

On the Commuting variety of a reductive Lie algebra.

Jean-Yves Charbonnel

▶ To cite this version:

Jean-Yves Charbonnel. On the Commuting variety of a reductive Lie algebra.. 2012. hal-00711467v3

HAL Id: hal-00711467 https://hal.science/hal-00711467v3

Preprint submitted on 29 Dec 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ON THE COMMUTING VARIETY OF A REDUCTIVE LIE ALGEBRA

JEAN-YVES CHARBONNEL

Abstract. The commuting variety of a reductive Lie algebra g is the underlying variety of a well defined subscheme of $g \times g$. In this note, it is proved that this scheme is normal. In particular, its ideal of definition is a prime ideal.

CONTENTS

1.	Introduction		1
2.	Characteristic module		4
3.	Torsion and projective dimension		6
4.	. Main results		14
Ap	pendix A.	Projective dimension and cohomology	15
References			18

1. Introduction

In this note, the base field k is algebraically closed of characteristic 0, g is a reductive Lie algebra of finite dimension, ℓ is its rank, and G is its adjoint group.

1.1. The dual of g identifies to g by a non degenerate symmetric bilinear form on g extending the Killing form of the derived algebra of g. Denote by $(v, w) \mapsto \langle v, w \rangle$ this bilinear form and denote by I_g the ideal of $\mathbb{K}[g \times g]$ generated by the functions $(x, y) \mapsto \langle v, [x, y] \rangle$'s with v in g. The commuting variety $\mathcal{C}(g)$ of g is the subvariety of elements (x, y) of $g \times g$ such that [x, y] = 0. It is the underlying variety to the subscheme S(g) of $g \times g$ defined by I_g . It is a well known and long standing open question whether or not this scheme is reduced, that is $\mathcal{C}(g) = S(g)$. According to Richardson [Ri79], $\mathcal{C}(g)$ is irreducible and according to Popov [Po08, Theorem 1], the singular locus of S(g) has codimension at least 2 in C(g). Then, according to Serre's normality criterion, arises the question to know whether or not C(g) is normal. There are many results about the commuting variety. A result of Dixmier [Di79] proves that I_g contains all the elements of the radical of I_g which have degree 1 in the second variable. In [Ga-Gi06], Gan and Ginzburg prove that for g simple of type A, the invariant elements under G of I_g is a radical ideal of the algebra $\mathbb{K}[g \times g]^G$ of invariant elements of $\mathbb{K}[g \times g]$ under G. In [Gi12], Ginzburg proves that the normalisation of $\mathbb{C}(g)$ is Cohen-Macaulay.

Date: December 29, 2014.

1991 Mathematics Subject Classification. 14A10, 14L17, 22E20, 22E46.

Key words and phrases. polynomial algebra, complex, commuting variety, Cohen-Macaulay, homology, projective dimension, depth.

1.2. Main results and sketch of proofs. According to the identification of g and its dual, $k[g \times g]$ equals the symmetric algebra $S(g \times g)$ of $g \times g$. The main result of this note is the following theorem:

Theorem 1.1. The subscheme of $g \times g$ defined by I_g is Cohen-Macaulay and normal. Furthermore, I_g is a prime ideal of $S(g \times g)$.

According to Richardson's result and Popov's result, it suffices to prove that the scheme S(g) is Cohen-Macaulay. The main idea of the proof in the theorem uses the main argument of the Dixmier's proof: for a finitely generated module M over $S(g \times g)$, M = 0 if the codimension of its support is at least l + 2 with l the projective dimension of M (see Appendix A).

Introduce the characteristic submodule of g, denoted by B_g . By definition, B_g is a submodule of $S(g \times g) \otimes_{\mathbb{k}} g$ and an element φ of $S(g \times g) \otimes_{\mathbb{k}} g$ is in B_g if and only if for all (x,y) in $g \times g$, $\varphi(x,y)$ is in the sum of subspaces g^{ax+by} with (a,b) in $\mathbb{k}^2 \setminus \{0\}$ and g^{ax+by} the centralizer of ax+by in g. According to a Bolsinov's result, B_g is a free $S(g \times g)$ -module of rank b_g , the dimension of the Borel subalgebras of g. Moreover, the orthogonal complement of B_g in $S(g \times g) \otimes_{\mathbb{k}} g$ is a free $S(g \times g)$ -module of rank $b_g - \ell$. These two results are fundamental in the proof of the following proposition:

Proposition 1.2. For i positive integer, the submodule $\bigwedge^i(\mathfrak{g}) \wedge \bigwedge^{b_{\mathfrak{g}}}(B_{\mathfrak{g}})$ of $S(\mathfrak{g} \times \mathfrak{g}) \otimes_{\Bbbk} \bigwedge^{i+b_{\mathfrak{g}}}(\mathfrak{g})$ has projective dimension at most i.

Denoting by E the quotient of $S(g \times g) \otimes_{\mathbb{K}} g$ by B_g , let E_i be the quotient of $\bigwedge^i(E)$ by its torsion module. The $S(g \times g)$ -modules $\bigwedge^i(g) \wedge \bigwedge^{b_g}(B_g)$ and E_i are isomorphic. Furthermore, for $i \geq 2$, E_i is isomorphic to a direct factor of the quotient of $E \otimes_{S(g \times g)} E_{i-1}$ by its torsion module. Denoting by $\overline{E_{i-1}}$ this quotient, the projective dimension of $\overline{E_{i-1}}$ is at most $d_{i-1} + 1$ if d_{i-1} is the projective dimension of E_{i-1} , whence a proof of the proposition by induction on i.

Let d be the $S(g \times g)$ -derivation of the algebra $S(g \times g) \otimes_{\Bbbk} \bigwedge(g)$ such that for all v in g, dv is the function on $g \times g$, $(x,y) \mapsto \langle v, [x,y] \rangle$. Then the ideal of $S(g \times g) \otimes_{\Bbbk} \bigwedge(g)$ generated by $\bigwedge^{b_g}(B_g)$ is a graded subcomplex of the graded complex $S(g \times g) \otimes_{\Bbbk} \bigwedge(g)$. The support of the homology of this complex is contained in $\mathcal{C}(g)$. Then we deduce from Proposition 1.2 that this complex has no homology in degree different from b_g and $\Bbbk[\mathcal{C}(g)]$ is Cohen-Macaulay by Auslander-Buchsbaum's theorem.

- **1.3. Notations.** For V a module over a k-algebra, its symmetric and exterior algebras are denoted by S(V) and $\bigwedge(V)$ respectively. If E is a subset of V, the submodule of V generated by E is denoted by $\operatorname{span}(E)$. When V is a vector space over k, the grassmannian of all d-dimensional subspaces of V is denoted by $\operatorname{Gr}_d(V)$.
- All topological terms refer to the Zariski topology. If Y is a subset of a topological space X, denote by \overline{Y} the closure of Y in X. For Y an open subset of the algebraic variety X, Y is called a big open subset if the codimension of $X \setminus Y$ in X is at least 2. For Y a closed subset of an algebraic variety X, its dimension is the biggest dimension of its irreducible components and its codimension in X is the smallest codimension in X of its irreducible components. For X an algebraic variety, k[X] is the algebra of regular functions on X.
- All the complexes considered in this note are graded complexes over \mathbb{Z} of vector spaces and their differentials are homogeneous of degree -1 and they are denoted by d. As usual, the gradation of the complex is denoted by C_{\bullet} .

- 3
- The dimension of the Borel subalgebras of g is denoted by b_g . Set $n := b_g \ell$ so that dim $g = 2b_g \ell_g = 2n + \ell$.
- The dual g^* of g identifies with g by a given non degenerate, invariant, symmetric bilinear form $\langle .,. \rangle$ on $g \times g$ extending the Killing form of [g,g].
 - For $x \in \mathfrak{g}$, denote by \mathfrak{g}^x the centralizer of x in g. The set of regular elements of g is

$$g_{\text{reg}} := \{ x \in g \mid \dim g^x = \ell \}.$$

The subset g_{reg} of g is a G-invariant open subset of g. According to [V72], $g \setminus g_{reg}$ is equidimensional of codimension 3.

• Denote by $S(g)^g$ the algebra of g-invariant elements of S(g). Let p_1, \ldots, p_ℓ be homogeneous generators of $S(g)^g$ of degree d_1, \ldots, d_ℓ respectively. Choose the polynomials p_1, \ldots, p_ℓ so that $d_1 \le \cdots \le d_\ell$. For $i = 1, \ldots, \ell$ and $(x, y) \in g \times g$, consider a shift of p_i in direction y: $p_i(x + ty)$ with $t \in k$. Expanding $p_i(x + ty)$ as a polynomial in t, one obtains

(1)
$$p_i(x+ty) = \sum_{m=0}^{d_i} p_i^{(m)}(x,y)t^m; \quad \forall (t,x,y) \in \mathbb{k} \times \mathfrak{g} \times \mathfrak{g}$$

where $y \mapsto (m!)p_i^{(m)}(x,y)$ is the derivative at x of p_i at the order m in the direction y. The elements $p_i^{(m)}$ defined by (1) are invariant elements of $S(\mathfrak{g}) \otimes_{\mathbb{K}} S(\mathfrak{g})$ under the diagonal action of G in $\mathfrak{g} \times \mathfrak{g}$. Remark that $p_i^{(0)}(x,y) = p_i(x)$ while $p_i^{(d_i)}(x,y) = p_i(y)$ for all $(x,y) \in \mathfrak{g} \times \mathfrak{g}$.

Remark 1.3. The family $\mathcal{P}_x := \{p_i^{(m)}(x,.); \ 1 \le i \le \ell, 1 \le m \le d_i\}$ for $x \in \mathfrak{g}$, is a Poisson-commutative family of S(\mathfrak{g}) by Mishchenko-Fomenko [MF78]. One says that the family \mathcal{P}_x is constructed by the argument shift method.

• Let $i \in \{1, \dots, \ell\}$. For x in g, denote by $\varepsilon_i(x)$ the element of g given by

$$\langle \varepsilon_i(x), y \rangle = \frac{\mathrm{d}}{\mathrm{d}t} p_i(x + ty)|_{t=0}$$

for all y in g. Thereby, ε_i is an invariant element of $S(g) \otimes_k g$ under the canonical action of G. According to [Ko63, Theorem 9], for x in g, x is in g_{reg} if and only if $\varepsilon_1(x), \ldots, \varepsilon_\ell(x)$ are linearly independent. In this case, $\varepsilon_1(x), \ldots, \varepsilon_\ell(x)$ is a basis of g^x .

Denote by $\varepsilon_i^{(m)}$, for $0 \le m \le d_i - 1$, the elements of $S(\mathfrak{g} \times \mathfrak{g}) \otimes_{\mathbb{k}} \mathfrak{g}$ defined by the equality:

(2)
$$\varepsilon_i(x+ty) = \sum_{m=0}^{d_i-1} \varepsilon_i^{(m)}(x,y) t^m, \quad \forall (t,x,y) \in \mathbb{k} \times \mathfrak{g} \times \mathfrak{g}$$

and set:

$$V_{x,y} := \text{span}(\{\varepsilon_i(x,y)^{(0)}, \dots, \varepsilon_i(x,y)^{(d_i-1)}, i = 1, \dots, \ell\})$$

for (x, y) in $g \times g$.

4

2. Characteristic module

For (x, y) in $g \times g$, set:

$$V'_{x,y} = \sum_{(a,b)\in\mathbb{k}^2\setminus\{0\}} g^{ax+by},$$

and denote by $P_{x,y}$ the span of x and y. By definition, the characteristic module B_g of g is the submodule of elements φ of $S(g \times g) \otimes_k g$ such that $\varphi(x,y)$ is in $V'_{x,y}$ for all (x,y) in $g \times g$. In this section, some properties of B_g are given.

2.1. Denote by Ω_g the subset of elements (x, y) of $g \times g$ such that $P_{x,y}$ has dimension 2 and such that $P_{x,y} \setminus \{0\}$ is contained in g_{reg} . According to [CMo08, Corollary 10], Ω_g is a big open subset of $g \times g$.

Proposition 2.1. Let (x, y) be in $g \times g$ such that $P_{x,y} \cap g_{reg}$ is not empty.

- (i) Let O be an open subset of \mathbb{k}^2 such that ax + by is in \mathfrak{g}_{reg} for all (a,b) in O. Then $V_{x,y}$ is the sum of the \mathfrak{g}^{ax+by} 's, $(a,b) \in O$.
 - (ii) The spaces $[x, V_{x,y}]$ and $[y, V_{x,y}]$ are equal.
 - (iii) The space $V_{x,y}$ has dimension at most b_g and the equality holds if and only if (x,y) is in Ω_g .
- (iv) The space $[x, V_{x,y}]$ is orthogonal to $V_{x,y}$. Furthermore, (x, y) is in Ω_g if and only if $[x, V_{x,y}]$ is the orthogonal complement of $V_{x,y}$ in g.
 - (v) The space $V_{x,y}$ is contained in $V'_{x,y}$. Moreover, $V_{x,y} = V'_{x,y}$ if (x,y) is in Ω_g .
 - (vi) For $i = 1, ..., \ell$ and for $m = 0, ..., d_i 1$, $\varepsilon_i^{(m)}$ is a G-equivariant map.
- *Proof.* (i) For pairwise different elements $t_{i,1}, \ldots, t_{i,d_i-1}$, $i=1,\ldots,\ell$ of $\mathbb{k}\setminus\{0\}$, the $\varepsilon_i^{(m)}(x,y)$'s, $m=0,\ldots,d_i-1$ are linear combinations of the $\varepsilon_i(x+t_{i,j}y)$'s, $j=1,\ldots,d_i-1$ for $i=1,\ldots,\ell$. Furthermore, for all z in $\mathfrak{g}_{reg}, \varepsilon_1(z), \ldots, \varepsilon_\ell(z)$ is a basis of \mathfrak{g}^z by [Ko63, Theorem 9], whence the assertion since the maps $\varepsilon_1,\ldots,\varepsilon_\ell$ are homogeneous.
- (ii) Let O be an open subset of $(\mathbb{k} \setminus \{0\})^2$ such that ax + by is in \mathfrak{g}_{reg} for all (a, b) in O. For all (a, b) in O, $[x, \mathfrak{g}^{ax+by}] = [y, \mathfrak{g}^{ax+by}]$ since $[ax + by, \mathfrak{g}^{ax+by}] = 0$ and since $ab \neq 0$, whence the assertion by (i).
 - (iii) According to [Bou02, Ch. V, §5, Proposition 3],

$$d_1 + \cdots + d_\ell = \mathbf{b}_{\mathfrak{a}}$$
.

So $V_{x,y}$ has dimension at most b_g . By [Bol91, Theorem 2.1], $V_{x,y}$ has dimension b_g if and only if (x, y) is in Ω_g .

(iv) According to [Bol91, Theorem 2.1], $V_{x,y}$ is a totally isotropic subspace with respect to the skew bilinear form on g

$$(v, w) \longmapsto \langle ax + by, [v, w] \rangle$$

for all (a, b) in \mathbb{k}^2 . As a result, by invariance of $\langle ., . \rangle$, $V_{x,y}$ is orthogonal to $[x, V_{x,y}]$. If (x, y) is in $\Omega_{\mathfrak{g}}$, \mathfrak{g}^x has dimension ℓ and it is contained in $V_{x,y}$. Hence, by (iii),

$$\dim[x, V_{x,y}] = b_{\mathfrak{q}} - \ell = \dim \mathfrak{g} - \dim V_{x,y}$$

so that $[x, V_{x,y}]$ is the orthogonal complement of $V_{x,y}$ in g. Conversely, if $[x, V_{x,y}]$ is the orthogonal complement of $V_{x,y}$ in g, then

$$\dim V_{x,y} + \dim [x, V_{x,y}] = \dim \mathfrak{g}.$$

Since $P_{x,y} \cap g_{reg}$ is not empty, $g^{ax+by} \cap V_{x,y}$ has dimension ℓ for all (a,b) in a dense open subset of k^2 . By continuity, $g^x \cap V_{x,y}$ has dimension at least ℓ so that

$$2\dim V_{x,y} - \ell \ge \dim \mathfrak{g}.$$

Hence, by (iii), (x, y) is in Ω_{α} .

(v) According to [Ko63, Theorem 9], for all z in g and for $i = 1, \ldots, \ell$, $\varepsilon_i(z)$ is in g^z . Hence for all t in k, $\varepsilon_i(x + ty)$ is in $V'_{x,y}$. So $\varepsilon_i^{(m)}(x,y)$ is in $V'_{x,y}$ for all m, whence $V_{x,y} \subset V'_{x,y}$.

Suppose that (x, y) is in Ω_g . According to [Ko63, Theorem 9], for all (a, b) in $\mathbb{R}^2 \setminus \{0\}$, $\varepsilon_1(ax + by)$, ..., $\varepsilon_\ell(ax + by)$ is a basis of g^{ax+by} . Hence g^{ax+by} is contained in $V_{x,y}$, whence the assertion.

(vi) Let i be in $\{1,\ldots,\ell\}$. Since p_i is G-invariant, ε_i is a G-equivariant map. As a result, its 2-polarizations $\varepsilon_i^{(0)},\ldots,\varepsilon_i^{(d_i-1)}$ are G-equivariant under the diagonal action of G in $\mathfrak{g}\times\mathfrak{g}$.

Theorem 2.2. (i) The module B_g is a free module of rank b_g whose a basis is the sequence $\varepsilon_i^{(0)}, \ldots, \varepsilon_i^{(d_i-1)}, i=1,\ldots,\ell$.

- $\text{(ii) For φ in $S(\mathfrak{g}\times\mathfrak{g})\otimes_{\Bbbk}\mathfrak{g}$, φ is in $B_{\mathfrak{g}}$ if and only if $p\varphi\in B_{\mathfrak{g}}$ for some p in $S(\mathfrak{g}\times\mathfrak{g})\setminus\{0\}$.}$
- (iii) For all φ in $B_{\mathfrak{g}}$ and for all (x,y) in $\mathfrak{g} \times \mathfrak{g}$, $\varphi(x,y)$ is orthogonal to [x,y].

Proof. (i) and (ii) According to Proposition 2.1,(v), $\varepsilon_i^{(m)}$ is in B_g for all (i,m). Moreover, according to Proposition 2.1,(iii), these elements are linearly independent over $S(g \times g)$. Let φ be an element of $S(g \times g) \otimes_{\mathbb{K}} g$ such that $p\varphi$ is in B_g for some p in $S(g \times g) \setminus \{0\}$. Since Ω_g is a big open subset of $g \times g$, for all (x,y) in a dense open subset of Ω_g , $\varphi(x,y)$ is in $V_{x,y}$ by Proposition 2.1,(v). According to Proposition 2.1,(iii), the map

$$\Omega_{\mathfrak{g}} \longrightarrow \operatorname{Gr}_{b_{\mathfrak{g}}}(\mathfrak{g}), \qquad (x,y) \longmapsto V_{x,y}$$

is regular. So, $\varphi(x,y)$ is in $V_{x,y}$ for all (x,y) in $\Omega_{\mathfrak{g}}$ and for some regular functions $a_{i,m}$, $i=1,\ldots,\ell$, $m=0,\ldots,d_i-1$ on $\Omega_{\mathfrak{g}}$,

$$\varphi(x,y) = \sum_{i=1}^{\ell} \sum_{m=0}^{d_i-1} a_{i,m}(x,y) \varepsilon_i^{(m)}(x,y)$$

for all (x, y) in Ω_g . Since Ω_g is a big open subset of $g \times g$ and since $g \times g$ is normal, the $a_{i,m}$'s have a regular extension to $g \times g$. Hence φ is a linear combination of the $\varepsilon_i^{(m)}$'s with coefficients in $S(g \times g)$. As a result, the sequence $\varepsilon_i^{(m)}$, $i = 1, \ldots, \ell$, $m = 0, \ldots, d_i - 1$ is a basis of the module B_g and B_g is the subset of elements φ of $S(g \times g) \otimes_k g$ such that $p\varphi \in B_g$ for some p in $S(g \times g) \setminus \{0\}$.

- (iii) Let φ be in B_g. According to (i) and Proposition 2.1,(iv), for all (x, y) in Ω_g , $[x, \varphi(x, y)]$ is orthogonal to $V_{x,y}$. Then, since y is in $V_{x,y}$, $[x, \varphi(x, y)]$ is orthogonal to y and $\langle \varphi(x, y), [x, y] \rangle = 0$, whence the assertion.
- **2.2.** Also denote by $\langle .,. \rangle$ the natural extension of $\langle .,. \rangle$ to the module $S(g \times g) \otimes_{\mathbb{k}} g$.

Proposition 2.3. Let $C_{\mathfrak{g}}$ be the orthogonal complement of $B_{\mathfrak{g}}$ in $S(\mathfrak{g} \times \mathfrak{g}) \otimes_{\Bbbk} \mathfrak{g}$.

- (i) For φ in $S(g \times g) \otimes_k g$, φ is in C_g if and only if $\varphi(x, y)$ is in $[x, V_{x,y}]$ for all (x, y) in a nonempty open subset of $g \times g$.
 - (ii) The module C_q is free of rank $b_q \ell$. Furthermore, the sequence of maps

$$(x,y) \mapsto [x,\varepsilon_i^{(1)}(x,y)],\ldots,(x,y) \mapsto [x,\varepsilon_i^{(d_i-1)}(x,y)], \ i=1,\ldots,\ell$$

is a basis of $C_{\mathfrak{q}}$.

(iii) The orthogonal complement of $C_{\mathfrak{q}}$ in $S(\mathfrak{g} \times \mathfrak{g}) \otimes_{\mathbb{k}} \mathfrak{g}$ equals $B_{\mathfrak{q}}$.

Proof. (i) Let φ be in $S(g \times g) \otimes_k g$. If φ is in C_g , then $\varphi(x,y)$ is orthogonal to $V_{x,y}$ for all (x,y) in Ω_g . Then, according to Proposition 2.1,(iv), $\varphi(x,y)$ is in $[x,V_{x,y}]$ for all (x,y) in Ω_g . Conversely, suppose that $\varphi(x,y)$ is in $[x,V_{x,y}]$ for all (x,y) in a nonempty open subset V of $g \times g$. By Proposition 2.1,(iv) again, for all (x,y) in $V \cap \Omega_g$, $\varphi(x,y)$ is orthogonal to the $\varepsilon_i^{(m)}(x,y)$'s, $i=1,\ldots,\ell, m=0,\ldots,d_i-1$, whence the assertion by Theorem 2.1.

(ii) Let C be the submodule of $S(g \times g) \otimes_k g$ generated by the maps

$$(x,y) \mapsto [x,\varepsilon_i^{(1)}(x,y)],\ldots,(x,y) \mapsto [x,\varepsilon_i^{(d_i-1)}(x,y)], \ i=1,\ldots,\ell$$

According to (i), C is a submodule of C_g . This module is free of rank $b_g - \ell$ since $[x, V_{x,y}]$ has dimension $b_g - \ell$ for all (x, y) in Ω_g by Proposition 2.1, (iii) and (iv). According to (i), for φ in C_g , for all (x, y) in Ω_g ,

$$\varphi(x,y) = \sum_{i=1}^{\ell} \sum_{m=1}^{d_i - 1} a_{i,m}(x,y) [x, \varepsilon_i^{(m)}(x,y)]$$

with the $a_{i,m}$'s regular on Ω_g and uniquely defined by this equality. Since Ω_g is a big open subset of $g \times g$ and since $g \times g$ is normal, the $a_{i,m}$'s have a regular extension to $g \times g$. As a result, φ is in C, whence the assertion.

(iii) Let φ be in the orthogonal complement of C_g in $S(g \times g) \otimes_k g$. According to (ii), for all (x, y) in Ω_g , $\varphi(x, y)$ is orthogonal to $[x, V_{x,y}]$. Hence by Proposition 2.1,(iv), $\varphi(x, y)$ is in $V_{x,y}$ for all (x, y) in Ω_g . So, by Theorem 2.1, φ is in B_g , whence the assertion.

Denote by \mathcal{B} and \mathcal{C} the localizations of B_g and C_g on $g \times g$ respectively. For (x, y) in $g \times g$, let $C_{x,y}$ be the image of C_g by the evaluation map at (x, y).

Lemma 2.4. There exists an affine open cover \mathfrak{O} of $\Omega_{\mathfrak{g}}$ verifying the following condition: for all O in \mathfrak{O} , there exist some subspaces E and F of \mathfrak{g} , depending on O, such that

$$g = E \oplus V_{x,y} = F \oplus C_{x,y}$$

for all (x, y) in O. Moreover, for all (x, y) in O, the orthogonal complement of $V_{x,y}$ in \mathfrak{g} equals $C_{x,y}$.

Proof. According to Proposition 2.1,(iii) and (iv), for all (x, y) in Ω_g , $V_{x,y}$ and $C_{x,y}$ have dimension b_g and $b_g - \ell$ respectively so that the maps

$$\Omega_{\mathfrak{g}} \longrightarrow \operatorname{Gr}_{b_{\mathfrak{g}}}(\mathfrak{g}), \qquad (x,y) \longmapsto V_{x,y}, \qquad \Omega_{\mathfrak{g}} \longrightarrow \operatorname{Gr}_{b_{\mathfrak{g}}-\ell}(\mathfrak{g}), \qquad (x,y) \longmapsto C_{x,y}$$

are regular, whence the assertion.

3. Torsion and projective dimension

Let E and $E^{\#}$ be the quotients of $S(g \times g) \otimes_{\mathbb{R}} g$ by B_g and C_g respectively. For i positive integer, denote by E_i the quotient of $\bigwedge^i(E)$ by its torsion module.

3.1. Let B_g^* and C_g^* be the duals of B_g and C_g respectively.

Lemma 3.1. (i) The $S(g \times g)$ -modules E and $E^{\#}$ have projective dimension at most 1.

- (ii) The $S(g \times g)$ -modules E and $E^{\#}$ are torsion free.
- (iii) The modules $C_{\mathfrak{g}}$ and $B_{\mathfrak{g}}$ are the duals of E and E[#] respectively.
- (iv) The canonical morphism from E to $C_{\mathfrak{q}}^*$ is an embedding.

Proof. (i) By definition, the short sequences of $S(g \times g)$ -modules,

$$0 \longrightarrow B_{\mathfrak{q}} \longrightarrow S(\mathfrak{g} \times \mathfrak{g}) \otimes_{\mathbb{k}} \mathfrak{g} \longrightarrow E \longrightarrow 0$$

$$0 \longrightarrow \mathsf{C}_{\mathfrak{q}} \longrightarrow \mathsf{S}(\mathfrak{g} \times \mathfrak{g}) \otimes_{\mathbb{k}} \mathfrak{g} \longrightarrow E^{\#} \longrightarrow 0$$

are exact. Hence E and $E^{\#}$ have projective dimension at most 1 since B_g and C_g are free modules by Theorem 2.2 and Proposition 2.3,(ii).

- (ii) The module E is torsion free by Theorem 2.2,(ii). By definition, for φ in $S(\mathfrak{g} \times \mathfrak{g}) \otimes_{\mathbb{k}} \mathfrak{g}$, φ is in $C_{\mathfrak{g}}$ if $p\varphi$ is in $C_{\mathfrak{g}}$ for some p in $S(\mathfrak{g} \times \mathfrak{g}) \setminus \{0\}$, whence $E^{\#}$ is torsion free.
- (iii) According to the exact sequences of (i), the dual of E is the orthogonal complement of B_g in $S(g \times g) \otimes_{\mathbb{k}} g$ and the dual of $E^{\#}$ is the orthogonal complement of C_g in $S(g \times g) \otimes_{\mathbb{k}} g$, whence the assertion since C_g is the orthogonal complement of B_g in $S(g \times g) \otimes_{\mathbb{k}} g$ by definition and since B_g is the orthogonal complement of C_g in $S(g \times g) \otimes_{\mathbb{k}} g$ by Proposition 2.3,(iii).
- (iv) Let $\overline{\omega}$ be in the kernel of the canonical morphism from E to $C_{\mathfrak{g}}^*$. Let ω be a representative of $\overline{\omega}$ in $S(\mathfrak{g} \times \mathfrak{g}) \otimes_{\Bbbk} \mathfrak{g}$. According to Proposition 2.3,(iii), $B_{\mathfrak{g}}$ is the orthogonal complement of $C_{\mathfrak{g}}$ in $S(\mathfrak{g} \times \mathfrak{g}) \otimes_{\Bbbk} \mathfrak{g}$ so that ω is in $B_{\mathfrak{g}}$, whence the assertion.

Set:

$$\varepsilon = \wedge_{i=1}^{\ell} \varepsilon_i^{(0)} \wedge \cdots \wedge \varepsilon_i^{(d_i-1)}$$

and for i positive integer, denote by θ_i the morphism

$$S(g \times g) \otimes_{\mathbb{k}} \bigwedge^{i}(g) \longrightarrow \bigwedge^{i}(g) \wedge \bigwedge^{b_g}(B_g), \qquad \varphi \longmapsto \varphi \wedge \varepsilon.$$

Proposition 3.2. *Let i be a positive integer.*

- (i) The morphism θ_i defines through the quotient an isomorphism from E_i onto $\bigwedge^i(\mathfrak{g}) \wedge \bigwedge^{b_{\mathfrak{g}}}(B_{\mathfrak{g}})$.
- (ii) The short sequence of $S(g \times g)$ -modules

$$0 \longrightarrow \mathsf{B}_{\mathfrak{g}} \otimes_{\mathsf{S}(\mathfrak{g} \times \mathfrak{g})} E_i \longrightarrow \mathfrak{g} \otimes_{\Bbbk} E_i \longrightarrow E \otimes_{\mathsf{S}(\mathfrak{g} \times \mathfrak{g})} E_i \longrightarrow 0$$

is exact.

Proof. (i) For j positive integer, denote by π_j the canonical map from $S(\mathfrak{g} \times \mathfrak{g}) \otimes_{\mathbb{k}} \bigwedge^j(\mathfrak{g})$ to $\bigwedge^j(E)$. Let ω be in the kernel of π_i . Let O be an element of the affine open cover of $\Omega_{\mathfrak{g}}$ of Lemma 2.4 and let W be a subspace of \mathfrak{g} such that

$$g = W \oplus V_{x,y}$$

for all (x, y) in O so that π_1 induces an isomorphism

$$\Bbbk[O] \otimes_{\Bbbk} W \longrightarrow \Bbbk[O] \otimes_{\mathsf{S}(\mathfrak{q} \times \mathfrak{q})} E$$

Moreover, B_g is the kernel of π_1 . Then, from the equality

$$\Bbbk[O] \otimes_{\Bbbk} \bigwedge^{i}(\mathfrak{g}) = \bigoplus_{j=0}^{i} \bigwedge^{j}(W) \wedge \Bbbk[O] \otimes_{\mathsf{S}(\mathfrak{g} \times \mathfrak{g})} \bigwedge^{i-j}(\mathsf{B}_{\mathfrak{g}})$$

it results that the restriction of ω to O is in $\mathbb{k}[O] \otimes_{S(g \times g)} \bigwedge^{i-1}(g) \wedge B_g$. Hence the restriction of $\omega \wedge \varepsilon$ to O equals 0 and ω is in the kernel of θ_i since $\bigwedge^i(g) \wedge \bigwedge^{b_g}(B_g)$ has no torsion as a submodule of a free module. As a result, θ_i defines through the quotient a morphism from $\bigwedge^i(E)$ to $\bigwedge^i(g) \wedge \bigwedge^{b_g}(B_g)$. Denote it by ϑ_i' . Since $\bigwedge^i(g) \wedge \bigwedge^{b_g}(B_g)$ is torsion free, the torsion submodule of $\bigwedge^i(E)$ is contained in the kernel of ϑ_i' . Hence ϑ_i' defines through the quotient a morphism from E_i to $\bigwedge^i(g) \wedge \bigwedge^{b_g}(B_g)$. Denoting it by ϑ_i , ϑ_i' and ϑ_i are surjective since too is θ_i .

Let $\overline{\omega}$ be in the kernel of ϑ_i' and let ω be a representative of $\overline{\omega}$ in $S(\mathfrak{g} \times \mathfrak{g}) \otimes_{\mathbb{k}} \bigwedge^i(\mathfrak{g})$. Then $\omega \wedge \varepsilon = 0$ so that the restriction of ω to the above open subset O is in $\mathbb{k}[O] \otimes_{S(\mathfrak{g} \times \mathfrak{g})} \bigwedge^{i-1}(\mathfrak{g}) \wedge B_\mathfrak{g}$. As a result, the restriction of $\overline{\omega}$ to O equals O. So, $\overline{\omega}$ is in the torsion submodule of $\bigwedge^i(E)$, whence the assertion.

(ii) By definition, the sequence

$$0 \longrightarrow \mathsf{B}_{\mathfrak{q}} \longrightarrow \mathsf{S}(\mathfrak{g} \times \mathfrak{g}) \otimes_{\mathbb{k}} \mathfrak{g} \longrightarrow E \longrightarrow 0$$

is exact. Then the sequence

$$\operatorname{Tor}_{1}^{\operatorname{S}(\mathfrak{g}\times\mathfrak{g})}(E,E_{i})\longrightarrow\operatorname{B}_{\mathfrak{g}}\otimes_{\operatorname{S}(\mathfrak{g}\times\mathfrak{g})}E_{i}\longrightarrow\mathfrak{g}\otimes_{\Bbbk}E_{i}\longrightarrow E\otimes_{\operatorname{S}(\mathfrak{g}\times\mathfrak{g})}E_{i}\longrightarrow0$$

is exact. By definition, E_i is torsion free. As a result, $B_g \otimes_{S(g \times g)} E_i$ is torsion free since B_g is a free module. Then, since $\operatorname{Tor}_1^{S(g \times g)}(E, E_i)$ is a torsion module, its image in $B_g \otimes_{S(g \times g)} E_i$ equals 0, whence the assertion.

3.2. For *i* positive integer, $\langle .,. \rangle$ has a canonical extension to $S(\mathfrak{g} \times \mathfrak{g}) \otimes_{\mathbb{k}} \bigwedge^{i}(\mathfrak{g})$ denoted again by $\langle .,. \rangle$.

Lemma 3.3. Let i be a positive integer. Let T_i be the torsion module of $E \otimes_{S(g \times g)} E_i$ and let T'_i be its inverse image by the canonical morphism $g \otimes_{\Bbbk} E_i \to E \otimes_{S(g \times g)} E_i$.

- (i) The canonical morphism from $\bigwedge^i(E)$ to $\bigwedge^i(C_g^*)$ defines through the quotient an embedding of E_i into $\bigwedge^i(C_g^*)$.
 - (ii) The module of T'_i is the intersection of $\mathfrak{g} \otimes_{\mathbb{k}} E_i$ and $B_{\mathfrak{g}} \otimes_{S(\mathfrak{g} \times \mathfrak{g})} \bigwedge^i (C_{\mathfrak{g}}^*)$.
 - (iii) The module T'_i is isomorphic to $\operatorname{Hom}_{S(\mathfrak{q}\times\mathfrak{q})}(E^{\#}, E_i)$.
- *Proof.* (i) According to Lemma 3.1,(iii), there is a canonical morphism from $\bigwedge^i(E)$ to $\bigwedge^i(C_{\mathfrak{g}}^*)$. Let $\overline{\omega}$ be in its kernel and let ω be a representative of $\overline{\omega}$ in $S(\mathfrak{g} \times \mathfrak{g}) \otimes_{\mathbb{k}} \bigwedge^i(\mathfrak{g})$. Then ω is orthogonal to $\bigwedge^i(C_{\mathfrak{g}})$ with respect to $\langle ., . \rangle$. So for O as in Lemma 2.4, the restriction of ω to O is in $\mathbb{k}[O] \otimes_{S(\mathfrak{g} \times \mathfrak{g})} \bigwedge^{i-1}(\mathfrak{g}) \wedge B_{\mathfrak{g}}$. Hence the restriction of $\overline{\omega}$ to O equals O. In other words, $\overline{\omega}$ is in the torsion module of $\bigwedge^i(E)$, whence the assertion since $\bigwedge^i(C_{\mathfrak{g}}^*)$ is a free module.
 - (ii) Since $\bigwedge^i(C^*_{\mathfrak{q}})$ is a free module, by Proposition 3.2,(ii), there is a morphism of short exact sequences

$$0 \longrightarrow B_{\mathfrak{g}} \otimes_{S(\mathfrak{g} \times \mathfrak{g})} E_{i} \longrightarrow \mathfrak{g} \otimes_{\mathbb{k}} E_{i} \longrightarrow E \otimes_{S(\mathfrak{g} \times \mathfrak{g})} E_{i} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow B_{\mathfrak{g}} \otimes_{S(\mathfrak{g} \times \mathfrak{g})} \bigwedge^{i}(C_{\mathfrak{g}}^{*}) \longrightarrow \mathfrak{g} \otimes_{\mathbb{k}} \bigwedge^{i}(C_{\mathfrak{g}}^{*}) \longrightarrow E \otimes_{S(\mathfrak{g} \times \mathfrak{g})} \bigwedge^{i}(C_{\mathfrak{g}}^{*}) \longrightarrow 0$$

Moreover, the two first vertical arrows are embeddings. Hence T_i' is the intersection of $\mathfrak{g} \otimes_{\mathbb{k}} E_i$ and $B_{\mathfrak{g}} \otimes_{S(\mathfrak{g} \times \mathfrak{q})} \bigwedge^i (C_{\mathfrak{g}}^*)$ in $\mathfrak{g} \otimes_{\mathbb{k}} \bigwedge^i (C_{\mathfrak{g}}^*)$.

(iii) According to the identification of g with its dual, $g \otimes_{\mathbb{k}} E_i = \operatorname{Hom}_{\mathbb{k}}(g, E_i)$. Moreover, according to the short exact sequence of $S(g \times g)$ -modules

$$0 \longrightarrow C_{\mathfrak{q}} \longrightarrow S(\mathfrak{g} \times \mathfrak{g}) \otimes_{\mathbb{k}} \mathfrak{g} \longrightarrow E^{\#} \longrightarrow 0$$

the sequence of $S(g \times g)$ -modules

$$0 \longrightarrow \operatorname{Hom}_{S(\mathfrak{g} \times \mathfrak{g})}(E^{\#}, E_{i}) \longrightarrow \operatorname{Hom}_{\Bbbk}(\mathfrak{g}, E_{i}) \longrightarrow \operatorname{Hom}_{S(\mathfrak{g} \times \mathfrak{g})}(C_{\mathfrak{g}}, E_{i}) \longrightarrow \operatorname{Ext}^{1}_{S(\mathfrak{g} \times \mathfrak{g})}(E^{\#}, E_{i})$$

is exact. For φ in $\operatorname{Hom}_{S(g\times g)}(S(g\times g)\otimes_{\Bbbk} g, E_i)$, φ is in the kernel of the third arrow if and only if C_g is contained in the kernel of φ . On the other hand, according to the identification of g and its dual, $\operatorname{Hom}_{\Bbbk}(g, \bigwedge^i(C_g^*))$ identifies with $g\otimes_{\Bbbk} \bigwedge^i(C_g^*)$. By Proposition 2.3, B_g is the orthogonal complement of C_g in $S(g\times g)\otimes_{\Bbbk} g$ and C_g^* is a free $S(g\times g)$ -module. So, for ψ in $\operatorname{Hom}_{S(g\times g)}(S(g\times g)\otimes_{\Bbbk} g, \bigwedge^i(C_g^*))$, ψ equals 0 on C_g if and only if it is in $B_g\otimes_{S(g\times g)} \bigwedge^i(C_g^*)$, whence the assertion by (ii).

The following corollary results from Lemma 3.3.

Corollary 3.4. Let i be a positive integer and let $\overline{E_i}$ be the quotient of $E \otimes_{S(\mathfrak{g} \times \mathfrak{g})} E_i$ by its torsion module. Then the short sequence of $S(\mathfrak{g} \times \mathfrak{g})$ -modules

$$0 \longrightarrow \operatorname{Hom}_{S(\mathfrak{q} \times \mathfrak{q})}(E^{\#}, E_i) \longrightarrow \mathfrak{q} \otimes_{\Bbbk} E_i \longrightarrow \overline{E_i} \longrightarrow 0$$

is exact.

3.3. Denote by $\operatorname{Mod}_{S(\mathfrak{g}\times\mathfrak{g})}$ the category of finite $S(\mathfrak{g}\times\mathfrak{g})$ -modules. Let ι be the morphism

$$S(g \times g) \otimes_{\mathbb{k}} g \longrightarrow C_{\mathfrak{g}}^*, \qquad v \longmapsto (\mu \mapsto \langle v, \mu \rangle)$$

Lemma 3.5. Let $A_{\mathfrak{g}}$ be the quotient of $C_{\mathfrak{g}}^*$ by $\iota(S(\mathfrak{g} \times \mathfrak{g}) \otimes_{\mathbb{k}} \mathfrak{g})$. Then the two functors $A_{\mathfrak{g}} \otimes_{S(\mathfrak{g} \times \mathfrak{g})} \bullet$ and $\operatorname{Ext}^1_{S(\mathfrak{g} \times \mathfrak{g})}(E^{\#}, \bullet)$ of the category $\operatorname{Mod}_{S(\mathfrak{g} \times \mathfrak{g})}$ are isomorphic.

Proof. For d nonnegative integer, denote by $\operatorname{Mod}_{S(g\times g)}(d)$ the full subcategory of $\operatorname{Mod}_{S(g\times g)}$ whose objects are the modules of projective dimension at most d. Prove by induction on d that the restrictions to $\operatorname{Mod}_{S(g\times g)}(d)$ of the functors $\operatorname{Ext}^1_{S(g\times g)}(E^\#, \bullet)$ and $\operatorname{A}_g\otimes_{S(g\times g)} \bullet$ are isomorphic. Let M be a finite $\operatorname{S}(g\times g)$ -module. Denoting by d its projective dimension, there is a short exact sequence

$$0 \longrightarrow Z \longrightarrow P \longrightarrow M \longrightarrow 0$$

with Z a module of projective dimension d-1 if d>0 and Z=0 otherwise.

Suppose d = 0. Then, from the short exact sequence

$$0 \longrightarrow C_{\mathfrak{q}} \longrightarrow S(\mathfrak{g} \times \mathfrak{g}) \otimes_{\mathbb{k}} \mathfrak{g} \longrightarrow E^{\#} \longrightarrow 0$$

one deduces the exact sequence

$$0 \longrightarrow \operatorname{Hom}_{S(\mathfrak{g} \times \mathfrak{g})}(E^{\#}, M) \longrightarrow \operatorname{Hom}_{\Bbbk}(\mathfrak{g}, M) \longrightarrow \operatorname{Hom}_{S(\mathfrak{g} \times \mathfrak{g})}(C_{\mathfrak{g}}, M) \longrightarrow \operatorname{Ext}^{1}_{S(\mathfrak{g} \times \mathfrak{g})}(E^{\#}, M) \longrightarrow 0.$$

Since C_g is a free module, $\operatorname{Hom}_{S(g \times g)}(C_g, M)$ is functorially isomorphic to $C_g^* \otimes_{S(g \times g)} M$. Then by the right exactness of the functor $A_g \otimes_{S(g \times g)} \bullet$, there is an isomorphism of exact sequences

Since the two sequences depends functorially on M, from the isomorphisms of functors

$$\mathfrak{g} \otimes_{\Bbbk} \bullet \longrightarrow \text{Hom}_{\Bbbk}(\mathfrak{g}, \bullet), \quad C_{\mathfrak{g}}^* \otimes_{S(\mathfrak{g} \times \mathfrak{g})} \bullet \longrightarrow \text{Hom}_{S(\mathfrak{g} \times \mathfrak{g})}(C_{\mathfrak{g}}, \bullet),$$

we deduce that the restrictions to $Mod_{S(g\times g)}(0)$ of the functors $Ext^1_{S(g\times g)}(E^\#, \bullet)$ and $A_g\otimes_{S(g\times g)} \bullet$ are isomorphic.

Suppose the statement true for d-1. Setting $Q:=\iota(S(\mathfrak{g}\times\mathfrak{g})\otimes_{\mathbb{k}}\mathfrak{g})$, one has two short exact sequences

$$0 \longrightarrow \mathsf{B}_{\mathfrak{g}} \longrightarrow \mathsf{S}(\mathfrak{g} \times \mathfrak{g}) \otimes_{\Bbbk} \mathfrak{g} \longrightarrow Q \longrightarrow 0, \qquad 0 \longrightarrow Q \longrightarrow \mathsf{C}_{\mathfrak{g}}^* \longrightarrow \mathsf{A}_{\mathfrak{g}} \longrightarrow 0.$$

Since $E^{\#}$ has projective dimension at most 1 by Lemma 3.1, $\operatorname{Ext}^2_{S(\mathfrak{g}\times\mathfrak{g})}(E^{\#},Z)=0$. Then, by induction hypothesis, one has a commutative diagram

with exact lines and columns since $C_{\mathfrak{g}}^*$ is a free module. Let a and a' be in $C_{\mathfrak{g}}^* \otimes_{S(\mathfrak{g} \times \mathfrak{g})} P$ such that da = da'. Then $a - a' = da_1$ with a_1 in $C_{\mathfrak{g}}^* \otimes_{S(\mathfrak{g} \times \mathfrak{g})} Z$ so that

$$d \cdot \delta a - d \cdot \delta a' = d \cdot \delta \cdot da_1 = 0$$

whence a morphism

$$C_{\mathfrak{g}}^* \otimes_{S(\mathfrak{g} \times \mathfrak{g})} M \xrightarrow{\delta_M} \operatorname{Ext}_{S(\mathfrak{g} \times \mathfrak{g})}^1(E^{\#}, M)$$

uniquely defined by the equality $\delta_{M} \circ d = d \circ \delta$.

Let a be in $\operatorname{Ext}^1_{S(\mathfrak{a}\times\mathfrak{a})}(E^\#,M)$. Then

$$a = d \circ \delta a_1 = \delta_M \circ d a_1$$
 with $a_1 \in C_a^* \otimes_{S(a \times a)} P$.

Hence δ_M is surjective. Let b be in the kernel of δ_M . Then

$$b = \mathrm{d}b_1$$
, $\mathrm{d} \circ \delta b_1 = 0$, $\delta b_1 = \mathrm{d} \circ \delta b_2$ with $b_1 \in \mathrm{C}^*_{\mathfrak{q}} \otimes_{\mathrm{S}(\mathfrak{q} \times \mathfrak{q})} P$, $b_2 \in \mathrm{C}^*_{\mathfrak{q}} \otimes_{\mathrm{S}(\mathfrak{q} \times \mathfrak{q})} Z$.

so that $b_1 - db_2 = \delta b_3$ with b_3 in $Q \otimes_{S(g \times g)} P$, whence $b = \delta \circ db_3$. As a result, the above diagram is canonically completed by an exact third column and one has an isomorphism of short exact sequences

$$\operatorname{Ext}^1_{S(\mathfrak{g} \times \mathfrak{g})}(E^\#, Z) \longrightarrow \operatorname{Ext}^1_{S(\mathfrak{g} \times \mathfrak{g})}(E^\#, P) \longrightarrow \operatorname{Ext}^1_{S(\mathfrak{g} \times \mathfrak{g})}(E^\#, M) \longrightarrow 0 \ .$$

$$\uparrow \qquad \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad$$

Since the two sequences depends functorially on the short exact sequence

$$0 \longrightarrow Z \longrightarrow P \longrightarrow M \longrightarrow 0$$

and since the restrictions to $\operatorname{Mod}_{S(\mathfrak{g}\times\mathfrak{g})}(d-1)$ of the two functors $\operatorname{Ext}^1_{S(\mathfrak{g}\times\mathfrak{g})}(E^\#,\bullet)$ and $\operatorname{A}_{\mathfrak{g}}\otimes_{S(\mathfrak{g}\times\mathfrak{g})}\bullet$ are isomorphic, too is their restrictions to $\operatorname{Mod}_{S(\mathfrak{g}\times\mathfrak{g})}(d)$, whence the lemma since all object of $\operatorname{Mod}_{S(\mathfrak{g}\times\mathfrak{g})}$ has a finite projective dimension.

From the exact sequence,

$$0 \longrightarrow B_{\mathfrak{q}} \longrightarrow S(\mathfrak{g} \times \mathfrak{g}) \otimes_{\mathbb{k}} \mathfrak{g} \longrightarrow C_{\mathfrak{g}}^* \longrightarrow A_{\mathfrak{q}} \longrightarrow 0,$$

we deduce the graded homology complex,

$$0 \longrightarrow B_{\mathfrak{g}} \otimes_{S(\mathfrak{g} \times \mathfrak{g})} E_i \longrightarrow \mathfrak{g} \otimes_{\Bbbk} E_i \longrightarrow C_{\mathfrak{g}}^* \otimes_{S(\mathfrak{g} \times \mathfrak{g})} E_i \longrightarrow A_{\mathfrak{g}} \otimes_{S(\mathfrak{g} \times \mathfrak{g})} E_i \longrightarrow 0$$

denoted by C_{\bullet} . For *i* positive integer, let d_i and d'_i be the projective dimensions of E_i and $\operatorname{Hom}_{S(\mathfrak{g}\times\mathfrak{g})}(E^{\#},E_i)$.

Lemma 3.6. Let Q be the space of cycles of degree 2 of the complex C_{\bullet} .

- (i) Denoting by d_i'' the projective dimension of $\operatorname{Ext}^1_{S(\mathfrak{q}\times\mathfrak{q})}(E^\#, E_i)$, d_i' is at most $\sup\{d_i''-2, d_i\}$.
- (ii) The complex C_{\bullet} has no homology in degree 0, 1 and 3. Moreover, Q identifies with $\operatorname{Hom}_{S(\mathfrak{a}\times\mathfrak{a})}(E^{\#},E_{i})$.
- (iii) The module $\operatorname{Hom}_{S(q \times q)}(E^{\#}, E_i)$ has projective dimension at most d_i .

Proof. (i) From the short exact sequence

$$0 \longrightarrow \mathsf{C}_{\mathfrak{g}} \longrightarrow \mathsf{S}(\mathfrak{g} \times \mathfrak{g}) \otimes_{\Bbbk} \mathfrak{g} \longrightarrow E^{\#} \longrightarrow 0$$

one deduces the exact sequence

$$0 \longrightarrow \operatorname{Hom}_{S(\mathfrak{g} \times \mathfrak{g})}(E^{\#}, E_{i}) \longrightarrow \operatorname{Hom}_{\Bbbk}(\mathfrak{g}, E_{i}) \longrightarrow \operatorname{Hom}_{S(\mathfrak{g} \times \mathfrak{g})}(C_{\mathfrak{g}}, E_{i}) \longrightarrow \operatorname{Ext}^{1}_{S(\mathfrak{g} \times \mathfrak{g})}(E^{\#}, E_{i}) \longrightarrow 0$$

whence the two short exact sequences

$$0 \longrightarrow \operatorname{Hom}_{S(\mathfrak{q} \times \mathfrak{q})}(E^{\#}, E_i) \longrightarrow \operatorname{Hom}_{\Bbbk}(\mathfrak{g}, E_i) \longrightarrow Z \longrightarrow 0$$

$$0 \longrightarrow Z \longrightarrow \operatorname{Hom}_{S(\mathfrak{g} \times \mathfrak{g})}(C_{\mathfrak{g}}, E_i) \longrightarrow \operatorname{Ext}^1_{S(\mathfrak{g} \times \mathfrak{g})}(E^{\#}, E_i) \longrightarrow 0$$

with Z the image of the arrow

$$\operatorname{Hom}_{\mathbb{k}}(\mathfrak{g}, E_i) \longrightarrow \operatorname{Hom}_{S(\mathfrak{g} \times \mathfrak{g})}(C_{\mathfrak{g}}, E_i)$$

Denoting by d the projective dimension of Z, one deduces the inequalities

$$d'_i \le \sup\{d-1, d_i\}, \qquad d \le \sup\{d''_i - 1, d_i\}$$

since C_g is a free module, whence the assertion.

- (ii) By right exactness of the functor $\bullet \otimes_{S(g \times g)} E_i$, C_{\bullet} has no homology in degree 0 and 1. Moreover, its space of cycles of degree 3 is a torsion submodule of C_3 . Since E_i is torsion free and since B_g is free, C_3 has no torsion. Hence C_{\bullet} has no homology in degree 3. According to Lemma 3.3,(ii) and (iii), $\operatorname{Hom}_{S(g \times g)}(E^{\#}, E_i)$ identifies with a submodule of $g \otimes_{\Bbbk} E_i$. According to these identifications, Q is the space of morphisms from $S(g \times g) \otimes_{\Bbbk} g$ to E_i , equal to 0 on C_g , that is $Q = \operatorname{Hom}_{S(g \times g)}(E^{\#}, E_i)$.
 - (iii) By (ii), one has a short exact sequence

$$0 \longrightarrow \operatorname{Hom}_{\operatorname{S}(\mathfrak{g} \times \mathfrak{g})}(E^{\#}, E_{i}) \longrightarrow \operatorname{C}_{\mathfrak{g}}^{*} \otimes_{\operatorname{S}(\mathfrak{g} \times \mathfrak{g})} E_{i} \longrightarrow \operatorname{A}_{\mathfrak{g}} \otimes_{\operatorname{S}(\mathfrak{g} \times \mathfrak{g})} E_{i} \longrightarrow 0.$$

So, $A_g \otimes_{S(g \times g)} E_i$ has projective dimension at most $\sup\{d_i' + 1, d_i\}$. According to Lemma 3.5, $A_g \otimes_{S(g \times g)} E_i$ and $\operatorname{Ext}^1_{S(g \times g)}(E^\#, E_i)$ are isomorphic. So by (i),

$$d_i' \le \sup\{d_i' - 1, d_i\},\$$

whence $d_i' \leq d_i$.

The following corollary results from Corollary 3.4 and Lemma 3.6,(iii), since B_q is free.

Corollary 3.7. Let i be a positive integer. Then $\overline{E_i}$ has projective dimension at most $d_i + 1$.

3.4. For i a positive integer and for M a $S(\mathfrak{g} \times \mathfrak{g})$ -module, let consider on $M^{\otimes i}$ the canonical action of the symmetric group \mathfrak{S}_i . For σ in \mathfrak{S}_i , denote by $\epsilon(\sigma)$ its signature. Let $M^{\otimes i}_{\text{sign}}$ be the submodule of elements a of $M^{\otimes i}$ such that $\sigma.a = \epsilon(\sigma)a$ for all σ in \mathfrak{S}_i and let δ_i be the endomorphism of $M^{\otimes i}$,

$$a \longmapsto \delta_i(a) = \frac{1}{i!} \sum_{\sigma \in \mathfrak{S}_i} \epsilon(\sigma) \sigma.a.$$

Then δ_i is a projection of $M^{\otimes i}$ onto $M_{\text{sign}}^{\otimes i}$.

For L submodule of C_g^* , denote by L_i the image of $L^{\otimes i}$ by the canonical map from $L^{\otimes i}$ to $(C_g^*)^{\otimes i}$ and set $L_{i,\text{sign}} := L_i \cap (C_g^*)^{\otimes i}$. Let $\Lambda^i(L)$ be the quotient of $\Lambda^i(L)$ by its torsion module. For $i \geq 2$, identify \mathfrak{S}_{i-1} with the stabilizer of i in \mathfrak{S}_i and denote by $L_{i-1,\text{sign},1}$ the submodule of elements a of L_i such that $\sigma.a = \epsilon(\sigma)a$ for all σ in \mathfrak{S}_{i-1} .

Lemma 3.8. Let i be a positive integer and let L be a submodule of C_0^* .

- (i) The module L_i is isomorphic to the quotient of $L^{\otimes i}$ by its torsion module.
- (ii) The module $L_{i,\text{sign}}$ is isomorphic to $\bigwedge^{i}(L)$.
- (iii) For $i \ge 2$, the module $L_{i,sign}$ is a direct factor of $L_{i-1,sign,1}$.
- (iv) For $i \geq 2$, the module $L_{i-1, sign, 1}$ is isomorphic to the quotient of $\bigwedge^{i-1}(L) \otimes_{S(g \times g)} L$ by its torsion module.

Proof. (i) Let L_1 and L_2 be submodules of a free module F over $S(g \times g)$. From the short exact sequence

$$0 \longrightarrow L_2 \longrightarrow F \longrightarrow F/L_2 \longrightarrow 0$$

one deduces the exact sequence

$$\operatorname{Tor}^1_{\operatorname{S}(\mathfrak{g}\times\mathfrak{g})}(L_1,L_2)\longrightarrow L_1\otimes_{\operatorname{S}(\mathfrak{g}\times\mathfrak{g})}L_2\longrightarrow L_1\otimes_{\operatorname{S}(\mathfrak{g}\times\mathfrak{g})}F\longrightarrow L_1\otimes_{\operatorname{S}(\mathfrak{g}\times\mathfrak{g})}(F/L_2)\longrightarrow 0.$$

Since F is free, $L_1 \otimes_{S(g \times g)} F$ is torsion free. Hence the kernel of the second arrow is the torsion module of $L_1 \otimes_{S(g \times g)} L_2$ since $\operatorname{Tor}^1_{S(\alpha \times g)}(L_1, L_2)$ is a torsion module, whence the assertion by induction on i.

(ii) There is a commutative diagram

$$L^{\otimes i} \longrightarrow (C_{\mathfrak{g}}^*)^{\otimes i}$$

$$\downarrow^{\delta_i} \qquad \qquad \downarrow^{\delta_i}$$

$$L^{\otimes i}_{\text{sion}} \longrightarrow (C_{\mathfrak{g}}^*)^{\otimes i}_{\text{sjor}}$$

so that $L_{i,\text{sign}}$ is the image of $L_{\text{sign}}^{\otimes i}$ by the canonical morphism $L^{\otimes i} \longrightarrow (C_{\mathfrak{g}}^*)^{\otimes i}$, whence a commutative diagram

$$L_{\text{sign}}^{\otimes i} \longrightarrow \bigwedge^{i}(L)$$

$$\downarrow \qquad \qquad \downarrow$$

$$(C_{\mathfrak{g}}^{*})_{\text{sign}}^{\otimes i} \longrightarrow \bigwedge^{i}(C_{\mathfrak{g}}^{*})$$

According to (i), the kernel of the left down arrow is the torsion module of $L_{\text{sign}}^{\otimes i}$ so that the kernel of the right down arrow is the torsion module of $\bigwedge^i(L)$ since the horizontal arrows are isomorphisms. Moreover, the image of $L_{i,\text{sign}}$ in $\bigwedge^i(C_{\mathfrak{q}}^*)$ is the image of $\bigwedge^i(L)$. Hence $\overline{\bigwedge^i(L)}$ is isomorphic to $L_{i,\text{sign}}$.

(iii) Denote by Q_i the kernel of the endomorphism δ_i of $(C_{\mathfrak{g}}^*)^{\otimes i}$. Since δ_i is a projection onto $(C_{\mathfrak{g}}^*)^{\otimes i}_{\text{sign}}$ such that $\delta_i(L_i)$ is contained in $L_{i,\text{sign}}$,

$$(C_{\mathfrak{g}}^*)^{\otimes i} = (C_{\mathfrak{g}}^*)_{\mathrm{sign}}^{\otimes i} \oplus Q_i, \qquad L_i = L_{i,\mathrm{sign}} \oplus Q_i \cap L_i$$

whence

$$L_{i-1,\operatorname{sign},1} = L_{i,\operatorname{sgn}} \oplus Q_i \cap L_{i-1,\operatorname{sign},1}$$

since $L_{i,\text{sign}}$ is a submodule of $L_{i-1,\text{sign},1}$.

(iv) Let L_i' be the image of $L_{i-1, \mathrm{sign}, 1}$ by the canonical morphism $(C_\mathfrak{g}^*)^{\otimes i} \to \bigwedge^{i-1}(C_\mathfrak{g}^*) \otimes_{S(\mathfrak{g} \times \mathfrak{g})} C_\mathfrak{g}^*$. Then L_i' is contained in $\bigwedge^{i-1}(C_\mathfrak{g}^*) \otimes_{S(\mathfrak{g} \times \mathfrak{g})} L$ since $\bigwedge^{i-1}(C_\mathfrak{g}^*) \otimes_{S(\mathfrak{g} \times \mathfrak{g})} L$ is a submodule of $\bigwedge^{i-1}(C_\mathfrak{g}^*) \otimes_{S(\mathfrak{g} \times \mathfrak{g})} C_\mathfrak{g}^*$. Moreover, the morphism $L_{i-1, \mathrm{sign}, 1} \to L_i'$ is an isomorphism since too is the morphism

$$(C_{\mathfrak{g}}^*)_{sign}^{\otimes (i-1)} \otimes_{S(\mathfrak{g} \times \mathfrak{g})} C_{\mathfrak{g}}^* \longrightarrow \bigwedge^{i-1} (C_{\mathfrak{g}}^*) \otimes_{S(\mathfrak{g} \times \mathfrak{g})} C_{\mathfrak{g}}^*.$$

From (ii), it results the commutative diagram

$$L_{\operatorname{sign}}^{\otimes (i-1)} \otimes_{\operatorname{S}(\mathfrak{g} \times \mathfrak{g})} L \longrightarrow \overline{\bigwedge^{i-1}(L)} \otimes_{\operatorname{S}(\mathfrak{g} \times \mathfrak{g})} L$$

$$\downarrow \qquad \qquad \downarrow$$

$$L_{i-1,\operatorname{sign},1} \longrightarrow L'_{i}$$

with the right down arrow surjective. According to (i), the kernel of the left down arrow is the torsion module of $L_{\text{sign}}^{\otimes (i-1)} \otimes_{S(\mathfrak{g} \times \mathfrak{g})} L$. Hence the kernel of the right down arrow is the torsion module of $\Lambda^{i-1}(L) \otimes_{S(\mathfrak{g} \times \mathfrak{g})} L$, whence the assertion.

Proposition 3.9. Let i be a positive integer. Then E_i and $\bigwedge^i(\mathfrak{g}) \wedge \bigwedge^{b_{\mathfrak{g}}}(B_{\mathfrak{g}})$ have projective dimension at most i.

Proof. According to Proposition 3.2,(i), the modules E_i and $\bigwedge^i(\mathfrak{g}) \wedge \bigwedge^{b_{\mathfrak{g}}}(B_{\mathfrak{g}})$ are isomorphic. Prove by induction on i that E_i has projective dimension at most i. By Lemma 3.1,(i), it is true for i=1. Suppose that it is true for i-1. According to Corollary 3.7, $\overline{E_{i-1}}$ has projective dimension at most i. By Lemma 3.8, for L=E, E_i is a direct factor of $\overline{E_{i-1}}$ since E is a submodule of $C_{\mathfrak{g}}^*$ by Lemma 3.1,(iv) and since $E_i=\overline{\bigwedge^i(E)}$. Hence E_i has projective dimension at most i.

4. Main results

Let I_g be the ideal of $S(g \times g)$ generated by the functions $(x, y) \mapsto \langle v, [x, y] \rangle$ with v in g. The nullvariety of I_g in $g \times g$ is C(g). Let d be the $S(g \times g)$ -derivation of the algebra $S(g \times g) \otimes_{\mathbb{K}} \bigwedge(g)$ such that dv is the function $(x, y) \mapsto \langle v, [x, y] \rangle$ on $g \times g$ for all v in g. The gradation on $\bigwedge(g)$ induces a gradation on $S(g \times g) \otimes_{\mathbb{K}} \bigwedge(g)$ so that $S(g \times g) \otimes_{\mathbb{K}} \bigwedge(g)$ is a graded homology complex.

Lemma 4.1. Denote by $C_{\bullet}(\mathfrak{g})$ the graded submodule $\bigwedge(\mathfrak{g}) \wedge \bigwedge^{b_{\mathfrak{g}}}(B_{\mathfrak{q}})$ of $S(\mathfrak{g} \times \mathfrak{g}) \otimes_{\mathbb{k}} \bigwedge(\mathfrak{g})$.

- (i) The graded module $C_{\bullet}(\mathfrak{g})$ is a graded subcomplex of $S(\mathfrak{g} \times \mathfrak{g}) \otimes_{\Bbbk} \bigwedge (\mathfrak{g})$.
- (ii) The support of the homology of $C_{\bullet}(\mathfrak{g})$ is contained in $C(\mathfrak{g})$.

Proof. (i) Set:

14

$$\varepsilon := \wedge_{i=1}^{\ell} \varepsilon_i^{(0)} \wedge \cdots \wedge \varepsilon_i^{(d_i-1)}.$$

Then $C_{\bullet}(\mathfrak{g})$ is the ideal of $S(\mathfrak{g} \times \mathfrak{g}) \otimes_{\Bbbk} \bigwedge(\mathfrak{g})$ generated by ε since $\varepsilon_i^{(0)}, \dots, \varepsilon_i^{(d_i-1)}, i=1,\dots,\ell$ is a basis of $B_{\mathfrak{g}}$ by Theorem 2.2,(i). According to Theorem 2.2,(iii), for $i=1,\dots,\ell$ and for $m=0,\dots,d_i-1,\varepsilon_i^{(m)}$ is a cycle of the complex $S(\mathfrak{g} \times \mathfrak{g}) \otimes_{\Bbbk} \bigwedge(\mathfrak{g})$. Hence too is ε and $C_{\bullet}(\mathfrak{g})$ is a subcomplex of $S(\mathfrak{g} \times \mathfrak{g}) \otimes_{\Bbbk} \bigwedge(\mathfrak{g})$ as an ideal generated by a cycle.

(ii) Let (x_0, y_0) be in $g \times g \setminus C(g)$ and let v be in g such that $\langle v, [x_0, y_0] \rangle \neq 0$. For some affine open subset O of $g \times g$, containing (x_0, y_0) , $\langle v, [x, y] \rangle \neq 0$ for all (x, y) in O. Then dv is an invertible element of k[O]. For c a cycle of $k[O] \otimes_{S(g \times g)} C_{\bullet}(g)$,

$$d(v \wedge c) = (dv)c$$

so that *c* is a boundary of $\Bbbk[O] \otimes_{S(\mathfrak{q} \times \mathfrak{q})} C_{\bullet}(\mathfrak{g})$.

Theorem 4.2. (i) The complex $C_{\bullet}(\mathfrak{g})$ has no homology in degree bigger than $\mathfrak{b}_{\mathfrak{g}}$.

- (ii) The ideal I_g has projective dimension 2n 1.
- (iii) The algebra $S(g \times g)/I_g$ is Cohen-Macaulay.
- (iv) The projective dimension of the module $\bigwedge^n(\mathfrak{g}) \wedge \bigwedge^{b_\mathfrak{g}}(B_\mathfrak{g})$ equals n.

Proof. (i) Let Z be the space of cycles of degree $b_a + 1$ of $C_{\bullet}(\mathfrak{g})$. Then we deduce from $C_{\bullet}(\mathfrak{g})$ the complex

$$0 \longrightarrow C_{2n+\ell}(\mathfrak{g}) \longrightarrow \cdots \longrightarrow C_{n+\ell+2}(\mathfrak{g}) \longrightarrow Z \longrightarrow 0.$$

According to Lemma 4.1,(ii), the support of its homology is contained in \mathcal{C}_g . In particular, its codimension in $g \times g$ is

$$4n + 2\ell - (2n + 2\ell) = 2n = n + n - 1 + 1$$

According to Proposition 3.9, for $i = n + \ell + 2, ..., 2n + \ell$, $C_i(\mathfrak{g})$ has projective dimension at most n. Hence, by Corollary A.3, this complex is acyclic and Z has projective dimension at most 2n - 2, whence the assertion

(ii) and (iii) Since B_g is a free module of rank b_g , $\bigwedge^{b_g}(B_g)$ is a free module of rank 1. By definition, the short sequence

$$0 \longrightarrow Z \longrightarrow \mathfrak{g} \wedge \wedge^{b_{\mathfrak{g}}}(B_{\mathfrak{g}}) \longrightarrow I_{\mathfrak{g}} \wedge^{b_{\mathfrak{g}}}(B_{\mathfrak{g}}) \longrightarrow 0$$

is exact, whence the short exact sequence

$$0 \longrightarrow Z \longrightarrow \mathfrak{g} \wedge \bigwedge^{b_{\mathfrak{g}}}(B_{\mathfrak{q}}) \longrightarrow I_{\mathfrak{q}} \longrightarrow 0.$$

Moreover, by Proposition 3.9, $g \wedge \bigwedge^{b_g}(B_g)$ has projective dimension at most 1. Then, by (i), I_g has projective dimension at most 2n-1. As a result the $S(g \times g)$ -module $S(g \times g)/I_g$ has projective dimension at most 2n. Then by Auslander-Buchsbaum's theorem [Bou98, §3, n°3, Théorème 1], the depth of the graded $S(g \times g)$ -module $S(g \times g)/I_g$ is at least

$$4b_{\mathfrak{q}} - 2\ell - 2n = 2b_{\mathfrak{q}}$$

so that, according to [Bou98, §1, n°3, Proposition 4], the depth of the graded algebra $S(g \times g)/I_g$ is at least $2b_g$. In other words, $S(g \times g)/I_g$ is Cohen-Macaulay since it has dimension $2b_g$. Moreover, since the graded algebra $S(g \times g)/I_g$ has depth $2b_g$, the graded $S(g \times g)$ -module $S(g \times g)/I_g$ has projective dimension 2n. Hence I_g has projective dimension 2n - 1.

(iv) By (i), I_g has projective dimension 2n-1. Hence, according to Proposition 3.9 and according to (ii) and Corollary A.3, $\bigwedge^n(\mathfrak{g}) \wedge \bigwedge^{\mathfrak{b}_g}(B_{\mathfrak{g}})$ has projective dimension n.

Theorem 4.3. The subscheme of $g \times g$ defined by I_g is Cohen-Macaulay and normal. Furthermore, I_g is a prime ideal.

Proof. According to Theorem 4.2,(iii), the subscheme of $g \times g$ defined by I_g is Cohen-Macaulay. According to [Po08, Theorem 1], it is smooth in codimension 1. So by Serre's normality criterion [Bou98, §1, $n^\circ 10$, Théorème 4], it is normal. In particular, it is reduced and I_g is radical. According to [Ri79], C(g) is irreducible. Hence I_g is a prime ideal.

APPENDIX A. PROJECTIVE DIMENSION AND COHOMOLOGY

Recall in this section classical results. Let X be a Cohen-Macaulay irreducible affine algebraic variety and let S be a closed subset of codimension p of X. Let P_{\bullet} be a complex of finite projective $\mathbb{k}[X]$ -modules whose length l is finite and let ε be an augmentation morphism of P_{\bullet} whose image is R, whence an augmented complex of $\mathbb{k}[X]$ -modules,

$$0 \longrightarrow P_l \longrightarrow P_{l-1} \longrightarrow \cdots \longrightarrow P_0 \stackrel{\varepsilon}{\longrightarrow} R \longrightarrow 0.$$

Denote by \mathcal{P}_{\bullet} , \mathcal{R} , \mathcal{K}_0 the localizations on X of P_{\bullet} , R, the kernel of ε respectively and denote by \mathcal{K}_i the kernel of the morphism $\mathcal{P}_i \longrightarrow \mathcal{P}_{i-1}$ for i positive integer.

Lemma A.1. Suppose that S contains the support of the homology of the augmented complex P_{\bullet} . (i) For all positive integer i < p-1 and for all projective \mathcal{O}_X -module \mathcal{P} , $H^i(X \setminus S, \mathcal{P})$ equals zero.

(ii) For all nonnegative integer $j \leq l$ and for all positive integer $i , the cohomology group <math>H^i(X \setminus S, \mathcal{K}_{l-i})$ equals zero.

Proof. (i) Let i < p-1 be a positive integer. Since the functor $H^i(X \setminus S, \bullet)$ commutes with the direct sum, it suffices to prove $H^i(X \setminus S, \mathcal{O}_X) = 0$. Since S is a closed subset of X, one has the relative cohomology long exact sequence

$$\cdots \longrightarrow \operatorname{H}^{i}_{S}(X, \mathcal{O}_{X}) \longrightarrow \operatorname{H}^{i}(X, \mathcal{O}_{X}) \longrightarrow \operatorname{H}^{i}(X \setminus S, \mathcal{O}_{X}) \longrightarrow \operatorname{H}^{i+1}_{S}(X, \mathcal{O}_{X}) \longrightarrow \cdots$$

Since X is affine, $H^i(X, \mathcal{O}_X)$ equals zero and $H^i(X \setminus S, \mathcal{O}_X)$ is isomorphic to $H^{i+1}_S(X, \mathcal{O}_X)$. Since X is Cohen-Macaulay, the codimension p of S in X equals the depth of its ideal of definition in $\mathbb{k}[X]$ [MA86, Ch. 6, Theorem 17.4]. Hence, according to [Gro67, Theorem 3.8], $H^{i+1}_S(X, \mathcal{O}_X)$ and $H^i(X \setminus S, \mathcal{O}_X)$ equal zero since i+1 < p.

(ii) Let j be a nonnegative integer. Since S contains the support of the homology of the complex P_{\bullet} , for all nonnegative integer j, one has the short exact sequence of $\mathcal{O}_{X \setminus S}$ -modules

$$0 \longrightarrow \mathcal{K}_{i+1}|_{X \setminus S} \longrightarrow \mathcal{P}_{i+1}|_{X \setminus S} \longrightarrow \mathcal{K}_{i}|_{X \setminus S} \longrightarrow 0$$

whence the long exact sequence of cohomology

$$\cdots \longrightarrow H^{i}(X \setminus S, \mathcal{P}_{i+1}) \longrightarrow H^{i}(X \setminus S, \mathcal{K}_{i}) \longrightarrow H^{i+1}(X \setminus S, \mathcal{K}_{i+1}) \longrightarrow H^{i+1}(X \setminus S, \mathcal{P}_{i+1}) \longrightarrow \cdots$$

Then, by (i), for 0 < i < p-2, the cohomology groups $H^i(X \setminus S, \mathcal{K}_j)$ and $H^{i+1}(X \setminus S, \mathcal{K}_{j+1})$ are isomorphic since P_{j+1} is a projective module. Since $\mathcal{P}_i = 0$ for i > l, \mathcal{K}_{l-1} and \mathcal{P}_l have isomorphic restrictions to $X \setminus S$. In particular, by (i), for 0 < i < p-1, $H^i(X \setminus S, \mathcal{K}_{l-1})$ equal zero. Then, by induction on j, for 0 < i < p-j, $H^i(X \setminus S, \mathcal{K}_{l-j})$ equals zero.

Proposition A.2. Let R' be a k[X]-module containing R. Suppose that the following conditions are verified:

- (1) p is at least l+2,
- (2) X is normal,
- (3) S contains the support of the homology of the augmented complex P_{\bullet} .
- (i) The complex P_{\bullet} is a projective resolution of R of length l.
- (ii) Suppose that R' is torsion free and that S contains the support in X of R'/R. Then R' = R.

Proof. (i) Let j be a positive integer. One has to prove that $H^0(X, \mathcal{K}_j)$ is the image of P_{j+1} . By Condition (3), the short sequence of $\mathcal{O}_{X\backslash S}$ -modules

$$0 \longrightarrow \mathcal{K}_{j+1}|_{X \setminus S} \longrightarrow \mathcal{P}_{j+1}|_{X \setminus S} \longrightarrow \mathcal{K}_{j}|_{X \setminus S} \longrightarrow 0$$

is exact, whence the cohomology long exact sequence

$$0 \longrightarrow \mathrm{H}^0(X \setminus S, \mathcal{K}_{i+1}) \longrightarrow \mathrm{H}^0(X \setminus S, \mathcal{P}_{i+1}) \longrightarrow \mathrm{H}^0(X \setminus S, \mathcal{K}_i) \longrightarrow \mathrm{H}^1(X \setminus S, \mathcal{K}_{i+1}) \longrightarrow \cdots$$

By Lemma A.1,(ii), $H^1(X \setminus S, \mathcal{K}_{i+1})$ equals 0 since 1 , whence the short exact sequence

$$0 \longrightarrow \mathrm{H}^0(X \setminus S, \mathcal{K}_{j+1}) \longrightarrow \mathrm{H}^0(X \setminus S, \mathcal{P}_{j+1}) \longrightarrow \mathrm{H}^0(X \setminus S, \mathcal{K}_j) \longrightarrow 0.$$

Since the codimension of S in X is at least 2 and since X is irreducible and normal, the restriction morphism from P_{j+1} to $H^0(X \setminus S, \mathcal{P}_{j+1})$ is an isomorphism. Let φ be in $H^0(X, \mathcal{K}_j)$. Then there exists an element

 ψ of P_{j+1} whose image ψ' in $\mathrm{H}^0(X,\mathcal{K}_j)$ has the same restriction to $X\setminus S$ as φ . Since P_j is a projective module and since X is irreducible, P_j is torsion free. Then $\varphi=\psi'$ since $\varphi-\psi'$ is a torsion element of P_j , whence the assertion.

(ii) Let \mathcal{R}' be the localization of R' on X. Arguing as in (i), since S contains the support of R'/R and since 1 , the short sequence

$$0 \longrightarrow H^0(X \setminus S, \mathcal{K}_0) \longrightarrow H^0(X \setminus S, \mathcal{P}_0) \longrightarrow H^0(X \setminus S, \mathcal{R}') \longrightarrow 0$$

is exact. Moreover, the restriction morphism from P_0 to $H^0(X/S, \mathcal{P}_0)$ is an isomorphism since the codimension of S in X is at least 2 and since X is irreductible and normal. Let φ be in R'. Then for some ψ in P_0 , $\varphi - \varepsilon(\psi)$ is a torsion element of R'. So $\varphi = \varepsilon(\psi)$ since R' is torsion free, whence the assertion.

Corollary A.3. Let C_{\bullet} be a homology complex of finite $\mathbb{k}[X]$ -modules whose length l is finite and positive. For j = 0, ..., l, denote by Z_j the space of cycles of degree j of C_{\bullet} . Suppose that the following conditions are verified:

- (1) S contains the support of the homology of the complex C_{\bullet} ,
- (2) for all i, C_i is a submodule of a free module,
- (3) for i = 1, ..., l, C_i has projective dimension at most d,
- (4) X is normal and $l + d \le p 1$.

Then C_{\bullet} is acyclic and for $j=0,\ldots,l,$ Z_{j} has projective dimension at most l+d-j-1.

Proof. Prove by induction on l - j that the complex

$$0 \longrightarrow C_l \longrightarrow \cdots \longrightarrow C_{j+1} \longrightarrow Z_j \longrightarrow 0$$

is acyclic and that Z_j has projective dimension at most l+d-j-1. For j=l, Z_j equals zero since C_l is torsion free by Condition (2) and since Z_l a submodule of C_l , supported by S by Condition (1). Suppose $j \le l-1$ and suppose the statement true for j+1. By Condition (3), C_{j+1} has a projective resolution P_{\bullet} whose length is at most d and whose terms are finitely generated. By induction hypothesis, Z_{j+1} has a projective resolution Q_{\bullet} whose length is at most l+d-j-2 and whose terms are finitely generated, whence an augmented complex R_{\bullet} of projective modules whose length is l+d-j-1,

$$0 \longrightarrow Q_{l+d-j-2} \oplus P_{l+d-j-1} \longrightarrow \cdots \longrightarrow Q_0 \oplus P_1 \longrightarrow P_0 \longrightarrow Z_j \longrightarrow 0.$$

Denoting by d the differentials of Q_{\bullet} and P_{\bullet} , the restriction to $Q_i \oplus P_{i+1}$ of the differential of R_{\bullet} is the map

$$(x, y) \mapsto (\mathrm{d}x, \mathrm{d}y + (-1)^i \delta(x)),$$

with δ the map which results from the injection of Z_{j+1} into C_{j+1} . Since P_{\bullet} and Q_{\bullet} are projective resolutions, the complex R_{\bullet} is a complex of projective modules having no homology in positive degree. Hence the support of the homology of the augmented complex R_{\bullet} is contained in S by Condition (1). Then, by Proposition A.2 and Condition (4), R_{\bullet} is a projective resolution of Z_j of length l+d-j-1 since Z_j is a submodule of a free module by Condition (2), whence the corollary since $Z_0 = C_0$ by definition.

Remark A.4. Let D(X) be the bounded derived category of finite k[X]-modules. For E an object of D(X), denote by Supp(E) the union of the supports in X of the homology modules $H_i(E)$ of E. By definition, the homological dimension of E, written hd(E), is the smallest integer s such that E is quasi-isomorphic

to a complex of projective k[X]-modules of length s. If no such integer exists, $hd(E) = \infty$. Since X is Cohen-Macaulay, according to [MA86, Ch. 6, Theorem 17.4], we have the following proposition:

Proposition A.5. [BM02, Corollary 5.5] *Let* E *be a non trivial object of* D(X). *Then for all irreducible component* Γ *of* Supp(E),

 $\dim X - \dim \Gamma \leq \operatorname{hd}(E)$.

Corollary A.3 is a little bit smilar to Proposition A.5. But it is not a consequence of Proposition A.5 since its proof does not use the normality of X.

REFERENCES

- [Au61] M. Auslander, Modules over unramified regular local rings, Illinois Journal of Mathematics, 5 (1961), p. 631-647.
- [BM02] T. Bridgeland and A. Maciocia, Fourier-Mukai transforms for K3 and elliptic fibrations, 11 (2002), p. 629-657.
- [Bol91] A.V. Bolsinov, Commutative families of functions related to consistent Poisson brackets, Acta Applicandae Mathematicae, 24 (1991), n°1, p. 253–274.
- [Bou02] N. Bourbaki, Lie groups and Lie algebras. Chapters 4-6. Translated from the 1968 French original by Andrew Pressley, Springer-Verlag, Berlin (2002).
- [Bou98] N. Bourbaki, Algèbre commutative, Chapitre 10, Éléments de mathématiques, Masson (1998), Paris.
- [Bru] W. Bruns and J. Herzog, *Cohen-Macaulay rings*, Cambridge studies in advanced mathematics **n**° **39**, Cambridge University Press, Cambridge (1996).
- [CM008] J.-Y. Charbonnel and A. Moreau, Nilpotent bicone and characteristic submodule of a reductive Lie algebra, Tranformation Groups, 14, (2008).
- [Di74] J. Dixmier, Algèbres enveloppantes, Gauthier-Villars (1974).
- [Di79] J. Dixmier, Champs de vecteurs adjoints sur les groupes et algèbres de Lie semi-simples, Journal für die reine und angewandte Mathematik, Band. 309 (1979), 183–190.
- [Ga-Gi06] W. L. Gan, V. Ginzburg, Almost-commuting variety, D-modules, and Cherednik algebras., International Mathematics Research Papers, 2, (2006), p. 1–54.
- [Gi12] V. Ginzburg, Isospectral commuting variety, the Harish-Chandra D-module, and principal nilpotent pairs, Duke Mathematical Journal, 161, (2012), p. 2023–2111.
- [Gro67] A. Grothendieck, Local cohomology, Lecture Notes in Mathematics n°41 (1967), Springer-Verlag, Berlin, Heidelberg, New York.
- [H77] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics n°52 (1977), Springer-Verlag, Berlin Heidelberg New York.
- [HuWi97] G. Huneke and R. Wiegand, *Tensor products of modules, Rigidity and Local cohomology*, Mathematica Scandinavica, **81**, (1997), p. 161–183.
- [Ko63] B. Kostant, Lie group representations on polynomial rings, American Journal of Mathematics 85 (1963), p. 327-404.
- [MA86] H. Matsumura, *Commutative ring theory* Cambridge studies in advanced mathematics **n**°**8** (1986), Cambridge University Press, Cambridge, London, New York, New Rochelle, Melbourne, Sydney.
- [MF78] A.S. Mishchenko and A.T. Fomenko, Euler equations on Lie groups, Math. USSR-Izv. 12 (1978), p. 371-389.
- [Mu88] D. Mumford, The Red Book of Varieties and Schemes, Lecture Notes in Mathematics n°1358 (1988), Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo.
- [Po08] V.L. Popov, Irregular and singular loci of commuting varieties, Transformation Groups 13 (2008), p. 819–837.
- [Po08] V.L. Popov and E. B. Vinberg, Invariant Theory, in: Algebraic Geometry IV, Encyclopaedia of MathematicalSciences n°55 (1994), Springer-Verlag, Berlin, p.123–284.
- [Ri79] R. W. Richardson, Commuting varieties of semisimple Lie algebras and algebraic groups, Compositio Mathematica 38 (1979), p. 311–322.
- [V72] F.D. Veldkamp, *The center of the universal enveloping algebra of a Lie algebra in characteristic p*, Annales Scientifiques de L'École Normale Supérieure **5** (1972), p. 217–240.

JEAN-YVES CHARBONNEL, UNIVERSITÉ PARIS DIDEROT - CNRS, INSTITUT DE MATHÉMATIQUES DE JUSSIEU - PARIS RIVE GAUCHE, UMR 7586, GROUPES, REPRÉSENTATIONS ET GÉOMÉTRIE, BÂTIMENT SOPHIE GERMAIN, CASE 7012, 75205 PARIS CEDEX 13, FRANCE

E-mail address: jean-yves.charbonnel@imj-prg.fr