⊗i → i-1 (C * g ) ⊗ S(g×g) C * g . Then L ′ i is contained in i-1 (C * g ) ⊗ S(g×g) L since i-1 (C * g ) ⊗ S(g×g) L is a submodule of i-1 (C * g ) ⊗ S(g×g) C * g . Moreover, the morphism L i-1,sign,1 → L ′ i is an isomorphism since too is the morphism (C * g ) ⊗(i-1) sign ⊗ S(g×g) C * g -→ i-1 (C * g ) ⊗ S(g×g) C * g . From (ii), it results the commutative diagram L ⊗(i-1) sign ⊗ S(g×g) L / / i-1 (L) ⊗ S(g×g) L L i-1,sign,1 / / L ′ i
with the right down arrow surjective. According to (i), the kernel of the left down arrow is the torsion module of L ⊗(i-1)

sign ⊗ S(g×g) L. Hence the kernel of the right down arrow is the torsion module of i-1 (L)⊗ S(g×g) L, whence the assertion. Proposition 3.9. Let i be a positive integer. Then E i and i (g) ∧ b g (B g ) have projective dimension at most i.

Proof. According to Proposition 3.2,(i), the modules E i and i (g) ∧ b g (B g ) are isomorphic. Prove by induction on i that E i has projective dimension at most i. By Lemma 3.1,(i), it is true for i = 1. Suppose that it is true for i -1. According to Corollary 3.7, E i-1 has projective dimension at most i. By Lemma 3.8, for L = E, E i is a direct factor of E i-1 since E is a submodule of C * g by Lemma 3.1,(iv) and since E i = i (E). Hence E i has projective dimension at most i.

Main results

Let I g be the ideal of S(g × g) generated by the functions (x, y) → v, [x, y] with v in g. The nullvariety of I g in g × g is C(g). Let d be the S(g × g)-derivation of the algebra S(g × g) ⊗ k (g) such that dv is the function (x, y) → v, [x, y] on g × g for all v in g. The gradation on (g) induces a gradation on S(g × g) ⊗ k (g) so that S(g × g) ⊗ k (g) is a graded homology complex.

Lemma 4.1. Denote by C • (g) the graded submodule (g) ∧ b g (B g ) of S(g × g) ⊗ k (g). (i) The graded module C • (g) is a graded subcomplex of S(g × g) ⊗ k (g). (ii) The support of the homology of C • (g) is contained in C(g). Proof. (i) Set: ε := ∧ ℓ i=1 ε (0) i ∧ • • • ∧ ε (d i -1) i . Then C • (g) is the ideal of S(g × g) ⊗ k (g) generated by ε since ε (0) i , . . . , ε (d i -1) i , i = 1, .
. . , ℓ is a basis of B g by Theorem 2.2,(i). According to Theorem 2.2,(iii), for i = 1, . . . , ℓ and for m = 0, . . . , d i -1, ε (m) i is a cycle of the complex S(g × g) ⊗ k (g). Hence too is ε and C • (g) is a subcomplex of S(g × g) ⊗ k (g) as an ideal generated by a cycle.

(ii) Let (x 0 , y 0 ) be in g × g \ C(g) and let v be in g such that v, [x 0 , y 0 ] 0. For some affine open subset O of g × g, containing (x 0 , y 0 ), v, [x, y] 0 for all (x, y) in O. Then dv is an invertible element of k

[O]. For c a cycle of k[O] ⊗ S(g×g) C • (g), d(v ∧ c) = (dv)c so that c is a boundary of k[O] ⊗ S(g×g) C • (g).
Theorem 4.2. (i) The complex C • (g) has no homology in degree bigger than b g .

(ii) The ideal I g has projective dimension 2n -1.

(iii) The algebra S(g × g)/I g is Cohen-Macaulay.

(iv) The projective dimension of the module n (g) ∧ b g (B g ) equals n.

Proof. (i) Let Z be the space of cycles of degree b g + 1 of C • (g). Then we deduce from C • (g) the complex

0 -→ C 2n+ℓ (g) -→ • • • -→ C n+ℓ+2 (g) -→ Z -→ 0.
According to Lemma 4.1,(ii), the support of its homology is contained in C g . In particular, its codimension in g × g is 4n

+ 2ℓ -(2n + 2ℓ) = 2n = n + n -1 + 1
ψ of P j+1 whose image ψ ′ in H 0 (X, K j ) has the same restriction to X \ S as ϕ. Since P j is a projective module and since X is irreducible, P j is torsion free. Then ϕ = ψ ′ since ϕψ ′ is a torsion element of P j , whence the assertion.

(ii) Let R ′ be the localization of R ′ on X. Arguing as in (i), since S contains the support of R ′ /R and since 1 < pl, the short sequence 0 -→ H 0 (X \ S , K 0 ) -→ H 0 (X \ S , P 0 ) -→ H 0 (X \ S , R ′ ) -→ 0 is exact. Moreover, the restriction morphism from P 0 to H 0 (X/S , P 0 ) is an isomorphism since the codimension of S in X is at least 2 and since X is irreductible and normal. Let ϕ be in R ′ . Then for some ψ in P 0 , ϕε(ψ) is a torsion element of R ′ . So ϕ = ε(ψ) since R ′ is torsion free, whence the assertion.

Corollary A.3. Let C • be a homology complex of finite k[X]-modules whose length l is finite and positive. For j = 0, . . . , l, denote by Z j the space of cycles of degree j of C • . Suppose that the following conditions are verified:

(1) S contains the support of the homology of the complex C • , (2) for all i, C i is a submodule of a free module, (3) for i = 1, . . . , l, C i has projective dimension at most d, (4) X is normal and l + d ≤ p -1.

Then C • is acyclic and for j = 0, . . . , l, Z j has projective dimension at most l + dj -1.

Proof. Prove by induction on lj that the complex 0 -→ C l -→ • • • -→ C j+1 -→ Z j -→ 0 is acyclic and that Z j has projective dimension at most l + dj -1. For j = l, Z j equals zero since C l is torsion free by Condition (2) and since Z l a submodule of C l , supported by S by Condition (1). Suppose j ≤ l -1 and suppose the statement true for j + 1. By Condition (3), C j+1 has a projective resolution P • whose length is at most d and whose terms are finitely generated. By induction hypothesis, Z j+1 has a projective resolution Q • whose length is at most l + dj -2 and whose terms are finitely generated, whence an augmented complex R • of projective modules whose length is l + dj -1, 0 -→ Q l+d-j-2 ⊕ P l+d-j-1 -→ • • • -→ Q 0 ⊕ P 1 -→ P 0 -→ Z j -→ 0.

Denoting by d the differentials of Q • and P • , the restriction to Q i ⊕ P i+1 of the differential of R • is the map (x, y) → (dx, dy + (-1) i δ(x)), with δ the map which results from the injection of Z j+1 into C j+1 . Since P • and Q • are projective resolutions, the complex R • is a complex of projective modules having no homology in positive degree. Hence the support of the homology of the augmented complex R • is contained in S by Condition (1). Then, by Proposition A.2 and Condition (4), R • is a projective resolution of Z j of length l + dj -1 since Z j is a submodule of a free module by Condition (2), whence the corollary since Z 0 = C 0 by definition.

Remark A.4. Let D(X) be the bounded derived category of finite k[X]-modules. For E an object of D(X), denote by Supp(E) the union of the supports in X of the homology modules H i (E) of E. By definition, the homological dimension of E, written hd (E), is the smallest integer s such that E is quasi-isomorphic

3. 3 .

 3 Denote by Mod S(g×g) the category of finite S(g × g)-modules. Let ι be the morphismS(g × g) ⊗ k g -→ C * g , v -→ (µ → v,µ ) Lemma 3.5. Let A g be the quotient of C * g by ι(S(g × g) ⊗ k g). Then the two functors A g ⊗ S(g×g) • and Ext 1 S(g×g) (E # , •) of the category Mod S(g×g) are isomorphic. Proof. For d nonnegative integer, denote by Mod S(g×g) (d) the full subcategory of Mod S(g×g) whose objects are the modules of projective dimension at most d. Prove by induction on d that the restrictions to Mod S(g×g) (d) of the functors Ext 1 S(g×g) (E # , •) and A g ⊗ S(g×g) • are isomorphic. Let M be a finite S(g × g)module. Denoting by d its projective dimension, there is a short exact sequence 0 -→ Z -→ P -→ M -→ 0 with Z a module of projective dimension d -1 if d > 0 and Z = 0 otherwise. Suppose d = 0. Then, from the short exact sequence 0

  i) Let O be an open subset of k 2 such that ax + by is in g reg for all (a, b) in O. Then V x,y is the sum of the g ax+by 's, (a, b) ∈ O. (ii) The spaces [x, V x,y ] and [y, V x,y ] are equal. (iii) The space V x,y has dimension at most b g and the equality holds if and only if (x, y) is in Ω g . (iv) The space [x, V x,y ] is orthogonal to V x,y . Furthermore, (x, y) is in Ω g if and only if

  0 are exact. Hence E and E # have projective dimension at most 1 since B g and C g are free modules by Theorem 2.2 and Proposition 2.3,(ii).

(ii) 

The module E is torsion free by Theorem 2.2,(ii). By definition, for ϕ in S(g

According to Proposition 3.9, for i = n + ℓ + 2, . . . , 2n + ℓ, C i (g) has projective dimension at most n. Hence, by Corollary A.3, this complex is acyclic and Z has projective dimension at most 2n -2, whence the assertion.

(ii) and (iii) Since B g is a free module of rank b g , b g (B g ) is a free module of rank 1. By definition, the short sequence 0 -→ Z -→ g ∧ b g (B g ) -→ I g b g (B g ) -→ 0 is exact, whence the short exact sequence

Moreover, by Proposition 3.9, g ∧ b g (B g ) has projective dimension at most 1. Then, by (i), I g has projective dimension at most 2n -1. As a result the S(g × g)-module S(g × g)/I g has projective dimension at most 2n. Then by Auslander-Buchsbaum's theorem [Bou98, §3, n • 3, Théorème 1], the depth of the graded S(g × g)-module S(g × g)/I g is at least 4b g -2ℓ -2n = 2b g so that, according to [Bou98, §1, n • 3, Proposition 4], the depth of the graded algebra S(g × g)/I g is at least 2b g . In other words, S(g × g)/I g is Cohen-Macaulay since it has dimension 2b g . Moreover, since the graded algebra S(g × g)/I g has depth 2b g , the graded S(g × g)-module S(g × g)/I g has projective dimension 2n. Hence I g has projective dimension 2n -1. (iv) By (i), I g has projective dimension 2n -1. Hence, according to Proposition 3.9 and according to (ii) and Corollary A.3, n (g) ∧ b g (B g ) has projective dimension n.

Theorem 4.3. The subscheme of g × g defined by I g is Cohen-Macaulay and normal. Furthermore, I g is a prime ideal.

Proof. According to Theorem 4.2,(iii), the subscheme of g × g defined by I g is Cohen-Macaulay. According to [Po08, Theorem 1], it is smooth in codimension 1. So by Serre's normality criterion [Bou98, §1, n • 10, Théorème 4], it is normal. In particular, it is reduced and I g is radical. According to [START_REF] Richardson | Commuting varieties of semisimple Lie algebras and algebraic groups[END_REF], C(g) is irreducible. Hence I g is a prime ideal.

Appendix A. Projective dimension and cohomology

Recall in this section classical results. Let X be a Cohen-Macaulay irreducible affine algebraic variety and let S be a closed subset of codimension p of X. Let P • be a complex of finite projective k[X]-modules whose lenght l is finite and let ε be an augmentation morphism of P • whose image is R, whence an augmented complex of k[X]-modules,

Denote by P • , R, K 0 the localizations on X of P • , R, the kernel of ε respectively and denote by K i the kernel of the morphism P i -→ P i-1 for i positive integer.

Lemma A.1. Suppose that S contains the support of the homology of the augmented complex P • .

(i) For all positive integer i < p -1 and for all projective O X -module P, H i (X \ S , P) equals zero.

(ii) For all nonnegative integer j ≤ l and for all positive integer i < pj, the cohomology group H i (X \ S , K l-j ) equals zero.

Proof. (i) Let i < p -1 be a positive integer. Since the functor H i (X \ S , •) commutes with the direct sum, it suffices to prove H i (X \ S , O X ) = 0. Since S is a closed subset of X, one has the relative cohomology long exact sequence

Since X is Cohen-Macaulay, the codimension p of S in X equals the depth of its ideal of definition in k[X] [MA86, Ch. 6, Theorem 17.4]. Hence, according to [Gro67, Theorem 3.8], H i+1 S (X, O X ) and H i (X \ S , O X ) equal zero since i + 1 < p.

(ii) Let j be a nonnegative integer. Since S contains the support of the homology of the complex P • , for all nonnegative integer j, one has the short exact sequence of O X\S -modules

whence the long exact sequence of cohomology

Then, by (i), for 0 < i < p -2, the cohomology groups H i (X \ S , K j ) and H i+1 (X \ S , K j+1 ) are isomorphic since P j+1 is a projective module. Since P i = 0 for i > l, K l-1 and P l have isomorphic restrictions to X \ S . In particular, by (i), for 0 < i < p -1, H i (X \ S , K l-1 ) equal zero. Then, by induction on j, for 0 < i < pj, H i (X \ S , K l-j ) equals zero.

Proposition A.2. Let R ′ be a k[X]-module containing R. Suppose that the following conditions are verified:

(1) p is at least l + 2, (2) X is normal,

(3) S contains the support of the homology of the augmented complex P • .

(i) The complex P • is a projective resolution of R of length l.

(ii) Suppose that R ′ is torsion free and that S contains the support in X of R ′ /R. Then R ′ = R.

Proof. (i) Let j be a positive integer. One has to prove that H 0 (X, K j ) is the image of P j+1 . By Condition (3), the short sequence of O X\S -modules

Since the codimension of S in X is at least 2 and since X is irreducible and normal, the restriction morphism from P j+1 to H 0 (X \S , P j+1 ) is an isomorphism. Let ϕ be in H 0 (X, K j ). Then there exists an element to a complex of projective k[X]-modules of length s. If no such integer exists, hd (E) = ∞. Since X is Cohen-Macaulay, according to [MA86, Ch. 6, Theorem 17.4], we have the following proposition:

Proposition A.5. [BM02, Corollary 5.5] Let E be a non trivial object of D(X). Then for all irreducible component Γ of Supp(E), dim Xdim Γ ≤ hd (E).

Corollary A.3 is a little bit smilar to Proposition A.5. But it is not a consequence of Proposition A.5 since its proof does not use the normality of X.